F.L.

PB 181427

...

Price \$2.25

MIRELEANY

THE EFFECT OF METALLURGICAL VARIABLES IN SHIP-PLATE STEELS ON THE TRANSITION TEMPERATURES IN THE DROP-WEIGHT AND CHARPY V-NOTCH TESTS

SSC-145

ΒY

F. W. BOULGER AND W. R. HANSEN

SHIP STRUCTURE COMMITTEE

Distributed by U.S. DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES

WASHINGTON 25, D. C.

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS, DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY UNITED STATES COAST GUARD, TREASURY DEPT. MARITIME ADMINISTRATION, DEPT. OF COMMERCE AMERICAN BUREAU OF SHIPPING

December 3, 1962

ADDRESS CORRESPONDENCE TO: Secretary Ship Structure Committee

U. S. COAST GUARD HEADQUARTERS WASHINGTON 25, D. C.

Dear Sir:

The Ship Structure Committee has sponsored, at the Battelle Memorial Institute, a research project entitled "Metallurgical Variables and Drop-Weight Test." The purpose of this project, which was recently completed was to study the effect of metallurgical variables on the performance of ship steels in the drop weight test.

Herewith is a copy of the report, <u>The Effect of Metallurgical Variables</u> in <u>Ship-Plate Steels on the Transition Temperatures in the Drop-Weight</u> and <u>Charpy V-Notch Tests</u>, by F. W. Boulger and W. R. Hansen, containing the data and conclusions obtained from this study.

The project was conducted under the advisory guidance of the Committee on Ship Steel of the National Academy of Sciences - National Research Council.

Please address comments to the Secretary, Ship Structure Committee.

Yours sincerely,

A. J. Fabik Rear Admiral, U.S. Coast Guard Chairman, Ship Structure Committee

Report on

Project SR-151

to the

SHIP STRUCTURE COMMITTEE

on

THE EFFECT OF METALLURGICAL VARIABLES IN SHIP-PLATE STEELS ON THE TRANSITION TEMPERATURES IN THE DROP-WEIGHT AND CHARPY V-NOTCH TESTS

by

F. W. Boulger and W. R. Hansen Battelle Memorial Institute

under

Bureau of Ships Department of the Navy Contract NObs-77113

transmitted through

Committee on Ship Steel Division of Engineering and Industrial Research National Academy of Sciences-National Research Council

under

Department of the Navy Bureau of Ships Contract NObs-84321

Washington, D. C. U. S. Department of Commerce, Office of Technical Services

December 3, 1962

ABSTRACT

Twenty-nine heats were produced and processed in the laboratory in order to study the effects of composition and ferrite grain size on drop-weight transition temperatures. To provide an internal check and to permit comparisons with other investigations, parallel studies were made on V-Notch Charpy specimens. The experimental steels covered the following ranges in composition: 0.10/0.32 % carbon, 0.30/1.31 % manganese, 0.02/0.43 % silicon, and nil/0.136 % acid soluble aluminum. These ranges were intentionally wider than the limits permitted for ship plate. Although most of the data were obtained on hot-rolled samples, some plates were heat-treated in order to cover a wider range in ferrite grain size.

The experimental data were used for a multiple correlation analysis conducted with the aid of an electronic computer. The study showed that carbon raises and manganese, silicon, aluminum and finer ferrite grain sizes lower both drop-weight and Charpy transition temperatures. Quantitatively, variations in composition and grain size have a more marked effect on V_{15} Charpy transition temperatures than on the drop-weight transition temperature.

Useful correlations were found between transition temperatures in drop-weight tests and those defined by seven different criteria for Charpy tests.

Evidence was accumulated that conditions ordinarily used for dropweight tests are more severe for 1-1/4-in. thick plate than for 5/8-to 1-in. thick plate.

CONTENTS

.

۰.

	<u>Page</u>
Introduction	1
Experimental Procedures	2
Pr eparation of Materials	2
Composition	4
Testing Procedures	4
Tensile Tests	4
Charpy Tests	5
Determination of Grain Size and Pearlite	
Content	6
Drop-Weight Tests	6
Discussion of Results on Laboratory Steels	9
Tensile Properties	9
Grain Size	9
Drop-Weight and Charpy Tests	13
Correlation Between NDT and CVTT	14
Effects of Composition on Transition Temperatures	19
Simple Correlation Analyses	19
mental Data	23
Comparison of Experimental and Calculated Transition	
Temperatures	26
Experimental Work on Commercial Plates	30
Conclusions	32
Acknowledgment	34
References	34
Appendix A	
Test Data	36
Appendix B	
Statistical Analysis	64
Appendix C	
Grain Size Data Not Given In Test	71

SR-151 PROJECT ADVISORY COMMITTEE

"Metallurgical Variables and Drop-Weight Test"

for the

COMMITTEE ON SHIP STEEL

Chair<u>man</u>:

J. R. Low, Jr. Metallurgy & Ceramics Research Department General Electric Co. Research Lab.

Members:

W. J.Harris, Jr. Battelle Memorial Institute

R. D. Stout The Graduate School Lehigh University

R. W. Vanderbeck Applied Research Laboratory U. S. Steel Corporation

T. S. Washburn Manager, Quality Control Department Inland Steel Company

٢.

INTRODUCTION

Project SR-151, to study quantitatively the effects of metallurgical variables on performance in the drop-weight test, was established by the Ship Structure Committee late in 1958 on recommendation of the Committee on Ship Steel of the National Academy of Sciences-National Research Council. This project was initiated as a result of the increasing use of the drop-weight (nil-ductility) test in predicting the ductile to brittle behavior of steel. Qualitative data indicated the drop-weight test was not as sensitive to metallurgical variables as the Charpy V-notch test. Furthermore, the available information indicated that the drop-weight test did not show the superiority of killed steels over semikilled steels reflected by Charpy tests. This difference in sensitivity to brittle fracture is considered important because the dropweight transition temperature had been reported¹ as correlating better with service failures than the V-notch test did at a constant energy level. Therefore, this project was concerned with establishing quantitatively the effects of metallurgical variables in the drop-weight test. For comparison, Charpy Vnotch data were obtained for the steels investigated.

This report summarizes the results of the investigation. Most of the steels used for the study were made and processed in the laboratory. However, some tests were also made on commercial ABS-Class C ship steels. During the course of the investigation, data were obtained on the effects of C, Si, Mn, and Al on transition temperatures of drop-weight and Charpy specimens. In addition, the effects of heat treatment which changed the ferrite grain size and the transition temperatures were also investigated. Finally a few exploratory studies were made on commercial Class C ship plates to evaluate the effects of plate thickness, grain size, and heat treatment on the performance of drop-weight specimens.

-

EXPERIMENTAL PROCEDURES

Preparation of Materials

A total of twenty-nine, 500-lb induction-furnace heats were made and processed in the laboratory for the investigation. C, Mn, Si, and Al contents were systematically varied beyond their normal ranges for commercial ship plate. The success of the investigation depended to a large extent on controlling the melting and rolling practices closely so that the laboratory steels would have properties comparable to those of commercial steels with similar compositions. Since the techniques developed in a previous project² had proved satisfactory they were used as a guide for the current investigation.

Briefly, the melting procedure was as follows: The 500-lb heats were made from a charge of low-metalloid iron in magnesia crucibles under a blanket of argon. After the charge was melted and the desired temperature reached, the melts were partially deoxidized by adding about nine lbs of silicomanganese per ton of charge. This addition insured consistent recoveries of subsequent additions of ferromanganese and ferrosilicon. Carbon, in the form of graphite, was added about 45 sec before tapping to produce the desired compositions. In some heats, aluminum shot was added with the graphite. The steels were poured into two 6 in. x 6 in. big-end-up molds and the ingots were capped with a steel plate when necessary.

Subsequently, the ingots were heated to 2250 F and pressed to slabs 4-1/2 in. thick and 5-1/2 in. wide. After reheating to 2250 F, they were rolled to 1-3/4-in.-thick slabs using a reduction of approximately 1/4 in. per pass. The slabs were then cut into three pieces, to facilitate handling, and reheated to 2250 F. They were then rolled to about 0.725-in. thick plates using a reduction of approximately 0.170 in. per pass. After equalizing at 1850 F for 20 min the final reduction to 0.625 (5/8) in.-thick plate was made in one pass while at that temperature. After the final pass the 5-in. wide by 60-in. long plates were placed on edge on a brick platform, with a brick separating each plate, and allowed to cool in still air.

-2-

Heat N	umber	Mn/C		Che	_ mi <u>c</u> al C	ompositic	on,** per	cent	
Assigned	Battelle	Ratios	С	Mn	Si	Р	S	Al	Al
			Zarbon-1	Mangane	ese Seri	es	(S	oluble)	(Total)
			Ki	lled Ste	<u>els</u>				
1	B 6353	1.50	0.20	0.30	0.21	0.016	0.022	0.039	0.041
2	B 6327	3.84	0.19	0.73	0.24	0.014	0.018	0.039	0.042
2-2	B 6932	4.32	0.19	0.84	0.26	0.016	0.029	0.039	*
3	B 6366	6.55	0.20	1.31	0.26	0.016	0.024	0.038	
5	B 6360	1.37	0.32	0.44	0.24	0.016	0.030	0.036	
17	в 6879	2.92	0.24	0.70	0.23	0.016	0.029	0.045	
6	B 6368	4.00	0.30	1.20	0.22	0.015	0.026	0.066	
7	B 6359	3.50	0.12	0.42	0.22	0.016	0.029	0.019	
15	В 6903	5.33	0.15	0.80	0.24	0.018	0.031	0.050	
4	B 6367	10.90	0.11	1.20	0.22	0.015	0.026	0.093	
			Sem	ikilled S	Steels				
8	B 6406	2.00	0.22	0.44	0.08	0.015	0.025		
9	B 6409	3.95	0.20	0.79	0.05	0.015	0.025		
9-2	B 7064	3.68	0.22	0.81	0.02	0.016	0.020		
10	B 6464	5.95	0.21	1.25	0.04	0.015	0.027		
12	B 6405	1.39	0.28	0.39	0.05	0.012	0,025		- -
18	B 6904	2.68	0.29	0.75	0.03	0.015	0.031		
13	B 6427	3.80	0.30	1.14	0.03	0.015	0.027		
14	B 6361	3,50	0.12	0.42	0.10	0.015	0.030		
16	B 6880	5.23	0.13	0.68	0.03	0.016	0.022		
11	B 6410	13.00	0.10	1.30	0.05	0.015	0.027		
		j	<u>Silicon-</u>	Aluminu	ım Serie	<u>s</u>			
19	B 6930	3.62	0.21	0.76	0.40	0.018	0.024	Nil	
20	B 6931	3.52	0.21	0.74	0.03	0.013	0.024	0.017	
21	B 6914	4.00	0.21	0.83	0.42	0.019	0.027	0.043	
22	B 6933	3.82	0.22	0.83	0.06	0.016	0.024	0.114	
23	B 6913	3.95	0.20	0.79	0.24	0.018	0.025	0.136	
24	B 6929	3.26	0.23	0.75	0.23	0.018	0.026	Nil	
25	в 7191	3.04	0.23	0.70	0.13	0.013	0.029	0.034	
26	B 7192	3,54	0.24	0.85	0.43	0.015	0.023	0.120	
27	B 7193	9.77	0.13	1.27	0.16	0.014	0.026	0.039	

TABLE 1. CHEMICAL ANALYSES OF EXPERIMENTAL LABORATORY STEELS

*Dashes indicate analyses not made.

**Nitrogen contents of Heats 1 through 5 ranged from 0.005 to 0.006%.

Heats 8 through 12 had nitrogen contents ranging from 0.004 to 0.005%.

<u>Composition</u>

The compositions of the 29 laboratory heats made for this project are given in Table 1. The steels can be classified into three groups. The first group consisted of 10 aluminum-killed steels similar in composition to Class C ship-plate steel. The second group consisted of 10 semikilled or Class B type steels. In both of these groups the C and Mn contents were intentionally varied over a wider range than that permitted by the American Bureau of Shipping specifications. This wide range in composition was helpful in obtaining quantitative data from a limited number of steels. The primary purpose of these two groups of steels was to determine the effects of C, Mn, and deoxidation practice. In addition, one steel in each group (Steels 2-2 and 9-2) were made about one year after the start of the program in order to check consistency of melting practice.

The third group of nine steels listed in Table 1 was intended for studies on the effects of Si and Al as alloying agents, not deoxidizers. In eight of these steels C and Mn were held relatively constant at levels of about 0.2 and 0.8 %, respectively, while Si and Al were varied. The last steel in this group was designed to provide information on the effects of Si and Al at another C and Mn level.

The Si, P, and Su contents of all of the laboratory steels fall within ABS specifications unless intentionally varied as in the case of Si for the silicon-aluminum series of steels.

TESTING PROCEDURES

Tensile Tests

In most cases, longitudinal tensile tests were made on flat, full-platethickness specimens having an 8 in. gage length. Because of a shortage of wrought material, specimens with 4 in. gage lengths were used for testing Steels 25, 26, and 27. The loading rates for the yield and tensile strengths were 0.02 in. per min, and 0.2 in. per min, respectively. Tests were made on a 200,000-1b capacity Baldwin-Southwark universal testing machine. An averaging extensometer (microformer type) was used to record stress-strain curves.

Charpy Tests

The V-notch Charpy specimens were notched with a fly-cutter. Periodic checks at a magnification of 50X showed the notch dimensions were being held within the tolerances permitted by ASTM specifications. The Charpy specimens were broken on a Riehle pendulum-type 220 ft-lb capacity machine with a striking velocity of 18.1 fps. Ordinarily 25 to 30 Charpy specimens were broken in order to establish curves for transition-temperature determinations. Samples were tested at intervals of 20 F on the upper and lower plateaus and at 10 F intervals in the transition zone. The Charpy bars were taken parallel to the major rolling direction and notched through the plate thickness. The performance of the experimental steels in the Charpy test was evaluated by several criteria.

Energy-temperature curves were drawn through average values for specimens tested at various temperatures. Values for the following Charpy V-notch transition-temperature (CV TT) criteria were then obtained from the curve:

> CV15 TT = 15 ft-lbs CV25 TT = 25 ft-lbs CV50% TT = 50% of the maximum energy value recorded for the highest testing temperature.

Generally, the highest testing temperature was chosen so that the energy corresponded to the upper plateau of the Charpy curve.

The percentage of fracture area exhibiting a fibrous appearance was also determined on all Charpy specimens to establish transition temperatures based on fracture-texture criteria. These data were obtained by visual examination and measurement with a pair of dividers and a scale. Larger percentages of fibrous texture are considered indications of greater absence of brittle fracture under the conditions of testing.

The seventh criterion used to establish transition temperatures from the Charpy data was the amount of lateral expansion opposite the notch. To obtain

-5-

these data, the width of both halves of broken specimens was measured with flat-end micrometers at the compression side opposite the notch. From these values the temperature corresponding to a lateral expansion of 0.015 in. was determined.

Determination of Grain Size and Pearlite Content

Early in the program the ferrite grain sizes and pearlite contents of the laboratory steels were determined by a point counting technique with the aid of photomicrographs. Later, in determining the effect of normalizing on the ferrite grain size this method did not appear to have the required sensitivity. Although data obtained by this method were not used in evaluating the results obtained in this study, the data are given in Appendix C.

The method subsequently used to evaluate the effect of ferrite grain size and pearlite content made use of the Hurlbut counter. This technique consisted of moving the polished and etched metallographic specimen at a constant speed under a microscope equipped with a cross hair at a magnification of 1000X. The number of ferrite grains crossed and the distance covered in the lineal traverse through the ferrite and pearlite phases was recorded. The ferrite grain size was calculated from the number of ferrite grains crossed and the lineal distance occupied by the ferrite phase. This value was then converted to the ASTM scale by the relationship of $S_v = 2N_I$, where S_v is the grain boundary surface area and $N_{T_{c}}$ is the number of grain boundaries or grains (for a large number of grains) intersected by a random line across the microstructure. S_v is related to the ASTM number as indicated on p. 405 of the Metals Handbook, 1948 edition. In this method the actual ferrite grain size is determined. Variations in pearlite content do not affect its value. The percentage of pearlite was computed from the total distance covered and that covered for the pearlite phase. The information on pearlite contents of the various samples is given in Appendix C.

Drop-Weight Tests

.7

The drop-weight test evaluates the behavior of a steel in the presence

-6-

of an ultra-sharp crack, originated during testing from a hard weld bead previously deposited and notched, on the surface of the specimen. The specimen configurations, welding techniques, and testing procedures were developed and described by Pellini and co-workers.^{3,4} The transition temperature in the drop-weight test, sometimes called the nil-ductility temperature (NDT) is the highest temperature at which the specimen breaks with limited plastic deformation. The sample is broken as a simple beam in a device containing a stop which limits the deflection and the plastic deformation.

In preparing and testing the drop-weight specimens for this investigation, the precautions described in the published literature^{1,3-6} were followed. The weld beads were made with "Hardex-N" hard-surfacing electrodes with 200 amp, 22 v and a feed of 6 in. per min. The drop-weight samples of the laboratory steels were 2 in. x 5 in. x 5/8 in.; the commercial Class C steels were evaluated on specimens 3-1/2 in. x 14 in. x 1-1/4 in. Based on advice received during a visit to the Naval Research Laboratory, the conditions used to deposit the weld bead were the same for both sizes of specimens. However, the smaller specimens were submerged in a bath of flowing water during welding. This technique was recommended by Puzak as a precaution to minimize the heat-affected zone.

The stops controlling the amount of bending in the drop-weight tests were set at 0.075 in. and at 0.30 in. for the 5/8 in. and 1-1/4 in. plates, respectively. The span between supports was 4.0 in. and 12.0 in., respectively. A number of check measurements were made, as described by Puzak,⁴ to be certain that the desired crack openings were obtained. In addition, numerous hardness measurements were made on the weld beads and in the heat-affected zones.

In this study, the drop-weight or nil-ductility transition temperature (NDT) was defined as the highest temperature at which the tensile surface of at least one specimen fractured completely to one edge. Usually, three or four specimens were tested at 10 F above the NDT.

-7-

Steel	Comp	osition Mn.%	Yield Strength	Tensile Strength, psi	Elongation			
01001			arbon Manganoso Sorio					
		<u>v</u>	arbon-Manganese berre	<u>; 5</u>				
			<u>Killed Steels</u>					
1	0.20	0.30	33250	59950	29.4			
2	0.19	0.73	36200	64150	28.4			
2-2	0.19	0.84	40050	67450	30.0			
3	0.20	1.31	42700	71600	24.7			
5	0,32	0.44	39350	69 7 00	23.2			
17	0.24	0.70	42850	72600	26.8			
6	0.30	1.20	49300	82400	20.0			
7	0.12	0.42	32150	53800	29.4			
15	0.15	0.80	38950	62350	31.5			
4	0.11	1.20	36150	58750	26.4			
Semikilled Steels								
8	0.22	0.44	35250	61450	29.2			
9	0.20	0.79	36000	63050	29.1			
9-2	0.22	0.81	36100	62850	30.8			
10	0.21	1.25	39250	69900	27.8			
12	0.28	0.39	33950	63250	25.6			
18	0.29	0.75	39300	69850	28.0			
13	0.30	1.14	40650	79150	24.8			
14	0.12	0.42	29700	51150	30.8			
16	0.13	0.68	33600	57600	31.2			
11	0.10	1.30	35200	58150	30.8			
		<u>2</u>	ilicon-Aluminum Series	*				
	<u>Si, %</u>	<u>Al, %</u>						
19	0.40	Nil	41400	71200	26.0			
20	0.03	0.017	35950	63200	25.8			
21	0.42	0.043	45200	71850	27.8			
22	0.06	0.114	37050	64250	30.5			
23	0.24	0.136	38900	65300	26.2			
24	0.23	Nil	36900	66200	28.8			
25	0.13	0.034	40050	68980	43.5**			
26	0.43	0.120	42800	73150	44.5**			
27	0.16	0.039	39680	65850	46.0**			

TABLE 2. TENSILE PROPERTIES OF HOT-ROLLED LABORATORY STEELS

*With the exception of Steel 27, which contained 0.13 C and 1.27 Mn, these steels contained about 0.2% C and 0.8% Mn. **Elongation in 2 in.

DISCUSSION OF RESULTS ON LABORATORY STEELS

<u>Tensile</u> <u>Properties</u>

The average tensile property values for duplicate samples of the hotrolled steels made in the laboratory are listed in Table 2. Complete tensile data is given in Table A-1 of Appendix A. All of the heats met the minimum yield strength of 32,000 psi required by ABS Specifications for hull steels. Because the compositions covered a wider range than that encountered in commercial ship steels, however, some of the other properties fell outside specification limits. Five of the steels had tensile strengths falling either above or below the specification. These deviations ranged from plus 11,400 psi (Steel 6) to minus 6850 psi (Steel 14). Only one of the steels failed to meet the ductility requirements.

The experimental data show that the hot-rolled laboratory steels with compositions falling within ABS specifications have tensile properties equivalent to those of commercial ship steel. They are in good agreement with the yield and ultimate strengths and elongation values calculated from the formulas developed in a previous investigation on ship steel.² Furthermore, the tensile strengths agree quite well with those predicted for commercial steels using the formula developed by Quest and Washburn.⁷

<u>Grain</u> Size

Based on the data in Table 3, the average ASTM ferrite grain size number of the hot-rolled steels, which had been finished at 1850 F, was 8.3. The average ASTM grain size numbers of the three series of semikilled, killed and the silicon-aluminum steels were 8.2, 8.3, and 8.4, respectively. This indicates that finishing temperature and cooling rate were the principal factors controlling ferrite grain size of the hot-rolled products. Deoxidation practice and silicon content had little or no effect. Data from other studies indicate that the amount of reduction in the last several passes may also be important.

Coarser ferrite grains were associated with lower C contents. The average ASTM ferrite grain size numbers for steels containing 0.10/0.15 and

-9-

-10-TABLE 3

FERRITE GRAIN SIZE AND TRANSITION TEMPERATURE OF HOT-ROLLED LABORATORY STEELS

					Ferrite Grain	Transition Temperature ⁹ , F									
	C	omposi	mposition, per cent							·P	er Cer	ıt		Charpy Ft-Lb	
Stool	C	Ma	e:	Soluble	ASTM	NEW	17	.,		Fibro	us Te	xture		at NDT	
	<u> </u>	IVI 11		. AI		NDT	v ₁₅	v _{z5}	V 50%	15	30	50	LE 15	Temperature	
						<u>C</u> arb	on-Mag	nganese	<u>S</u> eries						
							<u>Ki</u> lled :	Series							
1	0.20	0.30	0.21	0.039	7.9	0	28	41	54	16	41	74	18	7	
2	0.19	0.73	0.24	0.039	8.0	-10	-18	1	28	-13	12	41	-26	21	
2-2	0.19	0.84	0.26	0.039	8. 2	- 5	-31	- 9	32	-38	24	44	-42	25	
3	0.20	131	0.26	0.038	9.4	-20	-21	0	28	-23	18	69	-29	14	
5	0.32	0.44	0.24	0,036	8.7	5	42	72	72	20	50	111	21	6	
17	0.24	0,70	0.23	0.045	8.5	0	18	42	38	-3	26	60	9	10	
6	0.30	1.20	0.22	0.066	10,1	-20	- 36	-5	33	-16	8	33	-33	17	
7	0.12	0.42	0.22	0.019	6.9	-20	Z	13	29	-10	13	29	-10	7	
15	0.15	0.80	0.24	0.050	7.4	-20	-18	-9	10	-22	2	22	-23	11	
4	0,11	1,20	0.22	0.093	7.5	-40	-53	-35	9	-40	-14	12	-45	24	
						<u>Ser</u>	nikilled	l Steel <u>s</u>							
8	0.22	0.44	0.08	P	8-0	20	43	64	85	22	47	88	78	0	
9	0,20	0.79	0.05		8.4	0	16	30	50	5	44	75	9	7	
9-2	0.22	0.81	0.0z		8.1	10	26	47	59	6	31	64	17	10	
10	0.21	1.25	0.04		8.6	-10	-13	10	49	-15	25	55	-9	10	
12	0.28	0.39	0.05		8.6	30	81	105	93	44	8Ż	133	72	5	
18	0.29	0.75	0.03		9.0	20	41	85	90	18	49	88	35	7	
13	0.30	1.14	0.03		9.3	20	10	48	40	22	54	81	5	12	
14	0.12	0,42	0.10		7.4	-10	20	36	59	-3	27	49	5	7	
16	0.13	0.68	0.03	- -	7.7	0	32	44	56	6	0	52	14	7	
11	0.10	1,30	0.05		8.0	-20	-28	-25	-3	-25	-20	21	-29	4 0	
						<u>Silic</u>	on-Alun	n <u>inum</u> Se	eries						
19	0.21	0.76	0.40		8.2	10	15	38	60	1	30	56	10	13	
20	0.21	0.74	0.03	0.017	8.6	10	26	44	59	-14	27	53	16	9	
21	0.21	0.83	0.42	0.043	8.6	-10	-24	-2	41	-40	18	46	-34	22	
22	0.22	0.83	0.06	0.114	8.3	-10	1	23	40	-23	16	54	-3	12	
23	0.20	0.79	0.24	0.136	8.9	-30	-17	-4	33	-32	2	40	-19	18	
24	0.23	0.75	0.23		8.0	0	0	23	25	-4	14	35	-3	23	
Z5	0.23	0.70	0.13	0.034	8.3	5	-19	2	40	-22	19	60	-20	30	
26	0.24	0.85	0.43	0.120	8.4	-15	-3	24	34	-46	17	78	-11	16	
21	0.13	1.27	U.16	0.039	8.2	-10	-72	-41	-22	-65	-19	32	-64	70	

*ASTM number is the average of two or more determinations.

 $^{\boldsymbol{\theta}}$ The transition temperatures were defined as follows:

^cAverage for specimens broken at the NDT.

^o Dashes indicate tests were not made.

C_{V15} =temp. at which the average Charpy value was 15 ft-lb

 $C_{V25} = temp.$ at which the average Charpy value was 25 ft-lb

C_{V50%}^{ftemp.} at which the average Charpy value was 50% of the maximum energy value recorded for the highest testing temperature

Per Cent Fibrous

=temp. where the average amount of fibrous texture was 15, 30, or 50 per cent, respectively

TABLE 4

FERRITE GRAIN SIZE AND TRANSITION TEMPERATURE OF HEAT-TREATED LABORATORY STEELS

					Ferrite		_		_	_				
					Grain		$\underline{T_1}$	ansition	Tempe	rature [®]	<u>, F</u>	-		
	c	omposi	tion	nor cont	5120" ASTM					Fibro Fibro	er Gen Dus Ta	T.		onarpy rt-Lo
Steel	<u> </u>	Mn Mn	Si	Al	_ ASIM	r NDT	V	ν.	٧	. 15	<u>30 30</u>	50	LE	Temperature ^c
						-	15	25	50%	/0			15	• • • • • • • • •
					No	omalize	d from	<u>1600 F</u>						
1	0.20	0 30	0.21	0.039	9.3	10	77	38	55	-3	34	61	8	21
2	0.19	0.73	0.24	0.039	9.3	-40	-49	-33	-5	-41	-41	4	- 52	9
3	0.20	1.31	0.26	0.038	10.1	-60	-81	-66	-24	-82	50	-15	~80	28
5	0.32	0.44	0.24	0.036	9.1	-10	38	70	53	-2	50	94	Z6	5
6	0.30	1.20	0.22	0.066	10.8	-40	-44	-15	10	-50	-22	18	-39	17
7	0.12	0.4Z	0.22	0.019	8.2	-10	-10	-1	8	-29	-1	11	-19	17
4	0.11	1.20	0.22	0.093	8.1	-60	- 34	-29	6	-37	-16	41	- 38	6
8	0.22	0.44	0.08	^D	8.2	10	51	7 1	77	21	52	79	37	6
9	0.20	0.79	0.05		8.1	-10	17	38	6Z	2	33	63	15	5
10	0.21	1.25	0.04		8.9	-20	-9	2	31	-28	17	43	-18	8
12	0.28	0.39	0.05		8.8	30	92	110	104	44	80	122	68	2
13	0.30	1.14	0.03		9.7	10	-5	42	25	2	20	75	-1	15
14	0.12	0.42	0.10		7.8	-10	19	37	49	-40	30	58	5	6
11	0,10	1.30	0.05		8.6	-Z0	-19	-8	12	-28	3	20	-24	20
					N	ormalize	ed from	<u>n 1900 F</u>	_					
2	0 10	0 73	0.34	0 0 2 0	° 0	-20	1 5	_6	14	20	- 7	22	-19	O
9	0.19	0.79	0.05		7.5	20	44	-0 61	71	-30 24	- 5 57	90	-18 31	11
-				Heated O	ne Hour at	1900 F a	and Fu	mace Co	oled to	1 800 F				
				<u>neatea o</u>		190010	110 1 01			,000_1				
2-2	0.19	0.84	0.26	0.039	5.5	0	28	40	43	7	35	85	19	9
5	0.32	0.44	0.24	0.036	5.1	30	94	135	118	58	105	153	74	6
6	0.30	1.20	0.22	0.066	7.1	0	55	80	82	26	63	90	53	5
7	0.12	0.42	0.22	0.019	4.5	20	42	68	88	7	50	94	23	8
4	0.11	1.20	0.22	0.093	7.2	-50	-31	-18	5	-46	-19	- 8	-40	10
9-z	0,22	0.81	0.02		5.5	40	54	73	77	13	66	111	53	7
12	0.28	0.39	0.05		5.9	70	137	176	160	69	130	188	108	4
13	0.30	1.14	0.03		6.9	60	64	111	81	50	100	164	58	10
14	0.12	0.42	0.10		4.8	40	61	89	109	17	50	101	39	8
11	Q.10	1.30	0.05		5.8	20	39	53	65	-4	43	67	13	9
<u>-</u>				_										
' ASTN	1 numbe	r is the	e avera	nge of two	or more de	termina	tions.			LE = te	w.qm	vhere t	he later	al expanison
8										15	was l	5 mils		
The t	ra nsi tio	n tempe	erature	es were de	fined as fo	llows:								
		Ċ	V15 -	temp, at was 15	which the ft-lb	average	Char	oy value		^c Avera	ge for NDT t	specii emper	nens bro ature .	ken at the
			-							^D Dashe	s indi	.cate a	nalysis	was not
		(V2.5	= temp, a was Z	t which the 5 ft-lb	average	e Char	py value			made.	•	-	
		C	V50%	= temõ. a	at which the	e averan	e ener	uv Char	ov					
			0 /0	value	was 50 per	cent of	the m	aximum						
				value	recorded fo	r the hi	ghest	testing						
				tempe	rature		·	-						
Per Ce	ent fibro	us text	ure	= temp. v	where the a	verage a	amount	of fibrou	IS					
				textur	e was 15, 3	$s_{0}, \text{ or } 50$) per c	ent						

.

2

0.26/0.32% C were, respectively, 7.6 and 9.1. This correlation between C and grain size would be expected to interfere with their effects on transition temperature. Higher Mn levels also resulted in finer ferrite grains. The seven steels containing 1.10/1.31% Mn had an average ASTM ferrite grain size number of 8.8 in the hot-rolled condition. The ASTM grain size number of the seven steels containing 0.30/0.68% Mn was 7.9. The average C contents of these high-Mn and low-Mn groups were 0.19 and 0.20% respectively. The data in Table 3 show that higher Mn contents result in smaller grains and both characteristics are associated with greater resistance to brittle fracture. Apparently part of the beneficial influence of Mn on transition temperature results indirectly from the grain size effect.

The variations in grain size among the hot-rolled steels were too small to provide information about the influence of grain size on transition temperature. Therefore, two sets of experimental steels were heat-treated to change their grain sizes and to determine the effects on performance of drop-weight and Charpy specimens. The properties after normalizing from 1600 F and after furnace cooling from 1900 F are given in Table 4. The effects of the two treatments are summarized in Table 5. The changes in ferrite grain size resulting from normalizing the semikilled steels at 1600 F were small, less than 0.4 ASTM numbers on the average. Therefore, the data for those materials were neglected in preparing Table 5. Furnace cooling from 1900 F increased the average ferrite grain sizes of the killed and the semikilled steels as reflected by the 2.2 and 2.5 change on the ASTM scale, respectively.

Table 5 shows that lower transition temperatures are associated with finer ferrite grain sizes. For the various Charpy criteria a change in transition temperature of about 20 F correlates with a change of one ASTM number. This value agrees quite well with data previously obtained at Battelle² and by other investigators.

The NDT was less affected, (than CV TL) by variations in grain size resulting from heat treatment. Nevertheless, the drop-weight transition temperatures were changed by heat treatment, a conclusion reached by other

-12-

TABLE 5

EFFECT OF HEAT TREATING HOT-ROLLED SHIP STEELS ON THE FERRITE GRAIN SIZE AND ON TRANSITION TEMPERATURES MEASURED BY DIFFERENT CRITERIA

Average change in Ferrite grain size Number, ASTM scale	Normalized from 1600 F (7 Killed Steels) 0.9	Furnace Cooled from 1900 F (5 Killed, 5 semikilled Steels) -2.3
Nil-ductility temperature	Average Chang Temperature P <u>ASTM 1</u>	ge In Transition er Change of One <u>Number, F</u>
Charpy V-notch test	-10	12
15 ft-lb level 25 ft-lb level 50% max energy	-20 -22 -24	22 24 23
15% fibrous texture 30% fibrous texture 50% fibrous texture	-29 -27 -26	10 16 20
0.015 in. lateral expansion	-8	19

investigators.⁸⁻¹⁰

i.

The grain size values were also included as one of the variables in a multiple-correlation analysis made on all of the experimental data. The factors indicating the independent effect of ferrite grain size on transition temperatures defined by various criteria are discussed in another section of the report.

Drop-Weight and Charpy Tests

The average NDT and (CV TT) of all hot-rolled laboratory steels are summarized in Table 3. The individual test data are listed in Tables A2 and A6 of Appendix A. Data obtained on some of the steels after specific heat treatments are listed in Table 4, (also in Tables A-3-5, 7-9 of Appendix A). The data in the Tables 2 and 3 show that the NDT of the steels differing in composition and heat treatment ranged 130 F, from -60 to 70. This range is appreciably less than those for transition temperatures based on Charpy specimens. For example, the following comparisons are of interest:

	<u> </u>	<u>°.F</u>	
<u>Charpy Criterion</u>	Maximum	Minimum	Range
15 ft-lb level	137	~81	218
50% maximum energy	160	-24	184
0.015 in. lateral expansion	108	-80	188
15% fibrous texture	69	-82	151

The data indicate that the drop-weight test is less sensitive than the Charpy test in detecting the effects of the metallurgical variables investigated on this program.

Data in Tables 3 and 4 show that the amount of energy required to break a Charpy specimen at the NDT varied considerably among steels. Figure 1 shows that the Charpy values of both killed and semikilled steels were usually less than 16 ft-lb at the NDT, however, the distribution indicates that the killed steels generally absorbed slightly more energy at the NDT.

Although there were notable exceptions, the steels with lower C contents and higher Mn contents tended to have higher Charpy energy values when tested at the NDT. The two highest Charpy values of 40 and 70 ft-lb, were obtained in Steels 11 and 27 which contained about 0.11% C and 1.29% Mn. A tendency for steels with a low NDT to have higher Charpy values at the NDT was also noted.

Correlation Between NDT and CV TT

The Charpy test is relatively simple to perform and is used by most steel producers and many customers or fabricators. With the increasing interest in the drop-weight test it is desirable to find useful correlations between transi-

tion temperatures determined in drop-weight tests and those defined with Vnotch Charpy tests by various criteria.

Data on the correlation of the Charpy and the drop-weight test appear in the literature.^{9,11-13} Gross¹¹ has shown that the lateral expansion transition temperature at a level of 0.015 in. has very nearly a one-to-one correlation with the NDT temperature. Other levels of expansion criteria as well as energy and fracture criteria have also been found to correlate with the NDT temperature.

Figures 2 and 3 show the correlation obtained for the Charpy criteria considered in this study. The regression lines shown in both figures were computed by standard statistical methods assuming the independent variable (in this case, the CV TT) to be correct. This method minimizes the error in the dependent variable or NDT in this case. Since similar degrees of error could be considered to exist in both tests, orthogonal-regression lines could also be computed for the data. This method does not assume either variable to be correct and minimizes the error normal to the line. For purposes of choosing a

FIG. 2. RELATIONSHIP BETWEEN NIL-DUCTILITY AND CHARPY TRANSITION TEMPERATURE-ENERGY CRITERIA.

criterion for predicting the NDT temperature from Charpy data the orthogonal method of analysis is the more desirable. However, the authors do not feel that the range of steel compositions and conditions tested for this program was sufficient to warrant the calculation of the more involved orthogonal-regression lines. Furthermore, standard-regression analysis readily lends itself to the computation of the error associated with the regression line.

The regression equations, standard-deviations, and fraction of variance removed by the correlations are given in Table 6. The r^2 (fraction of variance accounted for by the correlation) values listed indicate the correlations are highly significant at the 99% probability level. In other words, the various Charpy criteria actually do correlate closely with the NDT temperature. With the exception of the 15-ft-lb criterion which showed a significantly poorer relationship, the correlations have about the same degree of significance. The

TABLE 6

STANDARD REGRESSION EQUATIONS RELATING NIL-DUCTILITY AND VARIOUS CHARPY V-NOTCH TRANSITION TEMPERATURES

Charpy V-Notch Criterion	Regression Equation
Ener	rgy Absorption Criteria
15 ft-lb	NDT, F = 0.46 (15 ft-lb TT, F) - 7 F S. D* = <u>+</u> 17.5 F; r ^{2**} = 0.563
25 ft-lb	NDT, F = 0.48 (25 ft-lb TT, F) - 18 F S. D. = \pm 12.8 F; r ² = 0.764
50% of Max. Energy	NDT, F = 0.62 (50% M.E. TT, F) - 31 F S. D. = \pm 14.1 F; r ² = 0.703
Fractu	ure-Appearance Criteria
15% Fibrous	NDT, F = 0.72 (15% Fibrous TT, F) + 3 F S. D. = \pm 13.9 F; r ² = 0.725
30% Fibrous	NDT, F = 0.64 (30% Fibrous TT, F) - 20 F S. D. = ± 14.6 F; r ² = 0.696
50% Fibrous	NDT, F = 0.57 (50% Fibrous TT, F) - 38F S. D. = \pm 12.1 F; r ² = 0.791
Later	al Expansion Criterion
15 mil	NDT, F = 0.60 (LE ₁₅ TT, F) ~ 4 F S. D. = + 14.0 F; r^2 = 0.721

*S. D. = standard deviation about fitted line.

 $**r^2$ = Fraction of the variance removed or accounted for by the correlation. Values of r^2 may range between 0 and 1. A high value of r^2 indicates a close relationship between the variables, whereas a low value indicates a poor relationship between variables.

FIG. 3. RELATIONSHIP BETWEEN NIL-DUCTILITY AND CHARPY TRANSITION TEMPERATURES-- FRACTURE APPEARANCE AND LATERAL EXPANSION CRITERIA.

spread or scatter in the data as represented by the standard deviation ranged from ± 12.1 F for the 50% fibrous criterion to ± 17.5 F for the 15 ft-lb criterion. Considering that the estimated sensitivities of the NDT and Charpy tests are 10 and 15 F, respectively, the scatter is reasonable.

Because of the low standard deviation and the fact that the slope most nearly approaches one (slope of the line of perfect agreement), the correlation of the 15% fibrous criterion with NDT is considered the most useful one found in this study. Other criteria do not correlate as well. That low percentages of fibrous fracture might correlate well with the NDT test was suggested by Gross.¹¹ The existence of a reasonable correlation for this criterion would also be predicted from the fact that the regression coefficients determined for the effects of composition and grain size in a multiple correlation analysis of

-18-

the data are quite similar for the two tests.

The correlations noted for this project are further evidence that appropriate Charpy transition criteria do correlate with the transition temperature determined by the drop-weight test. Based on these data and the work of other investigators, it appears that Charpy criteria such as lateral expansion and fibrous fracture show good correlations.

Figures 2 and 3 also show the changing relationship that these tests have with respect to temperature. A critical temperature exists for each criteria where the CV TT is higher than the NDT, and below this critical temperature the reverse situation occurs. For example, steels with a CV15 TT of 60 F would be expected to have an NDT of 20 F, or 40 degrees lower. At -20 F, however, the two transition temperatures are the same. But at a CV15 TT of -60 F, the NDT is -30 F, or 30 degrees higher.

EFFECTS OF COMPOSITION ON TRANSITION TEMPERATURES

Since the analyses of the experimental steels covered a reasonably wide range in composition, the effects of various elements on transition temperatures could be estimated with fair precision. Two different techniques were employed to estimate the effects of differences in C, Mn, Si, and Al contents on NDT and CV15 TT. The first approach was based on simple correlation analyses of transition temperatures with one variable at a time. The second technique, a multiplecorrelation study with an electronic computer also showed the effects of ferrite grain size on transition temperatures. In addition it showed the independent effects of grain size and composition on several other V-notch Charpy characteristics of interest.

Simple Correlation Analyses

The simple correlation analyses were made by stepwise graphical procedures. First, the transition temperatures of steels with otherwise similar compositions were plotted against the variable of interest to get a preliminary estimate of its effect. Such plots gave useful approximations of the effects of each

-19-

(Transition temperatures adjusted to 0.20% C or 0.80% Mn, 0.05% Si, and nil Al. Points represent moving average of five measured values)

FIG. 4. EFFECT OF CARBON AND MANGANESE ON CHARPY 15 FT-LB AND NIL-DUCTILITY TRANSITION TEMPERATURES OF HOT-ROLLED STEELS WITH NO ADJUSTMENT FOR GRAIN SIZE VARIATIONS.

variable during the course of the investigation. Next, when all data were available, moving averages* for groups of five steels were computed after the data had been arranged in increasing order of the compositional variable of major interest. These averages were then corrected, on the basis of the approximate factors mentioned above, for minor variations in other compositional variables. Finally, these corrected running averages were plotted to obtain improved estimates of the effects of variations in C, Mn, Si, and Al contents. Plots obtained in this way are shown in Figs. 4 and 5.

Figures 4 and 5 indicate the following effects of compositional variations on transition temperatures:

^{*}The running or moving average, as used in Figs. 4 and 5, is a device for obtaining a series of figures which indicate the trend of data better than individual readings because fluctuations are averaged out in the calculations.

(Transition temperatures adjusted to 0.20% C, 0.80% Mn, and 0.20% Si or 0.030% Al. Points represent moving average of five measured values.)

FIG. 5. EFFECT OF SILICON AND ALUMINUM ON CHARPY 15 FT-LB AND NIL-DUCTILITY TRANSITION TEMPERATURES OF HOT-ROLLED STEELS.

		Range	Change i	n		
Change	in Composition	Covered, %	<u>NDT</u>	CV15		
Increase	of 0,01% Carbon	0.10/0.30	1.35 F	1.8 F		
н	of 0.01% Manganese	0.40/1.25	-0.2	-0.85		
11	of 0.01% Silicon	0.02/0.20	-0.6	-2.0		
11	of 0.01% Aluminum	0.00/0.03	-1.8	-8.0		

These apparent effects of the elements on transition temperatures should not be accepted without several reservations because of the assumptions underlying the treatment of the data. For example, the treatment implies that the effect of one alloying element is not influenced by variations in the amounts of other elements present. Secondly, it is implied that the changes in transition temperatures are caused entirely by the major variable plotted and not by another

-21-

(Points represent the moving average of five measured values) FIG. 6. EFFECT OF CARBON AND MANGANESE ON THE FERRITE GRAIN SIZE OF STEELS HOT-ROLLED IN THE LABORATORY.

strongly correlated factor. In the present case, it appears that part of the apparent effects attributed to C and Mn, in Fig. 4, may be caused by variations in ferrite grain size.

Figure 6 shows that increases in either C or Mn contents of the experimental steels were accompanied by finer ferrite grain sizes. Consequently, it appears reasonable to attribute part of the changes in transition temperatures to indirect effects of C and Mn on grain size. Figure 6 indicates that increasing the C and Mn contents by 0.01% increases the ASTM grain size numbers by 0.075 and 0.01, respectively. Various investigators have reported that an increase of one ASTM grain size number lowers the CV15 TT approximately 20 F. Based on these estimates, it appears that the grain size variations resulting from increasing C and Mn contents by 0.01% would account for decreases of 1.5 F and 0.2 F in CVTT, respectively. Variations in Si and Al contents did not have a significant effect on the grain size of the hot-rolled steels used for this study.

The factors indicating the effects of C, Mn, and grain size on transition temperatures of the experimental ship steels can be combined as follows:

	Change in CV15 TT for			
	the Compositional Change Indicated			
	+0.01 % C	+0.01 % Mn		
Indirect effect through grain size	-1.5 F	-0.20 F		
Apparent effect from Fig. 4	1.8	-0.85		
Effect for constant grain size	3.3	-0.65		

The different factors listed above can be used for predicting differences in CV15 TT to be expected from changes in composition. The choice of the proper factor depends on whether the grain size of the steel is known or not. Similar calculations for the effects of C and Mn on NDT were not made because no independent estimates of the influence of grain size were available.

Multiple Correlation Analysis of Experimental Data

2

A multiple regression analysis of the data for compositions in Table 1 and the transition temperature and grain size-date in Tables 3 and 4 was made by computer techniques. The data obtained on both hot-rolled and on heattreated samples were used for the correlation analysis. Multiple regression analysis is a standard statistical method for establishing the effects of a number of independent variables on a dependent variable. In this case, the dependent variable of interest was transition temperature. The object of the statistical analysis was to find an equation which best fitted all of the data points. The relationship expressed by a regression equation may be either linear or curvilinear. In this case, previous experience and preliminary study of the data indicated that Si and Al might have curvilinear effects and that Si might have interacting effects with Al and Mn. Therefore, the computer program used for the analysis allowed for these possibilities. The results of the multiple correlation analysis are summarized in Table 7. Auxiliary data, definitions of terms, and a brief discussion of the statistical techniques employed are presented in Appendix B.

The general form of the equation to determine the transition temperature for the NDT or seven Charpy criterion is as follows:

Transition Temperature = $a + b(\%C) + c(\%Mn) + d(\%Si) + e(\%Si)^2$ + $f(\%Si)(\%Mn) + g(\%Al) + h(\%Al)^2 + j(\%Al)(\%Si)$ + k(ASTM No.)

where the lower case factors a, b, c,...etc. are obtained from Table 7. The standard errors listed in Table 7 indicate how well the regression equation fit the experimental data. The standard error of a regression equation

-23-

TABLE 7

FACTORS^A FOR CALCULATING THE EFFECTS OF C, Mn, Si, Al, AND FERRITE GRAIN SIZE ON THE DROP-WEIGHT AND CHARPY V-NOTCH TRANSITION TEMPERATURES^B

Criterion	<u>.c</u>	_Mn_	<u></u>	<u>(Si)</u> ª	<u>SiXMn</u>	<u>A1</u>	<u>(Al)</u> ²	AlX81	ASIM Ferrite Grain Sıze Number	_Constant	Standard Error for Equation	-
	Drop-Weight Test											
NDŤ	210	-15.9	-182	377	-6.9	-159	321	-258	-11.0	77.2	11.4 F	
<u>Charpy V-Notch Test</u>												
l5 Ft-lb	333	-66,6	-269	210	116	-512	2849	367	-18.1	168	16.9 F	
25 Ft-lb	456	-61.3	-265	216	111	-583	3228	360	-20.2	178	16.8 F	
50% max energy	Z9 1	-68.3	-352	332	211	-356	2601	-135	-15* 2	189	15.3 F	
15% shear fracture	297	-22.0	-8,6	-118	5.8	-449	2580	-128	-12.1	60.5	14.3 F	
30% shear fracture	347	-27.8	-141	171	24.0	-334	1329	282	-15.3	119	14.7 F	
50% shear fracture	439	-36,1	-257	246	84.6	-375	1121	975	-18.9	177	18.4 F	
Lateral expansion at 15 mils	331	-52.0	-237	173	105	-458	3056	131	-16.0	129	13.7 F	

* The factors or regression coefficients are used in the following transition temperature equation for calculating the NDT transition temperatures based on composition and ferrite grain size:

NDT, F = $(210 \times \%C) - (15.9 \times \%Mn) - (182 \times \% S_1) + (377 \times \%Si^2) - (6.9 \times \% SiX\%Mn) - (159 \times \%Al) + (321 \times \%Al^2) - (258 \times \%Al \times \%Si) - (11.0 \times ASTM ferrite grain size number) + 77.2$

^a Calculations based on steels covering the following ranges: 0.10/0.32% C, 0.30/1.31% Mn, 0.02/0.43% Si, nil/0.136% acid-soluble Al.

is roughly analogous to the standard deviation used to report the scatter among experimental observations on ostensibly identical samples. Both statistics are measures of residual or unexplained variability. Table 7 shows that the standard errors of the regression equations range from 11.4 to 18 F. These values indicate the equation fits the experimental data quite well, apparently within the precision expected for transition-temperature determinations.

The statistics given in Appendix B also indicate that a high degree of confidence can be placed in the significance of the multiple correlation coefficients and regression equation. For example, the coefficients of multiple correlation indicate that the independent variables considered in the equations account for 82 to 89 per cent of the variance in transition temperatures found by testing.

The regression coefficients or factors used to calculate various types of transition temperatures from grain size and compositions, in general, have qualitatively similar effects on the NDT and each of the seven CVTT criteria. For instance, finer grain sizes are associated with lower transition temperatures defined by any criterion considered. However, the effect of a particular change in composition or grain size on transition temperatures differs quantitatively among tests.

For example, the linear effects of certain metallurgical changes* on the transition temperatures defined by various criteria are:

		<u>NDŢ</u>	Charpy, 15% Fibrous	Charpy V15
Increase	of 0.01% C	2.10 F	2.97 F	3.33 F
11	of 0.01% Mn	-0.16	-0.22	-0.67
11	of 0.01% Si	-1.82	-0.09	-2.69
11	of 0.01% Al	-1.59	-4.49	-5.12
Refining by one or	of ferrite grain size n ASTM scale	-11.0	-12.1	-18.1

*These factors, or regression coefficients, are for steels containing 0.10/0.30% C, 0.40/1.25% Mn, 0.02/0.20% Si, and 0.00/0.03% Al. The factors do not take into account any of the possible curvilinear effects (e.g., Si²) which may exist.

-25-

This tabulation indicates that the NDT is less sensitive to variations in C, Mn, Si, and Al contents, and to grain size than in the CV15 TT level. The sizes of the regression coefficients also indicate that the effects of the metallurgical variables on the Charpy 15% fibrous texture transition temperature are intermediate between those shown by the other tests. The only exception is that the temperature associated with small amounts of fibrous texture is least affected by Si content.

In passing, it is worth mentioning that the regression coefficients showing the effects of C, Mn, Si, and ferrite grain size on the CV15 TT, shown in Table 7 are in reasonably good agreement with those reported by Harris¹⁴ and other investigators. They also agree with the factors indicating the effects of C and Mn on the transition temperatures of steels with equal grain sizes given in the previous section of this report.

COMPARISON OF EXPERIMENTAL AND CALCULATED TRANSITION TEMPERATURES

Probably the best way to illustrate the utility of the equation derived through multiple correlation analysis is to compare calculated results with experimental transition temperatures. This was done for the drop-weight and Charpy test for steels made on this project and for commercial steels and for steels made in other laboratories.

Figure 7 compares the experimental and calculated NDT values for laboratory steels made for this study. The agreement is very good, about two-thirds of the points fall within \pm 10 F of the line for perfect agreement. This is probably as good as can be expected for this test.

Figure 8 shows the correlation between calculated and experimental CV15 TT of the steels made and tested for this program. The values agree within \pm 15 F which is a reasonable estimate of the reproducibility of the Charpy test. The scatter shown by Fig. 7 and Fig. 8 is within the limits expected from the standard errors of the multiple regression equations.

Figures 9 and 10 give similar comparisons between transition temperatures

reported for hot-rolled steels by other investigators and those calculated by formulas developed on this project. The information available for the calculations and for preparing the figures is recorded in Appendix A. When the grain sizes were known, the transition temperatures were calculated by the equation obtained by multiple correlation analysis illustrated in Table 7. Unfortunately, the grain sizes had not been reported for 29 of the 62 steels. In those cases

Experimental Transition Temperature, F

TRANSITION TEMPERATURE FOR COMMERCIAL AND LAB-ORATORY STEELS OTHER THAN

the transition temperatures used for the comparisons were calculated by the following equations:

NDT, F = O F + 135 (% C) - 20 (% Mn) - 60 (% Si) - 180 (% Al)

V15 Charpy, F = 80 F + 180 (% C) - 85 (% Mn) - 200 (% Si) - 800 (% Al)These formulas are based on the simple (not multiple) correlation analyses of the data obtained on the 5/8-in. thick laboratory plates.

Figure 9 shows that about half of the calculated and experimentally determined NDT fall within + 10 F of the line for perfect agreement. However, the dispersion of the points around the trend line was affected by the plate thickness at which the tests were made. Specifically, the relationships between calculated and measured NDT were as follows:

	<u>Number of</u>	<u>ESpecimens</u>	
Specimen		Below	
Dimensions,		Trend	Calculated-Measured
in	<u>Total</u>	<u>Line</u>	<u>NDT, F</u>
3-1/2 x 14 x 5/8	4	0	+ 18
3-1/2 x 14 x 3/4	17	4	+ 5-1/2
3-1/2 x 14 x 1	22	16	- 3
$3-1/2 \times 14 \times 1-1/4$	19	15	- 16

These comparisons indicate that the equations developed on this project from data for 2 x 5 x 5/8-in. specimens fit experimental data obtained on 3/4 or 1-in. plate by $3-1/2 \ge 14$ in. specimens quite well. Apparently the differences in length, width, and thickness compensate so the specimens give approximately equivalent results. On the other hand, the equation predicts NDT about 16 F below those obtained experimentally with $3-1/2 \ge 14$ -in. specimens on 1-1/4 in. plate. This indicates that the conditions recommended for 1-1/4 in. plate are more severe than those recommended for 1, 3/4, and 5/8-in. plate. Conversely, Puzak's data¹, ⁵ for the $3-1/2 \ge 14 \ge 5/8$ -in. specimens indicate they were tested under conditions less severe than those for $2 \ge 5 \times 5/8$ -in. specimens. Similar experiences led Puzak and Babecki⁴ to recommend $2 \ge 5$ -in. specimens for drop-weight tests on 5/8-in. plate.

Figure 10 illustrates the extent of the agreement between calculated CV15 TT and those determined experimentally by other investigators.¹⁵⁻¹⁶ Almost two-thirds of the points fall within \pm 15 F of the trend line; this indicates reasonably close agreement. It is apparent, however, that for most of the cases showing poorer agreement the calculated transition temperature is higher than that obtained by experiment. This type of nonuniform distribution around the trend line would occur if the factor for grain size, used in the calculations, was

-29-

too small. This appears to be the most likely explanation because the factor of -18 F for an increase of one ASTM grain-size number was used to calculate all but three of the points in Fig. 10. That factor, obtained from the multiple correlation analyses is smaller than the values of 20 to 25 F per grain-size number reported by others.

EXPERIMENTAL WORK ON COMMERCIAL PLATES

The National Bureau of Standards tested a number of 1-1/4-in. thick Class C and 3/4-in. thick Class B commercial ship plate. The average compositions of the two types of ship plate were:

	<u>%C</u>	<u>%Mn</u>	<u>%Si</u>	<u>%Al</u>
Class B, 3/4 in.	0.18	0.98	0.04	<0.01
Class C, $1-1/4$ in.	0.16	0.71	0.24	0.04

Their results indicated that the average NDT for the Class C steels was 13 P above the average for the Class B steels.¹⁷ This finding was disconcerting because the average CV15 TT was 21 F lower for the Class C than for the Class B steels. Furthermore, the present investigation indicates that the Class C steels made by fine-grained melting practice should have had lower NDT than the semikilled Class B steels when tested under comparable conditions. Consequently, a brief study on factors which might account for the discrepancies seemed desirable. For this reason two of the commercial steels supplied by the National Bureau of Standards were subjected to dropweight tests in various conditions. The data are recorded in Table 8.

Table 8 shows that the NDT predicted by the regression equation developed on this project varied by only 5 F and 9 F from those measured on $2 \ge 5 \le 5/8$ -in. specimens machined from the two 1-1/4-in. commercial Class C steels. The calculated and experimental data for heat-treated samples agree almost as well. In seven of eight cases, the predicted values
TABLE 8

DROP-WEIGHT TRANSITION TEMPERATURES OF CLASS C STEELS FROM NATIONAL BUREAU OF STANDARDS FOR VARIOUS CONDITIONS AND SPECIMEN SIZES⁴

				<u>Nil-E</u>	<u>uctility Te</u>	<u>mperature</u> for
			ASTM	S	Spe <u>cimens I</u>	ndicated
			Grain	$2 \times 5 \times 5/8$ ir	1.	$3-1/2 \times 14 \times 1-1/4$ in
Heat	Plate	Condition	<u>Size No.</u>	<u>Calculated</u>	Measured	Measured
C 6 C13	250 296	Rolled commercially	6.9 7.4	- 5 F - 9	0 F 0	10, 20, ⁵ 30 F 20
C13	296	1 hour 1600 F, Furnace cooled	9.4	-30		0
C13	297	l hour 1600 F, Furnace cooled	10.1	-38	- 30	
C 6	250	Rerolled to 5/8 in. in laboratory	8.3	-20	-10	
C13	296	Rerolled to 5/8 in. in laboratory	7.9	-14	-10	
С 6	250	Rerolled, 1 hour 1600 F, Furnace cooled	9.4	-33	-40	
C13	296	Machined, 1 hour 1600f Furnace cooled	3, 9.4	- 30	- 30	
С 6	250	Rerolled, 1 hour 1600 F, Air cooled	9.2	- 31	-50	

^AAnalyses and grain sizes supplied by National Bureau of Standards for the plates rolled commercially were:

Plate 250, 0.15% C; 0.74% Mn; 0.24% Si; 0.03% Al; ferrite grain size No.,7.1 Plate 296, 0.19% C; 0.80% Mn; 0.24% Si; 0.05% Al; ferrite grain size No., 7.2 Plate 297, 0.19% C; 0.81% Mn; 0.26% Si; 0.05% Al; ferrite grain size No., 7.2 ^B In tests at the National Bureau of Standards the NDT value was 20 F at the edge and 10 F at the center of the plate.

agree with NDT measured on small specimens within 11.4 F, the standard error of the regression equation. This is as good agreement as should be expected. Therefore, the data are consistent with the opinion that steels made to finegrained practice perform better in drop-weight tests than semikilled steels under otherwise similar conditions. The changes in NDT associated with heat treatment, in Table 8, are of the order expected for the differences produced in ferrite grain size.

When the differences in grain size are taken into account, the NDT of the 5/8-in. plate rerolled in the laboratory agree closely with those of samples machined from the 1-1/4-in. plate rolled commercially.

Table 8 also shows that the NDT were 10 to 30 F higher on $3-1/2 \ge 14 \ge 1-1/4$ -in. specimens than for test on $2 \ge 5 \ge 5/8$ -in. specimens. The average difference of 20 F, attributable to plate thickness and testing conditions, is similar to the value of 16 F estimated from data discussed in the previous section. Apparently the effect of increasing the plate thickness from 5/8 in. to 1-1/4 in. is not entirely eliminated by the changes in specimen dimensions, span, and deflection limits recommended by investigators at the Naval Research Laboratory.⁴ On the other hand, the data in Fig. 9 indicate that the 3/4- and 1-in. by $3-1/2 \ge 14-in$. samples have an NDT comparable to those expected for $2 \ge 5 \le 5/8$ -in. specimens.

CONCLUSIONS

The objective of this investigation was to establish, quantitatively, the effects of certain metallurgical variables on the performance of ship steels in the drop-weight test. To provide an internal check and to permit comparisons with other investigations, parallel studies were made on Charpy specimens.

The steels made and processed in the laboratory covered the following ranges in composition; 0.10/0.32% C, 0.30/1.31% Mn, 0.02/0.43% Si, nil/0.136% acid-soluble Al.

The information obtained during the study justify the following conclusions:

- 1. The ABS-Class B and ABS-Class C type ship steels made and processed in the laboratory for this study had properties comparable to those of similar materials produced commercially.
- 2. An equation derived from the experimental data shows, quantitatively, the effects of composition and ferrite grain size on

NDT and on CVTT, defined by seven different criteria, for pearlitic steels.

- 3. The drop-weight test is less sensitive than the Charpy test to variations in grain size, or in C, Mn, Si, and Al contents. Qualitatively, however, the variables investigated had simi-lar effects on drop-weight and Charpy transition temperatures.
- For the steels investigated and adjusted for constant grain size, raising the C content 0.01% raised the NDT and CV15 TT 2.1 F and 3.3 F, respectively.
- Raising the Mn content 0.01% lowers the NDT and CV15 TT 0.16 F and 0.67 F, respectively.
- 6. There appears to be an optimum Si content for obtaining a low transition temperature. In the range up to 0.25%, raising the Si content by 0.01% lowers the NDT and CV15TT 1.8 F and 2.7 F, respectively. There is some support for the opinion that increasing the Si content above 0.25% raises the transition temperature.
- Raising the Al content 0.01% lowers the NDT 1.6 F. Charpy data indicate raising the Al content 0.01% lowers the CV15 TT 5.1 F in a range to 0.02% but scatter prevents further analysis.
- 8. Differences of 11.0 F in NDT and 18.1 F in CV15 TT are associated with a difference of one number on the ASTM grain-size scale. Finer ferrite grain sizes are preferable.
- 9. Drop-weight transition temperatures calculated from equations given in the report, based on 5/8 in. plate, agree quite closely with experimental values reported for Class B ship steel. The agreement is poor for Class C ship plate which is furnished and tested in heavier thicknesses.
- 10. The poor agreement between calculated and experimental values for 1-1/4 in. Class C steels is attributed to the failure of recommended procedures for drop-weight tests to compensate for embrittling effects of heavier plate thicknesses. It therefore appears desirable to determine the effects of variations in the geometrical and procedural factors of the drop-weight test.
- 11. Equations were developed for estimating the NDT from any one of seven different Charpy transition temperature criteria.
- 12. A critical temperature exists for each of the seven criteria whereby the CVTT is higher than the NDT above the critical temperature and lower than the NDT below the critical temperature.

ACKNOWLEDGMENT

The investigators are sincerely grateful for the counsel and helpful criticism of the Advisory Committee for Project SR-151 who were appointed by the Committee on Ship Steel to help in planning and to review the findings of this research program. The investigators also appreciate the excellent cooperation of R. W. Rumke and D. K. Felbeck, staff representatives of the Committee on Ship Steel during the course of the project. The contribution of some commercial ship plates for the program, by C. L. Staugaitis of the National Bureau of Standards, was also helpful. Finally, the investigators wish to acknowledge the advice and counsel of Glenn R. Beatty in connection with statistical analysis of the experimental data and the services of Willis Sunderland in processing the laboratory steels.

REFERENCES

- Puzak, P. P., Schuster, M. E., and Pellini, W. S., "Correlations of Brittle-Fracture Service Failures with Laboratory Notch-Ductility Tests," The Welding Journal, 37:9, Research Suppl., 391-s--410-s (1958).
- Boulger, F. W., Frazier, R. H., and Lorig, C. H., <u>Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Ship-Plate Steels</u> (Ship Structure Committee Report Serial No. SSC-91), Washington: National Academy of Sciences-National Research Council, July 15, 1955.
- Pellini, W. S., Puzak, P. P., and Eschbacher, E. W., <u>Procedures for</u> <u>NRL Drop-Weight Test</u> (NRL Memo Report 316), Washington: Naval Research Lab., June 1954.
- Puzak, P. P., and Babecki, A. J., "Normalization Procedures for NRL Drop-Weight Test," <u>The Welding Journal</u>, 38:5, Research Suppl., 209-s-218-s (1959).
- Puzak, P. P., Schuster, M. E., and Pellini, W. S., "Crack-Starter Tests of Ship Fracture and Project Steels," <u>The Welding Journal</u>, 33:9, Research Suppl., 481-s--495-s (1954).
- Puzak, P. P., Schuster, M. E., and Pellini, W. S., Supplementary Note on "Crack-Starter Tests of Ship Fracture and Project Steels," Ibid., 34:4, Research Suppl., 196-s (1955).

- Quest, C. F., and Washburn, T. S., "Tensile Strength and Composition of Hot-Rolled Plain Carbon Steels," <u>Trans. AIME</u>, vol. 140, pp. 489-496 (1940).
- 8. <u>Annual Report of the Ship Structure Committee</u>, May 1, 1961 (Project SR-141).
- Murphy, W. J., McMullen, W. D., and Stout, R. D., "Relative Behavior of Notch-Toughness Tests for Welded Steel," <u>The Welding Journal</u>, 36:6 Research Suppl., 307-s--311-s (1957).
- Canonico, D. A., Kottcamp, E. H., and Stout, R. D., "Accelerated Cooling of Carbon Steels for Pressure Vessels," <u>Ibid</u>, 40:9, Research Suppl., 400-s-404-s (1961).
- Gross, J. H., "Comparison of Charpy V-notch and Drop-Weight Tests for Structural Steels," <u>Ibid.</u>, 39:2, Research Suppl., 59-s--69-s (1960).
- Orner, G. M., and Hartbower, C. E., "Transition-Temperature Correlations In Constructional Alloy Steels," <u>Ibid.</u>, 40:10, Research Suppl., 459-s--467-s (1961).
- Johnson, H. H., and Stout, R. D., <u>Comparison and Analysis of Notch</u> <u>Toughness Tests for Steels in Welded Structures</u>, Welding Research Council Bulletin No. 62, (July, 1960).
- 14. Harris, W. J., Jr., and Williams, Clyde, <u>An Interpretative Report on the Metallurgical and Economic Aspects of Ship Steels and Their Relation to Ship Failures</u>, Final Report (Ship Structure Committee Report Serial No. SSC-80), Washington: National Academy of Sciences-National Research Council, August 15, 1956.
- A Comparison of Transition Temperatures Determined by Small and Large Scale Tests on Five Steels (Admiralty Advisory Committee on Structural Steel, Report No. P2), London: Her Majesty's Stationery Office, 1960.
- 16. Vanderbeck, R. W., <u>Improved Notch Toughness of Experimental Steels</u> <u>over One Inch in Thickness</u> (Ship Structure Committee Report Serial No. SSC-101), Washington: National Academy of Sciences-National Research Council, August 1, 1956.
- Staugaitis, C. L., <u>Mill Sampling Techniques for Quality Determination of</u> <u>Ship Steel Plate</u> (Ship Structure Committee Report Serial No. SSC-141), Washington: National Academy of Sciences-National Research Council, February 28, 1962.

TENSILE* DATA FOR HOT-ROLLED LABORATORY STEELS FINISHED AT 1850 F

		Yield		_	
		Strength,	Tensile	Elonga	tion
Heat	Number	0 99 Offect	Strength,	in 8 in	in 2 in
parcerre	Assigned	U-28 OIISet	par	Tuom	111 2 1110
в 6353	ገጥ	32,800	59,700	30.9	54.0
		33,700	60,200	28.0	51.0
B 6327	2 T	35,800	63,700	27.9	50.0
		36,600	64,600	28.8	52.0
в 6932	2-2	39,500	66,900	29.0	48.5
		40,600	67,900	31.0	48.0
в 6366	3T	43,000	71,600	23.5	47.0 1.8 0
D ()(7	1 m	42,400 25,000	71,000 58 J.00	22+9 21-0	40.0
в 0307	41.	36,00	59,100	28.9	52.5
B 6360	ርጥ	39,500	69,100	22.5	36.0
Б 0300	21	39,200	70,000	24.0	<u>ь</u> , 5
в 6368	6ሞ	49,200	82,500	20.1	39.0
2 0)00	•••	49,400	82,300	20.0	38.5
в 6359	7 T	32,500	53,300	28.0	52.0
	1-	31,800	54,300	30.7	51.0
в 6406	8т	35,000	61,000	27.9	49.5
		35°,500	61,900	30.6	51.0
в 6409	9 1	36,300	63,100	29.0	51.0
		35 , 700	63,000	29.2	52.0
в 706Ц	9-2	36,000	62,600	29.5	50.0
		36,200	63,100	32.0	57-5
в 6464	lot	39,400	70,200	27.8	53.0
- (1		39,100	69,600 F7.000	2(+(50.0
в 6410	117	35,200	57,900	20.0	2(+2 57 0
D 61.00	mor	33 700	63 200	25.1	J6.0
воцор	121	31,200	63,300	26.1	45.0
B 61.27	ገ ጋጥ	h1,h00	79,300	25.0	17.5
DOGET		39,900	79,000	24.7	46.5
в 6361	<u>ተ</u> ፈር	28,600	50,200	30.8	49.5
,		30,800	52,100	** *	**
в 6903	15	39,200	62,400	31.0	57.0
		38,700	62,300	32.0	57+5
в 688 0	16	33,300	57,500	31.0	56.0
		33,900	57,700	31.5	53.0
в 6879	17	41,300	72,100	20.0	4/•U
	*0	141,400	(3,100	28.0	40.5 1.7 E
B 6904	18	30,900 20,700	70,000	20.0	1,9,0
		17,100	70,000	20.0	47.0 17.5
B 6930	19	11,200	71 000	20.0	4(●) ***
D (003		25 600	62 700	21.5	38.0
B 093T	20	36 200	63,800	30-0	**
P 6011	70	15,100	71,900	27.0	51.5
Б 091 4	21	15,300	71.800	28.5	49.0
в 6933	22	36,900	64,300	32.0	54.0
2 0755		37,200	64,200	29.0	53 .5
в 6913	23	38,400	64,800	26.0	47 . 0
		39,400	65,900	26.5	50.5
в 6929	24	36,400	66,500	22.0	43.0
	-	37,400	65,900	28.5	54.0
B 7191	25	39,800	68,900		45.0
	_	40 , 300	69,000		42.0
в 7192	26	42,700	73,200		45.0
		42,000	73,100 65 700		44.•0 Ъ̀.∩
	97	400 ولاد	05,700	وبنيه	44.0
в 7193	<u> </u>	20,000			L× // ***

DROP-WEIGHT TEST DATA OF HOT-ROLLED LABORATORY STEELS FINISHED AT 1850 F*

Testing Temperature, F	Complete Fracture	Impact Energy, Ft-1b.	NDT, F	Testing Tempersturc, F	Complete Fracture	Impact Energy, Ft-lb.	NDT, F	Testing Temperature, F	Complete Fracture	Impact Energy, Ft-15	MDT, F
Heat Nu	umber (Battel	lle Assigne	:d)	·,·	B 6360	5			B 6409	9	
100 61 61 10 10 0 0 -10 -10	B 6353 No Ditto " " " Tes Ditto " " B 6327	1 150 150 120 150 150 150 Ditto n 120 Ditto " 2**	O	130 63 40 30 20 10 0 -10 -10 -10 B 6360	No Ditto " " " Yes Ditto " No Yes 5 (Duph	120 120 60 120 Ditto " " " " " " " " " " " "	o	68 68 30 10 10 0 0 -10 -10 -10	No Ditto " " " Yes Ditto " " " " " " " " "	60 120 Ditto N N N N N N N N N N N N N N N N N N	0
63	No	120	10	20	No	120	10	20	No	120	10
63 40 20 0 -10 -10 -20 -20	Ditto " " " Yes No No Yes Yes	60 120 Ditto " " " " " "		20 20 10 10 10 10 0 0 0 0	Ditto " Yes Ditto " " " "	Ditto n n n t n n n n n n n n n n n n n		20 20 10 10 10 0 0 0 0	Ditto " Yes Ditto " " " " "	Ditto n u u n u n t n	
	B 6932	2-2			B 6368	6			B 6464	10	
10 10 10 0 -10 -10 -10 -10 -10	No Ditto n " Tes Ditto n " " "	120 Ditto N T N T T T T T T	0	71 30 10 -10 -20 -20 -20 -30 -30	Mo Ditto " " " " " " Yes Yes	60 120 Ditto " " " " " " "	~ 30	68 66 30 0 0 -10 -10 -10 -20 -20 -20	No Ditto " " " " Yes Ditto " "	60 120 Ditto # # # # # # # #	-10
B 6932 24	-2 (Duplic	ate)		B 6368	6 (Duplica	ate)			B 6410	11	
0 0 0 -10 -10 -10 -20 -20 -20	No Dilto Tes Ditto tr T T T	120 Ditto n u u n n n n n n n n n n	-10	0 0 0 -10 -10 -10 -20 -20 -30	No Ditto # " Xes No Xes Ditto " "	120 Ditto « « » " " " " " " " " " " " " " " " " " " "	-10	68 68 30 -10 -10 -20 -20 -20 -30 -30	No Ditto " " " " " Yes Ditto " " " "	60 120 Ditto u v v u v u v v v	-20
	B 6366	3			в 6359	7			B 6405	12	
64 63 40 20 -10 -10 -20 -20 -20 -30	No Ditto " " " " Yes No Yes Yes	120 150 180 Ditto п п п п п	-20	71 71 30 10 -10 -10 -20 -20 -20 -20 -20 -20 -20 -30	No Ditto " " " Yes Yes Yes	60 120 Ditto " " " " " " " " " "	~20	130 57 57 10 10 10 30 30 30 20 20	No n n n Tes Ditto n 1	120 60 120 180 120 Ditto " " " "	30
	B 6367	4			B 6406	8			B6427	13	
64 64 10 - 13 - 13 - 13 - 13 - 13 - 14 - 14 - 15 0 - 15 0 - 15 0 - 15 0 - 15 0 - 15 0 - 15 0 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	No n n n Yes Ditto u n n	120 60 120 Ditto N H H H H H H H H H H H H H H H H H H	-410	68 68 30 20 20 10 10 10 0 0 0	No Ditto n Yes No Yes Ditto n u n	60 120 Ditto " " " " " " " " "	20	71 71 30 30 20 20 20 20 10 10	No Ditto T T T S S Yes No Yes Ditto H	60 120 Ditto " " "	20

										-	
Testing Temperature, F	Complete Fracture	Impact Energy, Ft-1b.	NDT, F.	Testing Temperature, F	Complete Fracture	Lmpact Energy, Ft-1b.	NDT, F	festing Temperatura, F	Complete Fracture	Impact Energy, Ft-16.	MDT, F
	B 6361	14		· ·	£ 6931	20		в 7191	25 (Duplic	ate)	
71 71 30 0 -10 -10 -20 -20	No Dilto " " " Tes Ditto " "	60 120 Dibto "" " " " " "	-10	20 20 20 10 10 10 0 0 0 0 20	No Ditto " " Yes Ditto " " " " " " " " " " "	120 Ditto " 150 120 Ditto " " " "	10	10 10 10 0 0 -10 -10 -10 -10	No Ditto n Yes Ditto n n u n B 7192	150 Ditto " " " " " " " " "	0
	B 690	3 15						7.04444			
0 0 -10 -10 -20 -20 -20 -20	No Ditto n n u Yes Ditto u u	120 Ditto " " " " " " " " "	-20	10 10 0 -10 -10 -10 -20 -20 -30	No Ditto " " Yes No Yo Yes Ditto	120 Dibto " " " " " " " " "	10	10**** 10 10 10 0 0 -10 -10**** -10 -10 -20 -20***	No Ditto " " Yes No Yes Ditto "	150 180 Ditto " " 150 120 180 Ditto "	-10
	в 688	30 16			B 693	3 ZZ		B 7192	26 (Dupli	cate)	
20 10 10 0 0 -10 -10 -10	No Ditto " " Yes Ditto " No Yes Ditto "	120 Ditto " " " " " "	0	10 10 0 -10 -10 -10 -20 -30	No Ditto " " Tes Ies No Yes Ditto "	120 Ditto n v n n n t t t t	-10	+10 -10 -10 -20 -20 -20 -20 -30 -30 -30 -30 -30	No Ditto n Yes Ditto n H H H H	150 Ditto n n n u n n u n n u n	-20
	В 68	79 17			в 691	3 23			B 719	3 27	
10 10 10 0 0 -0 -10 -10 -10	No Ditto N Yes Ditto N N N N K	120 Ditto n n H H H H H T T	O	-10 -20 -20 -20 -30 -30 -30 -10 -40 -40 -40	No Ditto " " Tes Ditto " " " "	120 Ditto " " " " " " " " " " "	-30	0 0 ++** -10 -10 -10 -20 -20 -20 -20 -20 -20	No Ditto T Yes Ditto T T T T T T T	120 120 150 150 150 Ditto " 130 150 150 120	-10
	B 6	904 18			B 69	29 Z4		B 7193	527 (Dupl	icate)	
30 30 30 20 20 10 10 10 0	No Ditto " Yes Ditto " No Yes Ditto "	120 Ditto " " " " " " " " "	20	10 10 10 0 0 -10 -10 -10 -10 -1	No Ditto n Yes Ditto n n n n	120 Ditto n n n n n n n n n n n n n n n n n	0	0 0 -10 -10 -10 -20 -20 -20 -30	No Ditto " " Tes Ditto " " "	150 Ditto " " " " " " " "	-10
	ве	5930 19			В 7	191 25					
20 20 20 10 10 10 0 0 0 0	No Ditto n n Tos Ditto n n	120 Ditto н п п п п п	10	20 20 10 *** 10 10 10 0 0 0 -10	No Ditto n N Yes No Yes Ditto n N	150 150 120 120 120 150 Ditto " " " " 120	10	+ Spe ** *** Batt *** Hit **** Did	cimen dimens 5/8 in. Plate 5/8 in. 6/8 in. 6/1	ions were a thickness d Heat No. il.	2 x 5 x was

Testing Temperature, F	Complete Fracture	Impact Energy, Ft-1b.	MDT, F	Testing Temporature, F	Complete Fracture	Impact Energy, 7t-1b	NDT, F	Testing Temperature, F	Complete Fracture	Impact Energy, Ft-15	NDT, F
	B 6353	I****			в 636	0 5			В 64	161 10	
80 20 20 10 10 10 10 10 0 0 0	No Ditto "" Yes Ditto " Yes Ditto "	120 Ditto " " " " " " " " " " "	10	80 10 0 -10 -10 -10 -10 -20 -20 -20	No Ditto " " Xes Ies No Yes Ditto "	120 Ditto K T T T T T T T T T T T T T T T T T T	-10	-10 -10 -10 -20 -20 -20 -20 -30 -30 -30 -30 -30	No Ditto T Yes Ditto H T T T	120 Ditto R H H J J J J J J J J J J J J J J J J J	-20
	B 6327	2\$16			В 636	8 6			B 64	£10 11	
72*** 72 -10 -30 -30 -30 -10 -10 -10 -50 -50 -50	No Ditto " " " " " Yes No Yes Ditto "	90 120 150 Dibto " " " "	<i>با</i> 70	80 -730 -730 -730 -7400 -7400 -7400 -7500 -7500 -7500 -7500	No Ditto n n Yes Ditto n No Yes Yes	120 Ditto " " " " " " " " " "	-1 ₂ 0	-10 -10 -10 -20 -20 -20 -30 -30 -30 -30	No Ditto H Tes Ditto H H H H H H	L20 Ditto a n n n n n n n n n n	-20
	B 6366	3			B 63	59 7			В 6-	405 12	
^ခ င္ပ သူတိုင္လက္ရန္က ကို ကို ကို ကို ကို ကို ကို ကို ကို ကို	No Ditto n n T No Yes No Yes No	180 Ditto n n n n n n n n n n n n n n n n n n	-60	80 0 -10 -10 -10 -10 -20 -20 -20 -20 -20	No Ditto " " Yes Ditto " Yes No No	120 Ditto "" " " 130 120 Ditto	-10	40 40 40 30 30 30 20 20 20 20	No Ditto T Yes Ditto H T T H H H H	120 Ditto n n n n n n n n n n n n n n n n n n	30
	B 6367	4			B 640	06 8			в 6-	427 13	
80 -1:0 -1:0 -50 -50 -50 -50 -60 -70**	No Ditto Tes No Ditto T	120 Ditto n r n r n r r r		20 20 20 10 10 10 10 10 0 0 0	No Ditto n Tes Ditto n n n H H	120 Ditto r H H H H H H H H H H H H H H H H H H	10	20 20 20 10 10 10 10 0 0 0 0	No Ditto T Tes Ditto T U U U U U U	120 Ditto T T T T T T	10
B 6367	4 (Duplic	ate)			B 64	09 9S16			в6	361 J4	
-နာနာနာနာနာနာနာနာနာနာနာနာနာနာနာနာနာနာနာ	No Ditto " Yes No Xes Ditto " "	120 Ditto n n n n n n n u u	-60	71 0 -10 -10 -20 -20 -20	No Ditto r Tes Ditto n s t	120 Ditto " " " " " "	-10	73 0 0 -10 -10 -10 -20 -20 -20	No Ditto n n r Yes Ditto n	120 Ditto " " " " " " " " "	-10

DROP-WEIGHT TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1600 F AND AIR COOLED*

* Specimon dimensions were 2 in. x 5 in. x 5/8 in. Plale thickness was 5/8 in. ** Did not mark anvil. *** Fractured 1/4 in. from weld bead. **** Battello-assigned heat No.

-39-

TABLE A-4. DROP-WEIGHT TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1900 F AND AIR COOLED*

TABLE A-5. DROP-WEIGHT TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1900 F AND FURNACE COOLED*

										· · ·	
Testing Temperature, F	Complete Fracture	Impact Energy, Ft-1b.	NDT, F	Testi Tempera F	ng ture, Complete Fracture	Impact Energy, Ft-10	NDT, F	Testing Temperaturo, F	Complete Fracture	Impact Energy, FT-16.	NDT, ş
	B 6327 2819*	*			B6360 5			B 64	10 11		
20 -10 -10 -20 -20 -20 -20 -30 -30 -30 -30	No Ditto # # T T Yeş Yos No No	150 Ditto H H H H H H H H H H	-20	40 110 40 40 30 30 30 20 20 20 10 6	No Ditto " Ies Ditto " No Zes Ditto " "	150 Ditto " " " " " " " "	30	30 30 30 20 20 20 20 10 10 10 10	No Ditto " " IES Ditto " " " " " " " "	150 Ditto " " " " " " " "	20
	B6409 9819				B 6368 6			B 64	05 12		
30 30 30 20 20 20 20 10 10 0	No Ditto " " Yes No No Xes Ditto W	150 Ditto " 120 150 Ditto " 120 120 120 120 120	20	10 10 10 0 0 0 0 -10 -10 -10 -10	No Ditto " " " Yes Yes Ditto " "	150 Ditto n n n n n n n n n	0	80 80 80 70 70 60 60 60 50 10	No Ditto M Tes No Yes Ditto M T	150 Ditto R R R R R R R R R R R	70
T	ABLE A	-5		-20 -20 -20 -20	ק ע ר	17 11 11		B 64	127 13	150	60
Testing Temperature, F 10 10 10 10 10 0 0 0 0 -10	Complete Fracture B 6932 2-2 No Ditto " " S Ditto " " " " " "	Impact Energy, Ft-1b. 150 Ditto " " " " " "	NDT, F	30 30 30 20 20 20 20 20 10 10 10 10 0 0 0	B 6359 7 Ditto n Yeş No Ditto n r Yeş Ditto n u Yeş	150 Ditto n n n n n n n n n n n n n n n n n n	20	70 70 70 60 60 60 60 50 50 50 50 50 50 50 50 50 50 50 50 50	No Ditto " " Yes No Yes Ditto " " " " " " " " "	150 Ditto "" " " " " " " " " " " " "	60
-10	" В 6367 4	"		o	" B 7064 9-2	" 2		50	No	150	Fo
တွဲ စုံလုံးပုံကို မှ <i>ိုင် မိုင် မိုင်</i> စစ်စစ်စစ်စစ်စစ်စ	No Ditto n H Ies No Yes Ditto n u n	150 Ditto M N N N N N N N	⊷ 50	50 50 50 40 40 30 30 20 20	No Ditto No Yes No Yes Ditto "	150 Ditto и и и и и и и и и и и и и и и и и	To	50 50 50 40 40 40 30 30 30 30 20 20 20 20	Ditto . " " " " " " " " " " " " " " " " " " "	Ditto H H H H H H H H H H H H H H H H H H	

* Specimen dimensions were 2 x 5 x 5/8 in. Plate thickness was 5/8 in

** Battelle-Assigned Heat No.

V-NOTCH CHARPY TEST DATA FOR HOT-ROLLED LABORATORY STEELS

Testing Temperature,	C	harpy Impact Energy,	Brittle Fracture,	Lateral, Expansion,		Testing Temperature, F	C	harpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion <u>mils</u>
<u>в 635</u> 120 Лу	3 : g.	70	26.2	<u>73–67</u> 70		-10_		28 11 6 9	88.8 88.8 90.0 90.0	28-29 13-13 10-10 10-10
80		34 67 51	66.5 ho.0 51.8	60-59 60-59 55-51		7A	rg∎	3 18 12.8	92.5 88.8 89.8	և- հ <u>19-19</u> 14
Av	'S∙	56 56 52.8	16.8 <u>40.0</u> 19	68-62 <u>38-38</u> 55		-60 P 42	E	$\frac{\frac{3}{5}}{\frac{1}{5}}$	97 -5 <u>97-5</u> 97 - 5	2- 2 5- 5 3•5
00 74	g.	36 <u>38</u> 37	62.5 62.5 62.5	հ 1- հի <u>հ0-հ2</u> հ1.,7		odr A	rg.	93 87 90	0 <u>13</u> 6.5	79-79 <u>83-78</u> 80
50 At	rr-	20 12 <u>33</u> 31-6	68.0 56.4 67.5 63.9	47-47 27-27 <u>33-37</u> 36-3		100 Ar	rg•	79 93 86	6.9 <u>25.1</u> 16.2	70-75 <u>74-79</u> 75
Цо	0-	39 18 13	64.0 76.0 76.9	42-42 23-23 19-17		76 At	∕g∎	73 74 73•5	20.6 <u>31.6</u> 27.6	60-71 71-70 69
AA OF	rg.	28 24.5	76-4 73-3 77-0	<u>33-33</u> 29 21-21		μο Δτ	rg.	50 43 46 5	54.0 56.7 55.0	<u>հկ-հկ</u> <u>55-52</u> և9
۵۲ ۱۳	rg∙	22 15 16	71 8 75 8 75 8	26-26 17-18 21.5		30 A7	∕g∎	16 15 15,5	61.9 61.9 61.9	<u>հ6–հ6</u> <u>43–50</u> 48
20 A1	76•	10 9	85.1 61.0 83.0	14-14 15-16 14•7		20 Av	7g.	42 112 112	67.5 67.5 67.5	<u>հ3-հ3</u> <u>հհ-հ2</u> հ3
0		7 6 7	93.1 92.8 91.9	10-10 19-10 7→ 8		10 AT	/S•	11 <u>16</u> 13 . 5	78-8 76-8 77-8	21-21 <u>16-17</u> 19
73 7	rg∙	$\frac{l}{7}$	92.6	9.6		0 Av	/E =	35 <u>44</u> 39 - 5	70.5 68 <u>.3</u> 69.1	38-38 <u>37-37</u> 37
в 63 140 Ал	2'7 'B	2 86 86	<u>15.0</u> 15.0	<u>73-78</u> 75•5		-10 Av	g.	11 25 18	76.4 79.6 75.0	26-26 <u>13-25</u> 20
LOO A'	vg.	87 85 76	17.8 <u>19.7</u> 18.7	71-75 79-75 75-7	-	B 6327 20	2 75	(Duplicate) 9 11 10	83.2 78.8 81.0	15-16 <u>13-13</u> 14
06 A	∙g.	80 80	27.2 27.2	<u>60–61</u> 62		-30	7	12 10	85.3 87.9	15-15 <u>11-11</u>
40 A	vE∙	50 56 53	55.0 51.1 51.5	52-51 52 52		-40	• 2 •	6	97 <u>-1</u> . 97-1.	0- 0 <u>6- 6</u>
30 Ar	vg.	45 42 43.5	66.0 <u>61.0</u> 65.0	115-116 111-117 115-5		-60	vg∙	5 55	97 - 4 98 - 8 98 - 8	3 7-7 <u>0-6</u>
20 A	vg.	37 1.5 Ца	69•7 60•6 67•2	47-67 40-39 43+2		Ат В 693; 78	vg. 2 2-	-2 1.5 75	98.8 17.7 19.6	5 113-118 69-71
10 <u>A</u>	vg∎	39 10 24.5	76.b 75.2 75.8	16-16 <u>11-10</u> 28-2		A1 60	vg∙	75 72	18.6 32.7 38.0	
٥		32 25 12 8	71.L 74.8 83.1 82.3	14-14 16-17 33-33 26-25		Ar LO	rg.	73-5 53 36	35-3 51.0 53.1	69 51-51 <u>37-38</u>
A -10	vg.	24 23	78.0 85.1 85.3	22 27-27 25-25		۵ 20	vş∙	27 30	52.0 76.7 73.1	32-32 31-30
A	vg.	-12 39 24-5	76.5 75.2 80.7	15-15 39-10 26.6		A* 10	⊽g•	28.5 36 23	74•9 72•2 <u>75•3</u>	31 25+25 <u>37-35</u>
-20		9 20 23 19	96.2 31.1 21.6 35.3	13-11 20-21 31-31 <u>21-21</u>		A O	•g •	29 28 21. 21.	73-7 72-2 72-2 76-5	30 2521 3029
∆ -30	vg.	19 7 8	47.6 90.0 <u>90.0</u>	21 11-10 <u>9-10</u>		ن <u>د</u> ۵۰	″g∎	28	<u>72.5</u> 73.3	<u>30-20</u> 27-5
<u>۹</u>	VE•	7.5	90.0	10		LU A	- -	<u>25</u> 27	72.2 70.7	25-25 27-2

--

Testing Temperature, F	Charpy Impact Energy Ft-1b	Brittle Fracture, per cont	Lateral Expansion, mils	-	Tost Temper F	ing ature,
B 6932 -20	2-2 25 11 9	77.8 79.0 <u>79.2</u>	21-24 24-12 13-13	-	20	B 6366
-30	15 10 <u>18</u>	75.6 82.2 <u>82.2</u>	16-17 13-12 <u>19-20</u>		10	Avg.
40 –40 Av	g = 12 $\frac{12}{17}$ $\frac{17}{105}$	79.3 87.7 85.2 86.1	16.1 14-14 <u>18-18</u> 75		0 -10	Avg.
-60	3 10 6.5	84.2 86.2 85.2	5- 6 <u>12-11</u> 8-5		-10	Avg.
120 120 Av;	69 <u>75</u> g• 72	39.0 <u>20.1</u> 29.7	68-63 <u>61-63</u> 63.7		-20	Avra
80 Avi	55 55	49-3 49-3	1.9-1.8 1.8.5		-40	Ψ¢ Β ^Φ
10 Avj 30	50 L9.5	57.9 58.4	17-10 <u>111-111</u> 15		-50	Avg₊
20	5. <u>39.5</u>	68.6 69.5	<u>38-38</u> 37		⊷60	Avg.
 Αν:	28 26 15	77.6 77.3	<u>26-26</u> 28		-80	Avg.
٥	3. 17 23	<u>79.3</u> 79.3 80.7	18-19 18.7 33-32		120 E	Avg. 8 6366 3
Ave	26 24 25 25 25	80.5 79.7 73.5 78.6	25-25 71-23 <u>25-25</u> 26-5		80	Avg.
В 636	63		-			Avgo
-10 Av	8 28 18	81 79 80	$\frac{12-12}{28-28}$		μо	Avg.
-20	12 10 7	73.5 79.7 81.5 81.7 79.7	31-31 21-21 20-21 <u>13-11</u> 20		30	
-lio	2 18 7	94.0 91.4 95-2	9- 9 21-24 10-10		20	Av⊑.
.⊀v -50	11 10.7 5	<u>92.8</u> 93.3 97.5	<u>12-13</u> 13-5 5- 5		10	Avg.
-60	rg. <u>3</u> . 1. 3	<u>97.5</u> 97.5 98.8	<u>3-3</u> 4 3-3		Ó	Avg.
4v 80	rg. <u>3</u> 5	<u>98.8</u> 98.8 98.8	<u>3-3</u> 3 9-10		-10	Avg.
۸۷ B 6 366 120	g6 6 3 (Duplicate) 77	98.8 98.8 21.0	<u>7≕ 7</u> 8₌2 67⊷69			Avg.
۸v 80	62	<u>5.0</u> 13.0 16.7	<u>75-75</u> 71 64-59		-20	
Ал 10	rg. <u>68</u> 55 39	39.0 12.6 65.0	<u>56-58</u> 59 38 - 37		0تر	Avg.
Αν 30	rg. <u>16</u> 13	75 <u>.5</u> 70.2	<u>47-48</u> 42		-50	Avg.
Av	rg. <u>41</u> 42	60.0	<u>39-61</u> 40			Avg.

TABIE	A-6	(CONTINUE)
	11 0	(OOMTIMOTD)

Tost: Tempera F	ing ature,	Charpy impact Enorgy, Ft-1b.	Brittle Fracture, per cont	Lateral Expansion, mils
	B 6366	3 (Duplicate)) (0.5	10.1-
20	Avg.	42 11	69.1 69.1 69.1	40-41 <u>37-37</u> 39
10		35	73.1	3և–3և
	Avg.	36	<u>69.1</u> 71.1	<u>33-33</u> 32
0		22 28	78.7 78.7	28+-27 2h-23
	Avg.	25	78.7	25
-10		26 35	83.2 73.1	33-33 27-27
		16	84.h	19-19
	Avg.	26	79-8	27
-20		9	78.7 81. 1.	12-12
		33	73.1	<u>33-33</u>
1.6	Avg.	21	(0•1	23
-40		(7	86.6	21-2L
	Avg.	<u>21</u> 12	96 <u>5</u> 93•2	10-10 15
-50		6	96.5	7-8
	Avg.	- 7 -	<u>98.7</u> 97.6	<u>10-10</u> 9
++60	•	5	98.7	9- 9
	Avr.	-7-6-	98.7 98.7	7-7
-80	¢1 •	3	100-0	0= 0
-50	Avr.a.	<u> </u>	100.0	0-0
120 B	6366 3	(Triphcate)	37.7	63=69
120	6.ac	<u>- 75</u>	19.8	66-67
90	HAR*	(202 CI.	20 . 4	10.17
80		<u>66</u>	19.0 11.3	<u>57-60</u>
10	AVE.	00 F0	45.5	53+2
Π0		<u>12</u>	50.6 60.0	117-750 THT-750
	Avg.	26	50-5	ц2•7
30		27 26	65.0 66.1	31-28 28-27
		16 15	51.2 70.0	145-145 18-18
	Avr. •	28.5	63.0	30
20		38	58.0	37_38
20	Arra	30	65.0	<u>31-31</u>
10	WAR 9	24 10	(1.)	20.44
10		27	67.6	27-28
	AVG	20.5	07.4	29.2
0		21	72.2 74.3	22-23 21-21
	Avg.	20.5	(3.2	21.7
-10		9 22	81.0 74.7	12-12 21-22
		27 7.5	73.6 87.5	27-28 11-19
	Avg.	16.1	79-2	17.7
-20		6 19	86.2 75.3	8- 9 20-20
		25 27	74.3 87.3	24-25 8- 9
	Avg.	14.3	80.7	15.3
<u>0.</u> تــ		⁶ ц	89.0 87.5	7- 8 12-12
	Avg.	8.5	88.2	9.8
-50		26 7	78.7	26-26
	A 1500 -	3	<u>95.5</u>	3-3
	-17E+	<u>16</u>	UU AU	44 a U

· _

							_
	Testi Tempera F	ng ture,	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils		,
		B 6366	3 (Triplicate)				-
	-60	Avg.	- <u>3</u> - <u>1</u> -5	92•7 99•0 95•8	6-6 <u>1-2</u> 3•9		
	-80	Avg.	- <u>3</u> - <u>1</u>	95-5 <u>97-7</u> 96-6	6- 4 0- 1 2+9		
-		2 2 2 7					
	80	Ave.	109 130 120	32•4 <u>26•3</u> 29•3	79-85 <u>92-93</u> 88		
	60	Avg.	86 99 92	45.3 <u>37.0</u> 41.0	81-85 <u>79-79</u> 81		
	<u>ьо</u>	Avg.	89 82	55-2 19-6 52-14	8278 <u>71-72</u> 75-7		
	30	Avg.	81. 	59.7 56.5 58.1	75 - 82 <u>76-77</u> 77 + 5		
	20	Avg.	1.8 55 24 <u>36</u> 1,1	64.6 61.2 77.6 76 <u>5</u> 70.7	12-50 55-54 37-36 29-30 12-5		
	10	Avg.	83 55 81 90 75 69 16	62.0 63.0 57.0 57.6 56.9 62.0 58.7	81-82 30-30 78-78 69-69 73-73 <u>56-55</u> 72-8		
3.2	ô,	60): (^{6,31)} (^{6,1}	14 A	7.5	22-22	· · ·	
	, ~ _	∆vg.	م بين رو الم	12	18-17 19-7		11
	-20	Ave.	12 12 12	81.8 78.7 80.2	18-17 18-16 17.2	- '}-	-
	0با–	Avg.	10 21 21 5 7 11	87.5 86.6 90.0 91.0 <u>92.7</u> 90.1	12-12 27-25 1h-1h 8- 7 13-13 1h.5		
	-30	Avg.	3 <u>3</u>	96.2 96.2 96.2	14- 5 <u>3- 2</u> 3-5		
	80	Avg.	117 117 117	23.2 23.2 23.2	88-85 80-91 86		
	60	Avg.	92 122 107	26.0 <u>15.1</u> 20.5	82-81 92-88 85.8		
	40	Avg.	100 <u>86</u> 93	17.5 <u>30.1</u> 23.8	89-82 <u>77-78</u> 81.5		
	30	Avg.	85 90 87-5	34_0 <u>24_5</u> 29_2	82-79 80-85 81-5		
	20	Avg.	上0 20 30	57.6 62.6 60.1	հե–կ3 22–23 33		
	10	Avg.	85 <u>143</u> 64	40.5 63.0 51.7	82–80 <u>141–45</u> 62		
	0	Avg.	18 <u>32</u> 25	71.5 66.6 69.0	23-22 <u>34-35</u> 28-5		
	-10	Avg.	75 80 77•5	50.0 <u>56.0</u> 53.0	69-75 <u>78-77</u> 75		

Testi Tempera F	ng ture,	Charpy Impact Energy, Ft-1b.	Brittle Fracture per cent	Lateral Expansion, mils
-20	Avg.	6.5 LO <u>LO</u> 28.8	83.1 67.5 <u>69.7</u> 73.L	10- 9 144-143 1-2-1-1 30-1
- 20	Avg.	32 34 <u>6</u> 24	73.8 73.1 <u>90.8</u> 79.2	35-35 32-35 <u>7- 7</u> 25
-60	Avg.	7 <u> </u>	93.0 <u>96.7</u> 96.8	9- 8 <u>4- 3</u> 6
-80	Avg.	6 12 9	95.5 <u>88.7</u> 92.1	6- 7 14-14 10
160 ^B	6360 5	50 51 50 5	13.0 15.3 14.1	55-56 56-54
סקנ	Avg.	45 40 42_5	13.3 13.6 13.4	56-59 51-1:7 53-2
120	Avg.	36 <u>112</u> 39	49.9 39.8 11.8	117-111 <u>38-113</u> 113
80	Avg.	31 21 27•5	58 65.6 61.8	34-35 <u>30-27</u> 31-5
70	47g.	21. 21. 21.	63.5 62.4 67.9	28-30 29-27
.50		27 17.6	69 -366-2 -01-6**	27+28 27-21 21-2
50	Ave.	20 18 19	70 70 70 70	25-23 2 <u>3-25</u> 24
ho	Avg.	17 12 14.5	75.9 <u>75.9</u> 75.9	21-20 16-15 18
30	Avg.	16 <u>10</u> 13	78.8 78.8 78.8	19-19 <u>14-1)</u> 16-5
20	Avg.	9 9 9	83.9 83.9 83.9	12-13 <u>13-13</u> 12.7
U	Avg.	7 8 6 5 5	94 92•7 94 <u>95•2</u> 93•9	6- 7 10-11 9- 9 8- 9 8.6
-20	Avg.	6 <u>-3</u> 4-5	97•5 <u>97•5</u> 97•5	6- 9 <u>4- 1</u> 5
120 ^{B (}	5368 6	66 66	0.0	60 - 58
	Avg.	66	0	59
79	Avg₊	60 57 58-5	29.6 <u>11.5</u> 35.5	53-51 55-53 53
60	≜vg.	կ2 հհ կ6 <u>կ4</u> հև	35.9 37.0 39.5 <u>38.5</u> 37.7	4111 1110 39-38 <u>1111</u> 11
<u></u> 40	Avg.	15 17 16	54.0 <u>50.7</u> 52.3	40-41 141-39 40
30	Ave.	29 30 29.5	55.5 <u>51.8</u> 53.6	30-31 <u>28-29</u> 29

_ _ _

Testing Comperature, F	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils	Tes Tempe F
20 B 636	8 6 30 25	64.5 66.3	29-30 26-26	16
Avg.	27 . 5	65.1 68.2 68.2	28 24-2h <u>26-27</u> 25	ער
0 A T F.	30 28 29	70.9 75.8 73.3	26-25 29-28 27	12
-10 Avg.	26 22 24	80 80.7 80.4	2h-22 25-25 24	10
-20 Avg.	27 16 22.5	83 87.9 85.4	16-15 24-25 20	و
-30 Ave.	14 18 <u>18</u> 17	93.8 93.8 93.8 93.8	16-15 18-18 <u>17-17</u> 17	8
-40 Avg.	14 	98.8 90.0 94.4	11-15 _ <u>8-9</u> _11	6
-50 A v g.	8 7	98.8 98.8 98.8	6- 7 _ <u>7- 8</u> 7	5
B6359 7	011	28.1	88-95	Ц
۸vg.	121 116	17.5 22.8	<u>96-77</u> 89	2
60 Avg.	121 121 122.5	30_4 22_8 26.6	81-90 <u>88-81</u> 85	1
li0 Avg∙	115 99 107	35.6 29.3 32.4	87–81 <u>89-81</u> 85	
30 Avg.	44 70 83 23 55	58.5 46.7 42.5 65.3 53.3	50-49 70-70 78-79 <u>31-30</u> 57	
20	21 66 69 62 19 50	643 55.0 53.8 56.3 69.0 57.4	26–27 68–69 70–68 62–65 26–27 53–54	<u>ي</u> د ۱
Avg. 10	- <u>L</u> B- 20	59.3 71.8	51 26-26	
Avg.	15 19 17 18	79_0 74_4 <u>74_4</u> <u>75_0</u>	24-23 26-26 <u>21-24</u> 25	
0 A v g.	16 15 15.5	77•7 78 <u>•2</u> 78	20 -21 <u>21-21</u> 21	:
-10 Avg.	15 10 12,5	80 . 5 80.2 80.4	21+22 <u>16-16</u> 19	
-20	8 8 6 	84.3 84.5 86.5 85.5	11-12 14-13 19-10 7-8	I
30 Avg.	29 <u>30</u> 29 - 5	96.5 88.4 92.4	12-9 <u>11-10</u> 10-5	:

Lateral Expansion, mils Brittle Fracture, per cent Charpy Impact Energy, Ft-1b. sting erature, B 6 4 0 6 8 60 74**-7**4 75-68 72 3.4 2.5 2.9 78 -72-75 Avg. 70 68 69 67**-**72 <u>69-64</u> 68 13.3 <u>12.3</u> 12.8 40 ۸vg. 56 62 59 56-62 <u>68-59</u> 59•7 20 29-3 19-6 24-4 Àvg∙ 53-59 <u>116-112</u> 50 42 52 17 42.0 29.2 35.6 00 Avg. 34 1-3 38 49•4 <u>55•2</u> 52•3 119-117 113-113 115 90 Avg. 32 27 37 30 32 32-35 lio-lio li2-lio <u>35-33</u> 37**-**1 55.8 51.8 57.0 52.3 54.2 80 Avg. 65.5 61.0 63.2 27-24 <u>34-33</u> 27**.**2 30 21 26 60 Avg∙ 26 19 22 65 <u>65 4</u> 65 2 30-31 <u>24-24</u> 27.2 50 Avg∙ 15 13 14 7<u>ь</u>ц 7<u>4</u>ц 74ц 18-18 <u>16-17</u> 17.2 40 Avg. 85.0 86.0 85.5 8 10-11 <u>7-8</u> 9 20 7.5 Åvg. 676 93.1 93.1 95.4 95.4 95.2 9-10 9- 8 9- 8 8- 7 8-5 10 6 Avg. 96.5 96.5 90.5 3- 4 4- 4 3+7 0 4 4 Avg. B 6409 9 17.8 <u>26.0</u> 21.9 68-74 <u>71:+69</u> 70**.**5 20 79 76 ۸vg. 18.2 <u>38.8</u> 13.5 57**-**61 <u>63-59</u> 50 8**0** 60 <u>66</u> 63 Avg. 57.0 52.3 51,6 45+45 <u>38-41</u> 42•2 70 38 - <u>15</u> - 12 Avg. 45 55 50 67.1 <u>53.2</u> 60.1 47-46 <u>54-55</u> 50**.**5 60 Avg. 68.5 70.4 63.2 <u>64.9</u> 66.7 43-46 36-38 35-37 <u>44-44</u> 40-3 辿り込 50 33 Avg. 15 30 28 28 19 21 75-9 56-8 36-3 67-2 7<u>1-5</u> 61-5 31-32 49-h9 32-31 23-19 <u>22-22</u> 31 40 Avg. 75-4 75-9 75-6 28 32-30 <u>30-29</u> 30**.**2 30 28 28 ۸vg. 17 20 18.5 79.0 <u>76.8</u> 77.9 21-21 <u>24-21</u> 22,5 20 Avg.+

Test mper F	ing ature,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
10	B 6409 Λvg.	9 12 10 11	82.1 81.3 81.7	14-16 <u>15-15</u> 15
0	≜*g.	7 7 6 7 7	87.5 87.3 92.8 9 <u>1.5</u> 89.7	10- 9 10-10 9- 9 9- 9 9-3
-20	Avg.	3 <u>4</u> 3-5	98.8 93.8 96.3	2- 3 <u>4- 5</u> 3.5
100	B 7064 '	9-2 70 <u>65</u> 67•5	12.7 25.3 19.0	71-61 <u>61-65</u> 65-2
78	Avg.	54 15 195	34.1 112.5 38.3	54-52 <u>16-17</u> 19•7
70	Avg.	30 39 <u>19</u> 39	13.7 52.5 <u>36.7</u> 114.3	34-31 44-41 <u>52-51</u> 42.1
60	,Avg.	33 <u>31</u> 32	50 55 52 .5	37-lı0 <u>36-35</u> 37
50	Avg.	23 32 28	65 58 <u>5</u> 61.7	28-27 <u>36-36</u> 31.7
10 10	Ave.	26 15 20.5	66.8 68.1 67.4	30-30 20-21 25-2
30	Avg.	13 11 12	72 66.8 69.4	16-18 <u>17-17</u> 17
20	Avg.	13 10 11.5	77 <u>77.5</u> 77.3	17-16 <u>16-16</u> 16-2
1.0	Avg.	8 12 10 -9 -7	85.7 84.3 76.8 <u>81.0</u> 82.4	11-9 16-17 15-14 <u>13-12</u> 13-3
٥	Avg.	6 	88.6 81.0 84.8	8-10 <u>11-12</u> 9.5
-10	A v g.	6 5 5,5	90.2 90.0 90.1	8– 8 <u>6⊶ 7</u> 7
⊷ 20	Avg.	4 <u>3</u> 5	96 . 7 <u>98.0</u> 97 . 3	4- 4 <u>4- 4</u> 4
-30	Avg.		96.1 <u>90.3</u> 93.2	2- 2 3- 4 3
160	8 6464 Avg.	97 97 97 97	0 0	75+79 <u>76-80</u> 77-5
120	Avg.	90 <u>92</u> 91	12.8 17.0 14.9	75-71 <u>76-74</u> 74
80	Ave.	70 	12.0 20.0 31.0	62-62 <u>75-69</u> 67
<u>4</u> 0	۸vg.	44 32 42 <u>31</u> 37	59 .3 59.4 59.8 64.5 60.7	L0-L0 30-32 30-29 <u>38-39</u> 34-7
20	Avg.	51 	72+4 76+1: 74-4	46-45 <u>33-34</u> 39 - 5

Test; Temper; F	ing ature,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
0	B 6464	10 30 25 13 <u>19</u> 22	78.8 81.1 76.4 79.6 79	30-29 24-21 16-16 <u>19-20</u>
-10	Avg.	8 7 8 12 5 25 21	89 82.9 85.8 82.7 90.6 81.6 85.1	11-9 9-10 9-9 14-14 7-7 25-26 12-5
-20	Avg.	16 16 4 32 23 16	811 89.0 81.0 81.1 8 <u>1.1</u> 8 <u>1.1</u> 8 <u>1.1</u>	16-16 18-17 7-8 4-4 29-28 21-23 15-9
- 40	Avg.	3	95 93.8 94.4	2- 2 7- 7 4.5
В	6410 1	u;		
120	Avg.	136 <u>121</u> 128	<u>0</u>	92-90 <u>93-80</u> 88.7
80	Avg.	119 113 132 <u>111</u> 120	21_3 10.8 0 0 8	88-87 90-82 86-83 <u>90-92</u> 87-2
70	۸vg.	135 123 126 120 126	0 29•0 0 20•2 9•8	85-92 83-88 92-81 88-83 86-5
20	Avg.	87 93 86 89	54.6 57.0 <u>12.7</u> 51.4	65-66 80-80 <u>77-79</u> 74-5
٥	Ave.	65 69 67	62.1 56.4 59.2	6161 <u>6567</u> -63.5
-10	Avg.	9 93 10 <u>120</u> 58	74-8 56-4 77-9 <u>19-8</u> 57-2	13-15 82-90 7- 8 <u>81-82</u> 47.2
⊷ 20	Avg.	73 29 32 14 87 6 40	61.2 81.5 78.0 85.8 60.6 <u>81.9</u> 75.8	72-71 29-28 33-32 33-33 77+72 <u>7-8</u> 41.2
-30	۸vg.	5 <u>4</u> 4.5	90.2 <u>94.0</u> 92.1	6- 6 <u>4- 5</u> 5-2
-40	Avg.	4 5 4•5	96 -2 96 <u>-2</u> 96 <u>-</u> 2	2- 2 <u>4- 5</u> 3-2
160 ^B	6405 Awg.	12 40 40.5	39-1 34-1 36-6	և2-հե <u>հե-47</u> հե2
140	Avg.	34 43 38	47.7 49.7 48.7	117-147 1 <u>41-40</u> 13•7
120	Avg.	214 30 35 28 29	48 613 51 <u>50.1</u> 526	36-36 30-29 12-37 <u>33-31</u> <u>31-2</u>

Test: Compera F	ing ature,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Latoral Expansion, mils	Т Теп	esting perature, F	Charpy Impact Energy,	Brittle Fracture,	Latoral Expansion
100	B 6405	12 22 31 26	52.8 54.8 53.8	28-29 <u>35-35</u> 31-7		50 B 636	1 14 4θ 93 30	per cent 50.2 26.2 53.6	mils 54-52 83-84 37-39
90	Ave.	21 <u>16</u> 18,5	67.8 64.0 65.9	20⊷23 <u>28−27</u> 21. 5		Avg.	<u>42</u> 53	51.7 L5.7	<u>1.8-111</u> 55-1
80	Ū	11 12	71.0 74.0	19-18 16-16		Avg.	<u>41</u> 39	<u>48.0</u> 51.4	<u>49-48</u> <u>13-43</u> 45-7
	Avg.	13 12 12	70.0 <u>72.1</u> 71.7	15-14 <u>17-19</u> 16.7	1	io Avg.	112 25 34	58.3 55.2 56.8	33-29 <u>45-46</u> 38
φ,	Avg.	9 _ <u>11</u> _10	73 .1 70.0 71.5	12-12 <u>11-15</u> 13-2	3	o Avg.	21 19 20	69.0 52.0 67.1	25–26 <u>28~29</u> 27
0.	1 m/a	7 6 7 6	88.4 88.1 85.0 81.0	7- 8 8- 9 6- 8 <u>11-11</u>	2	0 Avg.	15 1 <u>3</u> 14	74-4 71-5 73-0	18-18 <u>21-21</u> 19.5
)	.avg.,	0.5 5 L	85_6 88_1 85_5	8•5 7- 9	1	o A v g.	10 - <u>9</u> 9.5	80.8 82.3 81.6	16-15 <u>12-16</u> 14-7
	Avg.	4 5	90.0 91.5 88.7	6-6 <u>8-8</u> 6.5		0 Avg.	11 9 10	84.4 82.5 83.5	14-14 <u>14-14</u> 14
вë	427 13	43 43 43 43	31.0 <u>36.6</u> 33.8	<u>հե-կ3</u> <u>իկկ4</u> <u>կ3.</u> -7	יד	0	8 7 9 6	86.2 89.1 81.0 81.6	7- 8 12-11 13-12 <u>16-15</u>
	Λvg.	39 <u>37</u> 38	56-3 60-5 58-5	37-35 <u>35-35</u> 35•5	-20) (rra	7 r	93-5 91-1	11.7 7- 3 <u>10-10</u>
	Avg.	26 35 31	69.7 67.2 68.5	28-29 <u>3h-34</u> 31-2	71	B 6903 1	5 96	22.0	°.7 71-83
٨	∀g.	31 27 29	72.1 76.5 74.2	27-26 <u>30-30</u> 28-2	60	Avg.	92.5 93	24.0 23.0 17.0	<u>88-71</u> 78-83
	AVR.	19 <u>15</u> 17	80.5 78.2 79.4	19-19 <u>18-18</u> 18-5	ьс	Avg.	80 86.5 81.	22.5 19.5 28.3	77-77 78
		9 19	89.5 81.8	12-12 29-16	30	Avg₊	- <u>80</u> 82	32.3 30.3	78-76 74-2
	Avg.	<u>11.5</u>	85.0 88.5	<u>20-11</u> 12.7		Δvg.	80 67.5	36.1 45.1	61-58 <u>78-77</u> 68.5
		5 11 15 14	93.8 92.8 89.1 91.2	7- 6 12~14 16-15 16- <u>1</u> 6	20	Avg.	58 52 55	58.3 <u>56.3</u> 57.3	57-57 <u>53-51</u> 54-5
	Avg.	16	91.7 91.2 87 5	12.7 24-20	10	Avg.	72 13 42.5	58.5 79.6 69.0	69-70 <u>18-20</u> 44-2
	۸vg.	21 11 19	91.2 93.5 91.7	14-14 <u>17-18</u> 18-8	o		48 25 15	52-7 72-2 75-6	50-49 53-53 19-21
	۸vg.	14 12 13	97•5 95•0 98•8	16-15 <u>11-11</u> 14-7	-10	Avg.	<u>13</u> 34	63.0 65.6	40-43 50-47 44-4
	Avg.		98.8 98.8 98.9	6- 6 9- 9 7•5	-10	Avg.	41 19 19 25 26	32.5 81.3 82.1 78.7 68.6	61-61 22-24 22-23 <u>28-28</u> 33-6
86	361 14	117 112 114 114	9 8 8.5	91-95 <u>93-91</u> 92-5	-20		8 25 6 5	84_3 67.5 88_7 90.7	9-10 146-15 8- 9 7- 6
	▲vg.	113 108 111	13.7 <u>15.0</u> 14.4	97-79 <u>93-87</u> 89	-30	Åτg.	11 8 10	85.5	17°5
	Avg.	96 71 96 <u>60</u> 80-7	33.6 25.2 35.0 <u>18.7</u> 28.1	79-86 68-67 84-86 <u>64-64</u> 74+7	-60	Δ τ g Ατg	11 6 8.5	82.7 95.0 88.8	$\frac{11-9}{10.7}$ $\frac{15-11}{7-7}$ $\frac{7-7}{10.7}$

Testin Temperat F	g ure,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
100 ^B	6880	16 78 <u>70</u>	1.25 9.0	70-80 <u>77-69</u>
80	Ave.	65	у.т Ц2.8	67-67 67
78	Avg.	52	26.7	<u>56-60</u> 58
70	Avg.	61 50 40 68 54•7	47.5 32.5 43.1 <u>21.0</u> 36.0	47-47 62-62 49-49 <u>68-71</u> 56 - 8
60	Avg.	30 <u>33</u> 31.5	45.5 16.2 15.8	40-38 <u>38-41</u> 39 -2
50	ÁVE.	25 30 27-5	52.5 51.2 51.8	29-30 <u>36-35</u> 32-5
40	Avg.	25 19	56.8 61.6	30-32 21-26 28
30	446	15 13	72.0 69.6	20 21-23 <u>19-17</u>
20	Ave.		70.5 74.6 86.3 81.8 78.3	20 17-17 14-16 18-15 <u>15-15</u>
10	Avg.	6 	90.0 88.7 89.3	13-0 11-11 11-11 11-11
0	Avg.	6 6	86_2 84-3 85-2	10-10 <u>10-11</u> 10-1
-10	Avg.	4 	95-5 <u>94-0</u> 94-7	6- 6 9- 9 7
-20	Avg.	և - 5 - 4.5	93.7 <u>92.6</u> 93.1	5-6 <u>7-7</u>
-30	Avg	3	96.7 97.7 97.2	4- 4 <u>3- 4</u>
100 ^B	6880 Avg.	16 (Duplicat 75 78 76-5	te) 20_2 21_0 20_6	70-77 <u>76-71</u>
8 0	ΔVE.	70 	31.7 22.5 27.3	71-70 <u>78-71</u>
70	Ave.	75 	39.3 <u>1.0.5</u> 39.9	74-79 <u>64-66</u>
60	Ave.	60 _10 _50	40.5 43.8	46-65 <u>111-50</u>
50	Ave.	38 _ <u>33</u> _35•5	49.3 58.3 53.8	ر 45-48 <u>41-41</u>
40	.Avg.	ил 10 10.5	60.0 53.6 56.8	46-47 44-45
30	Avg.	16.5 12.0 14.2	63.7 68.2 65.0	23-24 <u>18-17</u> 20-5
20	Avg.	15 12 13 <u>12</u> 13	70-7 72-7 72-3 <u>73-8</u> 72-1	19-20 17-18 17-18 <u>18-19</u>

TABLE A-6 (C	ONTINUED)	
Lateral Expansion,	Testing Charpy Impact Temperature, Encryy,	

Testing Temperature, F	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
10 Av	B 6880 16 (Dup 11 10 10 11 g. 10_5	licate) 70.0 71.0 82.2 78.7 75.5	16-18 14-14 13-14 1 <u>3-14</u> <u>16-15</u> 15
0 A:	ve. ⁷ / ₇ −	88.7 81.7 85.2	9-9 <u>11-12</u> 10,2
-10 A	5.5 <u>7.0</u> vg. 6.2	89.6 85 <u>.5</u> 87.5	10-10 <u>11-12</u> 10.7
20 A	vg. <u>4</u>	98.0 <u>97.0</u> 97.5	5- 6 <u>6- 6</u> 6
-30 A	3 3 .vg. 3	100 100 100	3-3 <u>4-5</u> 4
R 6879	17		
120	53 52 g• 52•5	26.2 <u>32.7</u> 29.4	52-55 <u>56-53</u> 53
100 Av	43 50 16.5	33_6 29_2 31_4	15-15 <u>51-50</u> 117-7
78 Av	29 <u>40</u> 34•5	40.7 <u>46.5</u> 43.6	3 1- 33 <u>40-43</u> 36 - 7
70 Av	28 <u>37</u> ≝• 32•5	46.8 <u>43.7</u> 45.2	32-32 <u>38-38</u> 35
60 A x	35 35 16• 35	49-3 <u>49-6</u> 49-4	36–38 <u>37–37</u> 37
50 Ax	21 21 21, 25 76• 22•7	60.0 56.5 65.0 <u>62.0</u> 60.8	25-26 23-25 26-26 <u>29-28</u> 26
40 AT	20 <u>30</u> 76= 25	68.0 65.0 66.5	21-25 29-29 26-7
30 AT	27 <u>18</u> 7g. 22.5	64-2 71-3 67-7	2627 <u>21-20</u> 23-5
20	9 21 16 <u>9</u> 78• 13•7	73 -1 65.0 79 -1 <u>77.8</u> 73.7	11-12 11-19 22-23 <u>19-14</u> 16-3
10 An	13 20 11: 9 7g. 11:	77.6 77.8 77.2 81.0 78.4	16-17 18-21 16-16 <u>13-13</u> 16,2
0	9 <u>10</u> 9•5	86.2 83.0 84.6	12-11 <u>13-14</u> 12 - 5
-30 An	5 <u>4</u> 1.5	90.2 90.2 90.2	6- 6 6- 5 5-7

Testing Temperature, F	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils	Tem	esting perature, F	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils
120 ^{B 6879}	17 (Duplicat 54 51 g. 52.5	27.6 26.7 27.1	54-55 52-52 53		50 B 6904	18 25 18 18	70.0 68.6 <u>69.8</u>	18-19 26-27 <u>22-23</u>
100 Av	41 49 15	113.7 <u>31.5</u> 37.6	<u>հկ-կ2</u> <u>52–53</u> 47		r.AB	13 13	72.0 76.0	22,5 16-17 <u>16-17</u>
80 Av	37 <u>L1</u> 76• 39	հև • 3 <u>և 3 • 7</u> հե • 0	հկ-կ3 <u>կ1-կ0</u> կ2		Avg 20	• 13 6 6	74.0 81.0 80.5	16.5 12-12 10-10
70 Av	30 <u>36</u> 78- 33	կե.3 <u>կ8,1</u> կ6.2	33 -32 <u>39-38</u> 35		Avg	• 6.5	86.5 <u>79.9</u> 81.9	9-9 <u>10-9</u> 10-1
60 A v	32 <u>- 37</u> 76• - 34•5	54=0 <u>14+0</u> 19=0	34-34 <u>39-38</u> 36		0 Ave	6 5 5.5	91-6 <u>86-2</u> 89-9	9-10 <u>7- 7</u> 8,2
50 Av	26 <u>28</u> 7g • 27	56_2 <u>60_0</u> 58_1	29++30 <u>3130</u> 30	-	30 Ave	2.5	100_0 100_0 100_0	3- 1 2- 2 2.7
Fo	27 27 27	58.0 55.6 56.8	28-28 <u>30-28</u> 29	1	.20 ^{18 6930} Ave	19 70 <u>51</u> 52	11.5 <u>23.7</u> 17.6	66-57 <u>59-53</u> 58-7
30	26 21 25	61_6 76_5 69_0	27-28 <u>26-25</u> 26-5	1	.00 Ave	59 58 58,5	24.3 20.0 22.1	5550 <u>57-58</u> 55
20	12 <u>20</u> 16	76•7 <u>79•1</u> 77-9	16-17 23-24 20		90 Δν _έ	12 52 47	27.1 <u>24.0</u> 25.5	47-44 <u>55-53</u> 49 . 7
10	$\frac{17}{\frac{17}{37}}$	72.0 75.3 73.6	17-20 20-20 19		78 Ave	52 <u>43</u> 47.5	23.6 <u>32.7</u> 28.1	53~53 <u>hh-43</u> 48.2
0	10 10 10	86.6 87.1	18-19 15-11, 12-13		70 Av;	1-1 32 36-5	31.0 <u>40.2</u> 35.6	կե–հե <u>36–36</u> 40
	9 15 10	85.0 88.7 88.1 87 1	11-10 14-14 <u>14-12</u>		60 Ave	39 <u>32</u> 35 • 5	50.0 51.2 50.6	40-40 <u>36-37</u> 38•2
-10	$\frac{11}{\frac{16}{135}}$	90₊0 85₊2 87₊6	8- 9 <u>12-14</u> 10-5		50 Ave	25 <u>30</u> 5• 27•5	53 51 52	29-32 <u>32-31</u> 31
30	9 5 7	89-2 <u>93-5</u> 91-3	8=10 _66 _7_8		40 ▲⊽(25 25 3. 29	63.3 60.6 72.6	<u>30-28</u> <u>30-28</u> 31-7 23-23
цю 140	14 18 56 56 56 56 56 56 56 5	10.0 12.2	53-58 <u>56-57</u>		λτ _ί 20	<u>16</u> 17.5 25	67.5 70.0 70.6	21-22 22.2 26-25
120	43 13 19	30-8 29-2	147-46 <u>39-42</u>		Av,	12 22 19.6	82.7 <u>78.3</u> 77.2	16-16 <u>27-26</u> 22-6
▲ 0110	43 37	14.0 31.2	49-43 <u>42-39</u>		10	10 22 10 11	78.7 82.1 82.5	25-28 15-18 <u>17-17</u>
100	28 <u>40</u>	30.5 50.7	29-30 <u>15-111</u> 37		0 ÁV	6 6 6	86.7 85.6 36.1	7- 8 <u>10- 8</u> 8-2
م 90	23 30	49 . 2	26-31. <u>34-34</u> 31-2		-30 Av	6 3 g. 4.5	86-1 92-6 90-3	8- 7 <u>3- 3</u> 5.2
78	36 22 <u>19</u> Avg. 26	40.2 48.7 <u>514.2</u> 48.2	11-42 26-27 <u>25-25</u> 31					
70	24 18 Avg. 21	56.8 <u>61.0</u> 58.9	29-29 <u>26-28</u> 28					
. 60	16 <u>18</u> ▲vg. 17	59 . 5 <u>66.5</u> 63.0	20-21. <u>23-24</u> 22					

festing mperature, F	Charpy Impact Energy, rt-lb.	Brittle Fracturo, per cent	Lateral Expansion, mils
B 693) 120 A	20 70 75 vg. 72.5	18.7 <u>15.7</u> 17.2	66-70 <u>66-77</u> 69 - 7
100 Ar	56 <u>56</u> 88 56	21.6 <u>31.5</u> 26.5	55-61 <u>53-50</u> 54.7
78 A:	55 <u>47</u> 51	39 -3 <u>35-6</u> 37-4	50 -51 <u>19-119</u> 119-7
70 A	50 <u>59</u> 84.5	և2.0 <u>33.2</u> 37.6	54-52 <u>59-60</u> 56-2
60 A	но <u>40</u> че. <u>10</u>	54.1 <u>54.3</u> 54.2	33-42 <u>1:2-44</u> 40
50 A	20 <u>13</u> vg. <u>31.5</u>	61.2 <u>61.5</u> 61.3	27-27 <u>117-117</u> 37
40 А	22 22 7g. 22	60.7 <u>62.0</u> 61 <u>.</u> 3	26-27 <u>22-27</u> 25•5
30 A	14 30 12 vg. 18.6	75.0 65.7 <u>67.5</u> 69.L	20-19 32-32 <u>18-17</u> 23
20 A	11 <u>9</u> vg. 10	80.0 83.2 81.6	17-16 <u>15-14</u> 15-5
10 A	6 10 10 <u>9</u> ••••	78 87 76 85 82	1111. 1111. 16-16 <u>9-10</u> 13.3
0	10 .8 .9	84.3 81.0 82.6	11-11 <u>13-13</u> 13-5
-20 A	vg. 5	89.6 <u>85.2</u> 87.4	5- 6 6- 8 6-2
-30 A	ь .vg. <u>3.5</u>	88.1 <u>88.1</u> 88.1	6- 6 3- 5 5
B 6914 78	4 21 62 68 WE 65	29+2 <u>30+5</u> 29+8	55-64 <u>66-59</u> 61
60 A	48 <u>46</u> ve• 47	46.8 <u>45.0</u> 45.9	50-49 <u>47-48</u> 48.5
40 А	32 <u>33</u> .vg. 32.5	53.6 <u>16.8</u> 50.2	35-32 <u>36-33</u> 34
30 A	39 <u>24</u> .vg. 31.5	63.2 73.8 68.5	40-20 <u>29-30</u> 34.7
20 A	30 <u>33</u> vg. 31.5	63.0 <u>63.7</u> 63.1	31-36 <u>33-33</u> 33+2
10 A	30 <u>22</u> .vg. 26	73.1 <u>74.2</u> 73.6	30–29 <u>21:–21:</u> 26•7
0 A	22 <u>30</u> vg. 26	76_5 <u>67.7</u> 72_1	22-22 <u>30-28</u> 25.5
-10 A	22 26 24 15 Vg. 21.7	61.8 76.5 73.1 77.2 74.6	22-24 28-29 19-19 <u>26-26</u> 24-1

Testing Temperature, F	Charpy Impact Energy, Ft-Ib.	Brittle Fracture, per cent	Lateral Expansion mils
E 6914	21		
-20 Ave	16 21 9 <u>20</u> - 16-5	84.1 86.3 88.0 <u>91.6</u>	17-22 22-22 11-13 <u>23-17</u>
-40 Aviz	6 8 7	84.3 84.3	17-17 9 9
-50 Ave	8 <u>10</u> 3	86.3 85.3 85.5	10 + 10 10 + 10 13 - 13 13 - 13
-60 Ave	5 - <u>7</u>	89.0 83.0 85.0	7- 7 <u>10- 8</u>
E 6933		00.0	0
80 80 AV,	62 65 8• 63•5	37.0 <u>33.2</u> 35.1	60-61 <u>63-62</u> 61.5
78 Avi	84 <u>.57</u> g• 70•5	34.1 <u>31.2</u> 32.6	64–61 <u>51–59</u> 58•7
60 Av	45 <u>46</u> 45.5	46.8 <u>46.7</u> 16.8	<u>հ7-հե</u> <u>հ7-հ7</u> <u>հ6-</u> 2
LO Ava	32 27 29•5	54.2 51.0 52.6	34-35 <u>29-31</u> 32 - 2
30 Ave	33 40 59	65.8 68.0 60.5 61.7	36–35 41-42 <u>59–59</u> 45•3
20 Avg	1). 17 15-5	65-0 <u>71-7</u> 68-3	18-19 <u>16-18</u> 17.7
10 Avg	19 <u>12</u> 15.5	77.8 <u>76.1</u> 76.9	22-22 <u>16-19</u> 19.7
0 Ave	27 22 18 <u>11</u> 19.5	60.3 68.8 74.7 <u>80.0</u> 70.9	28-29 22-22 21-23 11-13 21-1
-10 Avg	10 18 11 8 11,7	80.2 76.1 81.0 <u>78.7</u> 79.0	13-12 19-20 16-13 <u>13-16</u> 15-2
-20 Avg	$\frac{\frac{7}{7}}{7}$	81_8 <u>89_6</u> 85_7	15-14 <u>9- 9</u> 12
-60 Avg	• <u>3</u>	97.0 96.0 96.5	4~ 3 <u>4- 3</u> 3•5
В 6913 78 Ам	23 73 <u>60</u> 5• 06•5	17.5 29.2 23.3	59-71 <u>61-56</u> 61.7
60 Av	65 <u>48</u> 56.5	30.8 <u>30.0</u> 30.4	58–67 <u>48–47</u> 55
50 ∆⊽	18 19 48.5	10.5 <u>13.7</u> 12.1	<u>16-19</u> <u>19-17</u> 17.7
70 То	37 <u>112</u> 8• 39•5	58_5 <u>15_3</u> 51_9	40-35 <u>42-62</u> 39•7
30 A v	32 35 g• 33•5	76.0 <u>63.0</u> 69.5	35-3 <u>1</u> . <u>36-36</u> 35•2
20 Av	37 <u>30</u> 13-5	43.2 <u>48.1</u> 45.6	37-36 <u>30-28</u> 32-7

TABLE	A-6	(CONTINUED)
-------	-----	-------------

Testing Temperature, F	Charpy Impact Energy, Ft-1b	Brittle Fracture, per cent	Lateral Expansion, mils	T Tem	esting perature, F	Ċ.	harpy En Ft
B 6913	23				B 719	91	25
10 Avg.	30 <u>32</u> 31	77.0 67.5 72.2	35-37 29-30 32•7		90 1	wg.	70 <u>70</u> 73
0	30 32	63.0 60.0	31-31 34-33		60		19 39
4170	18 22 <u>16</u>	66_0 68_6	22-21 21-21 <u>21-21</u> 25-6		Ŀо	ve.	3
-10	22	82.5	25-26		4	tvg.	30
Avg.	<u>16</u> 19	85.6 84.0	<u>19-19</u> 22,2		30		21 五 22
-20	$\frac{13}{11}$	75 .5 <u>71.7</u> 73.6	12-12 <u>13-17</u> 13.5		4	lvg.	<u>39</u> 31
-30	7	86.7	16-12 8-10		20		3; 20 31
Avg.	11 10 8-7	80.0 82.1 81-3	18-17 <u>8- 8</u> 12-1		1	Avg.	3
-60	8	84.1	11-10		10		40 13
Avg.		35.6	7.2		1	Avg.	202
80 80 Avg.	24 148 57 52	34-6 <u>35-0</u> 34-8	51-51 <u>56-56</u> 53-5		0		1) 11 31
70	50 <u>57</u>	42.7 25.2	50-51 58-58			Avg.	<u>3</u> 2
A⊽g. 60	. 53.5 ЦС	33.9	54 17-19		-10	Avg.	2 1 2
Avg	. <u>48.5</u>	36.2	51-52 50		-20		1
50 &vg.	<u>12</u> <u>10</u> 41	51 51 51	<u>43-65</u> <u>43-60</u> <u>42-3</u>		-30	Avg-	r
40 А vg	3/u <u>40</u> 37	51.0 <u>45.6</u> 18.3	37→39 <u>11-11</u> 140		-60	Avg.	-
30	30 _ <u>36</u>	50.0 54.3	33-34 <u>39-39</u> 37			Avg.	-
20	26	67.5 71.5	29-30 20-19		90 90	192 Ave.	26 <u>1</u>
Ąvg	• <u>20</u>	69 .5	24.5		60		2
10	25 7 15	84.3 68.6	10-12 19-21			Avg∙	22
Avg	· 🗄	74.0	19.5		30	Avg.	22
0	19 11 12	73.1 79.8 77.0	23-22 16-15 13-17		20		2
	31 23 23	67.7 73.1 68.6	33–34 26–26 26–26		10	tvg∗	2
Ave 10	. 19.8	73-2	23.5				1
-10 A ⊽g	·	90.0 89.5	<u>11-11</u> 11			Avg.	2 1
-20	6 <u>10</u>	91.8 87.8	9- 8 <u>12-13</u>		0		2
Avg LO	6 6	89.8 91.1	10•4 7- 7			Avg.	<u>1</u> 1
Avg	• 6	<u>90-0</u>	7		-10		1 1 1

Testin Comperat F	g wre,	Charpy Impact Energy, Ft-15.	Brittle Fracture, per cent	Lateral Expansion, mils
90 ^E	7191 Avg.	25 70.0 <u>76.0</u> 73.0	24.2 27.4 25.8	68 - 63 <u>65-70</u> 66 . 5
60	۸₹.	15.0 <u>39.0</u> 12.0	և7 ․ 1 <u>54․9</u> 51․0	<u>հ1-ի3</u> ի1-ի1 ի2-2
Го	Avg∎	39 -5 <u>36-</u> 7	60.9 <u>63.7</u> 62.3	<u>40-40</u> <u>33-34</u> 36 - 7
30	A⊽g∎	27.0 13.0 28.0 <u>39.0</u> 31.2	59.6 61.7 63.7 <u>64.1</u> 62.3	43–44 46–47 31–30 <u>37–39</u> 39•6
20	Avg	33-5 28-5 31-0 <u>31-0</u> 31-7	67.1 72.0 72.0 72.9 71.0	34–35 26–25 35–36 <u>30–30</u> 31+4
10	Avg	40+0 19+0 30+0 <u>29+5</u> 29+6	68.1 76.4 74.4 <u>66.0</u> 71.2	14039 23-23 30-29 <u>31-30</u> 30-6
0	Avg.	12.5 11.5 30.5 <u>35.0</u> 22.9	84.6 81.4 76.0 <u>72.0</u> 78.5	12-13 17-17 29-29 <u>35-36</u> 23-5
-10	Ave	24.0 <u>19.5</u> 21.7	78.7 <u>81.2</u> 79.9	25 -25 20-20 22-5
-20	Avg.	14.5 <u>13.5</u> 14.0	80.4 <u>83.2</u> 81.8	$\frac{17-17}{16-15}$ 16-2
-30	Avg.	6.5 <u>d.0</u> d.3	85.7 82.6 84.0	10- 9 <u>10- 9</u> 9.5
-60	۸vg.	5.0 <u>1.5</u> 4.8	98•7 <u>95•0</u> 96•6	6- 6 <u>7- 5</u> 6
90	B 7192 Avg	26 <u>13.0</u> <u>19.0</u> 13.5	41.9 <u>44.6</u> 43.2	47-42 51-50 47-5
60	Avg.	25.0 <u>33.0</u> 29.0	58.4 <u>61.4</u> 59.9	26–27 <u>32–34</u> 29 -7
30	A∀g.	30-0 25-0 27-5	65 li 69 0 67 2	32-31 <u>26-25</u> 28.5
20	٨vg	24.0 <u>27.0</u> 25.5	73-6 <u>69-2</u> 71-4	26-26 <u>28-29</u> 27.2
10	Avg.	11:0 13.5 18.5 <u>28.0</u> 18.5	70.5 77.0 73.1 <u>72.0</u> 73.0	17-16 15-16 21-19 <u>29-31</u> 20 ₊ 5
0	Avg.	20.5 24.5 9.0 <u>12.0</u> 16.5	77.9 72.4 75.6 <u>72.2</u> 74.5	21-22 25-27 11-11 <u>14-13</u> 18
-10	¥vg.	18.0 18.5 19.5 <u>7.5</u> 15.9	76-l: 79.0 77.1 <u>76-7</u> 77.3	21-21 9-10 18-18 <u>19-21</u> 17-1

Testing Temporature F	¢,	harpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mila
B 719	92 ZG			
-20 A	vg.	9.0 20.0 11.0 <u>6.0</u> 11.5	81.1 75.1 80.7 <u>81.1</u> 79.6	12-13 23-22 13-14 <u>7-8</u> 10 . 5
-30 A	ve•	5.0 12.0 6.0 <u>1.5</u> 0.9	30.5 81.4 81.4 81.4 81.6 81.6	7- 6 13-12 7- 8 <u>5- 6</u> 8
-60 A	vg.	6-0 <u>4-0</u> 5-0	87-2 <u>90-6</u> 88-9	7-17 <u>5~5</u> 8,5
B 71	93 Z	7		
60 <i>;</i>	łvg∎	111.0 <u>105.0</u> 108.5	30.0 <u>34.0</u> 32.0	85-83 <u>81-80</u> 83
Э0 ,	lvg.	80.5 78 <u>.5</u> 79 . 5	48_4 52_9 50_6	77-73 <u>?Ի-75</u> 7೬-5
0	Ave.	67 . 5 13.5 <u>57.0</u> 56.0	58.1 72.9 66 <u>.2</u> 65.7	65-63 43-42 <u>56-56</u> 54-1
-10	Avg.	59.5 82.0 51.5 <u>86.0</u> 69.8	67.6 55.7 66.2 <u>60.6</u> 62.5	56-58 74-77 51-51 <u>77-76</u> 65
-20	Avg₊	55•0 23•0 <u>61•0</u> 46•3	68.1 78.4 <u>64.6</u> 70.4	54–53 1.1.–1.1. <u>55–56</u> 51
-30	∆vg∎	60.0 63.5 <u>57.0</u> 60.1	65.7 65.2 <u>67.0</u> 65.9	51-50 60-61 <u>56-53</u> 54-8
-70	Avg.	26.5 3.5 <u>16.0</u> 15.3	81.6 83.6 <u>78.0</u> 81.1	27-26 L-L <u>17-17</u> 15-8
-50	AVg.	27.0 17.0 2 <u>3.0</u> 22.3	82.4 80.4 81.6 81.5	28-26 17-18 <u>24-23</u> 22.6
-60	Aves	22.0 23.0 22.5	82.7 <u>81.9</u> 82.3	23-22 <u>25-23</u> 23.2
-70	¥¤R•	25.0 2.5 13.3	84.9 <u>85.7</u> 85.3	25-25 <u>2- 1</u> 13.2
80	Avg.	2.0 11.5 <u>11.5</u> 8.3	90 .9 90.6 <u>91.9</u> 91.0	4- 2 12-12 <u>12-12</u> 9

"Battelle-Assigned Hoat No.

V-NOTCH CHARPY TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1600 F AND AIR COOLED

Testing Temperature, F	Ci	arpy Impact Energy, Ft-1b.	Brittle Fracturo, por cent	Lateral Expansion, mils	Tegti Tempers F	ng ture,	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils
B 6353	ÌΤ	2			B	6327 28	516		
76 1	vg.	74 78 76	26.8 21.2 21.0	72-74 <u>75-68</u> 72-2	60	Avg.	6 6 6	96.5 <u>96.5</u> 96.5	6- 7 <u>7- 7</u> 7
70	vg.	65 55 60	42.8 <u>43-2</u> 42.6	67-64 <u>60-59</u> 62.5	- 80	Avg.	7 -6_5	97-11 <u>97-11</u> 97-11	6- 7 <u>8- 8</u> 7
60 A	VE.	37 - 5 <u>42-5</u> 40	50.4 <u>53-4</u> 51.9	<u>հ1–</u> հ2 <u>հ8–հ6</u> հ4_2	В6 76	366 3T2	93 95 91	0 0	76-69 <u>70-73</u> 72
50		50 20 36 35	60.0 56.3 43.9 66.0	40-40 38+40 53-54 29-26	цо	Avg.	86 79 82•5	11.2 25. <u>h</u> 18.3	71-6 7 <u>70-68</u> 69
ро То	VEs	35 30 21	56-6 59-2 63-2	40 36-36 30-29	20	Ave.	72 <u>79</u> 75 . 5	30 ․ և <u>25․և</u> 27 ․ 9	61-64 <u>60-60</u> 61-2
4 30	wg.	27 16	<u>61.1</u> 69.0	32.7 25-25	Ó	Åve•	<u>75</u> 87	山。0 山。0	<u>68-61</u> 66
ŧ	vg∙	28 <u>13</u> 19	66.6 <u>75.2</u> 70.3	35-33 <u>18-19</u> 25 . 8	-20	۸vg.	15 57 51	64-0 <u>50-0</u> 57-0	43-44 <u>51-53</u> 47.7
20 1	wg.	13 16 14_5	74]; <u>700</u> 722	18+18 21-22 19.7	-30	Avg.	45 36 40.5	52.0 52.0 52.0	<u>البابانا2</u> <u>37-37</u> 40
10		12 13 10	78.0 76.5 79.0	17-17 19-17 16-16	-40	Avg.	142 314 315	66.0 <u>66.0</u> 66.0	39-39 <u>35-34</u> 36.7
L	wg.	10 10	83.0 <u>83.4</u> 79.5	15-15 14-14 <u>15-15</u> 15-9	-50	Avg.	33 <u>32</u> 32 - 5	69.0 72.3 70.6	33-32 <u>32-31</u> 31-7
0	vg.	10 6 8	84 -4 85 -3 85 -0	13-13 <u>9-10</u> 11	-60		25 35 23	72.8 73.2 73-2	28-28 28-28 25-25
-10	lvg.	9 6 7.5	87.5 86.1 87.0	14–16 <u>9–10</u> 12		A	16 16 14	67 -5 78 -8 80 -2	38-39 22-22 <u>18-18</u>
-20 # 6377	k v g.	4 5 5	95-5 <u>90,5</u> 93-0	10-10 <u>8- 7</u> 9	-?0	A- 5.	 26 26	77•3 80•5	2626 <u>2727</u> -26
100	Avg.	99 97 98	0 0 0	84-70 82-80 79	-80	- n v⊵∙	19 19	80.5 88.1	20-20 5- 6
7 0	≜v g.	90 <u>102</u> 96	14.7 1.2 7.9	87-74 <u>62-85</u> 77		Avg	<u>7.5</u> 11.5	80.8 81.6	17-17 15-15 14.3
30	Avg.	80 <u>77</u> 78•5	30.4 30.6 30.5	75-66 <u>70-73</u> 71	-90	Avg.	10 _3 _6.5	90.2 93.1 91.6	$\frac{10-10}{\frac{10}{7}}$
50	Ave+	611 60 62	46.2 44.1	56-59 <u>58-63</u> 59	76	Avg.	118 136 127	8.0 2.1 5.0	81-92 <u>91-92</u> 89
JO	Avg.	57 58 57•5	45.0 51.3 48.2	53-58 <u>56-51</u> 55	60	Avg.	1):0 136 138	6.2 <u>17.6</u> 11.9	91-81 <u>89-89</u> 88
o	ÅVg.	60 72 56	48-0 40-5 44-3	67-64 <u>57-57</u> 61	10	Avg.	89 <u>90</u> 89 . 5	55.1 <u>h8.3</u> 51.7	80-82 <u>80-80</u> 80
-10	Ave.	口 15 13	60.2 62.3 61.3	<u>44</u> -48 <u>42-43</u> 44	20	Avg.	52 <u>114</u> 83	60.0 <u>h1.3</u> 50.7	58-57 <u>87-93</u> 74
-20	Ave.	38 119 113-5	65.3 56.3 60.8	117-50 <u>110-110</u> 111	o	Avg.	117 <u>67</u> 92	40.8 <u>65.3</u> 53.1	90-96 <u>71-69</u> 82
-30	Å¥6.	37 <u>32</u> 34•5	67 - 5 65-3 66-4	37-38 <u>35-33</u> 36	-20		88 55 12	62.5 73.5 72.1 79.0	85 Ցե 58 56 հե-Լե 33-38
- 1 0	Ave.	8 10 9	83_2 84_0 83_6	12-13 <u>11-11</u> 12	-30	Avg.	。 8 <u>72</u>	71.8 82.1 69.6 75.8	13-13 71-73 42

Testir Temperat F	ure,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils	Testi Tempera F	ng iture,	Charp En Ft
E	6367	4T2	91. 5			B 6368	6T2
-40		20 9 6	85.7 89.2 90.0	12-13 22-21 	0	ATP.	19 26 27
	Avg.	10	87.3	13	10	A184	
-50	≜ vg.	$\frac{7}{-\frac{7}{7}}$	87.4 <u>92.0</u> 89.7	13-12 <u>11-13</u> 12	-10	Avg.	27 28
-60		5•5 9•5	91.5 88.2 97.1	10- 8 12-13	-20	Avg.	26 21 23
		Ŀ	96.5	7- 7 7- 7	-30		21
	۸vg.	<u><u><u></u></u> <u>5</u>,5</u>	92.0 93.8	<u>8-8</u> 8.7		Avg.	25 23
B 6 36 120	0 5T2	39	36.6	43-48	-40		15 28
	Avg.	36 37•5	1.0.8 38.7	<u>13-44</u> 14		lva	19 19 14
100		35 35	43.8 bb-6	35 36	-50	V.R.	10
	Avg.	35	44.2	37		Avg.	9
90		34	78 78	39-38 38-39	-60		11
	Avg.	53 .5	邸	38 . 5		Avg.	12 11.
76		21.5	67-2	26-30	-80		8
	Avg.	20.2	68.2 68.7	25 <u>~26</u> 27		Avg.	10
60		19	66.5	24-25	76 ^I	86359	7T2
	Avg.	<u>19</u> 19	68.0 67.3	2 <u>h-21</u> 2h	10	A TTC	134
50		21	68	25-28	60		195
	Avg.	<u>19</u> 20	<u>68</u> 68	25-23 25	50	Avg.	422
40		9	76.9	13-13	70		136
	Ave -	21 15	<u>69 7</u> 73 1	<u>23-23</u> 18		۸vg.	130
30		19	75	2303	30		132
	A	11	78 78	<u>17-17</u>			98 _96
00	WAR*	10	(0 <u>.</u> 5	20		Avg	109
20		<u>_8</u>	78.0 78.0	<u>9-11</u>	20		107 76
	Avg.	9	78 . 4	13		Avg.	91.
10		7	79•9 <u>83•7</u>	12-13 10-11	10		119 26
	Avg.	7.5	81.8	12		Avg_	72
0		7	85.0 80.8	10- 9 <u>13-13</u>	0	1.44	<u>20</u>
	Avg.	8	82.9	ш	-10	R●	79
-10		5 4	87.8 92.1	8- 6 6- 6	-10		18
		6 5	87.1 87.8	7- 7 8- 7		Avg₊	17
	Avg.	3	8,85	7	-20	A	<u>ii</u>
-20		6 6	86.3	9- 6 9-10	. Lo	Avg.	,
	Avg.	5	87.9		-20	Avg.	<u>_</u>
76 B 6	368 61	2 70	0	63-56	120 B	6406 8	T 52
	Avg.	60 65	11.8 75.9	<u>54–52</u> 56		Ave.	58
60		58	25.2	52-).).	100		50
	Avg.	63 60.5	14.2 19.7	<u>52-57</u>	100	A - ~	18 19
40	-	43	31.5	1.3_30	50	u•E•	49
•	AVE-	<u>10</u> 10-5	34.1	<u>34-33</u>	90	•	36
20	- 0-	37	39_5	ير 12-12	76	πvg∙	ے در مر
	Avg.	37	43-3 11-1	33-36	γo	۸	26.0
10	3.	39	19-0	رر 24_16		₩v₿.	67 • 0
	170	32	56.0	<u>29-31</u>			
	A ▼g	52+5	52.5	32			

Testi Tempera F	ng ture,	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils
	8 6 3 6 8	5T2		
0	Avg.	19 28 <u>22</u> 23	70.0 50.0 63.0 61.0	16-18 30-31 <u>23-22</u> 23
-10	Åvg.	30 27 28 - 5	62.7 63.0 62.8	30 -29 <u>27-27</u> 28
-20	۸vg.	26 21 23+5	68.8 <u>78.3</u> 73.6	26-25 <u>19-22</u> 23
-30	۸vg.	21 25 23	73-1 72-0 72-6	20-20 24-25 22
-40	¥vë*	15 18 19 <u>14</u> 16 . 5	79•9 69•3 76•5 79•9 76•4	16-17 20-19 19-20 <u>13-12</u> 17
-50	Avg.	9 9 9	80.7 79.9 80.3	12-12 12-11 11
-60	A vg .	11 <u>12</u> 11,5	87.8 86.7 87.3	8- 7 <u>13-13</u> 10
-80	Avg.	8 <u>13</u> 10.5	90.5 <u>83.1</u> 86.8	7- 8 <u>13-13</u> 10
E	6359 7	T2		
76	۸vg∙	128 <u>134</u> 131	10.1 0 5.05	98-105 <u>91-97</u> 97
60	Avg₊	<u>135</u>	0	85-94 89-5
ĻΟ	۸vg.	136 <u>125</u> 130 . 5	15.8 <u>15.0</u> 15.4	89-89 <u>86-88</u> 88
30	Avg.	132 98 <u>96</u> 109	17.5 28.9 <u>3h.1</u> 26.8	77-96 83-97 <u>79-90</u> 87
20	Avg.	107 <u>76</u> 91 - 5	26_3 <u>39_5</u> 32_9	89-79 <u>75-73</u> 79
10	Avg.	119 <u>26</u> -72.5	28.1 69.0 18.6	81-93 <u>35-33</u> 61
0	Λvg•	<u>20</u>	<u>70</u>	<u>29-25</u> 27
-10	Avg.	18 18 16 17 <u>-</u> 5	71.6 74.8 77.9 76.8	25-26 24-24 <u>21-24</u> 24
-20	Avg.	<u>ц</u>	78.8	<u>17-17</u> 17
-և0 թ՝	А т д. 6406 рт	<u>_6</u>	<u>82.4</u>	<u>-8-10</u> 9
120	Avg.	52 58 55	25.9 <u>21.0</u> 23.2	53-61 <u>66-62</u> 60
100	Λ τ ≝•	50 <u>18</u> 19	33-3 <u>28-7</u> 31-0	52-59 <u>19-59</u> 55
90	Avg.	36 36 36	հղ.հ <u>հկ.շ</u> հ5.8	հ5–կ։ <u>հ1–հհ</u> հ3
76	Avg.	33•5 <u>26•0</u> 29•6	52.8 56.0 54.4	11-39 <u>31-14</u> 36

<u></u>	·							·		
Testir Temperat F	ure,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils	Т	Testing emperature, F	Ch	arpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
60	406-8	1 15 27 18 19	65.0 65.0 60.0 62.0	49-50 33-29 23-26 <u>27-27</u>	_	в 646- 76 Ал	4] rg.	01 70 80 75	36.6 <u>19.7</u> 27.2 34.5	61-66 <u>74-73</u> 68
50	Avg.	20 1년 18	70.9 69.0	21-21 25-22		A.	g.	59 63	<u>35 8</u> 35 1	<u>56-55</u> 59
իս	Avg∙	16	70.0	22		50		59 78 55	39•4 32•9 50•0	58-57 66-72 56-52
	A.w.e.	10 8 8	78.8 74.4 74.4 76.6	15-17 11-13 <u>11-11</u> 15		A- b0	vg∎	118 60 119	54 <u>-3</u> 44-2 55-0	<u>50-1.8</u> 57 145-60
30	470	6	61.0 <u>77.9</u>	16-14 10-11		A. C	vg∙	49 15	<u>56.0</u> 55.5 52.0	<u>50-և9</u> և7 և6–և7
20	v.e.	5.5 9.0	81.0 78.8	10-9 16-14		A.	vg∙	28 36 . 5	66.6 59.3	<u>33-32</u> 39
10	۸vg.	7 8	79.9 92.5	12 12-13		20 A*	vg.	31 <u>38</u> 34.5	71.5 <u>62.3</u> 66.9	311 - 314 <u>39-110</u> 37
	Avg.	5684 46	82.0 83.9 85.3 <u>96.8</u> 88.1	11-11 11-11 6-8 <u>1-8</u> 10		10		40 22 12 35	73 -1 77-9 77-0 <u>67-5</u>	40-39 27-27 16-17 <u>12-11</u>
0	Avg.	ն 6 5	89.7 87 <u>.2</u> 88.5	7- 7 <u>10- 9</u> 8		. ۲ ۵	¥g∙	27-2 28 <u>21</u> 26	70.0 68.6 69.3	30-30 29-29 29-5
120 ^B	6409 A v g	9516 79 <u>73</u> 76	0.8 <u>1.5</u> 2.6	76-77 <u>68-76</u> 74		-10 A	ve.	18 15 16.5	74.7 79.6 77.1	22-21 <u>18-17</u> 19
82	Avg.	53 63 58	31.9 <u>31.5</u> 33.2	55 - 58 <u>60-65</u> 59		-20		9 9 7	81.0 81.4 80.5	12-11 9- 9 13-13
70		39 31 30 39	հհ.0 հ9.1 հ8.7 հ2.3	38-35 113-114 39-112 112-115		٨	vg∙	5 11 8	83.1 83.1 82.4	13-14 <u>15-17</u> 13
60	Avg.	• 鉦•7 34	46.2 47.5	- <u>42</u> 41-37		- 40 A	vg.	10 7	94.0 94.5	<u>13-12</u> 10
	۸vg	39 <u>37</u> 36.7	55.0 59.0 53.8	38–40 <u>h3–h4</u> h1		В 64 76 Л	.10 .vg.	11T 111 117 117 111	30.0 0 15.0	93-86 <u>80-88</u> 87
50	Avg	28 28 28 28	58.9 <u>59.2</u> 59.1	3և–35 <u>3և–35</u> 3և		40 А	vg.	68 <u>147</u> 107-5	56.3 0 28.2	69-67 <u>97-90</u> 81
Ļо	۸vg	28 <u>11</u> 21	65.8 <u>63.0</u> 64.1	21-21 <u>33-33</u> 27		30 A	vg.	110 <u>115</u> 112-5	33.8 <u>33.8</u> 33.8	92-93 <u>92-93</u> 92
30	۸vg	14 24 - 19	75•7 <u>69</u> 0 72•3	19-19 <u>28-29</u> 24		20		85 20 82	Ц5-7 65-6 59-4	80-83 29-31 81 - 80
20	٨vg	23 21 22	75•3 <u>72•0</u> 73•6	27-28 <u>26-26</u> 27		ا	lvg.	<u>10h</u> 72,5	<u>17-5</u> 54-6 50-0	<u>92-89</u> 70
10	Λvg	. 11.5	77•7 <u>78•7</u> 78•2	16-16 <u>17-16</u> 16		10	vg.	105 58 <u>60</u> 81	47.5 63.5 59.9 55.2	98-87 62-61 <u>64-65</u> 77
Ô	Avg	· ⁷ / ₇	84.3 <u>79.8</u> 82.0	10- 9 <u>11-10</u> 10		0	-	12 77 70	78.8 62.6 65.4	21-19 79-77 72-61
-10	.	7655 55	87.h 83.6 86.3 82.7 85.0	9-9 8-7 9-9 8-9		-20	lvg.	30 12 56 68	80.8 78 <u>.8</u> 73.3 81.1	21-21 <u>35-36</u> 14
~ 20	Avg	5 3 4	91.9 <u>91.7</u> 91.8	6- 7 0- 0 3		1	wg.	9 17 12 7 9 50	70.0 86.6 81.0 85.8 85.8 85.8 85.8	70-70 22-22 19-18 13-13 <u>16-16</u> 25

Testing emperature, F	Charpy Impact Energy, Ft-11.	Brittle Fracture,	Lateral Expansion,
B 6410	117	Der Cent	
-30 Avg.	500.6	87.3 83.1 85.2	10-10 10-12
-40	14 7	97.5 <u>93</u> .8	7- 7 11-11
AVg. B 6405	5+5 12T	95.6	-9
150 Åvr.	44 43 43-5	33.8 <u>31.8</u> 32.8	53-50 <u>18-52</u> 50
130	27 <u>26</u>	16.5 52.5	37-36 <u>36-35</u>
120	32	49.5 hh.6	36 20-42
Avg.	28.5	48.6	<u>35-46</u> 37
Avg.	25 26	57.0 60.8	31-38 <u>31-34</u> 34
100 Avg.	35 15 16 <u>19</u> 21	56.0 61.3 69.3 <u>68.3</u> 63.7	34-31 24-22 22-24 28-28 26
90 Avg.	12.5 12.5 12.5	71.0 71.0 71.0	20-19 21-20 20
76 ≜vg.	地 8 끄	70.0 <u>75.5</u> 72.8	21-22 <u>12-11</u> 16
70 Λvg.	10 10 10	77.9 <u>79.7</u> 78.8	16-17 <u>15-15</u> 16
60	6 11 6	82.1 77.9 84.4	12-12 18-17 11-9
Λ ν ε. 50	6	81.5 75.0	<u>13</u>
Avg.	6.5	65.L 70.2	<u>10-9</u> 10
40 Avg.	5 <u>1</u> 4-5	81.9 <u>84.2</u> 83.0	9•• 9 <u>5- 6</u> 7
30 Ауе.	ม 	85.0 90.0 84.3 <u>93.9</u> 88.3	7-8 8-7 8-9 <u>5-11</u>
B 6427 1	3T		-
90 A∀g.	1.2 1.2 1.2 1.2	39.5 <u>11.9</u> 10.7	40-41 <u>42-41</u> 41
76 Avg.	38 <u>38,5</u> 38,25	19.7 50.0 19.8	39-ho <u>38-38</u> 39
60 Avg.	33 31 32	58.0 60.0 59.0	э5эц <u>зи-зз</u> зи
50 Avg.	26 <u>30</u> 28	60.8 58.4 59.6	30-28 <u>31-30</u> 30
ho Avg.	23 <u>25</u> 21	67.8 <u>68.8</u> 68.3	26-26 <u>27-26</u> 26
30 ▲vg.	27 <u>22</u> 24 .5	67.5 72.0 69.8	29 - 30 <u>24-24</u> 27
20 Ave.	25 <u>18</u> 21.5	68.6 <u>69.8</u> 69.2	26-22 <u>27-20</u> 23

Testin Temperat F	g (ure,	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
10 B	6427 1: Avg.	3T 11 19 15 15 <u>18</u> 15	83.1 83.1 86.7 82.3 83.6	18–18 20-21 16–17 <u>13–11</u> 17
0	Λ ν g.	14 12 13	86.6 <u>79.6</u> 83.1	16–16 <u>16–16</u> 16
-10	۸vg.	10 <u>11</u> 10 . 5	98.6 98.6 98.6	13-12 <u>13-13</u> 13
-20	Avg.	16 10 <u>10</u> 12	87 .5 92.5 92.9 90 .9	17-17 11-12 <u>12-11</u> 13
-30	5 Avg.	5 6 5•5	100 <u>100</u> 100	6- 6 <u>7- 7</u> 6.5
-40 5	Avg.	7 	97 . 5 100 98 . 8	9-9 2-3
76 ^{B 6}	Avg.	66 58 62	33.8 <u>31.8</u> 32.8	67-68 <u>61-60</u> 65
60	Avg.	40 35 13 <u>38</u> 39 . 5	38.1 51.0 55.3 <u>54.0</u> 19.6	15-51 12-14 50-51 <u>15-15</u> <u>16</u>
50	Ave.	цв 114 28 <u>23</u> 36	կել7 հ9_կ 61.0 <u>56_3</u> 52.9	57-53 51-60 33-32 <u>36-38</u> 45
40	Avg.	19 22 <u>19</u> 20	64.0 65.2 70.0 66.4	27-29 31-32 <u>28-27</u> 29
30	Avg.	19 22 20,5	70 63 66.7	26-28 <u>32-32</u> 29
50	A∀g.	과 끄 끄	72_6 <u>72_7</u> 72_7	22-22 21-20 21
10	Avg.	10 11 10.5	82.5 <u>75.3</u> 78.9	16– <u>11</u> <u>18–17</u> 16
0	Avg.	6 9 7.5	79.9 83.3 81.6	11- <u>11</u> 16-16 11
-10	≜vg.	6 8 5 5 6 5	81.0 86.8 88.8 81.0 95.0 98.8 88.9	10-11 11-13 10-10 12-13 9- 9 <u>8- 9</u> 11
-20	Avg.	<u>ь</u>	98.8 98.8 98.8	8- 9 7- 8

V-NOTCH CHARPY TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1900 F AND COOLED IN AIR

Lateral Expansion, mils

71-72 <u>70-65</u> 70

55-54 <u>71-69</u> 62

25-26 <u>32-30</u> 28

37-35 <u>28-28</u> 32

1,4-1,3 21-21 32-31 19-20 29

25-25 22-20 13-14 <u>32-32</u> 23

31-30 12-13 18-18 <u>12-12</u> 18

12-12 17+18 <u>13-12</u> <u>14</u>

9-9 12-12 26-27 <u>9-9</u> 14

9-10 _9-11 _10

-

Testing Temperature, F	Charpy Impact Energy, Ft-1b.	Brittle Fracture, ner cent	Lateral Expansion, milo	Testing Temperatu: F	re,	Charpy Impact Energy, Ft-1b	Brittle Fracture, per cent
B 6327 81	2519A 95 89 • 92	0 <u>16.5</u> 8.2	82-71 70-77 76	120 ^B	6409 Avg.	9519 <u>4</u> 73 <u>67</u> 70	14.7 22.6 18.6
60 Ave	80 80 80	32-L 25-3 28-8	71-75 71-77 73	81	∆vg.	53 43 48	15.8 59.0 52.4
40	72 82	39-9 <u>34-4</u> 37-1	85-69 68-74	67	Avg.	25 19 22	68.8 68.7 68.8
30 Ave	75 <u>48</u>	39.3 <u>40.9</u>	69-70 <u>52-53</u> 61	66	۸vg.	32 23 27•5	65.9 69.5 67.7
20	67 24 53 48	148.9 77.2 70.3 60.7	65-63 28-28 55-52 55 <u>-55</u>	60	Avg.	LO 15 26 11 24	67.5 64.0 66.0 69.0 66.6
10	. 43 13 49 48	63.6 62.0 55.5 53.2	52-50 21-20 14-46 49-49	50	۸vg.	8 28 18 15 17+2	72.3 70.8 66.8 71.7 70.4
∆vg 0	• <u>37</u> •2	57•7 70•2	27-26	40		24 8 11	75•2 77•1 75•9
A.vg.	16 <u>36</u> 34.2	72.7 59.2 64.1	19-22 <u>40-60</u> 37	30	Avg.	-13.2 7	80.7 77.2 78.8
-10 Avg	17 22 19.5	76.2 67.1 71.6	22-21 26-25 24		۸vg.	12 	84.9 81.0 81.6
20	8 9 11 7	84-3 84-8 80-1 84-3	12–10 14+16 16–16 12-11	20	Awa	25	80.5 72.5 81.9 90.0
&v <u>e</u> . −30	- 8. 8 7 9	83.1 86.9 86.2	13 12-10 10-11	10	Avg.	6 6	94.0 94.0
Avg.	<u>-</u> 5-	86.5	12		Avg.	0	<u>у</u> п=0

emperatu F	re,	harpy Impact Energy, Ft-lb.	Brittle Fracture per cent	Lateral Expansion, mils	Temperatur F	с: в,	harpy Impact Energy, Ft-1b.	Brittle Fracture, per cent
. ве	93 <u>2</u> 2	-2			B 63	67 4		
120	۸vg.	60.0 18.0 54.0	30+0 <u>37+0</u> 33+5	65-64 <u>55-58</u> 60,5	-lto	Avg.	8.0 5.0, 6.5	80.6 <u>85.6</u> 83.1
90	Avg.	12.0 51.0 16.5	54-4 <u>43-5</u> 48-9	119-118 <u>511-56</u> 51-8	⊷ 50	Avg.	9•5 <u>11.5</u> 10•5	86.6 89.2 87.9
60	4.444	10.0 <u>36.0</u>	55.6 58.2	45-46 40-41	-60	-	6_5 10.5 8.0	90.2 89.0
	A'g.	14.5 27.0	67.0 68.1	21-21 31-32	_	Åvg.	<u>6.5</u> 7.9	88.4 89.2
Å⊽g	•	20.7 31.0	67.5 60.7	<u>26.</u> 3 36-36	-60	≜vg.	4.0 <u>3.0</u> 3.5	96.0 <u>91.7</u> 95.3
1	Avg∙	<u>33.5</u> 32.2	68.2 64.5	<u>36-37</u> 36 -3	210 ^{B 63}	360 5	42.0 38.5	35.0 29.6
	Avr.	27.0 6.0 9.5 <u>8.0</u> 13.1	71.1 75.2 <u>76.5</u> 73.7	29-29 14-14 16-15 <u>13-11</u> 17-6	180	Avg.	40.2 31.0 <u>33.5</u>	32•3 39•0 40•6
	Awg.	7.0 22.5 10.7	76.5 82.7	11-11 26-26	160	A	37.0 28.5	35.1 56.2
	Ave.	5.0	83.6 82.1 85.8	8- 7 8- 9	150		30.0 25.5	54.2 52 <u>-5</u>
		22.5 6.0	84.8 84.4	26-27 9-10	<u>т</u> го	лтg.	21•1 30•0 23•0	53.3 52.1 66.2
	٨vg.	<u>5.5</u> 9.5	90.6 86.1	<u>9-8</u> 12.9	130	£¥g.	20.5 24.0 <u>26.5</u>	59.1 58_6 <u>71.1</u>
A	vg.	<u>6.0</u> 5.2	90.4 90.4 91.0	8- 6 7.3	120	Avg.	25.2 20.0 22.5	60-2 66-2
	Avg.	1.5 5.7	89.0 89.9	9-8 5-6 ?	011	Avg.	21.2 19.0 15-0	63.2 67.2
	A v g.	6.0 3.0	92.7 92.7 94.0	<u></u>	100	Åvg.	16.5	68.6 73-0
ве	Avg. 5367 4	<u>3.5</u> 3.2	93.1 93.5	<u>5- h</u> fr		Ave.	21.0 16.7	<u>66.0</u> 69.5
,	۸vg.	127.5 127.5 125.0	0	<u>94-90</u> 90.8	90	≜ vg+	10.5 <u>12.0</u> 11.2	72_0 <u>76_7</u> 74_3
	٨vg.	114.0 <u>85.0</u> 99-5	24.9 <u>41.5</u> 33-2	99-75 <u>79-77</u> 82 . 5	60	Avg.	7-5 <u>10-0</u> 8-7	85.5 <u>81.5</u> 83.5
\$		117.5 117.5 109.0 81.5	35-2 19-5 31-9 32-0	50 -5 0 96-79 93-80 <u>79-70</u>	30	٨ vg.	6.0 <u>6.0</u> 6.0	90_2 <u>100_0</u> 95_1
	A vg .	87.1 117.5 90.0	29.6 11.2 <u>38.9</u>	74.6 81-82 80-84	0	▲▼g .	3.5 <u>3.0</u> 3-2	100+0 <u>97-5</u> 98-7
	Атg.	103.7 77.0 <u>95.0</u>	25.0 50.6 12.9	51_8 76-73 <u>8h-8h</u>	150 8 63	че. е	50.0 <u>53.5</u> 51.7	25-2 20-2 22-7
	Avg.	86.0 101.0 _80.0	46•7 14.1 <u>55-1</u>	79+3 87-86 <u>84+76</u>	120	٨ T g.	34.5 <u>31.5</u> 33.0	36.7 53.0 hi.8
	Ave.	90.5 18.0 18.0	49 . 5 <u>74.7</u> 74.7	83.3 <u>24-25</u> 24.5	90		27.0 26.0 30.0	13-9 50-0 57-0
		42.0 8.5 8.0	68.1 79.6 85.0	19-19 12-12 15-17	80	A vg .	<u>36.0</u> 32.5 25.0	<u>45-0</u> 19-0 61-2
	۸vg.	10.0 17.0	81.9 78.6	16-16 16		Avg.	28.0 26.5	61.6 61.1

• --

V-NOTCH CHARPY TEST DATA FOR LABORATORY STEELS HEATED FOR ONE HOUR AT 1900 F AND FURNACE COOLED

Lateral Expansion, mils

> 13**-1**2 <u>6-6</u> 9**-**3

13-13 <u>14-14</u> 13**-**5

10-10 11-13 11-21 9-9 10-9 <u>5-6</u> <u>1-3</u> <u>5-6</u> <u>1-3</u> <u>15-8</u> <u>10-9</u> <u>15-8</u> <u>15-8</u> <u>15-8</u> <u>15-8</u> <u>15-8</u> <u>10-9</u> <u>15-8</u> <u>15-8</u> <u>10-9</u> <u>15-8</u> <u>15-8</u> <u>10-9</u> <u>15-8</u> <u>15-8</u> <u>15-8</u> <u>15-8</u> <u>10-9</u> <u>15-8</u> <u>15-8</u> <u>10-9</u> <u>1</u>

36-36 <u>30-30</u> 33

31-32 <u>32-33</u> 32

29-29 <u>28-27</u> 28-3

26-26 <u>21-21</u> 23-5

 $\begin{array}{c} 20-20\\ 27-28\\ 23-8\\ 143-19\\ 17-3\\ 10-116\\ 15-16\\ 13\\ 3-9\\ 9-7\\ 8-3\\ 3-8\\ 52-51\\ 40\\ 552-51\\ 35-36\\ 35-36\\ 35-37\\ 33-8\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 35-37\\ 33-8\\ 35-37\\ 35-3$

28-28 <u>30-31</u> 29-3

-	Temperature, F	Charpy Impact Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils	Temperature, F
-	- B 6368 70	6 23.0 9.5 12.5 25.0	59.6 69.6 73.6 57.5	26-25 15-14 <u>17-17</u>	В 7064 150 В 7064 Ауд.
	60	28.5 10.0 8.0 27.0	64-5 77-5 80-1 67-5	26-26 14-16 10-11 28-28	120 Avg.
	50	9.0 8.0 8.0 7.0 7.0	69•2 68•0 76•5 77 <u>•0</u> 72•7	12-12 11-11 11-12 11-9 11-1	90 Avg.
L	цо	20.0 22.0 5.5 <u>5.5</u>	78.0 74.4 77.0 83.1 78.1	20-21 23-23 9- 8 <u>8- 8</u> 15	80 Arg.
	~ ۵۵ ۸	6.0 <u>7.0</u> vg. 6.5	62.1 <u>80.7</u> 81.4	8- 8 <u>10-11</u> 9-3	70 Avg.
	0 A	5.0 <u>4.0</u>	89 .0 <u>92.1</u> 90 . 5	6- 7 5- 5 5-8	60
	120 ^{B 638}	59 7 83.5 <u>85.0</u> Arg. 84.2	27.5 25.1 26.3	83-81 <u>81-87</u> 83.8	50
	110 A	91.5 <u>68.0</u> 19.7	26.7 <u>16.1</u> 36.1	85-89 <u>73-74</u> 80,3	Avg. ko
	100	36_5 <u>45_0</u> wg. 10.7	57.7 36.0 45.8	117-46 <u>52-53</u> 19-3	A √ g. 30
	90	73.0 73.0 31.5 56.0 58.4	54.6 42.7 55.1 <u>56.2</u> 52.1	78–77 77–75 10–11 <u>63–66</u> 61,6	۵۷ ۵ ۸۳ <u>۳</u> , ۹
	80 J	27 . 5 <u>32.0</u> vg. 29.7	58.5 54.7 56.6	38-39 <u>37-37</u> 37 . 8	90 9 0 4 1 0 A 4
	70	22.5 22.5 vg. 22.5	59-5 66-2 62-0	31-32 31-30 31.0	00 • •
	60 J	22.5 <u>17.5</u> Vyg. 20.0	72.2 <u>73.5</u> 72.8	$\frac{29-30}{26-27}$	70
	10 10	17.0 17.0 16.5	70.1 70.1 70.1	<u>26-25</u> 24.8 21-21	74 06
	30	11.0 Avg. 12.7 12.0	<u>71h</u> 72.2 71h	<u>17-17</u> 19 18-19	۸۷ 50
	15	<u>11.0</u> Nvg. 11.5	79+1 76-7 83-6	<u>17-17</u> 17.8 12-11	ца Да
	0	Avg. 8.0 7.5 7.5	60.5 62.0 79.9 87.9	<u>12-12</u> 11-8 12-12 12-11	4 v 30
	ن	Avg. 7.5	80.9	11.8	τ Λ

				<u>+</u>
Temperature, F	¢1	Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils
- B 7064 150	9-	2 hh.o	32.6	51-52
-, 	g.	65.0 54.5	<u>19_2</u> 25.9	<u>66-68</u> 59•3
120		43.0	43-7	50-50
		115-5 hl:-0	43•7 hh.6	55-49 50-50
		<u>L8 5</u>	hh h	<u>52-53</u>
Av	E •	45.2	114 • 1	51.1
90		36.0	62_6 65_1	42-43
		45.5	60.7	52-52
Av	E.	37.0 36.4	46.7 58.8	<u>հե-հ6</u> և 3
8o.	-	10.0	66.0	2709
00		36.5	61.6	42-43
		32.0 32.0	67.5 61.9	38~39 38-38
År,	g.	26.9	64.3	36.6
70		19.5	71.5	25-26
۵		23.0 21.2	76.5	28-27
40 AV	•		74+0	-1 -1
60		9.0 26.5	74.6 61.5	14-14 32-32
		19.0	73.1	24-24
۸v	g.	16.1	70.5	15-15 21-3
50		19.5	72-2	25-21
		17.0	73.1	22-23
Av	g.	15.8	75.1	21_2
ho		S . 0	77,5	12-70
- ···	_	7.0	80.2	<u>n-n</u>
Av	š•	1.2	70 . 0	ш
30		7.0 6.0	78.7 81.0	9- 8 9-10
۸v	5•	6.5	79 8	- 9
0		μ . 0	83.9	5-6
Aw	z.	- <u>5.0</u>	89+1- 86-6	<u>7-8</u> 6-5
B 6410	วับ	1 91.0	39.7	
74		95.0	37.0	86-91
A	vg.	93.0	34.8	86.5
80		60.5	45-0	66-66
		90.0	31.1	84-64
A	ч г .	56.8	3974	70.3
70		81.0	46.1	77-82
		29.0	55.1	41-42
	TP-	60.0 19.0	42.0 48.6	<u>64-65</u>
40 A	•		50.0	CD CD
60		60.0	59.0 49.9	50-50 64-67
A CONTRACT	vg.	50.5	54-4	61.8
50		19.5	63.0	26-25
l.	vr.	13.0 16.2	68.2 65.6	$\frac{17-19}{21.8}$
).c		17.4	70_0	17_18
40		30.0	73.1	35-36
		21.0 11.5	75.6 74.7	27-27 17-15
A	vg.	18.5	73.3	24
30		12.5	78.7	17-19
,	172.	10.5	75+2	15-16 16.8
1 05	~*6*		-)	
20		7.5 10.5	81.4 78.7	11-10 16-16
1	lvg.	9.0	80.0	13+3
10		7-0	81.0	10-30 ·
		22.0 5.0	74-7 84.0	29-29 8- 7
	w -	6.0 10-0	86.9 81.6	<u>-6-7</u> 13-3
1	- 6			

Temperature, F	Charpy Impact Energy, Ft-1b.	Brittle Fracture, per cent	Lateral Expansion, mils
B 6410 0 ▲ve	11 7.0 7.5 7.2	81_4 85_5 83_4	9-11 12-10 10-5
-20 Ave	3.5 <u>3.5</u> 3.5	87.2 86.5 87.8	<u>4-5</u> <u>4-3</u>
8 6405 210 ▲γε	12 33.5 <u>34.0</u> 33.7	40.5 40.5 42.7	43-43 43-43 42-8
180 Ave	25.5 26.0 25.7	54-4 52-7 53-5	94-33 <u>35-36</u> 34•5
170 Ave	27.5 22.5 3. 25.0	56.0 59.5 57.7	37-38 <u>33-34</u> 35•5
160 Avg	21.5 13.5 17.5	65.6 70.2 67.9	31-31 19-21 25-5
150 Ave	15.0 17.5 16.2	62 .1 68 . 4 65 . 2	23-23 26-28 25
1140 ¥74	15.0 16.5 15.7	71.1 62.0 66.5	21-24 26-28 25-3
130 Ave	15.0 12.5 13.7	69-4 70-0 59-7	23-26 20-19 22
120 Å¥g	13.5 12.0 12.7	70.1 76.9 73.5	19-20 19-19 19-3
110 A ve	9.0 8.0 3.5	73.9 <u>75.9</u> 74.9	15-15 13-14 14-3
100 Ave	8.0 9.5 8.7	76.0 75.0 75.5	11-13 16-15 13-8
90 A Ve	6.0 <u>7.5</u> 3. 6.7	82.5 78.5 80.5	10-11 <u>11-12</u> 11
60 ≜⊽£	3.5 <u>3.5</u> 3.5	86.0 87.1 86.5	5- 5 5- 6 5-3
30 ≜ √g	3.0 2.5 2.7	90.6 91.9 91.2	4-2 4-3 3-3
0 <u>Ave</u>	2.5 2.5 2.5	95-5 95-5 95-5	3- 2 <u>4- 3</u> 3
B 6361 180 Avg	<u>38.0</u> 38.0	41.8 41.8	<u>42-41</u> 41.5
150 Avg	28.5 <u>34.0</u> 31.2	55.7 54.6 55.1	3434 40-39 36-8
120 Avg	15.0 28.0 24.0 25.0 25.0	54.7 63.0 61.5 66.0 61.3	22-23 32-29 33-27 28-28 27.8
110 A vg	29.0 22.0 25.5	62.0 77.0 69.5	31-32 26-26 28-8
100	24.0 26.0	62.3 68.1	28-27 30-29

Temperature F	Charpy Impact , Energy, Ft-lb.	Brittle Fracture, per cent	Lateral Expansion, mils
B 63	61 13		
90 ~	23.0	66.7	25-26
	12.0	77-3	18-18
	211-5	71.5	28-28
	AVE. 20.0	71.9	22-23
		,	C. (
80	20.0	81.6	24-23
	18.5	77.9	22-23
	17.C	17-1	و2
70	12.0	78.7	16-16
	18.5	82.7	18-18
	Avg. 15.2	80.7	17
60	6.C	83.1	9-8
	17.0	87.6	19-19
	17.0	81.3	21-21
	4w, <u>14.5</u>	10 . L	<u>17-17</u>
	1.6. 1.0.	02.0)	10.4
45	6.5	88.1	9–30
	7.0	86.3	<u>10- 9</u>
	TAR O'L	87.2	9.5
30	6.0	88.1	9- 8
	6.5	89.4	9-20
	Avg. 0.2	88.7	_ <u>9</u> _
Ó	3.5	93.3	۲_).
•	7.0	93.1	3-3
	Avg. 5.2	93.1	4
B 636	1 14		
150	72.0	22.6	76-77
	10.0	20.5	79-80
	T.E. 1400	2	10
120	53.0	31.6	62-63
	41.0	36.0	50-52
	TAR* 11*0	22-0	50±0
310	34+5	38.4	<u>46-47</u>
	39.0	40.6	48-52
	Avg. 36-7	39-5	48.3
100	39.5	45.6	50-50
	30.0	52.5	4o-41
	Avg. 34-7	49.0	45.3
90	26.5	55.2	37_30
	24.0	60.9	35-35
	Avg. 25.2	58.0	36.5
80	17.0	66 6	06.06
00	23.5	63.7	33-25
	Avg. 20.2	65.1	30
70		<i>(</i> 0 •	
70	16-0	70 2	26-27
	Avg. 17.0	69.2	21-22
			-
60	15.5	72.1	23-23
	Avr. 12+2	70-0	19-20
	- 6		
50	12.5	71.1	20-19
	Apr. 12.0	00.0 77 8	18-19
		00+0	72
40	10.0	70.0	16-15
	10.0	73.0	<u>15-16</u>
	¥*R* 10*0	(1-5	15-5
30	8.0	80.7	13 -14
-	8.5	78.6	13-13
	Avg. 8.2	79.6	13.3
p	<u>}</u> ,_≍	87-1	7_ 6
-	6.0	87.3	9-9
	4 vg. <u>5</u> .2	67.2	7.8

TABLE	A-10

DROP-WEIGHT TEST DATA FOR NATIONAL BUREAU OF STANDARDS COMMERCIAL GRADE CLASS C STEEL. NBS PLATE 250

					Impact	
¢	Specimen	Specimen	Temperature,	Complete	Energy,	NDT,
specimen	512e, 11.	CONDICION		Fracture	rt- <u>1</u> 0.	F
250-AR2*	3-1/2 x 14 x 1-1	/4 As received	իօ	No	650	30
-AR3	Ditto	Ditto	40	Ditto	1300	-
AR7	*		40	It	1300	
ARS	n	**	40	n	1300	
ARL	*	#	30	n	1300	
AR5	Π	1	30	Yes	1300	
AR6	R	*	30	No	1300	
ARL	n 		20	Yes	1300	
ARY	*	a _	20	Ditto	1300	
ARIO	a,	п	20	n n	1300	
250 - E	2 x 5 x 5/8	As machined	20	No	150	0
F	Ditto	Ditto	20	Ditto	150	
G		Ħ	20	tt	150	
В	N		10	17	150	
С		π	10	n	150	
D	R.		10	H	150	
A	đ	n	0	Yes	150	
H	7		0	Yes	150	
J	*	11	0	No	150	
250-2	2 x 5 x 5/8	As hot rolled at 1850 F	0	No	150	-10
հ	Ditto	Ditto	0	Ditto	150	
5		Ħ	Ō	#	150	
6		Tr	0	20	150	
3		11	-10	Tes	150	
7	7		-10	Ditto	150	
8	Tİ.	n	-10	n	150	
1	11	π	-20	म	150	
9	R	n	-20	n	150	
10	n	n	-20	12	150	
250-11	2 x 5 x 5/8	Normalized from 1600 F	-30	No	150	- 50
12	Ditto	Ditto	<u>-4</u> 0	Ditto	150	
18	11	13	-40	te	150	
19	tt	*	- <u>h</u> o	ħ	150	
13	21	tt.	-50	H	150	
16	*		-50	Yes	150	
17		1	-50	No	150	
15	11	67 11	+60	Yes	150	
20		"	-60	les	150	
111	-	n	-70	ĭes	150	
250-21	2 x 5 x 5/8	Heated one hour at 1600 F, furnace cooled to 800 F	20	No	150	-40 -40
22	Ditto	Ditto	0	Ditto	150	
22	11	 n	-20	12	150	
25	17	17	-30	TÎ	150	
26	19	n	-30	11	150	
27	π	Π	-30	n	150	
21	n	Π	-40	ĭes	150	
28	*	*	-40	Dit to	150	
20	रां	*	-40		150	
L)					-	

* Did not mark anvil.

Impact NDT, Specimen Specimen Temperature, Complete Energy Condition F Fracture Specimen Size, in. Ft-16. F 296**--**B* 600 3-1/2 x 114 x 1-1/4 As received No 20 30 C* Ditto Ditto 30 Ditto 720 n tt J 30 n 1300 n tt 11 20 D 1300 ĭes tt n H×× 20 1300 11 12 10 720 А Yes tr F 12 10 No 1300 n n G₩₽₩ 10 Yes 1300 Ē n n 1300 0 Yes 2 x 5 x 5/8 296-C 0 20 150 As machined No D Ditto Ditto 150 10 Ditto Ε 11 R 10 tt 150 tt n H F 10 150 В tt n 0 Yeş 150

0

-10

-10

40

10

0

0

0

-10

-10

-10

-20

-20

-20

-20

-30

-30

→30

-40

<u>-4</u>0

-40

Ditto

12

Ħ

No

No

No

Yes

No

Yès

Ditto

U!

п

Νo

No

No

Yes

No

Yes

Ditto

11

tt

150

150

150

1300

1300

1300

1300

1300

1300

1300

1300

1300

150

150

150

150

150

150

150

150

150

0

-30

n

R

IŤ

Heated one hour at

1600 F, furnace cooled to 800 F

Ditto

13

tt

**

tt

18

n

11

Heated one hour at

1600 F, furnace cooled to 800 F

Ditto

17

**

LS.

...

12

12

12

DROP-WEIGHT TEST DATA FOR NATIONAL BUREAU OF STANDARDS COMMERCIAL GRADE CLASS C STEEL. NBS PLATE 296

* Did not mark anvil.

G

A

Η

BN

DN

EN

FΝ

GN

HN

JN

CN

DN

EN

CN

FN

GN

AN

HN

JN

296-BN

296-AN

n

12

Ħ

Ditto

51

Ħ

Ħ

te

11

tt

n

 $2 \times 5 \times 5/8$

Ditto

11

10

n

Ż

12

n

n

 $3-1/2 \times 11_4 \times 1-1/1_4$

** Fractured 5/8 in. from weld bead notch.

*** Fractured 1 in. from weld bead notch.

Specimen	Specimen Size, in.	Specimen Condition	Temperature, F	Complete Fracture	Impact Energy, Ft-lb.	NDT, F
207_4	2 * 5 * 5/8	As hot rolled at 1850 F	0	No	150	-10
27(=#		Ditto	0	Ditto	150	-10
.1	51000	1	õ	12 10 00	150	
U G	n	*	_10	łt	150	
а. я		ıt	10	n	160	
r		h	-10	Vec	150	
У		π	-10	No	150	
K.			-10	NO	150	
<u>ь</u>			-10	les Ditte	150	
C			-20	DICCO	150	
n	~		-20		150	
E	н	17	⊷ 20	u	150	
297 - NA	2 x 5 x 5/8	1-1/4" plate heated one hour at 1600 F, furnace cooled to 800 F, then machined	0	No	150	- 30
NB	Ditto	Ditto	-10	Ditto	150	
NC	N,	n	 20	12	150	
NH	11	n	÷20	n	150	
NJ	n	rt .	~ 20	11	150	
ND	n	n	+30	11	150	
NF	n		-30	Yes	150	
NG	*	n	-30	No	150	
NK	n	н	-30	Yes	150	
NE	n	π	<u>-</u> 40	Ditto	150	
NL	71	n	-1:0	n	150	
NM	n	T	-20	M.	150	

DROP-WEIGHT TEST DATA FOR PROJECT SR-139 COMMERCIAL GRADE CLASS C STEEL. NBS PLATE 297

١

-

)

TABLE A-13

STEELS^A USED FOR COMPARISON OF PROJECT SR-151 DROP-WEIGHT AND CHARPY V-NOTCH DATA WITH THAT OF OTHER INVESTIGATORS

		Ferrite					Tran	sition T	emperatur	e, F
		ASTM		~					Charpy	y V-15
±. •	Grain		Compe	sition,	•	Drop	leight	-11	-10-1	
Steel	Refer-	Size	~	per	Cent Ci		Experi-	Lated	Experi-	Lated
Identification	ence	NUNDET		I	- 51	<u></u>	mencar	Taren	Tentar	
		Commercia	1 Stee]	s, Tes	ted at	5/8 " Th	ickness			
5	1, 5		0,31	0.49	0.10		10	32		
6	1, 5		0.25	0.36	0.04		20	28		
22	1		0,19	0,38	0,01		0	17		
23	1		0.25	0.49	0.01		0	26		
		Commercia	1 Steel	.s, Tes	te <u>d</u> at	3/4" Th	ickness			
13	1,5		0.29	0.42	0.07		30	33		
14	1,5		0,23	0.49	0.05		40	20		
27	1		0.18	0.33	0.02		20	16		· ••• `
28	1		0.25	0.50	0,05		20	24		
201	17	7.7	0,21	0.74	0.051	⊲0.01	5	16	21	50
226	Ditto	7.6	0,22	0.80	0.053	<0,01	0	18	18	41
227		7.4	0,20	0.79	0,052	0,01	0	16	29	35
212	R	7.7	0,19	0.81	0.047	<0.01	0	11	26	30
279		7.8	0,18	0.99	0.034	0,01	0	7	13	11
284	π	7.5	0,16	1.09	0.061	0,02	-10	-3	6	-13
233	*	7.8	0,15	0,93	0.049	0,02	-10	-4	6	-1
236	•	8.1	0.20	1,00	0.074	0.01	~10	2	12	16
241		8.0	0,19	0.96	0.062	0.02	0	0	8	5
271		7.8	0.18	1,03	0.074	<0.01	0	0	-4	8
275	-	7.9	0.20	0.94	0.093	⊲0.01	0	3	25	16

TABLE A-13 (Continued)

		Ferrite					Trans	ition Te	mperature	, F
		ASTM							Charpy	V-15
5+++1	Defer	Grain		Compos	ition,		Drop We	light	Ft-	<u>16.</u>
Identification	ence	Number 8	<u> </u>	Mn	SI	AT	Experi-	Lated	Experi-	Calcu-
			<u> </u>	Mar			Meile#1	Taceu	Hencal	14104
		Laborator	y Steel	s , Tes	ted at	3/4* ті	hickness			
1-B	16	7.5	0.18	1.28	0.043		-20	4	-249	1
2-B	16	7.5	0,16	1.04	0.017		10	8	-8°	13
		Commercia	al Stee	ls, Te	sted at	: 1" Th	ickness			
	• •		0.00	0.40	0.04	0.007		16	<i>c</i> 0	
B	11		0.14	0.51	0.04	0.007	30	15	68	00
č	11		0.32	0.71	0.24	0.005	50	-0	20	29
17	1.5		0.23	0.41	0.04	0.000	40	23		32
18	1, 5		0.19	0.48	0.09		40	11		
33	ĩ		0.19	0.49	0-05		20	13		
34	ĩ		0.24	0.45	0.05		20	23		
A-7RW	9		0.20	0.75			5	13		
A-7W	Ditto		0.27	0.60			35	29		
A-201RB			0.12	0.48	0.18		-5	-8		
A-201Y	*		0.11	0.51	0.20		10	-11		
A-212KC	*		0.25	0.66	0.19		15	3		
A-212T			0.32	0.56	0.26		35	23		
A-285RG	Ħ		0.09	0.49			5	-3		
P	15	6.7	0.18	0.54	0.04	0.005	32	25	61	60
Q	15	6.8	0,15	1.07	0.02	0.001	14	13	3	10
a	15	8.1	0.12	1.43	0-18	0-070	-22	-45	-76	-64
¢	15	8.4	0.15	1.05	0.17	0.006	-13	-21	-50	-26
Ť	15	8.7	0.15	1.44	0.28	0.080	-90	-51	-89	-61
-	-	Laborator	v Steel	s. Tes	ted at	1 [#] Thio	cknesa			
1-D	16	5.9	0.16	1,25	0,044	0.006	0	17	1-	22
2-A	.16	6.4	0.16	1,10	0.020	0.003	-10	18	-10	27
2=0	10	5.8	0.13	0,99	0.015	0.004	10	21	Tc	30
		Conmercia	1 Steel	s, Tes	ted at	1-1/4*	Thickness			
2	3		0.23	0.45	0.10		50	18		
80	Ditto		0,14	0.71	0,22		10	-11		
81	*		0.16	0.68	0.22		30	-7	<u></u>	
85			0.16	0,79	0.32		-20	-15		
86	Ħ		0.15	0,71	0.27		-10	-12		-
87	**		0.15	0.74	0.24		10	-11		
242	17	7.6	0.16	0.73	0,23	0.03	20	-14	-1	-6
247	Ditto	7.6	0,14	0.66	0,21	0.03	20	-17	-13	11
214	π	7.1	0.15	0.73	0,20	0.045	-15	-14	-16	-2
219	-	6.8	0.16	0.69	0.21	0_047	-5	-9	-26	7
224		6.7	0.13	0,71	0,21	0,052	20	-14	-2	8
252		7.2	0.15	0.74	0,25	0.02	-5	-12	-11	-3
258	-	7.5	0.16	0.84	0.29	0.04	5	-1/	-/	-15
203		1.1	0.16	0.73	0.30	0.02	-15	-19	-37	-10
243		7 2	0.16	0.72	0.21	0.03	15	_10	+5	2
290	-	/ + 2	0+10	U+13	V=21	0.05 1 1/4# ·	1.2 Thistore	-10	*2	Ŧ
		Laboratory	Steels	i, lest	ed at]	L=1/4"	INICENSS			
54	3		0,19	1.33	0.03		20	-3		
1-C	16	6.7	0.17	1.28	0.041	0.006	0	10	-12	-2
2-C	16	6.6	0,16	1.04	0.016	0_004	10	18	-8	26
			-							

* Commercial and laboratory steels other than those tested under Project SR-151. All steels were tested as 3-1/2 in. x 14 in. specimens except A, B, and C which were tested as 3-1/2in. x 18 in. samples.

^a Dashes indicate ferrite grain size numbers were not given in the references cited. In these cases the transition temperatures were calculated with the following formulas:

NDT, F = 0 + 135 (%C) - 20 (%Mn)-60 (%S1)-180 (%Al) V₁₅, F = 80 + 180 (%C)-85 (%Mn)-200 (%S1)-800 (%Al) Where grain size data was available the transition temperatures were calculated with the formulas given in Table 6 of the report.

^cAverage for five tests made by four different laboratories.

⁹ Specimens were cut from plates 1-3/4 in. thick. All other specimens were tested in the full plate thickness.

^EAverage for four tests made by three different laboratories.

APPENDIX B

STATISTICAL ANALYSIS

The more important results of the multiple regression analysis are given in Tables B-1 through B-3. For the benefit of readers who are unfamiliar with this type of analysis, the terminology will be discussed briefly.

Multiple Regression Analysis

In its simplest form, regression analysis is a statistical method for using the value of one variable to predict the value of another. This is done by means of a mathematical equation such as

$$y = a + bx$$
,
 $y = a + bx + cx^2$,
etc.,

which is computed from values of (x, y) obtained experimentally. Geometrically, the method amounts to finding the line or curve which best fits the data points.

Multiple regression analysis is an extension of this method for the situation in which the relationship of more than two variables is needed. The mathematical equation has a form such as

$$y = a + bx_1 + cx_2 + dx_2^2 + \dots,$$

which is computed from values of $(y, x_1, x_2, x_3, ...)$ obtained experimentally. The relationship it expresses may be either linear or curvilinear. Geometrically, the method consists of finding the plane or curved surface in three-dimensional space (in the case of three variables), or the hyperplane or hypersurface in a space of four or more dimensions (in the case of four or more variables), which best fits the data points.

In the present case, the equations that were fitted to the data have the \cdot form

$$y = a + bx_1 + cx_2 + dx_3 + ex_3^2 + fx_2x_3 + gx_4 + hx_4^2 + ix_3x_4 + jx_5,$$

where the independent variables are:

x₁ = carbon (per cent) x₂ = manganese (per cent) x₃ = silicon (per cent) x₄ = aluminum (per cent) x₅ = ASTM Ferrite grain size number

and y represents successively the following eight dependent variables, each of which is considered separately with the independent variables listed above:

Drop weight, NDT

Charpy V-notch, 15 ft-lb

11	11	25 ft-lb
11	н	50% maximum energy
u	11	15% shear fracture
11	11	30% shear fracture
н	п	50% shear fracture
II.	п	lateral expansion at 15 mils

The terms in x_3^2 and x_4^2 were included in the regression equations because preliminary examination of the data and previous experience suggested that Si and Al both have a curvilinear effect on the dependent variables. The terms in $x_2 x_3$ and $x_3 x_4$ were included because examination and experience suggested that Si interacts with Mn and also with Al to produce changes in the dependent variables which cannot be detected by measuring the separate effects of these additives.

Conclusions

Tables B-1 and B-2 lead to the following general conclusions:

- 1) Increasing C definitely causes an increase in all eight dependent variables.
- 2) Increasing Mn causes a decrease in all eight dependent variables.
- 3) Increasing Si causes a decrease in the dependent variables, which is fairly marked for most of these variables.
- 4) The curvilinear effect of Si is too weak to be established by the present data.

- 5) Only in its effect on 50% maximum energy does Si interact appreciably with Mn.
- 6) There is weak evidence that increasing Al causes a decrease in the dependent variables.
- 7) The analysis fails to show any appreciable curvilinear effect of Al or any appreciable interaction of Al with Si.
- 8) The analysis provides very strong evidence that increases in ASTM grain size number mean corresponding decreases in the dependent variable.

TABLE B-1

REGRESSION COEFFICIENTS AND STANDARD DEVIATION OF REGRESSION COEFFICIENTS

-	Carbo	<u>n_</u>	Mangar	<u>lese</u>	Sihco	<u>n</u>	<u>(S</u> i) [*]	<u>د</u>	<u>_Si</u> XM	<u>n _</u>	Alumin	<u>1um</u>	<u>(Al)</u> **	ر	AlXS1	-	ASTM F Grain Si <u>Numb</u>	errite .ze er	Con	stant_
									Drop V	/eight	Test									
<u>Criterion</u> NDT	C* 210	\$D 27	C -15.9	SD 9.6	C -182	SD 85	C 377	SD 165	C -6.9	SD 57.4	C -159	SD 215	C 321	SD 1600	C -258	SD 481	C -11.0	SD 1.4	С 77.2	SD 84.9
<u>Charpy V-Notch</u>																				
15 Ft-lb	333	40	-66.6	14.2	-269	125	210	244	116	85	-512	317	2849	2362	367	711	-18.1	2.1	168	125
25 Ft-lb	456	39	-61.3	14.1	-265	124	Z16	242	111	84	-583	315	3228	23 4 6	360	706	-20.2	2.1	178	125
50% max engery	291	36	-68.3	12.9	-352	114	332 '	221	211	77	-356	288	2601	2144	-135	645	-15.5	1.9	189	114
15% shear fracture	297	33	-22,0	12.0	~8.6	106	-118	206	5.8	71.8	-449	Z68	2580	1998	-128	601	-12.1	1.8	60.5	106
30% shear fracture	347	34	-Z7.8	12.4	-141	109	171	211	24.0	73.6	-334	275	1329	z049	282	617	-15.3	1.8	119	109
50% shear fracture	439	43	-36.1	15.5	-257	136	246	Z65	84.6	92.5	-375	346	1121	25 7 4	975	775	-18.9	2.3	177	137
Lateral Expansion at 15 mils	331 1	32	-52.0	11.6	-237	102	173	198	105	69	-458	258	3056	1919	131	578	-16.0	1.7	129	1 02

*C = Regression coefficient.

** SD = Standard deviation of regression coefficient.

Partial Regression Coefficient

The change in the dependent variable (transition temperature) associated with a unit increase in a particular independent variable when the other variables of regression are held constant.
Standard Deviation of Regression Coefficient

An estimate of the variaibility which would be encountered among corresponding regression coefficients if the experiment and consequent regression analysis were repeated many times.

TABLE B-2

VALUES OF t RATIO AND STATISTICAL SIGNIFICANCE OF REGRESSION COEFFICIENTS

	Carb	on	<u>Mang</u>	anesé	Silicon	<u>(Si</u>)	<u>Drop</u>	SiX	<u>Mn</u> ht Tes	Alum t	inum_	(Al)	2		<u>Si</u>	ASTM Grair Num	Ferrite 1 Size 1ber	Con	stant
Criterion NDT	t^ 7.85	5° >99.9	t 1.65	5 >80	t S 2.15>95	t 2.29	ม >95	t 0.12	ຽ <80	t 0.74	ธ <80	t 0.20	ธ <80	t 0.54	ธ <80	t 7.79	\$ >99.9	t 0.97	ธ <80
							Char	py V-	Notch										
15 Ft-lb	8.41	>99.9	4.68	>99.9	2.15 >95	0.86	<80	1.37	>80	1.61	>80	1.21	⊲80	0.52	⊲80	8.70	>99.9	1.41	>80
25 Ft-lb	11.6	>99.9	4.33	>99.9	2.13>95	0.89	<80	1.32	>80	1.85	>90	1.38	>80	0.51	<80	9.76	>99.9	1.50	>80
50% max energy	8.11	>99.9	5.28	>99.9	3.10>99	1.50	>80	2.74	> 9 9	1.24	<80	1.21	<80	0.21	<80	8.19	>99.9	1.73	> 90
15% shear fracture	8.88	>99.9	1.83	>90	0.08<80	0,57	<80	0.08	⊲80	1.67	90	1.29	⊲80	0.21	⊲80	6.87	>99.9	0.63	<80
30% shear fracture	10.1	>99.9	2.25	>95	1.30 80	0,81	<80	0.33	<80	1.21	<80	0.65	⊲80	0,46	⊲80	8.48	>99.9	1.17	<80
50% shear fracture	10,2	>99.9	2.32	>95	1.89 >90	0.93	<80	0.92	⊲80	1.09	<80	0.44	<80	1.26	⊲80	8,33	>99.9	1,36	>80
Lateral Expansion at 15 mils	10.3 n	>99.9	4.50	>99.9	7. 33 ≥95	0.88	<80	1.52	>80	1.78	>90	1.59	>80	0.23	⊲80	9.47	>99.9	1.35	>80

 t^{\star} = t ratio This statistic compares the observed difference between averages with the inherent variability within the data to determine whether the difference is significant.

 S^{B} = statistical significance of the regression coefficients as determined by the t-ratio. The statistical significance is the degree of certainty (%) that the true regression coefficient is not zero.

<u>t-Ratio</u>

In Table B-2, column t is the ratio of the regression coefficient to its standard deviation and is used for testing the statistical significance of the regression coefficient for each independent variable. If this ratio is large (relative to tabular theoretical values), then the regression coefficient is significant. The t-ratios in Table B-2 are accompanied by significance levels (in per cent), which may be thought of as the degree of certainty that each true regression coefficient (for which the computed regression coefficient is an estimate) is different from zero.

- NOTE: Below are two alternative methods of presenting the significance of t-ratios in Table B-2.
 - <u>Method A</u>. Significance levels between 80% and 99% can be presented to the nearest whole per cent.
 - <u>Method B.</u> All significance levels can be presented in coded form, such as

NS = less than 80%
? = 80% up to but not including 95%
* = 95% up to but not including 99%
*** = 99% up to but not including 99.9%
*** = 99.9% and over

-69-

Standard Error of Estimate

A measure of how nearly the regression estimates agree with the values actually observed for the variable being estimated (transition temperature).

Multiple Correlation Coefficient

A measure of the proportion of the total variation in the dependent variable (transition temperature) which can be accounted for on the basis of the <u>linear</u> relations to the several independent variables.

Coefficient of Multiple Determination

The square of the multiple correlation coefficient, R. A measure of what proportion of the variance in the values of the dependent variable (transition temperature) can be explained by, or estimated from, the concomitant variation in the values of the independent variables.

<u>F-Ratio</u>

In Table B-3, column F is the ratio $45R^2/(9-9R^2)$ for testing the statistical significance of the multiple correlation coefficient. If this ratio is large (relative to tabular theoretical values), then R^2 (and R) is significant. The F-ratios in Table B-3 are all larger than 3.77, which is the tabular value of F for 9 and 45 degrees of freedom at the 99.9% significance level, and therefore very high statistical significance can be attached to the multiple correlation coefficient. In other words, in every case we can be extremely confident that the dependent variable is really dependent to some degree on at least one of the independent regression variables.

TABLE B-3

SUMMARY OF STATISTICAL ANALYSIS

Drop-Weight Test						
<u>Criterion</u>	5.E.E. ^a	R ^b	R ² ^C	d		
NDT	11.4	0.917	0.841	26.4		
	<u>Charpy V-Notc</u>	<u>h</u>				
15 Ft-lb	16.9	0.932	0.869	33.0		
25 Ft-lb	16.8	0.946	0.894	42.3		
50% maximum energy	15.3	0.919	0.845	27.3		
15% shear fracture	14.3	0.906	0.820	22.8		
30% shear fracture	14.7	0.920	0.846	27.6		
50% shear fracture	18.4	0.912	0.832	24.7		
Lateral expansion at 15 mils	13.7	0.941	0.886	38.9		

S.E.E. ^a =		Standard error of estimate. This is a measure of the precision for
		estimating transition temperatures if all of the regression coeffi-
		cients (Table B-1) for a given criterion are combined into one equa-
Ъ		tion.
$\mathbf{R}^{\mathbf{D}}$ =	=	Multiple correlation coefficient. It indicates the efficiency of the

- Multiple correlation coefficient. It indicates the efficiency of the estimating equation in describing the effects of the observations on the transition temperature.
- R² = Square of the multiple correlation coefficient. This is a measure of the fraction of variance removed or accounted for by the correlation analysis.
- \mathtt{F}^{d}
- F ratio. A measure of how well the whole equation fits the data.For this study F at a confidence level of 99.9% equals 3.77.

GRAIN SIZE DATA FOR HOT-ROLLED LABORATORY STEELS*

	ASTM Fer Size l	rite Grain Numb <u>e</u> r				
	Correc	ted for	Pearlite Content, per cent			
	<u>Pearlite</u> (Content**				
Steel Identification	Area Count	Lineal Count	Area Count	Lineal Count		
1	7.9	7.9	22.9	19.1		
2	7.6	8.0	21.8	20.4		
2-2		8.2		25.6		
3	8.7	9.4	31.9	32.0		
4	7.2	7.5	14.2	11.5		
5	8.2	8.7	22.9	31.3		
6	9.2	10.1	41.6	50.7		
7	6.9	6.9	9.4	8.6		
8	8.1	8.0	31.9	16.7		
9	8.0	8.4	32.4	21.0		
9-2		8.1		21.9		
10	8.4	8.6	45.5	30.8		
11	7.3	8.0	18.2	15.3		
12	7.8	8.6	41.4	31.2		
13	8.9	9.3	62.9	51.2		
14	7.0	7.4	16.2	8.2		
15		7.4		17.6		
16		7.7		10.5		
17		8.5		31.9		
18		9.0		30.5		
19		8.2		28.0		
20		8.6		33.9		
21		8.6		24.1		
22		8.3		25.0		
23		8.9		25.7		
24	— —	8.0		25.9		
25		8.3		28.3		
26		8.4		29.3		
27		8.2		20.1		

*Data listed are the average of at least two measurements. Dashes indicate determinations were not made.

**Grain size number based on area occupied by the ferrite phase only.

GRAIN SIZE DATA FOR STEELS NORMALIZED FROM 1600 AND 1900 F*

Steel Identification	ASTM Fer Size 1 Correct Pearlite (Area Count	rite Grain Number ed for Content** Lineal Count	Pearlite Content, <u>per cent</u> Area Lineal Count Count		
	16	00 F			
1	8.3	9.3	15.9	18.6	
2	8.9	9.3	33.5	22.6	
3	9.4	10.1	29.7	30.7	
4	7.9	8.1	10.5	11.8	
5	8.9	9.1	26.8	30.4	
6	9.9	10.8	40.5	44.6	
7	7.6	8.2	11.5	9.9	
8	7.7	8.2	21.0	20.7	
9	8.3	8.1	27.8	24.4	
10	8.0	8.9	35.8	33.5	
11	7.5	8.6	14.6	14.7	
12	7.8	8.8	34.9	30.6	
13	8.7	9.7	54.8	46.1	
14	7.2	7.8	13.8	7.9	
	19	900 F			
2		8.0		23.2	
9	— —	7.5		24.0	

*Data listed are the average of at least two measurements. Dashes indicate determinations were not made.

.

**Grain size number based on area occupied by the ferrite phase only.

GRAIN SIZE DATA FOR STEELS HEATED AT 1900 F AND FURNACE COOLED TO 800 F*

	ASTM Ferrite Grain Size Number Lineal Count			
Steel Identification	Corrected for Pearlite Content**	Pearlite Content, per cent		
2-2	5.5	28.0		
4	7.2	15.7		
5	6.1	38.1		
6	7.1	57.8		
7	4.5	10.3		
9-2	5.5	27.1		
11	5.8	12.9		
12	5.9	30.0		
13	6.9	60.4		
14	4.8	14.9		

*Data listed are the average for at least two measurements.

**ASTM number is based on the area occupied by the ferrite phase only.

GRAIN SIZE DATA FOR COMMERCIAL (PROJECT SR-139) STEELS

J.

Steel	Condition	Heat Treatment	ASTM Ferrite Grain Size Number	Pearlite Content, per cent	Specimen Thickness, inches
250	Rerolled in laboratory	None	8.1 8.4	14.7 18.9	5/8 5/8
250	As commercially rolled	None	7.0 6.7 6.9 6.9	17.9 16.0 14.2 18.6	1-1/4 1-1/4 5/8 5/8
250	Rerolled in laboratory	1600 F, furnace cool	led 9.4 9.4	18.6 23.8	5/8 5/8
250	Rerolled in laboratory	1600 F, air cooled	9.2 9.2	10.1 15.5	5/8 5/8
297	Rerolled in laboratory	None	7.4 8.4 8.0	16.6 25.5 20.4	5/8 5/8 5/8
296	As commercially rolled	None	7.5 7,5 7.3 7.4	16.7 18.8 25.6 20.4	5/8 5/8 1-1/4 1-1/4
296	Machined from 1-1/4i plate before heat treat ment or testing	n. 1600 F, furnace coo -	led 9.4 9.4 9.4 9.4 9.4	24.3 25.7 44.2 41.8	5/8 5/8 1-1/4 1-1/4
297	Machined from heat treated 1-1/4 in. plate	1600 F, furnace coo	led 9.8 10.4	35.4 43.9	5/8 5/8

GPG 936939

_--

COMMITTEE ON SHIP STEEL

Chairman:

J. R. Low, Jr. Metallurgy & Ceramics Research Department General Electric Co. Research Lab.

Vice Chairman:

M. W. Lightner Vice President, Research and Technology Division U. S. Steel Corporation

Members:

D. K. Felbeck Department of Mechanical Engineering University of Michigan

Paul Ffield Assistant Manager of Research Bethlehem Steel Company

Maxwell Gensamer Department of Metallurgy School of Mines Columbia University

J. J. Gilman Division of Engineering Brown University

T. S. Washburn Manager, Quality Control Department Inland Steel Company

T. T. Watson Assistant to General Manager Lukens Steel Company

Arthur R. Lytle Director R. W. Rumke Executive Secretary

NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL

The National Academy of Sciences-National Research Council is a private, nonprofit organization of scientists, dedicated to the furtherance of science and to its use for the general welfare.

The Academy itself was established in 1863 under a Congressional charter signed by President Lincoln. Empowered to provide for all activities appropriate to academies of science, it was also required by its charter to act as an adviser to the Federal Government in scientific matters. This provision accounts for the close ties that have always existed between the Academy and the Government, although the Academy is not a governmental agency.

The National Research Council was established by the Academy in 1916, at the request of President Wilson, to enable scientists generally to associate their efforts with those of the limited membership of the Academy in service to the nation, to society, and to science at home and abroad. Members of the National Research Council receive their appointments from the President of the Academy. They include representatives nominated by the major scientific and technical societies, representatives of the Federal Government, and a number of members-at-large. In addition, several thousand scientists and engineers take part in the activities of the Research Council through membership on its various boards and committees.

Receiving funds from both public and private sources, by contributions, grant, or contract, the Academy and its Research Council thus work to stimulate research and its applications, to survey the broad possibilities of science, to promote effective utilization of the scientific and technical resources of the country, to serve the Government, and to further the general interests of science.