SSC 13

PROGRESS REPORT

on

METALLURGICAL QUALITY OF STEELS USED FOR HULL CONSTRUCTION

ЪУ

C. E. SIMS, H. M. BANTA AND A. L. WALTERS BATTELLE MEMORIAL INSTITUTE Under Navy Contract NObs-31219

COMMITTEE ON SHIP CONSTRUCTION DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH NATIONAL RESEARCH COUNCIL

Advisory to

BUREAU OF SHIPS, NAVY DEPARTMENT Under Contract NObs-34231

under contract Nobs-34231

Serial No. SSC-13

Copy No. 144

Date: November 17, 1947

NATIONAL RESEARCH COUNCIL 2101 Constitution Avenue Washington, D. C.

November 17, 1947

Chief, Bureau of Ships Navy Department Mashington, D. C.

Dear Sir:

Attached is Report Serial No. SSC-13 entitled "Metallurgical Quality of Steels used for Hull Construction". This report has been submitted by the contractor as a progress report of the work done on Research Project SR-87 under Contract NObs-31219 between the Bureau of Ships, Navy Department and Battelle Memorial Institute.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Construction, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Navy Department and the National Academy of Sciences.

Very truly yours,

Thedares

Frederick M. Feiker, Chairman Division of Engineering and Industrial Research

Enclosure

Preface

The Navy Department through the Bureau of Ships is distributing this report to those agencies and individuals that were actively associated with this research program. This report represents a part of the research work contracted for under the section of the Navy's directive "to investigate the design and construction of welded steel merchant vessels."

,

	The	distribution of this report. is as follows:			1
				· ·	
Сору	No.	1 - Chief, Bureau of Ships, Navy Department	,	5	

Copy No. 2 - Dr. D. W. Bronk, Chairman, National Research Council

Committee on Ship Construction

Сору	No.	3.		\mathbb{V}_{\bullet}	H.	Schnee,	Chair	nan		,	6	,		n		
Сору	No.	4.:	-	J.	\mathbb{L}_{\bullet}	Bates	10								•.	. 1
Сору	No.	5		Ηœ	C.	Boardman								•		·. ·
Copy	No.	6	-	Pa	11	Ffield	•							۰.	1 C	• •
Сору	No.	7	-	M.s	A.	Grossman					•				•	
Сору	No.	8		С,	H.	Herty, J:	r.	1.0								
Сору	No.	9	-	Α.	Β.	Kinzel	han an a	18		u ¹	¢ .			•		
Copy	No.	10-		J.	Μ.	Lessells	· •	1	× .		; '					
Copy	No.	11	-	G.	S_{\bullet}	Mikhalap	ov .		<u>.</u>	• 1	-				1	
Copy	No.	12		J.	0r	mondroyd							1.11			
Copy	No.	13	-	H.	11 a	Pierce		·					,			
Сору	Noj	14	-	E.	C.	Smith		. •								-
Copy	Nos	15	-	Τ.	Τ.	Watson										
Сору	No.	16	-	Fi	n	Jonașsen,	Resea	arch	^U oordi	nat	or	2				

Members of Project Advisory Committees SR-87, SR-89, SR-92 and SR-100

							2.4						· • • •	-	
Copy	No.	16	-	Finn	Jonassen,	Chairma	n								
Сору	No	17		R. H	Aborn	J.									
Copy	No.	18	-	L. C	, ^B ibber										
Copy	No.	5		H, ਪ	. Boardman	;	· . • ·	1 - A - A - A - A - A - A - A - A - A -		• • •		••			•
Сору	No.	6	-	Paul	Ffield			- 14 F	,		4				,
Сору	No.	7	-	M. A	. Grossman	1,4		- 2							1.00
Copy	No.	8		С. Н	. Herty, Ju	· · · ·	· · · .						•		
Сору	No .	19	-	С. Н	Jennings		s. 1				2				
Copy	No.	10	-	J. M	. Lessells		·	1							
Copy	No.	11	-	G. S	。 Mikhalapo	οv, v.		· ·		. 3					
Copy	No.	12	-	J , 0:	rmondroyd	:		• • •	11 412		••				
Copy	No.	13	-	$H_{\sigma} = \mathbb{R}$. Pierce	and a star	<u></u> .		а. 1 — А.		•				
Сору	No.	14	-	E. C.	. Smith		,		··· ·	.1					
Сору	No.	15	-	T _a T.	Watson			:					· -		
Сору	No.	20	-	W.M.	. Wilson			·	·-	- • •					
Сору	No.	21		A. G.	. ^B issell,	Bureau d	of Shi	ps, Li	aison	i					
Copy	No.	22		Е. М.	. MacCutche	eon, Jr.	, ປູ∘ S	Coas	t Gua	rd,	Liai	son		÷.	
Copy	No,	23	-	E, Ra	assman, ∷Bur	reau of	Ships,	Liais	on	-					
Сору	No.	24	**	Comda	r. R. Ď. So	hmidtma	n, Ū.ĺ	S. Coa	st Gu	ard.	Lia	ison			
Ссру	N_{O} .	25	-	T, L.	Soo-Hoo,	Bureau d	of Shi	ps, Lia	aison	- , 1					
Copy	No,	26	1-00	John	Vasta, U,	S. Marit	time C	ommiss:	ion.	Liai	son				

Copy No. 27 - R. E. Wiley, Bureau of Ships, Liaison Copy No. 28 - J. L. Wilson, American Sureau of Shipping, Liaison

Ship Structure Committee

Copy No. 29 - Rear Admiral Ellis Reed-Hill, USCG, ^{Ch}airman Copy No. 30 - Rear Admiral ^{Ch}arles D. Wheelock, USN, Bureau of Ships Copy No. 31 - Brigadier Genéral Paul F. Yount, War Department Copy No. 4 - J. L. Bates, U. S. Maritime Commission Copy No. 32 - D. P. Brown, American Bureau of Shipping Copy No. 3 - V. H. Schnee, Committee on Ship Construction, Liaison

Ship Structure Sub-Committee

Copy No. 33 - Captain L. V. Honsinger, USN, Bureau of Ships, Chairman Copy No. 34 - Captain R. A. Hinners, USN, David Taylor Model Basin Copy No. 35 - Condr. R. H. Lambert, USN, Bureau of Ships Copy No. 24 - Comdr. R. D. Schmidtman, USCG, U. S. Coast Guard Headquarters Copy No. 36 - Col. Werner W. Moore, USA, Office Chief of Transportation, War Dept. Copy No. 37 - Hubert Kempel, Office Chief of Transportation, War Department Copy No. 38 - Mathew Letich, American Dureau of Shipping Copy No. 22 - E. M. MacCutcheon, Jr., U. S. Coast Guard Headquarters Copy No. 39 - R. M. "obertson, Office of Naval Research, USN Copy No, 26 - John Vasta, U. S. Maritime Commission Copy No. 40 - I. J. Wanless, U. S. Maritime Commission Copy No. 27 - R. E. Wiley, Bureau of Ships, USN Copy No. 28 - J. L. Wilson, American Bureau of Shipping Copy No. 16 - Finn Jonassen, Liaison Representative, NRC Copy No. 41 - E. H. Davidson, Liaison Representative, AISI Copy No. 42 - Paul Gerhart, Liaison Representative, AISI Copy No. 43 - Wa. Spraragen, Liaison Representative, WRC Copy No. 44 - Wm. G. Milson, Technical Secretary

Navy Department

Copy No. 45 - Comdr. R. S. Mandelkorn, USN, Naval Admir	istrative	Unit	
Copy No, 21 - A. G. Bissell, Bureau of Ships	.**		•
Copy No. 46 - J. W. Jenkins, Bureau of Ships			• * <u>.</u>
Copy No. 47 - Noah Kahn, New York Naval Shipyard			•
Copy No. 48 - I. R. Kramer, Office of Naval Research	· · · ·		•
Copy No. 49 - J. R. Osgood, David Taylor Model Basin	• • • • •	19 A. 19 A. 19	
Copy No. 50 - N. A. Promisel, Bureau of Aeronautics	•		
Copy No. 51 - K. D. Williams, Bureau of Ships		· 1	÷
Copy No. 52 - Naval Academy, Post Graduate School	÷.		- 43 . - 1
Copy No. 53 - Naval Research Laboratory			
Copies 54 and 55 - U. S. Naval Engineering Experiment S	station		- 12
Copy No. 56 - New York Naval Shipyard, Material Divisio	n ,		
Copy No. 57 - Philadelphia Naval Shipyard	•		
Copies 58 and 59 - Publications Board, Navy Dept. via E	Bureau of	hips, (Jode 3300
Copies 60 and 61 - Technical Library, Bureau of Phips.	Code 337-1	. <u> </u>	-

Copy No. 62 - Captain R. B. Lank, Jr., USCG Copy No. 63 - Captain G. A. Tyler, USCG Copy No. 64 - Testing and Development Division

U. S. Maritime Commission

Copy No. 65 - E. J. Martinsky

Representatives of American Iron and Steel Institute Committee on Manufacturing Problems

Copy No. 66 - C. M. Parker, Secretary, General Technical Committee, American Iron and Steel Institute Copy No. 18 - L. C. Pibber, Carnegie-Illinois Steel Corporation Copy No. 8 - C. H. Herty, Jr., Bethlehem Steel Company Copy No. 14 - E. C. Smith, Republic Steel Corporation

Welding Research Council

Copy	No.	67 -	C, A. Adams	Copy No.	69	-LaMotte Grover
Сору	No.	68 -	Everett Chapman	Copy No.	43	- Im. Spraragen

Copy No. 70 - F. M. Feiker, Chairman, Division of Engineering & Industrial Research, NRC
Copy No. 71 - Clyde Williams, Chairman, Committee on Engineering Materials
Copy No. 3 - V. H. Schnee, Chairman, Committee on Ship Construction
Copy No. 16 - Finn Jonassen, Research Coordinator, Committee on Ship Construction
Copy No. 44 - Wm. G. Hilson, Technical Aide, Committee on Ship Construction
Copy No. 72 - C. E. Sims, Investigator, Research Project SR-87
Copy No. 73 - H. M. Banta, Investigator, Research Project SR-87
Copy No. 74 - A. L. Walters, Investigator, Research Project SR-87
Copy No. 10 - J. M. Lessells, Investigator, Research Project SR-98
Copy No. 76 - C. H. Lorig, Investigator, Research Project SR-98
Copy No. 77 - J. R. Low, Jr., Investigator, Research Project SR-96
Copy No. 78 - Albert Muller, Investigator, Research Project SR-96
Copy No. 79 - E. R. Parker, Investigator, Research Project SR-92

Copy No. 80 - George Sachs, Investigator, Research Project SR-99 Copy No. 81 - C. B. Voldrich, Investigator, Research Project SR-99 Copy No. 81 - C. B. Voldrich, Investigator, Research Project SK-100 Copy No. 82 - Clarence Altenburger, Great Lakes Steel Company Copy No. 83 - A. B. Bagsar, Sun Oil Company Copy No. 83 - A. B. Bagsar, Sun Oil Company Copy No. 84 - E. L. Cochrane, Massachusetts Institute of Technology Copy No. 85 - George Ellinger, National Bureau of Standards Copy No. 86 - Maxwell Gensamer, Carnegie-Illinois Steel Corporation Copy No. 87 - S. L. Hoyt, Battelle Memorial Institute

Copy No. 88 - Bruce Johnston, Lehigh University

Copy No. 89 - N. M. Newmark, University of Illinois

Copy No. 90 - L. J. Rohl, Carnegie-Illinois Steel Corp.

Copy No. 91 - W. P. Roop, Division of Engineering, Swarthmore College Copies 92 thru 116 - I. G. Slater, British Admiralty Delegation Copy No. 117 - Transportation Corps Board, Brooklyn, N. Y. Copies 118 thru 122 - Library of Congress via Bureau of Ships, Code 330c Copy No. 123 - File Copy, Committee on Ship Construction Copy No. 124 - NACA, Committee on Materials Research Coordination, USN

Copy No. 125 -Copy No. 126 -4 Copy No. 127 -Copy No. 128 -Copy No. 129 -Copy No. 130 - $\{i,j\} \in$ Copy No. 131 -Copy No. 132 -Copy No. 133 -Copy No. 134 -Copy No. 135 -Copy No. 136 -Copy No. 137 -Copy No. 138 -Copy No. 139 -Copy No. 140 -Copy No. 141 -Copy No. 142 -Copy No. 143 -Copy No. 144 -Copy No. 145 -Copy No. 146 -Copy No. 147 -Copy No. 148 -Copy No. 149 -Copy No. 150 -

Copies 125 thru 150 - Bureau of Ships

(Total No. of ^Copies - 150)

al de l'

PROGRESS REPORT

 \mathfrak{on}

NAVY RESEARCH PROJECT NObs 31219

METALLURGICAL QUALITY OF STEELS USED FOR HULL CONSTRUCTION

by

C. E. Sims, H. M. Banta, and A. L. Walters

BATTELLE MEMORIAL INSTITUTE

May 31, 1947

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	4
EXPERIMENTAL WORK	5
A Study of the Influence of Chemical Composition	5
Preparation of Laboratory Heats	5
Tensile Properties	6
Effect of Carbon Content	8
Effect of Manganese Content	8
Effect of Silicon Content	12
Effect of Molybdenum Content	12
Effect of Vanadium Content	12
Effect of Aluminum Content	16
Underbead Weld Crack Sensitivity	16
Effect of Carbon Content	. 16
Effect of Manganese Content	16
Effect of Silicon Content	2 0
Effect of Molybdenum Content	20
Effect of Vanadium Content	20
Effect of Aluminum Content	20
Notched-Bar Impact Properties	24
Effect of Carbon Content	24
Effect of Manganese Content	29
Effect of Silicon Content	29
Effect of Molybdenum Content	29

TABLE OF CONTENTS (Continued)

	· · · · · · · · · · · · · · · · · · ·	Page
	Effect of Vanadium Content	36
	Effect of Aluminum Content	36
	Standard-Composition Heats	36
	A Discussion of the Significance of the Test Data	36
	The Influence of Aluminum Content Upon the	
	Mechanical Properties Normal to the Plate Surface	50
	Tensile Properties Normal to Plate Surface	51
	Notched-Bar Impact Strength Normal to the Plate Surface	55
	FUTURE WORK	55
•	APPENDIX A	60
		00
•		
	s e s e se	
	an a	
		·
••		
-	• • • • • • • •	

.

.

1

TABLE OF CONTENTS (Continued)

Page

Figures

Figure	1.	Relationship between carbon content and tensile and yield strength	С
Figure	2.	Relationship between manganese content and tensile and yield strength	1
Figure	3.	Relationship between silicon content and tensile and yield strength	3
Figure	4.	Relationship between molybdenum content and tensile and yield strength	4
Figure	5.	Relationship between vanadium content and tensile and yield strength	5
Figure	6.	The effect of carbon content upon the underbead weld crack sensitivity	8
Figure	7.	The effect of manganese content upon the underbead weld crack sensitivity	9
Figure	8.	The effect of silicon content upon the underbead weld crack sensitivity	1
Figure	9.	The effect of molybdenum content upon the underbead weld crack sensitivity	2
Figure	10,	The effect of vanadium content upon the underbead weld crack sensitivity	3
Figure	11.	The effect of aluminum content upon the underbead weld crack sensitivity 28	5
Figure	12.	Notch-bar impact properties	6
Figure	13.	Notch-bar impact properties	7
Figure	14.	Notch-bar impact properties	3
Figure	15.	Notch-bar impact properties	2
Figure	16.	Notch-bar impact properties	L
Figure	17.	Notch-bar impact properties	S

• • •

,

-

:

. ..

TABLE OF CONTENTS (Continued)

. .

		Figure	18.	Notch-bar impact properties	33
		Figure	19.	Notch-bar impact properties	34
-		Figure	20.	Notch-bar impact properties	35
e 1		Figure	21.	Notch-bar impact properties	37
		Figure	22.	Notch-bar impact properties	38
		Figuro	23,	Notch-bar. impact properties	39
		Figure	24.	Notch-bar impact properties	40
		Figure	25.	Notch-bar impact properties	41
		Figure	26.	Notch-bar impact properties	42
•		Figure	27.	The effect of carbon content upon the notched-bar impact strength at 75°F.	43
		Figure	28.	The effect of manganese content upon the notched-bar impact strength at 75°F.	4 4
		Figure	29.	The effect of silicon content upon the notched-bar impact strength at 75°F.	45
		Figure	30.	The effect of molybdenum content upon the notched-bar impact strength at 75°F.	46
		Figure	31.	The effect of vanadium content upon the notched-bar impact strength at 75°F.	47
		Figure	32.	The effect of aluminum content upon the notched-bar impact strength at -40°F.	48
	•	, . Figure	33.	An illustration of the procedure used for making the specimens to determine the tensile properties normal to the plate surface	52
	•	Figure	34.	Notched-bar impact strength normal to the plate surface	56
	, ,	Figure	35.	Notched-bar impact strength normal to the plate surface	57
		Figure	36.	Notched bar impact strength normal to the plate surface	58

÷

Page

Tables

Page

Table	1.	Outline of laboratory heats made to study the influence of chemical composition	6
Table	2.	Chemical analysis of laboratory heats	7
Table	3.	Tensile properties of hot-rolled plate from laboratory heats	9
Table	4.	Underbead weld cracking indexes for Heats $X-1$ to $X-28$, X-45 and X-46 in the hot-rolled condition $\cdots \cdots \cdots$	17
Table	5.	Chemical analysis of laboratory heats made to study the influence of aluminum content	51
Table	6.	Tensile properties normal to the plate surface	54

APPENDIX A

Table A1.	Tensile properties of hot-rolled plate from laboratory Heats X-1 to X-28, inclusive, X-45 and X-46	60
Table A2.	Underbead cracking values of individual specimens from laboratory Heats X-1 to X-28, inclusive, X-45 and X-46 in the hot-rolled state	61
Table A.3.	Longitudinal notched-bar impact properties of laboratory Heats X-1 to X-28, inclusive, X-45 and X-46 in the hot- rolled state. All specimens notched parallel to the plate surface	62

Table A4. Notched-bar impact properties normal to the plate surface of Heats X-23 to X-28 in the hot-rolled state 63 PROGRESS REPORT

.

on

NAVY RESEARCH PROJECT NObs 31219

METALLURGICAL QUALITY OF STEELS USED FOR HULL CONSTRUCTION

May 31, 1947

From:

Battelle Memorial Institute

Report Prepared By: H. M. Banta A. L. Walters

C. E. Sims, Supervisor

SUMMARY

In order to obtain definite information concerning the relationships among chemical composition, underbead weld cracking, and the mechanical properties, especially the tensile and notched-bar impact characteristics, a series of 30 laboratory heats was made and studied in the hot-rolled state to determine the individual influence of each of the following constituents when varied over a range sufficiently broad to definitely establish the trend of the effect; carbon, manganese, silicon, molybdenum, vanadium, and aluminum.

. . . .

For a standard chemical composition, a typical HTS analysis was selected, and the elements studied were then varied one at a time in this standard composition.

This investigation revealed that the carbon content should most probably be limited to 0.15-0.20 per cent as above this value the crack sensitivity increases with marked rapidity which is entirely out of line with the increase in tensile and yield strength. Increased carbon content was also accompanied by a reduction in the notched-bar impact strength.

While manganese increases the tensile and yield strengths at a rapid rate, it also increases the weld crack sensitivity at a rapid rate. One advantage of manganese is that it is not appreciably detrimental to the notched-bar impact strength in the temperature range of $-70^{\circ}F$. to $210^{\circ}F$.

While silicon contents above that normally used in HTS steel did appear to offer some advantages over plain carbon-manganese steels for obtaining slightly higher yield strengths and low underbead cracking, silicon is not comparable with either molybdenum or vanadium for this purpose.

The use of either molybdenum or vanadium appeared to be the most promising means of increasing the tensile and yield strengths without marked detrimental effects upon the degree of underbead cracking. However, both of these alloys lower the notched-bar impact strength to an appreciable degree, especially at room temperature and lower.

Data from a single series of heats in which the aluminum addition was varied from C to 5 pounds per ton indicated that the aluminum content is an important factor in establishing the underbead

+2=

weld crack sensitivity. The steels made with low and medium amounts of aluminum were quite crack sensitive as compared with the steels containing no aluminum or a very large aluminum content, such as that obtained by an addition of 5 pounds per ton. Since this wide aluminum range has not been previously investigated, it will be necessary to confirm these results with additional data.

An aluminum addition of about 2 pounds per ton, .064 per cent acid-soluble aluminum content in the steel, was found to have the most beneficial influence upon the notched-bar impact strength. This effect was especially noticeable at low temperatures.

No relationship was found between the tensile properties of the plate normal to the surface and the aluminum content. A previous study made on commercial plate revealed a good correlation between aluminum content and the properties normal to the plate surface. This difference in behavior of the laboratory steels and the commercial heats may be caused by the large difference in the amount of reduction between ingot and plate, the directional properties being amplified by the increased reduction of the commercial product.

The notched-bar impact properties normal to the surface were all found to be quite low as compared with the longitudinal properties. As in the case of the longitudinal tests, the steel made with an aluminum addition of 2 pounds per ton displayed the highest notched-bar impact strength when tested normal to the surface.

INTRODUCTION

-4.

The previous work on this project has been confined to an investigation of the mechanical properties, metallurgical characteristics, and the underbead cracking tendencies of HTS steels that have been used in welded naval construction. Briefly, the range of chemistry covered was from 0.14 to 0.23 per cent carbon and 0.81 to 1.53 per cent manganese, together with small additions of titanium or vanadium or both. This range represents about the extreme limits found in commercial steels of this grade.

In the past, the summation of the carbon, manganese, and other alloys has been definitely limited because of underbead cracking. Recent work on this project has revealed that the total alloy content of the steel may be relatively high without being detrimental to the welding characteristics, especially underbead cracking, provided the steel has been homogenized to reduce or eliminate alloy segregation. This provides a means for using a higher alloy steel with resultant higher strength which is not susceptible to underbead cracking under normal welding conditions.

The purpose of this phase of the investigation is to determine the influence of chemical composition covering a much wider range than found in the commercial HTS steels. The ultimate object is to find the composition which will give the highest yield strength and still have a sufficiently low level of crack sensitivity to be satisfactory for welded ship construction.

EXPERIMENTAL WORK

A Study of the Influence of Chemical Composition

Preparation of Laboratory Heats

Previous work on laboratory heats has shown that in the case of small induction furnace heats, it was necessary to increase slightly the carbon and manganese contents in order to obtain the average level of underbead cracking normally found in commercial HTS steels. It was found that laboratory heats containing 0.21 per cent carbon and 1.32 per cent manganese were quite suitable for investigational purposes as these steels cracked well within the limits of the weld crack-sensitivity test conditions used for commercial steels. Using this approximate analysis as a standard for comparison, a series of 30 induction furnace heats were made to study the influence of carbon, manganese, silicon, molybdenum, vanadium, and aluminum contents upon the welding characteristics and mechanical properties. These heats consisted of 450-pound melts deoxidized with an addition of 0.4 pound of aluminum per ton of steel, with the exception of six heats made to study the effect of aluminum additions ranging from 0 to 5 pounds.

The steel was cast into two 6-5/8-inch-square ingots and subsequently processed by forging from a temperature of 2200°F. to 2300°F. to 2 by 5-inch slabs. Following reheating to 2200°F., the slabs were hot rolled to 1-inch plate in six passes. The finishing temperature after rolling was approximately 1750°F. The plates were stood on edge and allowed to air cool as in normalizing. By processing each ingot in this manner, a uniform hot-rolled condition was produced throughout the seven lots of steel.

The heats made with various aluminum contents were cast in 8 by 8-inch ingots and reduced by hot rolling on a commercial mill to 1-inch plate, the reasons for which will be discussed later.

A brief outline of the heats under consideration is shown in Table 1 which lists the group and heat numbers, the elements being investigated, and the range through which the elements were varied.

The complete chemical analysis of all thirty heats is shown in Table 2.

Group	Heat No. in Group	Element Being Investigated	Range Covered in Per Cent
1	X-1 to X-5, incl.	Carbon	0.17 to 0.32
2	X-6 to X-9, incl.	Manganese	0.93 to 1.51
3	X-10 to X-13, incl.	Silicon	0.41 to 0.92
4	X-14 to X-18, incl.	Molybdenum	0.10 to 0.43
5	X-19 to X-22, incl.	Vanadium	0.04 to 0.29
6	X-23 to X-28, incl.	Aluminum	0 to 0.18
7	X-45 to X-46, incl. (Standa	rd composition fo	r comparison

 TABLE 1.
 OUTLINE OF LABORATORY HEATS MADE TO STUDY THE

 INFLUENCE OF CHEMICAL COMPOSITION

Tensile Properties

Standard 0.505-inch threaded-end tensile specimens were machined from the center of the plate, duplicate specimens being prepared in both the longitudinal and transverse directions with respect to rolling. The

-6-

•

TABLE 2. CHEMICAL ANALYSIS OF LABORATORY HEATS

	Heat No.	C,	Mn	Р	S	"Si,	Ti	Mo	V	A1 [*]
	(Group 1)									
	X-1	0.17	1.36	•023	.024	0.31	.014	—		****
· · · · · · ·	X-2	0.20	1.30	•021	.023	Q.25	•001	-		-
	X-3	0.25	1.36	.022	.023	0.29	.014			
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	X-4	0.28	1.42	.022	.020	0.22	.014	-	-	
	X-5	0.32	1.26	•022	•020	0.22	.013	. —	` 🛏	•••
	(Group 2)		1.1	÷	-			· 1. •		
•	X-6	0.21	0.93	.021	.022	0.27	.010	-	-	
	X-7	0.19	1.22	.023	.018	0.28	.011	-	· -	-
	X-8	0.22	1.37	•023	.018	0.29	.012	-		-
	X-9	0.21	1.51	•023	.018	Ö.29	•.011	· 🛖 ·	-	-
	(Cmarm 2)									
	(Group 5)	0.21	1 30	025	018	0 41	012	•		
	x-11	0.21	1.37	.024	.019	0.55	-012	_	· _	_
	X-12	0.19	1.39	.023	.018	0.79	.011		-	_
	X-13	0.20	1.31	.024	019	0.92	.010	 .*		-
•	(Group 4)				· · · · ·					
	X-14	0.22	1.45	.023	.019	0.30	.025	0.10		
· .	x-15	0.21	1.49	.020	.020	0.35	.012	0.12	, 🛥	
· .	X-16	0.23	1.29	.023	.022	0.28	.012	0.24		
	X-17	0.23	1.32	.020	.020	0.30	.012	0.32		
	X-18	0.24	1.37	,023	.020	0.29	,014	0,43	-	
	(Group 5)				· •.	- 14	i.	· *		
	x-19	0.21	1.27	.020	.019	0.32	.013		0.04	1-2
	X-20	0.20	1.30	.021	.020	0.30	.016	***	0.08	-
	X-21	0.20	1.29	.020	.019	0.30	.014	· 🛶 🖌	0.19	••
	X-22	0.21	1.28	.020	.020	0.29	•018	-	0.29	-
	(Group 6)					ti a				
	X-23	0.20	1.25	.021	.022	0.27	.007	-	-	Nil
	X-24	0.23	1.36	.019	.021	0.29	.006	. .		<.005
	X-25	0.22	1.24	•020	.020	0.27	.013	-	-	<.005
	X-26	0.22	1.31	.021	021	0.27	.016	~	2 400	.029
	X-27	0.20	1.29	.018	.020	0.31	.015	-		.064
	X-28	0.22	1.26	.019	•0 2 0 °	0.27	.015	.	< _	0.180
	(Group 7)	• () - 4	2 • •							
in the second	-X-45	.0.21	1.35	.021	.030	0.27	.015	-	-	•003
	X-46	0 . 22	1.35	.023	.032	0.28	.015	- -	-	-003

* Acid-soluble aluminum content

Heats X-1 to X-22, inclusive, made with an addition of 0.4 lbs. aluminum per ton.

yield strength was determined from the stress-strain diagram using the load at 0.2 per cent offset. The data from these tests are summarized in Table 3 which lists the average of the duplicate tests. The complete data are listed in Table 1 of Appendix A.

Effect of Garbon Content. The influence of carbon content in the range of 0.17 to 0.32 per cent upon the tensile and yield strength is shown graphically in Figure 1. This figure reveals that as the carbon is raised from 0.17 to 0.32 per cent, the longitudinal yield and tensile strength increased progressively from approximately 45,000 p.s.i. to 55,000 p.s.i. and the tensile strength from 71,000 p.s.i. to 90,000 p.s.i. This increase in strength was accompanied by the usual decrease in ductility as indicated by the elongation and reduction in area.

A comparison of the transverse and longitudinal properties revealed the expected lower ductility in the transverse direction. There was also a tendency for slightly lower yield and tensile strength in the transverse direction, but in most cases, the difference can not be considered significant. A similar difference in directional properties was noted throughout all thirty heats.

The Effect of Manganese Content. Figure 2 illustrates the influence of manganese in the range of 0.93 to 1.51 per cent upon the tensile and yield strength. As the manganese is increased from 0.93 to 1.51 per cent, the longitudinal yield strength increased progressively from approximately 39,000 p.s.i. to 48,000 p.s.i., and the longitudinal tensile strength from 70,000 p.s.i. to 77,000 p.s.i. A similar trend and strengths were found in the transverse direction.

-8-

-		LABORATORY HEATS							
	Heat No.	Test Direction	Elong. in 2 Inches, %	Red. in Area, %	Yield Strength, p.s.i.	Tensile Strength, p.s.i.			
(Group	1) X-1 "	Long. Trans.	37.3 31.5	74.5 62.1	4 5,630 44,750	71,380 72,400			

TABLE 3. TENSILE PROPERTIES OF HOT-ROLLED PLATE FROM

.

.

•

.

X-2	Long.	36.0	68 .9	44,250	74,600
**	Trans.	32.8	63.0	41,630	73,880
x-3	Long.	31.8	67.0	47,380	81,550
11	Trans.	29.5	61.1	46,250	80,200
X-4	Long.	30.9	67.5	51,000	86,850
11	Trans.	27.8	56.4	48,750	86,4 50
x5	Long.	28.5	64.6	55,000	89,800
11	Trans.	26.5	52.4	49,380	87,280
(Choup 2)					
(Group 2) X-6	Long	35.5	66.5	39.130	70,150
11	Trans.	32.0	58.2	39,630	69,500
X-7	Long.	34.8	69.6	44.630	73,450
11	Trans.	29.9	-58.3	43,130	71,900
X-8	Long.	35.6	70.5	46,750	77,350
58	Trans.	30.0	59.2	44,500	75,950
x -9	Long.	34.8	.72.1	48,380	77,180
11	Trans.	31.6	59.6	46,380	77,650
(Group 3)	Tong	34 0	60 7	17 630	78 450
10 V-10	Trans.	32.3	60.2	44,130	76,300
X-11	. Long.	33.2	. 68.6	50,880	80,000
23	Trans.	29.7	60.7	46,630	79,600
X-12	Long.	33.0 -	68.5	52,500	85,450
11	Trans.	28.8	58.9	51,000	83,830
X-13	Long.	33.0	66.0	49,750	83,950
17	Trans.	30.5	59.6	49,250	83,200

TABLE 3. (Continued)

in the second	Heat No.	Test Direction	Elong. in 2 Inches, %	Red, in Area, %	Yield Strength, p.s.i.	Tensile Strength, p.s.i.
•	(Group A)		-			
• • • •	X-14	Long.	31.8	66.9	50,630	80.000
× .	ef ' .	Trans.	28.8	58.6	46,000	79,050
	X-15	Long.	31.8	64.1	51,380	81,400
	ti	Trans.	28.8	58.3	48,880	80,950
	• X 16	Long.	29.0	63.2	56,000	82,250
	τ ε	Trans.	24.1	55.2	56,750	82,650
	X-17	Long.	24.0	63.0	68,630	98,630
	lf .	Trans,	20.9	49.7	66,250	93,810
` र	X-18	Long.	22.0	62.6	78,250	99,490
	15	Trans.	20.8	53.5	75,880	97,280
1.1			•			
	(Group 5)	Long.	32.4	65.8	19 130	79 600
	11	Trans.	29.5	59.0	47,750	78,100
	X-20	Long.	32.6	67.8	56,880	84,200
	tt	Trans.	27.3	59.5	54,000	82,450
	X-21	Long -	27.0	61.1	66,880	93,530
• .	11	Trans.	23.0	52.4	64,630	92,550
	X-22	`Long.	25.3	59.4	78,500	105,130
· · · ·		Trans.	20.3	48.8	73,880	100,400
•			• ·			
	(Group 6)	Long	21 5	66 A	47 500	74 000
	.∆ ∠3 U	Trans.	29.3	52.2	47,5 00 45, 750	73,800
	X-24	Long.	31.3	64.5	50,880	82,230
	TI.	Trans.	27.8	50 ,7	49,380	81,850
	' X+25	Long.	33.0	68.2	47,750	77,380
a	tf .	Trans.	27.8	54.1	46,380	76,380
	X-26	· Long.	33.0	68.1	49,630	79,650
	1	Trans.	26.8	53.3	49,3 80	79,980

A MARINE NEW STREET STREET STREET

· ·

Heat No.	Test Direction	Elong. in 2 Inches, %	Red. in Area, %	Yield Strength, p.s.i.	Tensile Strength, p.s.i,
X-27	Long.	33.5	69.6	48,250	76,600
11	Trans.	28.3	56.9	45,750	75,980
X-28	Long.	33.5	68 .7	48,380	77,750
"	Trans.	28.5	55 . 9	46,880	75,800
(Group 7) X-45 "	Long. Trans.	33.8 23.8	67.2 35.7	52,100 48,880	79,1 00 75,950
X-46	Long.	35.0	70.1	50,750	80,300
11	Trans.	28.0	51.2	52,000	79,830

-

ى ئەربىي بىلىك بىكى بىرىسىنىڭ ، ئەندە ئالىر بىرىسىنىڭ ، يۇغۇللىرى ئەربىيىنىڭ بىلىك بىرىسىنىڭ ، ئالىكى بىرىسىنىڭ 1994-يىلىرى ئىلىرىلىرى ئىلىك بىرىسىنىڭ ، ئەندە ئالىك ، ئىلىپىلىسىنىڭ ئىلىك ، ئىلىك بىرى ئىلىك بىرى ئىلىك ، ئەكك ------

.....

TABLE 3. (Continued)

FIGURE 2. RELATIONSHIP BETWEEN MANGANESE CONTENT AND TENSILE AND YIELD STRENGTH

The increased manganese content did not decrease the ductility as indicated by the reduction of area and elongation in both the longitudinal and transverse directions. While there was a slight increase in the reduction of area in the longitudinal direction with increased manganese content, this change was not enough to be considered significant.

The Effect of Silicon Content. The longitudinal tensile data from the four heats made to study the influence of silicon content are shown in Figure 3. From this figure it will be noted that the silicon content in the range of about 0.30 to 0.90 per cent has little influence upon the yield strength and the effect upon the tensile strength is only slight.

In the range investigated, the silicon content had no perceptible influence upon the elongation or reduction in area.

Effect of Molybdenum Content. The marked influence of molybdenum content upon the longitudinal yield and tensile strengths is shown in Figure 4. By increasing the molybdenum content from 0.10 to 0.43 per cent, the yield strength was raised from approximately 51,000 p.s.i. to 78,000 p.s.i. and the tensile strength from 57,000 psi. to 99,000 p.s.i.

This increase in strength was accompanied with the usual decrease in elongation and reduction in area.

The Effect of Vanadium Content. Figure 5 reveals that the increase in longitudinal yield and tensile strength produced by the addition of vanadium was even more marked than that of molybdenum. By increasing the vanadium content from 0.04 to 0.29 per cent, the yield strength was raised from 49,000 p.s.i. to 78,000 p.s.i., and the tensile strength from 60,000 p.s.i. to 104,000 p.s.i. With this

FIGURE 3 RELATIONSHIP BETWEEN SILICON CONTENT AND TENSILE AND YIELD STRENGTH

FIGURE 4 . RELATIONSHIP BETWEEN MOLYBDENUM CONTENT AND TENSILE AND YIELD STRENGTH

•

FIGURE 5. RELATIONSHIP BETWEEN VANADIUM CONTENT AND TENSILE AND YIELD STRENGTH

-15-

increase in strength, the elongation dropped from 32.4 to 25.3 per cent and the reduction of area from 65.8 to 59.4 per cent.

The Effect of Aluminum Content. As would be expected, the aluminum content had no perceptible effect upon the tensile properties of either the longitudinal or transverse tests. The influence of aluminum upon the properties normal to the surface will be discussed later in this report.

Underbead Weld Crack Sensitivity

The underbead weld crack sensitivity of all thirty heats in the hot-rolled condition was determined by the single-bead weld test as previously described in the reports on this project. Five weld specimens were made on each heat and a summary of the results is listed in Table 4. The complete data are listed in Table 2 of the Appendix.

The Effect of Carbon Content. The pronounced influence of carbon content upon the extent of underbead cracking is illustrated in Figure 6. This figure shows that the crack sensitivity increases quite rapidly as the carbon content is raised. The heats with 0.20 per cent or less carbon had a cracking index of 27 or less as compared with 85 and higher for heats with 0.25 per cent or more carbon.

The Effect of Manganese Content. The effect of manganese content in the range of 0.93 per cent to 1.51 per cent upon the degree of underbead cracking is shown in Figure 7. While the data in this figure do not form a smooth curve because of other factors such as the variation in carbon content, the results do indicate that the underbead cracking

·. -16-

the second second

• .

• .

TABLE 4. UNDERBEAD WELD CRACKING INDEXES FOR HEATS X-1 TO X-28, X-45 AND X-46 IN THE HOT-ROLLED CONDITION

Heat No.	Constituent Varied	Weld Crack- Sensitivity Index
йг й		
Å <u>∸</u> ↓ ·	• 0.17)	21
A-6 V 7	0.20 %	27
X3	0.25) Carbon	85
X-4	0.28) content	97
X-5	0.32)	104
X-6	0.93) %	28
X-7	1.22) Manganese	19
X-8	1.37) content	75
X-9	1.51)	59
X-10	0.41) %	50
X-11	0.55) Silicon	84
X-12	0.79) content	84
X-13	0.92)	. 64
X-14	0.10)	20
X-15	0.12)	09
X-16	(0.24) Molyhdenum	00
X-17	(0.32) content	00 71
X-18	0.43)	66
x-19	0.04)	50
X-20	0.08) Vanadium	51
X-21	0.19) content	04 70
X-22	0.29)	76
¥-23	(Fig	
X-24	~ 0.05	6
x=25	\sim 005) of Aluminum	95
X=26	(000) (000) (000)	74
x-27	(025) converte	81
X-28	•180)	57 17
X-45	Standard composition boot	E 7
1 10	a the second second second second	57

FIGURE 6 . THE EFFECT OF CARBON CONTENT UPON THE UNDERBEAD WELD CRACK SENSITIVITY

FIGURE 7. THE EFFECT OF MANGANESE CONTENT UPON THE UNDERBEAD WELD GRACK SENSITIVITY

0 5418

increased rapidly as the manganese content increased. More data will be obtained on these steels in order to obtain more points for plotting the manganese content-crack sensitivity curve.

The Effect of Silicon Content. The addition of silicon above that normally used in HTS steel was found to increase the extent of underbead cracking. The data show, however, that an increase from 0.79 per cent to 0.92 per cent silicon resulted in a decrease in the crack sensitivity. (See Figure 8.) While it is well established that large additions of silicon, about 1.00 per cent, decrease the tensile and yield strengths as illustrated in Figure 3, additional data are needed to confirm the effect of silicon content in this range upon the weld crack sensitivity. The high-silicon end of the crack-sensitivity curve in Figure 8, therefore, should be considered as incomplete.

Effect of Molybdenum Content. Molybdenum proved to be unique in that additions ranging from 0.10 to 0.43 per cent did not increase underbead cracking to any appreciable extent, although the yield and tensile strengths were increased to a marked extent. The curve comparing underbead cracking with the molybdenum content is shown in Figure 9.

The Effect of Vanadium Content. The relationship of underbead cracking to the vanadium content is illustrated in Figure 10. This figure indicates that additions of vanadium increases the underbead cracking to a very small extent.

The Effect of Aluminum Content. The study of the effect of aluminum content in the range of 0 to 0.18 per cent (acid soluble) yielded results which were quite unexpected and will require additional data for confirmation.

-20-

FIGURE 8. THE EFFECT OF SILICON CONTENT UPON THE UNDERBEAD WELD CRACK SENSITIVITY

-21-

FIGURE 9. THE EFFECT OF MOLYBDENUM CONTENT UPON THE UNDERBEAD WELD CRACK SENSITIVITY

FIGURE 10. THE EFFECT OF VANADIUM CONTENT UPON THE UNDERBEAD WELD CRACK SENSITIVITY

The data showing the influence of aluminum content upon the crack sensitivity of the six heats made in this investigation are shown in Figure 11. These data indicate that the extent of underbead cracking is extremely low in the steel made with no aluminum addition and increased very rapidly as the aluminum was added, the maximum cracking occurring in the noighborhood of .01 per cent aluminum and progressively decreasing with additional aluminum.

Since the reasons for the apparent marked influence of aluminum content are not obvious at this time, and as the above results were unexpected and based on relatively few data, it will be necessary to obtain additional data to confirm or refute these results.

Notched-Bar Impact Properties

. In order to determine the effect of chemical composition upon the notched-bar impact properties, four duplicate specimens were broken from each of the 30 experimental heats at five different temperatures ranging from -75°F. to 210°F. The standard Charpy test specimen was used with the V-type Izod notch cut parallel with the plate surface. Only longitudinal tests were made, the length of the test specimen being the direction of rolling.

The results of these tests are shown graphically in Figures 12 to 32, inclusive, and the data from which these figures were constructed are listed in Table 3 of Appendix A.

The Effect of Carbon Content. A comparison of Figures 12 to 14, inclusive, reveals that as the carbon content is raised, the notched-bar impact strength drops rapidly. This is well illustrated in Figure 27 which shows the impact strength at +75°F. for a carbon range of 0.17 per cent to 0.32 per cent.

-24-

FIGURE II. THE EFFECT OF ALUMINUM CONTENT UPON THE UNDERBEAD WELD CRACK SENSITIVITY

FIGURE 13. NOTCH - BAR IMPACT PROPERTIES

FIGURE 14 . NOTCH - BAR IMPACT PROPERTIES

Effect of Manganese Content. In the range investigated, 0.93 to 1.51 per cent, it was found that the manganese content had little if any influence upon the notched-bar impact strength. (See Figures 14 to 10, inclusive.)

Figure 28 shows the impact strength at room temperature plotted against the manganese content. While these data might be interpreted as indicating that an intermediate manganese content was advantageous, it appears that this indication is only incidental as similar conditions are not noted at lower or higher temperatures.

Effect of Silicon Content. At room temperature and lower, the notched-bar impact strength falls off rapidly as the silicon content is increased. (See Figures 16 to 18, inclusive.) This effect of silicon content at room temperature is illustrated in Figure 29.

At a temperature of 10°F., the silicon content has no appreciable effect upon the impact strength.

Effect of Wolybdenum Content. While the addition of 0.10 per cent molybdenum lowered to some extent the notched-bar impact strength when tested at 75°F., increased contents up to 0.32 per cent had no further effects. The indications were, however, that as the molybdenum content was raised to about 0.40 per cent, the impact strength dropped to a marked extent.

The influence of molybdenum content upon the impact strength at 75°F. is shown in Figure 30. The data for the entire range of temperatures and compositions studied are shown in Figures 18 to 20, inclusive.

-29-

FIGURE 15. NOTCH-BAR IMPACT PROPERTIES

FIGURE 16. NOTCH - BAR IMPACT PROPERTIES

FIGURE 17. NOTCH - BAR IMPACT PROPERTIES

FIGURE 18 NOTCH - BAR IMPACT PROPERTIES

FIGURE 19 . NOTCH - BAR IMPACT PROPERTIES

FIGURE 20 . NOTCH - BAR IMPACT PROPERTIES

Effect of Vanadium Content. The effect of vanadium content upon the notched-bar impact strength at 75°F. is shown in Figure 31. From this figure it will be seen that the impact strength decreases as the vanadium content is increased. This would be expected in view of the marked increase in yield strength.

The effect of temperature upon the impact strength of the four vanadium-bearing steels is shown in Figures 21 and 22.

Effect of Aluminum Content. The aluminum content was found to influence the notched-bar impact strength in the expected manner, that is, the impact strength especially at low temperatures increased as the aluminum content (acid soluble) was increased until a maximum was reached, after which the impact strength declined with further addition of aluminum. The aluminum content is known to affect other properties such as graincoarsening temperature and hardenability in a similar manner.

The influence of aluminum content upon the notched-bar impact strength at -40°F. is illustrated in Figure 32. The complete data covering the entire temperature range studied are shown in Figures 23 to 25, inclusive.

<u>Standard-Composition Heats</u>. The notched-bar impact properties of the two standard chemical composition heats, X-45 and X-46, are shown in Figure 26. The curves for these two heats are in good agreement but do not duplicate the results for heats of similar composition, X-8 for example, as well as might be expected.

A Discussion of the Significance of the Test Data

A study of the tensile properties, weld crack sensitivity, and the notched-bar impact properties of the thirty experimental heats

FIGURE 21. NOTCH-BAR IMPACT PROPERTIES

•

0-5433

-38-

FIGURE 24 . NOTCH- BAR IMPACT PROPERTIES

FIGURE 23. NOTCH - BAR IMPACT PROPERTIES

FIGURE 25 . NOTCH - BAR IMPACT PROPERTIES

FIGURE 26. NOTCH - BAR IMPACT PROPERTIES

FIGURE 27. THE EFFECT OF CARBON CONTENT UPON THE NOTCHED-BAR IMPACT STRENGTH AT 75 ° F.

0-5439

-44-

FIGURE 29. THE EFFECT OF SILICON CONTENT UPON THE NOTCHED-BAR IMPACT STRENGTH AT 75° F.

.20

1

0

.10

FIGURE 30. THE EFFECT OF MOLYBDENUM CONTENT UPON THE NOTCHED-BAR IMPACT STRENGTH AT 75°F.

MOLYBDENUM CONTENT - PER CENT

.30

.40

FIGURE 31. THE EFFECT OF VANADIUM CONTENT UPON THE NOTCHED - BAR IMPACT STRENGTH AT 75° F.

FIGURE 32. THE EFFECT OF ALUMINUM CONTENT UPON THE NOTCHED-BAR IMPACT STRENGTH AT -40 °F.

tested in the hot-rolled state reveals the limitations and possible advantages that might be obtained by varying the carbon, manganese, silicon, molybdenum, vanadium, and aluminum contents.

From this investigation, it is quite obvious that the carbon content is very definitely limited. Above this limiting value of about 0.15 to 0.20 per cent carbon, the crack sensitivity increases with marked rapidity which is entirely out of line with the increase in yield strength. The increase in carbon is also accompanied with a reduction in the notched-bar impact strength.

While manganese increases the yield strength to a marked extent, it also raises the crack sensitivity quite rapidly and is, therefore, limited in the case of hot-rolled steel to some place between about 1.10 to 1.30 per cent, depending upon other factors. One apparent advantage of manganese is that it is not detrimental to the notched-bar impact strength in the range investigated.

While the use of silicon as an alloy in this grade of steel appears to offer an advantage over plain carbon-manganese steels for obtaining yield strengths up to about 52,000 p.s.i., silicon is not comparable with either molybdenum or vanadium for producing higher yield strength steels that exhibit a low degree of underbead cracking.

It appears quite possible that the use of molybdenum and vanadium as alloying agents may prove to be advantageous. Additions of either of these alloys produces a substantial increase in the yield and tensile strength, which in the case of molybdenum is accompanied by little or no increase in weld crack sensitivity, and only a moderate increase in the case of vanadium. The addition of these alloys does, however, lower the notched-bar impact strength especially at room temperature and below.

-49-

The data from the six heats made to study the influence of aluminum content indicate that aluminum is an extremely important factor in establishing the weld crack sensitivity, the low-and-medium aluminum steels being quite crack sensitive as compared with steels containing no aluminum or very large additions of aluminum.

Since this pronounced effect of aluminum had not been noted in the previous work, which may be because the proper range was not investigated, it will be necessary to obtain more data to confirm or refute these results.

The study of aluminum content again confirmed the beneficial effects of relatively large aluminum additions, two pounds per ton, upon the notched-bar impact strength. This effect is especially noticeable at low temperatures.

The Influence of Aluminum Content Upon the Mechanical Properties Normal to the Plate Surface

In order to obtain more information about the influence of aluminum and especially its effect upon the physical properties normal to the plate surface, Heats X-23 to X-28, inclusive, were made with aluminum additions ranging from 0 to 5 pounds per ton. (See Tables 1 and 2.)

These heats were made from 350-pound induction furnace melts which were poured into a single 8 by 8-inch ingot, the maximum size that can be conviently handled in the laboratory. This large size was selected in order to obtain the maximum reduction during hot-rolling to a l-inch plate. To prevent the structure from being broken up by forging, these ingots were rolled directly to l-inch plate on a small commercial mill.

--- 50--

The analysis of these six heats, including the acid-soluble aluminum content and the amount of aluminum added, are shown in Table 5.

Heat No.	C.	Mn	P	S	Si	Ti	A1	Aluminum Added in Lbs. Per Ton
X-23	0.20	1.25	.021	.022	0.27	.007	Nil	0
X-24	0.23	1.36	.019	•021	0,29	006ء	<.005	1/4
X-25	0.22	1.24	.020	.020	0.27	.013	<.005	1/2
X-26	0.22	1.31	.021	.021	. 0.27	.016	•029	1
X-27	0.20	1.29	₀0 18	.020	0,31	.015	•064	2
X-28	0.22	1.26	.019	.020	0.27	.015	.180	5

TABLE5.CHEMICAL ANALYSIS OF LABORATCRY HEATS MADE TO
STUDY THE INFLUENCE OF ALUMINUM CONTENT

Tensile Properties Normal to Plate Surface. In order to

determine the tensile strength of these steels in the direction normal to the plate surface, tensile specimens were prepared from the hot-rolled plate by welding and machining as indicated in Figure 33. Three by sixinch specimens were cut from each of the six heats, Heats X-23 to X-28, inclusive. Beveled plates were then welded to these specimens as shown in the above figure. The welds were made with four passes using Lincoln Shield-Arc 100(AVS-E10010) electrodes. The first pass was made with a 3/32-inch electrode and reverse polarity direct current using 130 to 140 amperes and an arc voltage of 27 to 30.

Following rough turning of the tensile specimens, they were etched lightly in order to establish definitely the location of the test plate. After determining the position of the test plate, a 3/4-inch

-51-

FIGURE 33. AN ILLUSTRATION OF THE PROCEDURE USED FOR MAKING THE SPECIMENS TO DETERMINE THE TENSILE PROPERTIES NORMAL TO THE PLATE SURFACE section midway between the extremes of the test plate was ground to 0.505-inch diameter, leaving the remainder of the bar 0.550 inch. This precaution was taken to insure that the fracture would occur in the desired section.

The results of the tensile tests are shown in Table 6. A study of these data do not show a marked relationship between the aluminum content and the tensile properties. It will be noted, however, that both the yield and tensile strength of the heat made with no aluminum addition, Heat X-23, are low compared with the other heats in the series. The low strength, however, is not caused entirely by the absence of aluminum since both the carbon and manganese contents are low. While the data may be interpreted in such a manner as to indicate a slight increase in ductility with increased aluminum, this increase is so small that it cannot be considered significant.

A previous study made on commercial HTS steels and reported on pages 87 to 89 of the August 24, 1945, report showed a distinct relationship between the aluminum content and the reduction in area, the steels with little or no acid-soluble aluminum content displaying a much higher reduction in area that those containing an appreciable amount of aluminum. A similar but less marked relationship was noted between the aluminum content and the per cent elongation. The tensile strength in the higher aluminum commercial steels was found to be erratic and sometimes quite low.

This difference between the behavior of the laboratory steels and the commercial heats can probably be attributed to the difference in the amount of reduction between ingot and plate, the directional properties obviously being amplified by increased reduction.

-53-

e Same

Sec. 1

		Heat No.	Aluminum Content,	Elong. in 3/4 Inch, %	Red. in Area, %	Yield Strength, p.s.i.	Tensile Strength, p.s.i.
·	. :	X-23 u	Nil	14.7 9.3 14.7	18.4 14.5 18.1	54,000 53,000 58,750	74,600 73,250 73,750
	٩.	X-24 "	.005	10.7 6.7 9.3	12.6 11.5 14.1	63,750 62,500 62,500	82,880 80,630 84,500
. :		X-25 11	<.005	17.3 16.0 13.3	22.7 20.6 18.1	61,500 60,750 62,000	80,750 79,000 79, 380
	•	<u>x-</u> 26 "	029	13.3 13.3 13.3	18.8 18.8 21.3	61,000 60,000 61,500	78,380 77,880 77,750
		x-27 n , u	•064	14.7 17.3 17.3	23.7 27.8 27.8	63,000 61,500 61,500	78,000 78,250 78,630
. [.] .		X-28 "	.180	16.0	24.1 * 18.4	62,000 63,000 63,000	79,000 74,500 77,880

÷ .

TABLE 6. TENSILE PROPERTIES NORMAL TO THE PLATE SURFACE

* Specimen broke in gauge mark.

 $\frac{1}{2}$

See Figure 19 for details concerning the preparation of the tensile specimens.

and the second second

 Notched-Bar Impact Strength Normal to the Plate Surface. Notchedbar impact specimens, Charpy specimens with V-Izod notches, were prepared from sections similar to those used for the tensile specimens. (See Figure 33.)

Four duplicate specimens were broken at five different temperatures between the limits of -40° F. and $+210^{\circ}$ F. The data from these tests are shown in Figures 34 to 36, inclusive. The test values are recorded in Table 4 of Appendix A. The above figures reveal that the notched-bar impact strength normal to the plate surface is quite low regardless of the aluminum content, the values at $+75^{\circ}$ F. falling between 7 and 20-footpounds.

A comparison of the six different steels reveals that Heat X-27 made with an addition of two pounds of aluminum per ton had definitely better impact strength as compared with the other heats. Similar results were noted when the steels were tested in the longitudinal direction, that is, the direction of rolling. (See Figures 23 to 25, inclusive.)

FUTURE WORK

In order to check the effect of aluminum content upon underbead cracking, a second series of heats will be made with aluminum additions ranging from 0 to 5 pounds per ton.

Since increased additions of molybdenum apparently did not increase the crack sensitivity but did raise the tensile and yield strength to a marked extent, it appears desirable to make a second series of heats but at a slightly lower carbon level in order to confirm the previous results.

-55-

FIGURE 34. NOTCHED-BAR IMPACT STRENGTH NORMAL TO THE PLATE SURFACE

FIGURE 35. NOTCHED - BAR IMPACT STRENGTH NORMAL TO THE PLATE SURFACE

FIGURE 36. NOTCHED-BAR IMPACT STRENGTH NORMAL TO THE PLATE SURFACE

0-5446

-58-
The influence of homogenization upon the crack sensitivity and physical properties of the 30 heats discussed in this report will be studied. This phase of the work should aid in establishing the maximum chemical composition that may be used without excessive underbead cracking.

Since it appears that the most practical place to carry out a homogenization treatment in commercial production is while the slab is being heated for rolling to plate, it will be necessary to determine the time and temperature required for this treatment. Sections of commercial slabs of HTS steel have been obtained and a study is being made to determine the time-temperature cycle necessary to homogenize the slab and also the effect of this temperature upon the crack sensitivity of the plate rolled from the treated slab.

Data used in this report can be found in Laboratory Notebook No. 2581, pages 6 to 51, inclusive.

CES:H-B:ALW/ab June 18, 1947 Revised October 9, 1947 -59-

APPENDIX A

TABLES OF COMPLETE TEST DATA

•

by

H. M. Banta and A. L. Walters

....

•:	Heat	Test	Elong, in 2 Inches,	Red. in Area,	Yield Strength,	Tensile Strength,
8 g. € 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	No	Direction	%	%	p.s.i.	p.s.i.
	v_1	Tong	37 0	78 0	44 950	70 750
· - '	X+T	tiong •	37.5	70:9	47 000	70,750
×	11	Based	0100 . 27 E'	(4+9 co.1	47,000	72,000
	51	Trans.	01.0 73 E ⁽	1 1 20	40,000	12,300
		F *	91+9	62.1	44,000	72,500
,	X-2	Long	37.0'	67.9	45,500	75,100
	0 .	H _ /	35.0	69.9	43,000	74,100
•	11	Trans.	33.5	63.3	41,000	73,900
*	17	tt .	32.0	62.8	42,250	73,850
	x- 3	Long.	31. 0	65.4	46.750	81,000
•	11	11	32.5	68.6	48,000	82,100
	ft	Trans.	29.5	61.1	48 250	80,000
`	tt	11	29.5	61.1	44,250	80,400
	¥_4	Long	31 7	68 5	52 750	87 800
	A+4 11	TOUR*	20.0	66 9	40 9E0	07,000 85:000
	tı	T	30.0	50°0	49,200	60,900 86,700
	TI	tt it	27.5	56.8	48,5 00	86,200
		_	00 F	25 0		00.000
·	X-0	Long.	29.0	65+9 07 7	55,500	89,900
	**		27.5	63.3	54,500	89,700
		rans.	26.0	53.3	49,000	87,400
	11	13	27.0	51.4	49,750	87,150
	X-6	Long.	36.0	67.0	39,750	70,200
	n	11	35.0	65.9	38,500	70,100
	17	Trans.	33.0	58.6	38,500	69,500
	11	11	31.0	57.8	40,750	69,500
· ·						
. :	X-7	Long.	34.5	69.9	45,250	74,100
,	11	11 	35.0	69.3	44,000	72,800
	и ^с	Trans.	30.0	58.1	43,500	71,900
	17	17	29.7	61.8	42,750	71,900
	X-8	Long.	35₊5	71:4	46,500	77,600
4	tt .	ft	35.7	69 . 7	47,000	77,100
•	n .	Trans.	30.0	60 . 8 ^(†)	44,500	75,800
•	п	11	30.0	57.5	44,500	76,100
		۰		· · · · · · · · · · · · · · · · · · ·	,	
•						
•			•	. 1	٠	

. . .

.

-60-

TABLE Al. (Continued)

• •	Heat	Test	Elong. in 2 Inches,	Red. in Area,	Yield Strength,	Tensile Strength,
	No	Direction	07	7	p.s.i.	p.s.i.
,	Y - 9	Long.	35.0	73.5	49.250	77,600
	11	11	34.5	70.6	47,500	76,750
·	11	Trans.	31.5	59.1	46 750	77,700
	Ħ	11 04154	31,6	60.3	46,000	77,600
	X-10	Long.	35,5	70,4	47,750	78,300
	tt	"	34.2	69.0	47,500	78,600
• .	11	Trans.	33.5	61.8	44,000	76,500
		11	31.0	58.6	44,250	76,100
	X-11	Long.	32.0	67.9	52,500	79,400
	It .	11	34.3	69.3	49,250	80,600
	tt	Trans.	30.2	57.5	47,000	79,800
· .	42 · ·	17	29.2	59.6	46,250	79,400
	V. 19	Long	•` ዳሜ ()	68 8	53 000	85.400
	A#12 11	n . Toug •	33 0	68.2	52,000	85 500
	11	There	20 0	50.2 50.1	52,000	83 750
	11	118.118 • 11	28.5	58 .3	50,000	83,900
۵.	• [•]			<u></u>		07 000
	X-13	Long.	33+0	00+1	49,150	63,600
	н н ^т л	11 	33.0	65.9	49,750	84,100
	п 	Trans.	30.5	59.6	49,500	83,300
			30.5	28.6	49,000	83,100
٩	X-14	Long.	31.0	65.9	50,000	80,000
	π	II U	32.5	67.9 ·	51,250	80,8 0 0
	11	Trans.	28.0	58.6	46,500	79,000
	t !	ŦŦ	29.5	58 .6	45,500	79,100
	X-15	Long.	31.5	62.8	51,000	81,000
	11	U	32.0	65.4	51,750	81,700
•	11	Trans.	29.0	57.5	49,000	80,800
	11	et	28.5	59.1	48,750	81,000
		-	n o o	<u> </u>	EE 000	000 10
	X~16	Long.	29.0	02.0	55,000	87,000 87,000
		n 	29.0	63.D	57,000	
• •	11	Trans.	24.5. 23.7.	55.5 54.9	57,000 56,500	82,700
	- -	_	0 P . O	, ,		
	X-17	Long.	23.0	61.3	66,750	91,750
	11	11	25.0	64.7	70,500	99,500 07,500
	TT	Trans.	21.3	49.8	65,250	90,500
	τī	T	20.5	49.5	67,250	94,120

 A set of the set of	Heat No.	Test Direction	Elong. in 2 Inches, %	Red. in Area, %	Yield Strength, p.s.i.	Tensile Strength, p.g.i.
• • • • • • • •						
	X-18	Long .	21.5	62.8	77,000	98,100
	Ħ	พ	22.5	62.3	79,500	100.875
	tt	Trans.	20.5	53.3 "	76,500	97,750
	11	11	21.0	53.6	75,250	96,800
					· ·	
- N	X-19	Long.	32.0	65.6	48,750	79,200
	H	ft.	32.7	65.9	49,500	80,000
a p	tt ,	Trans.	29.0	60.6	47,500	78,000
•	ft s	11	30.0	57.3	48,000	78,200
• • •		1.6	•			
	X-20	Long.	32.7	67.7	57,250	84,400
	11	11	32.5	67.9	56,5 00 '	84,000
1	11	Trans,	27.0	58.3	53 , 750	82,500
	11	88	27.5 ₁	60.6	54,250	82,400
, 1						
н. С	X-21	Long •	27.0	60.6	67,750	92,700
	11	"	27.0	61.6	66,000	94,350
	f f	Trans.	24.0	52.5	63,250	92,600
	ŧı		22.0	52.2	66,000	92,500
•	·· · ·	•	· · ·	- - .		
	X-22	Long.	25.5	59.4	77,500	. 104,500
		n.	25.0	59.4	79,500	105,750
		Trans.	20.0	49.2	74,000	100,400
	ΥT	TI	20.6	48.4	73,750	100,400
	X-23	Long.	35.0	67.3	47.000	74,400
	**	11	34.0	65,4	48,000	75,400
	tt	Trans.	29.0	52.5	46,000	73,800
	72	57	29.5	51.9	45,500	73,800
	X-24	Long.	32.0	68.6	50,500	81.700
	H H	11	30.5	60.3	51,250	82.750
	11	Trans.	28.0	53.6	49.000	81,800
	Tt	n	27.5	47.8	49,750	81,900
	X+25	Long-	33.0	68.2	47.500	76.750
	11	u *1~**P •	33.0	68.2	48,000	78,000
	n	Trans.	28-0	55,2	46,750	76,350
	11	11	27.5	53.0	46,000	76,400
	X-26	Long	33.0	68.4	49.000	78,900
	11	11	33.0	67.7	50,250	80,400
	11	Trans.	27.0	53.8	49,250	80,150
	11	11	96 E	50÷0 52 Q	10,000	70 900

TABLE .	Al. (Cont	inued))
---------	-------	------	--------	---

. •	· · · · · · · · · · · · · · · · · · ·		<u> </u>	·		
		•	Elong. in	Red. in	Yield	Tensile
	Heat	Test	2 Inches,	Area,	Strength,	Strength,
· · · · · · ·	<u> </u>	Direction	%	%	p.s.i.	p.s.i.
	x-27	Long	33.0	69-0	49 000	77 200
* ¹	11	it it	34' 0	70.1	47,500	76,000
	ŧt	Trans.	29.0	57.8	46,750	75,850
	**	t1	27.5	56.0	44,750	76,100
1.1	مرد	tong	33° 5	62 9	49 600	7 8 000
	A20	41 FOTE •	33.5	68 6	48 260	70,000
	H +	Trens	29.5	57.3	40,200	75 800
	tt	11 4115 +	27.5	54.5	46,500	75,800
	35 415	T a u a	77 A . C	60.0	53 750	6D 000
•	<u>X</u> -40	Long.	04.0 77 0	09.U	51,750 FD F00	78,900
· .	17	The	20+0 24' F	00+4 37 0	06,000 48 260	19,200
•	11	t Letus •	440D 23.0	57.59 33.1	40,20U 19 600	77 400
			20:0	00.4	40,000	77,∉00
	X-46	Long.	35',0	70.1	49,750	79,900
	11 .	11	35.0	70.1	51,750	80,750
	11	Trans.	2 8°•0	52.8	52,500	79,900
e	17 ·	tt 💌 🗠	28.0	49.5	51,500	79,750
			•			
			·			
		<i>2</i>		ь и		
			÷ .			
•	· ·	•		•	:	
	. .	•				
•	i.					
	·	•	۰ .	- 4 - 4 - 4		
1997 - A. 1997 - A.						
				-		
		·				
e j				, • • •		
· · ·					· ,	
t.	• .			N.		
x	· • .	•			•	
•••						

TABLE A2. UNDERBEAD CRACKING VALUES OF INDIVIDUAL SPECIMENS FROM LABORATORY HEATS X-1 TO X-28, INCLUSIVE, X-45 AND X-46 IN THE HOT-ROLLED STATE

Heat No.		Specimen ' No.	Underb Cracki Per Ce	ead ng, nt
X-1	;	1 2 3	11 34	
		4	16 29	
		5	19	
		6	33	
		7	3	
		e e	25	
		10	13	A
			24	AVg. 21%
X-2		1	35	
		2	21	
		3	18	
		4 <u>4</u>	30	
		5	16	
		7	20	
		8	33	
		9	48	
		10	21	Avg. 27%
(-3		1	94	
		2	80	
		3	70	,
	,	4	91	
		5 6	89	
		7	00 95	
		8	78	
		9	84	
		10	80	Avg. 85%
-4		1	104	
		2	105	
		о А	89	
		4 5	UZ DZ	
		6	90 108	
		7	106	
		8	68	
		9	113	
		10	105	Avg. 97%

-61-

2 - E - 1

· · · · · · ·

÷ ر

TABLE A2. (Continued)

Heat		Specimen No.	Underbead Cracking, Per Cent		
X-5		1	120		
		2	115		
		3	104		•
	-	4	88		
		5	96		
		6	103		
		7	101		
		8	104		
		Ğ	109		
	 .▲	10	99	Avg.	104%
X-6	,	ı	48		
AL, U		2	36		
		2	23		•
		4	18		
		ж Б	24		
		5	25 25		
	1 - P	7	ະບ 10		
		7	19 19		
		8	30		
		9 10	25	Ave.	28%
				0	,. ,.
X-7	*	1	8		
		2	18		· · ·
		3	8		
		4	39		
		5	. 11		
		6	35		
		7	4		
		8	4 0		
		9	5		
		10	9	Avg.	19%
<u>x-</u> 8 ·		l	74		
		2	76		• _
	• •	3	86		
	ी	· 4	71		
		5	88		
		6	7 0		
		7	69		
		8	79		
		9	50		
		10	89	Ave-	75%
			50	~~*6*	

• • •

TABLE 42. (Continued)

Heat No.	\$ 	Specimen No.	Underbe Crackin Per Cen	ed g, t	
x_9		1	71		
<u>77</u>		2	74		
		3	76		
		4	68		
		5	60-		
		6	34		
		7	58		
		8	70		
		9	6		
	•	10	71	Avg.	5 9 %
X-10		l	53		
		2	60		
		3	65		
		4	73		
		5	46		
		6	23		
		7	44		
		8	70		
		9	45		5.0 <i>m</i>
		10	20	Avg.	50%
X-11		1	84		
		2	. 79		
		3	70		
		4 E	90 19		
		0	20		
		0 7	78		
		2	20 RQ		
		9	95		
		10	80	Avg.	84%
X-12		1	91		
		2	75		
		3	. 88		
		4	75		
		5	7 8		
		6	78		
		7	. 91		
		8	88		
		9	90		
		10	85	Avg.	84%

.

.

.....

TABLE A2. (Continued)

				·····	· · · · · · · · · · · · · · · · · · ·
Hest .		Con a star		Under	bead
No		specimen	• • *	Crack	ing,
- 100 s		NO.		Per C	ent
X-13		ı	ş	C A	
	•	2		60 60	
		3		50	
	5.0	4	1	90	
		5		00	
		6 6		00 67	
		7		60	
		8		00 50	
		0		59	
	1.1	้ำกั		00	
		L U		43	Avg. 64%
X-14		l		59	•
		2		80	
		3		86	
		4		58	
		5		75	
	,	6		66	
		7		76	
		8		50	
		9		20	
		10		53	177 600
				00	MAG* 09%
X-15		1		95	
		2		78	
		3		84	
		4		86	
		5		81	
		6		93	
		7		86	
		8		89	
		9		80	
		10		93	Avg. 86%
X-16		ı		77	
11 10		÷ 2		70	
		с З		00	
	<i></i>	5		69	
	-	т Б		00	
		6		80 70	
		0 7		70	
		í Q		00 60	
		0		69	
•		10		48	4
		10		74	Avg. 66%
		e 1	and the second second		

TABLE A2. (Continued)

	Heat No.	· · ·	Specimen No.	же . 1	Underb Cracki Per Ce	ead ng, nt	
· · · ·			· · · · · ·	•			inande o anna part en e anna piùren (e e digitti dan ban apoga
	X-17		1	:	71		
			2		74		
			3		54		
			4		74		
		,	5		71		
			6		71		
			7		63		
			8		81		
			9		84		
			10		64	Avg.	71%
	X-18		1		64	·	
		·	2		70		
			3		63		
			4		68		
			5		60		
			· 6		70		
			7	_	73		
			8		69		
			9		66		
			10		60	Avg.	66%
			-	;	-		
	X-19		1		58		
			2		34		
			3		56		
			4		50		
			5		55		,
			6		48		
			7		60		
			8		61		
			9		50		
			10		43	Avg.	51%
	X-20		1		73		
			2		49		
			3		79		
			4	•	. 55		
			5		61		
			6		61		
			7		68		
			8		63		
			9		83		
			10		48	Avg.	64%

TABLE A2. (Continued)

• ¹...

Heat No.	an a	Specimen No.	, 	Under Crack Per C	bead ing, • ent	
X-21		1		80		
	· .	2		90		
		3		80		
		4 5		74		
		5 6		75 64		
		7		81		
		8		81		
		9		79		
		10		75	Avg.	78%
X-22		1		74		. •
		2		80		
	٠	3 1		78		
		т 5		70		
		6		65		
		7		95		
		8	•	79		
•	·	9 10		70 54	470.	7101
7 0 8	· .	_)	01		· * /5
4-20		1		0		
		2 3		5		
		4		13		
		5		0		
		6	1.	18		
		7		3 14		
	•	9		14 4		
		10		Ō	Avg.	6%
-24		1		05	· ·	·
	·,•	2		95 98		
		3		89		
•		4		90		
		5		99		
		5 7		86		
		8		95		
		9		104		
		10		101	Ave.	95%

s

TABLE A2. (Continued)

it in the second second

Heat No.		Specimen No•	v 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Underb Cracki Per Ce	ead ng, nt	
X-25	•	· 1·		83	•	
		2		70		
		3	-	83		
		4		68		
		5		80		
		6	,	66		
		7		70		
		8		85		
		9		65		
· .		10		69	Avg.	74%
X-26		l		86		
		2		85		
		3		83		
		4	:	85		
		5		86		
		6		85		
		7		68		
		8		79		
	Υ.	9		78		
		10		78	Avg.	81%
X-27		l		46		
		2		74	· .	
		3		46	et.	
		4	,	40		
		5		71		
		6		35		
	:	7		58		
,	- ;	8		64		
	L^{2}	9		65	A	E 0c1
		10		68	Avg•	57 <u>%</u>
X-28	· .	1		30	<u>م</u> .	、
		6		15		
		3		та		
		4± 5		4		
		0 6				
		0 7		<i>ເ</i> ບ 10		
		י 8		בר גר		
		0		07 11		
		10		20 15	A	7 1707
		TO		1 0	HAR.	170 170

~

~

TABLE A2. (Continued)

Heat	Specimen	Underbead Cracking,	
No.	No.	Per Cent	
X-45	1	14	
	2	40	
	3	99	
	4	70	
	5	64	
	6	25	
	7	91	
	8	46	
	9	36	
	10	83 Avg. 57%	
X-46	1	64	
:	2	75	
	3	90	
,	4	86	
	5	29	
	6	53	
	. 7	68	
	8	75	
	9	9	
	10	53 Avg. 60%	
Steel 37	1	10	
(Control)	2	0	
·	3	24	
	4	8	
	5	6	
	6	19	
	7	5	
	8 .	30	
	9	5	
	10	5 Avg. 11%	

.

TABLE A3. LONGITUDINAL NOTCHED-BAR INPACT PROPERTIES OF LABORATORY HEATS X-1 TO X-28, INCLUSIVE, X-45 AND X-46 IN THE HOT-ROLLED STATE. ALL SPECIFILMS NOTCHED PARALLEL TO THE PLATE SURFACE $||_{2} \rightarrow 1$

.

- -

																	· ·		: · ·		
Heat									Testi	ng Te	mpera	ture,	Degrees	5 F•			· · · · ·				
No.		-75°				-40°				-5°				+75°				+210°			
X-1	3	6	5	2	68	25	21	32	106	1 19	31	3 0	107	124	111	112	120	1Ž4	1 1 9	129	
X-2	8	2	4	3	4	7	4	3	24	22	16	14	107	95	66	67	123	115	125	112	
X-3	4	3	2	2	7	3	8	7	13	21	17	8	34	40	41	44	86	85	84	85	
<u>x-4</u>	2	3	4	4	5	3	4	4	8	18	10	8	26	47	51	37	74	90	83	81	
X- 5	4	2	4	2	7	8	7	6	13	18	12	19	36	31	25	35	67	68	76	71	
X-6	3	4	2	3	6	6	7	4	9	19	18	30	35	7 3	103	92	96	119	98	108	
X7	4	3	4	4	8	8	8	9	48	20	33	21	101	95	92	108	108	100	104	118	
X~8	5	5	5	3	8	10	24	14	42	46	48	14	105	95	119	110	95	112	108	115	
X-9	4	6	3	2	22	5	16	6	48	46	41	24	98	47	104	78	108	97	109	105	
X-1 0	5	4	5	3	5	7	6	32	20	19	37	16	63	108	93	112	100	110	106	105	
X-11	3	3	2	3	7	5	6	7	22	21	14	34	83	54	55	91	86	85	98	96	
X-12	.3	3	5	4	9	6	8	4	20	12	12	14	37	58	33	44	89	90	97	1 1 0	
X-13	-4	4	-2	2.	13	14	3 .	. 4	12	18	9	12	25	18	19	31	[~] 85	` `8 5	· 93	91	
X-14	2	2	2	2	3	4	5	6	13	12	9	13	78	50	34	43	96	90	90	92	
X- 15	6	3	2	3	3	9	3	11	20	·11	11	19	53	43	38	44	95	90	93	97	

-62-

TABLE A3.	(Continued)
-----------	-------------

۰,

									_														
Heat		Testing Temperature, Degrees F.																					
No •		-75°				-40°				5°				+75°					+210°				
X-1 6	6	2	2	3	5	4	8	7	35	21	12	26	6 9	64	96	.81	77	73	92	.86			
X-17	3	3	4	2	7	9	8	3	9	21	15	12	33	59	41	36	7 8	65	81	81			
X-18	3	3	3	3	4	3	3	13	5	4	4	4	13	10	10	10	84	82	87	95			
X-19	5	2	3	2	6	7	´ 5	5	.12	40	25	28	48	32	33	65	89	91	94	85			
x-20	3	2	3	3	3	7	8	΄ 5	8	11	13	23	113	101	79	100	94	89	95	103			
X21	2	2	2	2	3	13	3	3	8	· 6	9	• 4	27	10	13	20	87	86	85	84			
X-22	2	2	3	3	3	2	2	2	3	3	. 4	2	4	5	6	5	37	44	27	21			
X-23	4	5	4	2	4	6	3	21	13	33	1 4	11	94	89	90	98	108	107	104	105			
X-24	3	3	2	3	7	7	10	8	18	17	- 18	13	55	9 9	45	63	106	105	98	103			
X-25	4	4	2	2	9	14	17	7	17	22	19	44	96	98	98	98	105	103	113	118			
X-26	4	3	5	3	15	10	18	10	26	35	26	. 58	99	111	93	95	99	109	109	106			
X-27	10	5	4	4.	34	26	18	22	45	45	66	34	104	108	109	105	106	1 05-	104	3.08			
X-28	[°] 6	5	4	4	11	21	8	12	29	85	57	55	80	89	105	90	105	104	108	106			
X-4 5	4	6	6	22	14	19	46	105	27	102	111	125	1 13	116	121	121	104	111	116	116			
X-46	6	8	9	9	20	30	41	75	30	1 .00	115	121	115	116	123	129	100	110	110	133			
																• •							

Note: The above impact values are given in foot-pounds. The specimens used were the standard V-notch Charpy bars which were broken on a Riehle impact machine having an initial energy of 220 foot-pounds.

-628-

Heat		Testing Temperature, Degrees F.																				
No.		-40°				5°				+40°				+75°					+210°			
x-23	2	2	2	2	2	2	2	2	9	4	5	4	8	9	11	8	21	21	25	17		
X-24	2	3	2	2	3	2	3	2	5	6	4	3	8	7	7	8	17	18	18	14		
X- 25	2	3	2	2	4	4	3	4	7	6	4	5	10	8	9	9	18	19	18	19		
X-26	2	2	2	2	5	5	4	3	7	8	8	7	10	11	13	12	18	18	20	19		
X-27	6	2	7	3	13	12	11	7	12	14	12	17	16	19	17	13	27	28	24	22		
X-28	2	2	2	2	4	5	5	5	8	10	10	8	15	14	12	13	23	22	22	21		

TABLE A4.	NOTCHED-BAR	IMPACT	PROPERTIES	NCRMAL	TC	THE	PLATE	SURFACE	OF	HEATS	X-23
	TO X-28 IN 3	TOH HOT-	-ROLLED STAT	ſΈ							

1

Note: The above impact values are given in foot-pounds. The specimens used were the standard V-notch Charpy bars which were broken on a Riehle impact machine having an initial energy of 220 foot-pounds.