PRELIMINARY ANALYSIS OF BENDING-MOMENT DATA FROM SHIPS AT SEA

```
SSC-153
```

By
D. J. FRITCH, F. C. BAILEY AND N. S. WISE

SHIP STRUCTURE COMMITTEE

Distributed by
U.S. DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES

WASHINGTON, D.C. 20230

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES
BUREAL OF SHIPS, DEPT. OF NAVY
military sea Transportation Service, Dept. of Navy
UNITED STATES COASt GUARD, TREASURY DEPT.
Maritime administration Dept. of Commerce
AMERICAN BUREAU OF SHIPPING

ADDRESS CORRESPONDENCE TO:
SECRETARy
Shif Structure committee
U. 5 COAst Guard HEadouartErs

WAShington 25. D. C

December 27, 1963

Dear Sir:

One of the most critical needs in ship design is to learn the actual long-term stress history of ships. The Ship Structure Committee is currently sponsoring a project at Lessells and Associates, Inc., that is measuring the vertical bending moments on ocean-going ships.

Herewith is a copy of the second progress report, $\mathrm{SSC}-153$, PreliminaryAnalysis of Bending- Moment Data from Ships at Sea by D. J. Fritch, F. C. Bailey and N. S. Wise.

The project is being conducted under the advisory guidance of the Ship Hull Research Committee of the National Academy of Sciences-National Research Council.

Please address any comments concerning this report to the Secretary, Ship Structure Committee.

Sincerely yours,

.J. Fabik
Rear Admiral, U. S. Coast Guard Chairman, Ship Structure

Committee

Second Progress Report of

Project SR-153

"Ship Response Statistics"
to the
Ship Structure Committee

PRELIMINARY ANALYSIS OF BENDING-MOMENT DATA FROM SHIPS AT SEA

by
D. J. Fritch
F. C. Bailey
and
N. S. Wise

Lessells and Associates, Inc.
under
Department of the Navy Bureau of Ships Contract NObs-77139

Washington, D. C.
U.S. Department of Commerce, Office of Technical Services

December 27, 1963

Abstract

Data playback, manual reduction and analysis techniques, and the automatic system to be used for future analysis are presented. Examples are given of some forms of presentation of longterm trends.

Useful data have been obtained on over 85% of voyages representing three ship-years of operation of a C-4dry cargo vessel on North Atlantic trade routes. Two complete voyages have been analyzed using manual techniques and the results of this arialysis are presented. The maximum observed peak-to-peak variation of wave-induced stress was 8300 psi whichoccurred during a Beaufort 11-12 Sea. A prediction based on the limited amount of long-term data available from the two analyzed voyages yielded an extreme value of 10,290 psifor a year of operation of this shiptype on North Atlantic route. Stress variations on the order of 9,000 psi have been observed during the dry docking of the two instrumented ships.

Page
Introduction 1
Theoretical Considerations 1
General 1
Short-Term Data 1
Long-Range Predictions 1
Summary and Limitations 1
Methods and Results of Manual Data Analysis 4
General 4
Methods 4
Discussion 9
Machine Data Reduction 11
General 11
Digital Computer 11
Analogue Computer 11
The Sierra Probability Analyzer 12
Acknowledgement 12
References 13

NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL Division of Engineering \& Industrial Research

SR-153 Project Advisory Committee "Ship Response Statistics"
for the
Ship Hull Research Committee

Chairman:

Dr. C. O. Dohrenwend Rensselaer Polytechnic Institute
Members:
Professor J. P. Den HartogMassachusetts Institute of Technology
Dr. N. H. Jasper
U. S. Naval Mine Defense Laboratory
Professor E. V. Lewis
Webb Institute of Naval Architecture
Mr. R. L. McDougal
Lockheed Aircraft Corp.
Mr. Wilbur Marks
Oceanics, Inc.

INTRODUCIION

"An Unmanned System for Recording Stresses and Accelerations on Ships at Séa", presents the background and objectives of Ship Structure Committee Project SR-153, "Ship Response Statistics" and describes the recording systems now in use. This report will briefly present the theoretical background for the reduction and analysis of data of this type, describe the playback, manual reduction and analysis of some of the data obtained to date, and, finally will describe the automatic data reduction system to be used in future analysis.

It should be clearly understood that data acquisition, reduction, and presentation are the tasks of this investigation; interpretation must be left to the Naval Architect. The overall objective in the portion of the program described herein has been to evolve techniques for future data reduction and presentation which will permit independent analyses by others and the prediction of long term trends and extreme values. In addition, this report will provide some preliminary information on long term trends, based on clearly stated assumptions and analytical techniques, only to demonstrate some possible forms of presentation.

THEORETICAL CONSIDERATIONS

General

It is not the intention, in this report, to perform complete derivations of the statistical bases for the reduction, analysis, and extrapolation of the bending-moment (stress) data. However, in summarizing the theoretical aspects, it is quite necessary that the present state of the art be placed in proper context, since the basis for the analysis is good, but has not definitely been proven to be exact. The discussion to follow in this section is based largely on the work of Bennet ${ }^{1-3}$ and Jasper. ${ }^{2-3}$

The presentation will be based on consideration of peak-to-peak stress variation, x, (the vertical distance from crest to adjacent trough or trough to adjacent crest on an oscillographic record of stress signals). See Figure l. Similar arguments can be used if the analysis is to be based on stress amplitudes (the vertical distance from mean to crest and mean to trough). The mean stress in this case
would represent the still-water stress (or bending moment). However, since the sagging moment in a seaway is ordinarlly greater than the hogging moment, the average value or mean level of an oscillograph record of the stress would be displaced in the sag direction. Since it is not practical to obtain the still-water stress at any given instant in time, and an extra operation is required to establish the average value, it is most convenient to deal with the peak-to-peak variations of stress.

All of the mathematical models applied to the statistical analysis of wave-induced bending moment in ships are identical to those used in describing wave systems. This is based on the theoretically reasonable, and increasingly well-documented assumption of linear dependence of bending moment on wave height. Most of the basic theory has therefore been the fruit of the oceanographers' efforts, but can be applied to wave-induced ship response (bending moment, acceleration, motions, etc.) with. equal assurance. ${ }^{1-2-3}$

In dealing with the statistical description of ocean waves, it is convenient first to confine the analysis to a given wave system, i.e., a specified wind-generated sea. The statistical presentation of peak-to-peak wavehelght variation can be thought of either as representing the variation at a certain point at different times in a specified (short) interval, or the distribution of peak-to-peak variations at a given instant in an area of the ocean where wind direction and strength are constant. In treating bending moment in a similar manner, it is necessary to add that direction and speed of the vessel must be constant, as well as the wave systems. The bending-moment data thus treated will be referred to as "short-term data". Data which embrace a variety of ship speeds, headings relative to the sea and/or wind, and sea states, will be considered "long-term data". The statistical basis for dealing with long-term data is more empirical than for short, but no less satisfactory on the basis of investigations to date.

For the purposes of this investigation, data obtained during a single recording interval (minimum of 30 minutes) will be assumed to qualify as "short-term data".

Short-Term Data

Figure 2 and Eq. 1 represent the basic Rayleigh distribution:
$p(x)=\frac{2 x}{E} e^{\frac{-2 x}{E}} \quad x \geq 0$
where
$p(x)=$ probability density of x
$x=$ the magnitude of a data sample (peak-
to-peak stress or bending moment vari-
ation)
$E=$ mean-square variation $=\frac{\Sigma x^{2}}{N}$
$\mathrm{N}=$ number of samples
The above expression for E assumes that all values of x are considered independently in the calculation of the mean square value of the variation. A more practical method of calculating E is to group the data samples into ranges of amplitude. The samples which fall in each range are then considered to have a magnitude equal to the mean value of the range into which they fall. Then,
$\mathrm{E}=\frac{\Sigma \mathrm{n}_{1} \mathrm{X}_{1}{ }^{2}}{\mathrm{~N}}$
where
$X_{1}=$ the mean value of the 1 th range
$n_{1}=$ the number of data samples which fall within the , th range.
$\mathrm{N}=$ the total number of samples $=\Sigma \mathrm{n}_{1}$
The Rayleigh Distribution is a single parameter distribution, sunce when E is known, the complete distribution can be established. This is the basic expression to be used in analysis of short-term data, with the following points in mind:

1. It is known that bending-moment (and sea) data do not exactly fit the Raylengh distribution, nor is there a reason why they should.
2. The departure from the Rayleigh curve is
slight.
3. A large amount of wave-height and bendingmoment data show good agreement with Eq. (1).

In connection with the last comment above, it should be noted that the agreement becomes progressively less satisfactory at large values of the variate, for which proportionately less information is available. There thus appears to be every reason to justify the use of the Rayleigh function in the analysis of bendingmoment data as long as the agreement is satisfactory, and/or until an equally satisfactory distribution (from the point of view of simplicity and ease of manipulation), which fits the data better, is developed.

The cumulative distribution of Eq. (1) is given by:
$P(x)=1-e^{\frac{-x^{2}}{E}}$
where
$P(x)=$ Probability of the variation being less than x in the time interval.

The most probable maximum value ($\mathrm{x}_{\text {max }}$) in a sample of N variations ${ }^{4}$ is:
$\mathrm{x}_{\mathrm{MA} X}=\sqrt{E \ln N}$
when N is large. For all samples to be considered in this investigation, this will be the case.

Long-Range Predictions

To have practical significance in ship design, it is apparent that time intervals will have to be considered which are far greater than the relatively short periods for which any given Rayleıgh distribution will apply. Two approaches to the prediction of long-range extreme values have been suggested.

The first of these is proposed by Jasper. ${ }^{*}$ He suggests, on the basis of data on waves and on ship response, that the log-normal distrubution satisfactorily represents longrange ship response. Data from a variety of operating conditions for a given vessel, seem to fit this distribution well, but a fundamental
difficulty exists. If the distributaon is to be developed on the basis of about one ship year of operation, a total of more than a million counts would have to be stored and evaluated.

A simpler method uses the mean-square values from a number of short-term distributions as the basic units in developing a long-term distribution. ${ }^{3}$ Studies to date indicate that a long-term collection of mean-square values of stress variation seem to follow the normal or log-normal distribution, with a better fit to the log-normal. It is therefore possuble to plot the E values and, using appropriate risk factors and estimating the ship operating life, an "extreme" value of E is determined. From this E the most probable maximum value of stress can be established on the basis of an assumed or calculated period of time during which the extreme conditions exist.

A number of variations on this approach are discussed by Bennet and Jasper. ${ }^{3}$ The variations involve the method of predicting the extreme value of stress or bending moment; in all cases the E values for a long period are compared to a log-normal distribution. The log-normal distribution is, of course, a twoparameter distribution and can be described in terms of the mean value of the logarithms of the values in the sample and the standard deviation of the logarnthm. Since, in practice, the rms value of E is commonly used, the probability density would be given by: ${ }^{\text {a }}$
$p\left(\sqrt{E}=\frac{1}{x \sigma \sqrt{2} \pi} e^{-\frac{(\log \sqrt{E}-\mu)^{2}}{2 \sigma^{2}}}\right.$
$\mu=$ mean value of $\log \sqrt{ } / E$
$\sigma=$ standard deviation of $\log \sqrt{ } \mathrm{E}$
At the present tıme, it is felt that a lognormal comparison is the best starting point for long-range analysis. Initial attempts to compare the present data with the log-normal distribution will indicate if the log-normal assumption is justified or if some other distribution must be sought. Of course, the results will be most accurate only when a large amount of data has been compiled over a long period of tıme. Based on a limited amount of reduced data, this report attempts to point the direction toward a solution to the problem of long-range predictions.

Summary and Limitations
The statistical relationships in this report are summarized as follows:

FORMULAS

1. $p(x)=\frac{2 x}{E} e^{\frac{-2 x}{E}} \begin{aligned} & \text { (Describes the basic } \\ & \text { Rayleigh Distribution }\end{aligned}$
where
$p(x)=$ probability density of x
$\mathrm{x}=$ the magnitude of a data sample (peak-to-peak stress or bending moment variation)
$E=$ mean-square variation $=\frac{\sum x^{2}}{N}$
(for classified data; $E=\frac{\sum n_{1} X_{1}}{N}$ where
$X_{1}=$ mean value of the, range
$n_{1}=$ number of samples in " 1 th" interval
$\mathrm{N}=$ total number of samples in all intervals ($=\sum \mathrm{n}_{1}$)
2. $P(x)=1-e^{-x^{2} / E}$ (Is the cumulative distribution of 1)
where
$P(x)=$ probability of the varıation being less than \times in the time interval
3. $\mathrm{x}_{\mathrm{M}}=\sqrt{E \ln \mathrm{~N}^{-}}$
where
$\mathrm{X}_{\mathrm{m}}=$ the most probable maximum value in a sample of N variations
$N=$ total number of variations in the sample
4. $p(\sqrt{E})=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\log \sqrt{E}-\mu)}{2 \sigma^{2}}}$
(Describes the log-normal distribution of $\sqrt{E})$
where
$\mu=$ mean value of $\log \sqrt{E}$
$\sigma=\operatorname{standard}$ deviation of $\log \sqrt{\bar{E}}$
5. $v^{2}=\frac{x^{2}}{E}$
where
$\mathrm{v}=$ the normalized stress value
$x=$ the peak-to-peak stress variation
$\mathrm{E}=$ the mean-square stress variation
6. $\sigma=\frac{1}{p} \sqrt{\frac{\mathrm{P}(1-\mathrm{P})}{\mathrm{N}}}$
where
$\sigma=$ the standard deviation
p = probability density
$P=$ the cumulative probability
$\mathrm{N}=$ the sample size
7. $v_{M}=\frac{x_{M}}{\sqrt{E}}$
where
$V_{M}=$ the normalized extreme value of stress
$\mathrm{X}_{\mathrm{M}}=$ maximum peak-to-peak stress variation
$\sqrt{E}=$ root-mean-square (rms) stress variation

In the presentation of the data andanalyses the following observations, reservations, limitations and/or premises should be borne in mind:

1. Environmental conditions (wave system, ship speed and heading, wind speed and direction, etc.) are assumed constant during each thirty-minute interval that data are being collected.
2. Average midship vertical bending-moment stress can be linearly related to midship bending moment by means of either a deduced or a calculated section modulus. Stress is the dependent variable on which data is obtained; bending moment is the variable of practical interest.
3. A Rayleigh distribution satisfactorily
characterizes the distribution of stress levels in each recording interval. This will be verified from time to time, with particular emphasis on the character of the fit at the extreme of any given distribution, and on the distribution in intervals of very low or very high seas.
4. Low-frequency seaway-induced moments only are considered; slamming (whipping) stresses are excluded from the analysis.
5. The long-term distribution of E for a given ship on a given route is specifically applicable only to that ship (or ship-type) and route, and assumes that the data cover a truly representative sample of weather conditions on the route.

METHODS AND RESULTS OF MANUAL DATA ANALYSIS

General

Data have been gathered and analyzed from two C4-S-B5 dry-cargo vessels, the S. S. HOOSIER STATE and the S.S. WOLVERINE STATE, operated by the States Marıne Line, Inc. of New York. The voyages of ships considered in this report took place on the North Atlantic. From all of the information obtained, two round-trip voyages and a portion of a third voyage have been selected and manually reduced to show the types of presentation that can be extracted from the data in forms useful for further analysis.

The completed data logs for voyage 124 of the S. S. HOOSIER STATE and voyages 170,171 , 172 and 173 of the S. S. WOLVERINE STATE are shown in Tables 1, 2, 3 and 4. (Note correction on voyage numbers in "Notes on Stress Data Reduction and Presentation" in the Appendix). Complementing the data \log are results from the manual stress data reduction shown in Tables 5, 6 and 7 .

Methods

Four forms of data presentation which are of special interest are extracted from the tabularized stress data. These are:

1. The experimental histogram and its associated Rayleigh distribution for several "short-term" data intervals.
2. The cumulative probability function for a "short-term" data interval.
3. The statistical scatter plot of normalized extreme-value data.
4. The log-normal plot for "long-term" stresses based on the two round-trips of the S. S. WOLVERINE STATE.

The methods for reducing the data to these forms are as follows:

Procedure for manual reduction of the stress data to histogram and Rayleigh distribution form
a. Using a graphic recorder (oscillograph), produce a visible record of the tape recorded data on which individual stress cycles can be observed. The calibration signal recorded on the tape provides the scale factor for the oscillogram.
b. Measure the peak-to-peak amplitudes of the individual stress cycles in a record period, and tabulate them in ranges. In the examples presented, ranges of 500 psi were used between 0 and 10,000 psi full scale. Note that in all intervals except the first, the range is indicated by its mean value so that the range of say 1500 psi extends from 1250 to 1750 psi , etc. The first range (500 psi) covers $0-750 \mathrm{psi}$.

Note: The peak-to-peak amplitude, or variation, of a stress cycle is defined as the vertical distance from a maximum positive value to the maximum negative value which follows a crossing of the mean level. Other small inflections are ignored, as well as any highfrequency components which might result from the ship's response to slamm ming .
c. Calculate the probability density of a given range in percent per 1000 psi by computing the percentage occurrence and multiplying this result by the ratio of the unit being considered ($1000 \mathrm{psi}=1 \mathrm{Kpsi}$) to the range interval (500 psi).

Probability Density $=$

$$
\left\lvert\, \begin{aligned}
& \frac{\text { Number of Counts in Range }\left(n_{1}\right)}{\text { Total Counts in Record (N) }} \\
& \frac{\text { Unit of Measurement }}{\text { Range Interval }}
\end{aligned}\right.
$$

For example,
$\mathrm{p}=\frac{48}{354} \times \frac{1000}{500}=0.135 \times 2=0.270$ or 27% per

Kpsi

d. Tabulate the values of probability density in \% per Kpsi for the corresponding ranges.
e. Plot the probability density against the corresponding range in the form of a bar graph. This is the required histogram for the record period being examined.
(i) The mean-square value and RMS (root-mean-square) values for a record period are calculated as follows:
(a) Calculate the mean-square value from the tabulation obtained under b above using the following formula:
$E=\frac{\sum n_{1} X_{1}^{2}}{\mathbb{N}}$
where
$E=$ Mean-Square Value
$\Sigma n_{1} X_{1}^{2}=$ Sum of the products of mean value within a range squared, multiplied by the number of counts in that range.

$$
=n_{1} X_{1}^{2}+n_{z} X_{2}^{2}+n_{3} X_{3}^{2}+\ldots
$$

where
$\mathrm{n}_{1}=$ number of counts in range 1
$\mathrm{X}_{1}=$ mean stress level of range 1
$N=$ total counts in record period $=\sum n_{1}$
Example:

Range (Kpsi)	Range ${ }^{2}$ (Kpsi)	Counts	$\underline{\mathrm{n}_{1} \mathrm{X}_{1}(\mathrm{Kpsi} i)^{2}}$
0.5	. 25	1	. 25
1.0	1.0	2	2.0
1.5	2.25	4	9.0
2.0	4.0	2	8.0
2.5	6.25	1	6.25
3.0	9.0	0	0
	$\begin{gathered} =N= \\ \frac{\Sigma_{n_{1}} X_{1}^{2}}{N} \end{gathered}$	$\begin{gathered} \Sigma n_{1} X_{1} \\ \frac{.5}{0}=2.5 \end{gathered}$	$\begin{aligned} & =25.50(\mathrm{Kps} \\ & (\mathrm{Kpsi})^{2} \end{aligned}$

(b) Calculate RMS value by extracting square root of mean-square value. Example:

RMS value $=\sqrt{E}=\sqrt{2.55}=1.60 \mathrm{Kpsi}$
(ii) The probability-density curve for the Rayleigh distribution may be calculated by substituting values for x in the formula
$p(x)=\frac{2 x}{E} e^{-x^{2} / E}$
where E is the mean-square value calculated from the recorded data under (i)a above, e is the base of natural logarithms, and x is expressed in the same units of measurement employed above. The resultant values of the probability density $p(x)$ will have units of percent per Kpsi in the examples given, and may be superimposed on the histogram produced above. In this manner, the actual stress distribution may be compared with that which would be obtained in a true Rayleigh distribution.
(iii) The maximum amplitude of variation for a record period may be picked off the oscillogram for the period. The most probable value of the maximum amplitude of variation for a given record period may be calculated using the approximate formula developed by Longuet-Higgins On the Statistical Distribution of the Heights of Sea Waves, Journal of Marine Research, Vol. XI, No. 3, $1952, \mathrm{pp}$. 245-266):
$\mathrm{X}_{\mathrm{M}}=\sqrt{E} \sqrt{\log _{\mathrm{e}} \mathrm{N}}$
where E is the mean-square value developed above.
$\log _{E} N$ is the natural \log arithm of the total number of counts in the record.

This approximate formula applies when N is large, e.g. $N=50$ or greater. Figures 3 through 12 are the histograms and their associated Rayleigh function for 10 intervals of voyage 124 of the S. S. HOOSIER STATE developed by the above methods.

Procedure for presentation of cumulative probability for "short-term" statistical data

The cumulative probability distribution function offers an alternative method of presentation of the reduced statistical data. The
values of probability density (p) and meansquare value E which were previously calculated in reducing the data to histogram form are used to calculate points on the cumulative distribution function. These points are then normalized and plotted along the normalized cumulative distribution function for all theoretical Rayleigh distributions. The normalized theoretical cumulative distribution function for a Rayleigh distribution can be represented by a straight line on semi-log graph paper.

Points can then be calculated from which curves representing confidence limits can be added to the presentation.

The procedures for calculating the normalized data points and applying the confidence limits are presented below.

As an example, the data used in developing Fig. 9 are reworked and presented in the form of points on a normalized Rayleigh cumulative distribution function along with curves representing 90% confidence limits. See Fig. 13.
(i) Steps in development of the cumulativedistribution function presentation.
(a) Given (from calculations used in developing histogram of Fig. 9).
$E=7.61(\mathrm{KPSI})^{2} \quad$ Range Interval $=0.5 \mathrm{KPSI}$
Values of experimental probability density (p) in per KPSI for each range interval (X).
(b) Form the table on page 7. Enter the given values of range interval and probability density in the first and second column.
(c) Calculate values for third column by multiplying each value of p by the range interval 0.5. $0.5 \times .046=.023$, etc. This quantity is available directly in the manual data reduction process as
Number of Counts in Interval $\left(n_{1}\right)$
Total Counts in Record (N)
(d) Calculate the values of the experimental cumulative probability (P) for column 4 by stepwise addition of the values in column 3. $.023+.166=.189, .189+.156=.345$, etc.
(e) Square each value in column 1 and

S. S. HOOSIER STATE

VOYAGE 124

RECORD INTERVAL 14-15

$E=7.61(\mathrm{KPSI})^{2}$

X Range	$\begin{gathered} \text { Probability } \\ \text { Density } \\ \text { (per KPSI) } \end{gathered}$	Ratio of Occurrence	P Cumulative Probability	$\underline{X^{3}}$	$V^{2}=\frac{X^{2}}{E}$ Normalized -Variable.
0.5	. 046	. 023	. 023	0.25	. 033
1.0	. 332	. 166	. 189	1.0	. 131
1.5	. 312	. 156	. 345	2.25	. 296
2.0	. 292	. 146	. 491	4.0	. 526
2.5	. 280	. 140	. 631	6.25	. 821
3.0	. 288	. 144	. 775	9.00	1.28
3.5	. 132	. 066	. 841	12.25	1.61
4.0	. 118	. 059	. 900	16.00	2.10
4.5	. 080	. 040	. 940	20.25	2.66
5.0	. 052	. 026	. 966	25.00	3.28
5.5	. 022	. 011	. 977	30.25	3.98
6.0	. 028	. 014	. 991	36.00	4.73
6.5	. 008	. 004	. 995	42.25	5.55

enter the result in column 5.
(f) Divide the values in column 5 by E to obtain the normalized variable $V^{2}=X^{2} / E$ (column 6). $0.25 / 7.61=.033$.
(g) Plot the values of P (column 4) expressed as percentages against the normalized variable V^{2} (column 6) on the normalized Rayleigh cumulative distribution (See Fig. 13).
(ii) Steps in development of confidence limits to be applied to the cumulative distribution. (In this example 90% confidence limits will be calculated.)
(a) Given (from calculations used in developing theoretical Rayleigh distribution of Fig. 2). $E=7.61$ (KPSI) 2. Values of theoretical probability density (p^{\prime}) corresponding to values of X selected during calculation of points for theoretical Rayleigh curve. Plot of theoretical Rayleigh cumulative distribution function on semi-log paper.
(b) Form the table on page 7 by entering values for X and V^{2} from the table developed in Section (i).
(c) Enter given values of p^{\prime} in column 3.
(d) Enter in column 4 values of P^{\prime} read from given semi-log theoretical Rayleigh plot corresponding to values of V^{2} in column 2 . Transform percentages to decimal equivalents.
(e) Calculate the standard deviation (σ) for each value of normalized variable V^{2} by substituting in the formula,
$\sigma=\frac{1}{p^{\prime}} \quad \sqrt{\frac{P^{\prime}\left(1-P^{\prime}\right)}{N}}$

The quantity N is the total number of counts in the data sample and is 422 for the record interval in this example.
$\sigma=\frac{1}{.127} \sqrt{\frac{.02(1-.02}{422}}=.052$
(f) Multiply the values (column 5) by 1.65 and enter in column 6. $1.65 \times .052=$.086, etc.

Note: For other confidence limits the value of
this multiplier will change, for example:
Confidence
Limits (\%)
Multiplier Limits of X

67	1.0	$X \pm \sigma$
90	1.65	$X \pm 1.65$
95	1.96	$X \pm 1.96$
99	2.58	$X \pm 2.58$
9		

(g) Form $X+1.65 \sigma$ and $X-1.65 \sigma$, the upper and lower limits for the variable X, and enter these results in Columns 7 and 8 respectively.
$\mathrm{X}+1.65 \sigma=0.5+.086=.586$, etc.
$\mathrm{X}-1.65 \sigma=0.5-.086=.414$, etc.
(h) Normalize the values in Column 7 by squaring each value and dividing this result by E. Enter the results in Column 9.
$\frac{(X+1.65 \sigma)^{2}}{E}=\frac{(.586)^{2}}{7.61}=\frac{.343}{7.61}=.045$, etc.
(i) Repeat Step E for the values in

Column 8 and enter the results in Column 10.
$\frac{(X-1.65 \sigma)^{2}}{E}=\frac{(.414)^{2}}{7.61}=\frac{.171}{7.61}=.0225$
(j) Plot the normalized upper and lower limits (values in Columns 9 and 10) against the corresponding values of the theoretical cumulative probability (P^{\prime} in Column 4) on Fig. 1. The result will be a number of points on either side of the theoretical Rayleigh line.
(k) Pass a smooth curve through the points to the left of the theoretical Rayleigh line. This forms the curve of the lower 90% confidence limit.
(l) Pass a smooth curve through the points to the right of the theoretical Rayleigh line to form the upper 90% confidence limit.

Procedure for Obtaining Statistical Scatter Plots of the Normalized Extreme Value Data
(a) The normalized extreme value $\left(v_{M}\right)$ is calculated from the expression:
$v_{M}=\left[\frac{(\text { Extreme Stress Variation })^{2}}{[\text { Mean Square Stress Variation }}\right]^{\frac{1}{2}}$
$v_{M}=\frac{x_{M}}{\sqrt{E}}$

This calculation of v_{M} is made for each interval.
(b) Plot v_{M} versus n , where n is the total counts for the v_{M} interval. The plot is constructed in the manner of Reference 3, Page IV-37. Figures 14 and 15 show the Statistical scatter for voyages 170 and 171 and voyages 172 and 173 of the S. S. WOLVERINE STATE, respectively.

Procedure for Obtaining the "Iong-Term" Cumulative Distribution of RMS Stresses in Log-Normal Form
(a) The log-normal plot 15 developed on probability versus log scales where the ordinate is the probability ($1-\mathrm{P}$), of exceeding a stated value in percent and the abscissa is the stated value of RMS stress \sqrt{E} in Kpsi.
(b) To construct the plot, arrange the \sqrt{E} values in order of ascending magnitude for all intervals of the various voyages.
(c) Select an \sqrt{E} value and find the number of intervals containing this value or greater. Then, determine the ratio of this number of intervals to the total number of intervals in the population. This quantity $\times 100 \%$ is the probability ($1-\mathrm{P}$) for the selected $\sqrt{\mathrm{E}}$.

Example: From voyages 172 and 173 of the S. S. WOLVERINE STATE: RMS stress \sqrt{E} was equal to or exceeded 2.0 Kpsi for 21 intervals (of 30 min each). The total number of intervals for the voyages (where satisfactory data were obtained) was 106, therefore
$(1-P)=\frac{21}{106} \times 100 \%=19.8 \%$ at $\sqrt{E} \geq 2.0 \mathrm{Kpsi}$
In this manner the points are determined. For the log-normal plots presented here a best straight line was fitted to the points. A more rigorous method is to fit the line analytically and to truncate the data at a lower limit which may be determined by statistical methods.

Note that the probability, (1-F), distribu-
tion of \sqrt{E} value is developed on the basis of time intervals rather than cycle counts. This is done for convenience since all the intervals considered are of equal length and because over a long period the operating conditions are more meaningfully described on a time basis.

Figures 16 and 17 are the long-term distribution in log-normal form for voyages 170 and 171 and voyages 172 and 173 , respectively. Figure 18 is a plot of the data of both these voyages continued.

Discussion

In general, the results agree with the previously conducted studies. ${ }^{1-3}$ The Rayleigh distributions fit the experimental histograms quite well. The scatter of the normalized extremes values are distributed within the confidence limits in a manner similar to the data of other investigations as reported in Ref. 5. The long-term data fit the log-normal line in about the same manner as Jasper and Bennet (See Ref. 3).

In practical utilization of the data, the Rayleigh distribution alone does not provide a great deal of usable information since it is representative of a small part of the whole picture, generated under a very specific set of constraints. It is useful though, as a building block in determining the form of long-term distribution from which maxime can be obtained.

To appreciate the manner in which the reduced data can be used to determine the most probable maximum value of peak-to-peak stress to be encountered during a given period, consider the following example:

Assume that a ship sails 24 hours per day, 20 days per month, which is a total time of 5760 hours in a year. During this year, the worst single variation of peak-to-peak stress that the ship encounters will be expected to occur during one of the four-hour periods represented by a 30 -minute data sample. The probability of occurrence is then:
$4 / 5760=.00694$ or $.0694 \%$
From the long-term data, for the combined voyages $170-173$, of the S. S. WOLVERINE STATE (Figure 18), at ($1-\mathrm{P}$) $=.069 \%, \sqrt{E}$ is 3.7 KPSI.

From the relationship,
$x_{m}=\sqrt{E} \sqrt{\ln N}$
X_{m}, the most probable maximum value can be determined. It remains then to calculate the value of N. From Ref. 3 and 4,
$N=\frac{Y \cdot D \cdot 24 \cdot 3600 \cdot(1-P)}{T}$
where
Y is the number of years
D is the number of days at sea per year
T is the period or mean between the periods of the shortest and longest waves

For 1 year,
$N=\left(2.07 \times 10^{7}\right) \quad \frac{(1-P)}{T}$
where
$(1-P)=4 / 5760=.000694$
The period T, is calculated from the relationship,
$\mathrm{T}^{2}=\frac{L}{5.12}$
where Lis determined from,
$\frac{1}{\sqrt{2}} L B P \leq L \leq \sqrt{2} L B P$
(LBP is the Length Between Perpendiculars, in feet, of the ship.)

The LBP for the S. S. WOLVERINE STATE is 496.0 feet, then,
$351 \leq \mathrm{L} \leq 702$
and from the above
$8.26 \leq T \leq 11.8$
or
$T=\frac{11.8+8.26}{2} \approx 10$ seconds
then
$N=\frac{\left(2.07 \times 10^{7}\right)\left(6.94 \times 10^{-4}\right)}{10}=1435$

With N and E determined, the most probable maximum value is,
$\mathrm{X}_{\mathrm{M}}=\sqrt{E} \quad \sqrt{\ln \mathrm{~N}}=9.95 \mathrm{KPSI}($ PEAK-TO-PEAK)
This indicates, on the basis of the limited data available, that a $\mathrm{C}-4$ type ship sailing n the North Atlantic for 1 year will probably not encounter a peak-to-peak stress variation greater than 9.95 Kpsi . From the two months of data that have been reduced, representing two of the worst months of the year, maximum observed value of stress was 8.30 Kpsi in interval 61-62 of voyage 173 of the S. S. WOLVERINE STATE during a Beaufort sea state of 10-12. During drydocking, the S. S. HOOSIER STATE was subjected to a change of stress of 9.0 Kpsi from the still water value to dry-onblocks condition. The predicted maximum value is, for the set of conditions under which the se data were gathered, about 1.2 times greater than the maximum encountered during the voyages and about 1.1 times the stress encountered during drydocking operations.

The calculation of N above is based on the assumption that the worst stress is induced by waves of length about equal of ship length (. 707 to 1.414 times ship length). Based on experience to date, the number of wave encounters has, in general, been greater than the N predicted above. For instance, during the interval cited (61-62, Voyage 173), 908 cycles of stress occurred during 80 minutes of recording time. This would imply a total of 2700 cycles in 4 hours.

$$
\begin{aligned}
\text { Using } N & =2700, \text { and } \sqrt{E}=3.7 \mathrm{Kpsi} \\
\mathrm{x}_{\mathrm{M}} & =10.29 \mathrm{Kpsi}
\end{aligned}
$$

Even taking $\mathrm{N}=4000, \mathrm{x}_{\mathrm{m}}=10.66 \mathrm{Kpsi}$.
Thus multiplying the anticipated number of cycles by a factor of nearly 3 results in only a 7% increase in most probable meximum stress variation.

Caution should be exercised in using a value of x_{M} as the basis for a final design stress, since, as can be seen from Fig. 14 and 15 , another probability must be introduced. This is related to the frequency of occurrence of a maximum value as compared to the most probable maximum. One way to side step this issue is to note that the high 99.8% bound in
the figures is nearly constant at $\frac{x_{M}}{\sqrt{E}}=4.0$. In
the above case with $\sqrt{E}=3.7 \mathrm{Kpsi}, \mathrm{X}_{\mathrm{M}}(99.8 \%)=$ $4(3.7)=14.8 \mathrm{Kpsi}$. Care must be used in compounding probabilities, however, a direct approach based on Gumbel's theory of extreme values ${ }^{6}$ is being explored. Basically, this method would utilize the maximum variation in each interval as input and permit direct predictions of maxima to be expected over long intervals. The data reduced here are basıc examples of the types of presentation that can be obtained from the information gathered. These results represent only a preliminary attempt to show what can be achieved. The studies will be continued to expand accuracies and to provide a more sound basis for longrange predictions.

MACHINE DATA REDUCTION

General

One of the principal reasons for selecting a magnetic tape data recording system was the opportunity of using high-speed computing machines for data reduction and analysis. Such equipment could also perform a number of tasks such as derivation of power spectral density data, which are not practical to obtain using manual data reduction. It was desired that the following information be supplied for each record interval:

1. Probability density of peak-to-peak variations (probably as the number of occurrences in each of a number of preselected ranges).
2. Number of occurrences in the interval.
3. Mean square (E).
4. Duration of interval.
5. Maximum variation in interval.

Early in the program, it was decided that power spectral density should not be given serious consideration in the primary data reduction problem.

Two general types of devices (digital and analog) were available at the time the problem was first considered. The general features of these classes of units will be discussed below. It should be borne in mind that the state of development of both generalized and special purpose digital and analog devices is quite rapid at the present time. Consequently, some
of the original consıderations were invalid in a short while, and the present picture will undoubtedly be altered in a few months. It has been necessary, however, to reach a decision on data reduction on the basis of the best available information at the time, and to proceed with the acquisition of services or equipment accordingly.

Digital Computer

The use of a generalized digital computer in the analysis of a collection of analog data requires two preliminary steps:

1. The data must be placed in digital form.
2. The digital form must match the format or language of the computer.

Digitizing the data and placing it on punched cards or tape, or magnetic tape, can be accomplished quite readily. Language conversion equipment is not usually available at computing centers. This situation is improving at the present time as techniques are being developed whereby small desk-type computers are being used as language conversion units to prepare data for ingestion by much larger devices.

Although the generalized digital computer possesses the very attractive advantage of complete flexibility in selection of analysıs program, it was decided that this class of device was not promising. The greatest objection was the fact that one or more intermediate processing steps, which probably could not be performed at the computing center, would be required. In addition, the total cost of extracting even the basic statistical information from a record interval was excessive.

Analog Computer

Compared to digital computation, the use of analog devices would be expected to result in less precision, higher speed, and, of course, less flexibility in data reduction. Once the device was purchased or constructed, data reduction costs would be quite nominal compared to digital analysis.

A probability distribution analyzer was available on the market at the tume this problem was being considered. This instrument was capable of measuring the time interval during
which the variable remained above a preset level during a given analysis period and could determine the cumulative probability distribution function of instantaneous value above a reference value. The unit could be adapted by the addition of a "sample and hold" device to determine the peak-to-peak distribution function. The sample and hold device had been supplied for operation on high-frequency data, and with a small amount of development could be adapted to data in the 14 to 50 cps range.

Specialized analog equipments for probability distribution and spectrel density analysis of tape recorded data have been built from standard components by the NASA at Langley Field, Virginia. These equipments are described in the paper "Analog Equipment for Processing Randomly Fluctuating Data" by Francis B. Smith, IAS Preprint 545, 1955. Although results are degraded somewhat in precision compared to that attainable with digital computation, this equipment can operate at higher speed with reasonable accuracy based on the statistical nature of the data and at the same time eliminate the need for conversion of the data to digital form.

The use of a larger data sample tends to enhance the accuracy attainable with either computational scheme. In the overall picture, accuracies of 0.1% in the computations are not warranted. Accuracies of $1,2,5$, or even 10% may be considered to be adequate. On the face of it, analog computation could cut calculation time by a factor of four and possibly more, with equipment which represents a reasonable purchase for a long-term project.

Based on these considerations, the acquisition of a special-purpose analog data reduction unit was recommended. This device, which is scheduled for delivery at the time of this writing, will be briefly described in the section following.

The Sierra Probability Analyzer

The probability analyzer manufactured by Sierra Research Corporation of Buffalo, New York, will accept the output of the present tape reproduction system after filtering to remove slamming signals. By the use of digital peak detectors, level counts would be detected and stored in a series of sixteen counters. Either peak-to-peak, or positive and negative amplitudes can be detected. Storage continues
until either the record interval has been completed or until a preset number of peak-topeak counts has been acquired. At this time the system automatically stops the analysis and provides for a readout cycle directly on a strip-chart recorder.

The information readout on the strip-chart recorder (as sequential signal levels, with appropriate calibrate and zero signals) includes the outputs of the 16 level occurrence counters (thus giving a complete histogram of number of occurrences versus signal level), the total number of counts, the mean value of the peak-to-peak signal level, the mean square value, the time duration of the analysis cycle, and the maximum peak-to-peak amplitude encountered during the interval under investigation. See Fig. 2. The unit then indexes automatically to the beginning of the next succeeding record, proceeds through the analysis portion of the cycle, and moves directly to the readout cycle. The statistical data are therefore available on the chart record in a form which permits a check of the fit of the recorded data with the theoretical distributions, and all other parameters required for future extreme value predictions are immediately available.

One of the biggest advantages of the Sierra unit is that the data will be played back at approximately 50 times real time. Thus, for each 160 -hour tape, something over 3 hours of actual data analysis time will be required on the instrument. Estimates indicate that compared to manual or digital computer data reduction, the Sierra unit will pay for itself in the reduction of approximately two channel years of data.

The Sierra unit will be used for the reduction of all data now on hand and forthcoming. Cross checks between the automatic reduction and manual reduction of the voyages reported herein will permit evaluation of both procedures.

ACKNOWIEDGMENT

This project is sponsored by the Ship Structure Committee and is under the advisory guidance of the Committee on Ship Structural Design of the National Academy of SciencesNational Research Council. The assistance of the Project Advisory Committee, with Dr. C. O. Dohrenwend as Chairman, is gratefully acknow ledged.

APPENDIX

NOTES ON STRESS DATA REDUCTION AND PRESENTATION

VOYAGE NUMBERS - The shipping line changed the voyage numbers for the first instrumented round trip of the S. S. WOLVERINE . STATE after the voyages had been completed. The original numbers were voyages 172 and 173. The new numbers are voyages 170 and 171. Thus, the log book data labeled voyage 172 corresponds to the reduced data labeled voyage 170 and log book data labeled voyage 173 corresponds to the reduced data labeled voyage 171 .

INTERVAI NUMBERS - The interval number indicates that the recorded data occurred between the specified two entries in the data log book.

SEA STATE NUMBERS - The sea state numbers are the Beaufort Numbers as described in "Table of Sea States Correspond to Beaufort Wind Scale."

REFERENCES

1. Bennett, R., "Stress and Motion Measurements on Ships at Sea," The Swedish Shipbuilding Research Foundation (Report No. 13), 1958.
2. Jasper, N. H., "Statistical Distribution Patterns of Ocean Waves and of WaveInduced Ship Stresses and Motion with Engineering Applications," Trans. SNAME, Vol. 64 (1956).
3. Jasper, N. H. et al., "Statistical Presentation of Motions and Hull Bending Moments of Essex Class Aircraft Carriers." Washington, D. C.: David Taylor Model Basin (Report 1251), June 1960.
4. Longuet-Higgins, M. S., "On the Statistical Distribution of the Heights of Sea Waves, " Journal of Marine Research, 11:3 (1952).
5. Jasper, N. H. et al., "Response to Wave Loads." Washington, D. C.: David Taylor Model Basin (Report 1537), June 1961.
6. Gumbel, E. J., "Statistical Theory of Extreme Values and Some Practical Applications, " National Bureau of Standards (Applied Maṭhematics Series Report), February 1954.

FIG. 1. SKETCH OF TYPICAL BENDING MOMENT RECORD.

FIG. 2. SKETCH OF DATA READOUT RECORD. (ILLUSTRATLNG TYPICAL HISTOGRAM)

FIG. 3. HISTOGRAM AND RAYLEIGH DISTRIBUTION RECORD INTERVAL 4-5; E = 3.95 (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 4. HISTOGRAM AND RAYIEIGH DISTRI BUTION RECORD INTERVAL 5-6; E $=2.86$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 5. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 6-7; $\mathrm{E}=1.82$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 6. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 11-12; E $=7.4$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 7. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 12-13; E = 9.28 (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 8. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 13-14; E $=7.09$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 9. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 14-15; E = 7.61 (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 10. HISTOGRAM AND RAYIEIGH DISTRIBUTION RECORD INTERVAL 15-16; $E=5.49$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 11. HISTOGRAM AND RAYLEIGH DISTRIBUTION RECORD INTERVAL 16-17; E = 5.74 (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 12. HISTOGRAM AND RAYLEIGH DISTRIBUTION RECORD INTERVAL 17-18; $E=5.09$ (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 13. CUMULATIVE PROBABILITY RECORD INTERVAL 14-15; E = 7.61 (S. S. HOOSIER STATE - VOYAGE 124)

FIG. 14. S. S. WOLVERINE STATE - SCATTER OF OBSERVED EXTREME STRESS VAIUES FROM DATA OF VOYAGES 170 and 171.

FIG. 15. S. S. WOLVERINE STATE - SCATTER OF OBSERVED EXTREME STRESS VALUES FROM DATA OF VOYAGES 172 AND 173.

FIG. 16. LOG-NORMAL DISTRIBUTION OF $E^{\frac{1}{2}}$ VALUES (S. S. WOLVERINE STATE - VOYAGES 170 AND 171)

FIG. 17. LOG $-N O R M A L$ DISTRIBUTION OF $E^{\frac{1}{2}}$ VALUES (S. S. WOLVERINE STATE - VOYAGES 172-173)

FIG. 18. LOG-NORMAL DISTRIBUTION OF $E^{\frac{1}{2}}$ VALUES (S. S. WOLVERINE STATE - COMBINED VOYAGES $170,171,172,173$)

TABLE 1. SS HOOSIER STATE DATA LOG--VOYAGE 124 WEST-SOUTHAMPTON TO NEW YORK/NORFOEK,

TABLE 2. SS WOLVERINE STATE DATA LOG--VOYAGE 170 EAST-NORFOLK/NEW YORK TO ROTTERDAM, DEC

TABIE 2. SS WOLVERINE STATE DATA LOG--VOYAGE 170 EAST-NORFOLK/NEW YORK TO ROTTERDAM, DEC

TABLE 2. SS WOLVERINE STATE DATA LOG--VOYAGE 170 EAST-NORFOLK/NEW YORK TO ROTTERDAM, DEC. 19, 1962--JAN. 2, 1963.

TABLE 3. SS WOLVERINE STATE DATA LOG--VOYAGE 171 WEST-ROTTERDAM TO NEW YORK, JAN. 2--19, 1963.

TABLE 3. SS WOLVERINE STATE DATA LOG--VOYAGE 171 WEST-ROTTERDAM TO NEW YORK, JAN, 2--19, 1963.

SS WOLVERINE STATE DATA LOG--VOYAGE 171 WEST-ROTTERDAM TO NEW YORK, JAN. 2--19, 1963.

SS WOLVERINE STATE DATA LOG--VOYAGE 172, NEW YORK TO ROTTERDAM JAN, 23--FEB. 8, 1963.

TABIE 4a．SS WOLVERINE STATE DATA LOG－－VOYAGE 172，NEW YORK TO ROTTERDAM JAN．23－－FEB．8， 1963.

																	ses							
			Positrion											Etraere areage turicuretiox										
				${ }_{20075}$	couss																			
r	$1 / 24 / 2+900$	ass5：			V_{4} ．	ous				－	44°	5	Eewe		cher	1a	3	990°	2.4	3.5	25	$\frac{250 \%}{0.80 \%}$		FAs，Mo M，
								4	4／4／2	5	cas	cuty	10． 2	4	120°	2．5	4－5	25	$\frac{250}{\frac{250}{950}}$		Easy notion			
7	\％	0， 9	3rsin	7\％\％sw	ar 7	\％．${ }^{6}$	81.2	46	${ }^{4 / 4} /{ }_{43}$	10	E	arenems	cte	4	45	2.6	P．${ }^{4}$	25^{-1}			Eoluanesil			
8		\％\％ 8			obt	4.4	83.1	44	45／44．	15	Sx $\times 1$	minctic	Tew	\％	145°	3－5	4.6	25	300 30		EAsy morde			
9	dayda code ${ }^{\text {a }}$	P9\％9，			6．4．	12.2	23.3	42	W5／42	\sim	8．8	Suthent	ART．											
10	$1 / 2 y / 120 \times 400$	cpres			SEs．	re2	8×4	44	50／4，	r	$\mathrm{sc}_{\times \sim}^{4}$													
／／	$1 / 7 / 6+$ pres	107\％ 6			6°	M， 0	82.1	42	497	5	Sse		$\%$	4	160°	3－5	4－6	25^{\prime}	$\frac{250}{150}$		Essy motor			
	macol／22／k3	1433．5			067	2	80.3	4	5%	20	8%	Cor	＊93	5	$23 .{ }^{\circ}$	5.8	4	40^{\prime}						
13		177．3	$42^{\circ} \mathrm{os}$ \％	$6 \%^{\circ} 99^{\circ}$	067.	16.5	79.	39	$4{ }^{4} \%$	16	ssm，	coremeser	樶戔	4	20.5	$5-7$	5．8	35			Ruafe cast，π ondecords，			
14	$2000 p_{10 / 4}$	me7．5			069	14.5	82.2	40	1／38	15	（s）	meath	7	4	280°	5.6	5.8	55°	$\frac{156}{206}$		Rhlug Eails			
is	3340／1／2／2e	\％43：			067	165	821	39	5430	18	2\％	2	\％ 0.7	5	315	$5 \cdot 8$	$7-9$	45＇	$\frac{500^{\prime}}{2955}$					
16		A77． 4			OTI	16.5	82.6	36	21／25	20	＊	ciseltey		5	290°	6.9	8.10	S0＇	$\frac{500}{10 \sigma^{\circ}}$					
17	otoo	1230.6			071	K．	82.3	40	24／22	20	Nater	Cith	L	5	300°	6－7	$8 \div 0$	50^{\prime}	$\frac{450}{260}$					
18	Hecol／helas	\％at 3			ay	154	8.7	34	20\％	20	27\％	Sumy	20\％	＋	3.5	58	8.10	so						
19	$125001 / 1 / 2 / 6210$	2，76．9	$490 \cdot 3 \%$	Sc ${ }^{\circ} 3 s^{\prime}$	－7，	15.7	814	－ 8	3／23	18	vow	Jrat，	apo	5	29	\bigcirc	7.9	50	2700		Rulwe mouscertit			
20	$1900 \% / 4 / 1 / c^{2}$	180\％．7			071	\％．0	0.9	42	21／20	19	＊w	arazenf $4 \sqrt{1} / \min _{0}$	P／	5	310	$6-8$	r\％	50＇	$\frac{1400}{290 \%}$		Poling woduestly：			
21.	tiosthatha	344			071	162	$8 / 2$	36	71／22	17	2an	anerest	\％？	5	290	3.8	2－9	45°						
23		137t．r			O71	4.0	8 H	${ }^{4}+$	${ }^{25 / 24}$	15	\ldots		a，x_{0}	4	290	4.7	6－8	45			Roilice Easily			
23	a7700 $1 / 4 / 6214$	440\％ 7			107	1／6．0	81．	32	25／30，	15	E	Ysay	Pr	4	9\％	3－5	4－6	35°			Esathem			
24		tast			av	5	80.4	$4{ }^{4}$	28／27	A	2		ze0．	3	090	3	3－5	0^{\prime}			telan saum			
2.5	15seo 1／0\％／2，	，\％\％\％\％	45＇s．${ }^{\text {c／N }}$	$48^{\prime \prime} \mathrm{Sa}^{\circ}$	虫：	15．0	82.5	3.2	25／7	20	NE		ado	5	045	\％－6	7.9	45			Rox			
26	／7800 $/ 2 / 8 / 8$	1507.5			0，5	150	80.8	36	18／37	／1	F		far	4	o90	$1-3$	4－6	30°	$\frac{4000^{\circ}}{850}$		Ausatyelint			
27	Tawe Liostan，	sto．			${ }_{85}{ }^{\text {a }}$	155	50.3	40	37／35	15	37	Stacht	20.7	4	15°	3－5	s－7	40°	${ }^{600^{\circ}}$					
28	10230 7 \％ $3 / 4$	＜s52． 8			OP2	irs	\％r．4	39	${ }^{3} \mathrm{Sb}_{6}$	14	a＇w	－	ado	4	3200	3．5．	4	40°			Rotiva modearestr			
29	$10600 / 1 / p_{0} / 2$	，5，5，5）			O8L	15.5	80？	42	37／55	14	N	oreces	P	4	000°	3－5	4－6	40°			Roung Eaily ，tut			
	Weos／／3／3／2	14.08 .6			00^{2}	SSS	120	54	\％／39		24	Beewert	fag	4	3\％ 0°	3．\％	4－6	$4 a^{\prime}$	$\frac{300^{\circ}}{180^{\circ}}$		athy yenedy			
31		Itior	$46 \cdot 38 \mathrm{~m}$	$40 \% \%$	0.82	150	$8 \cdot 7$	58	${ }^{4} 4 \psi_{\nu_{1}}$	\bigcirc	$\stackrel{\sim}{\sim}$	crectic｜	Cocc	3	cou＇	2.4	s－s	35＇	\％o．		Acitwe kesity			
32	17800%	exts			c82	15.0	81．2	56	47／4	13	ν_{ν}	arerast	tw	4	310°	3－4	4－6	40°	$\frac{500}{200}$		$\ell_{\text {min }}$ Enily			
33	23ain／isode	notre			0.3	$4 d$	80.2	S\％	4／43	14	ny	$\varepsilon_{\text {aracou }}$	20．9	4	－3140	3－4	\％ 6	10°						
34	020as $1 / 3 / 4 / 2$	17397			28.2	16.0	40．0	53	4／／\％	10	N	eatere	星的	3	3.55°	2.4	3－5	30^{\prime}	$\frac{600^{\circ}}{230}$		Ruand Ersiny			
35	tioo／p／ctr	177\％．			082	16.0	79.1	54	$4 / 4$	12	$\stackrel{ }{N}$	crid	p_{w}	4	0000°	2－4	4－6	35°	$\frac{750}{250}$		Rellur Eavib			
14		Mas？			$1{ }^{1} 2$	LO	757	52	${ }_{5 / 4}^{4 / 4}$	n	80， 2	Rudy	， 498	3	． 340°	1.3	35	3						
1.37		， \boldsymbol{r}_{3}	4 $47^{\circ} z^{\prime} \times$	30020\％	2\％ 2	15.5	24.9	52	${ }^{* 8 / 46}$	\％	$\sim_{N W E}$		退近	03	225	－3	3－5	3 c	$\left\lvert\, \begin{aligned} & 489^{\circ} \\ & 290\end{aligned}\right.$		Reckidestastay			

TABLE 4a. SS WOLVERINE STATE DATA LOG--VOYAGE 172, NEW YORK TO ROTTERDAM JAN. 23--FEB. 8, 1963.

TABLE 4b. SS WOLVERINE STATE DATA LOG--VOYAGE 173, ROTTERDAM TO NEW YORK, FEB. 11--22, 1963.

TABLE 4b. SS WOLVERINE STATE DATA LOG--VOYAGE 173, ROTTERDAM TO NEW YORK, FEB. 11--22, 1963.

COMPLETE MANUAL STRESS ANALYSIS
 TABLE 5. $\frac{\text { SS HOOSIER STATE }}{\text { NORFOLK, DEC. } 11-14, ~}-\overline{1962 . ~ V O Y A G E ~} 124$ WEST-SOUTHAMPTON TO NEW YORK/

$2-3$	30	526	-	-	1.0	1.32	+32
$3-4$	30	532	-	-	2.15	2.60	+21
$4-5$	30	598	3.95	1.99	5.23	5.07	-3
$5-6$	30	538	2.86	1.69	3.69	4.24	+15
$6-7$	30	532	1.82	1.34	3.38	3.48	+3
$7-8$	30	494	-	-	2.46	2.56	+4
$8-9$	30	378	-	-	2.54	2.29	-9
$9-10$	30	404	-	-	1.77	2.01	+13
$10-11$	30	636	-	-	2.77	2.54	-8
$11-12$	70	912	7.4	2.72	7.69	7.10	-7
$12-13$	45	604	9.28	3.05	8.08	7.68	-5
$13-14$	60	518	7.09	2.66	6.92	6.60	-4
$14-15$	45	422	7.61	2.76	6.46	6.75	+4
$15-16$	45	384	5.49	2.34	5.15	5.72	+11
$16-17$	45	693	5.74	2.40	6.46	6.09	-5
$17-18$	30	666	5.09	2.26	5.92	5.73	-3

TABLE 6a. $\frac{\text { SS WOLVERINE STATE }}{\text { ROTTERDAM; DEC }}$ - VOYAGE 170 EAST-NORFOLK/NEW YORK TO $\frac{\text { ROTTERDAM; DEC. } 19,1962-\text { - JAN } 2,1963 .}{}$

$3-4$	30	217	0.944	0.307	1.65	1.71	+4
$4-5$	30	166	1.15	1.07	2.70	2.40	-11
$5-6$	30	412	1.31	1.14	2.55	2.79	+9
$6-7$	30	446	1.25	1.12	2.65	2.73	+3
$7-8$	30	406	1.13	1.06	2.00	2.58	+29
$8-9$	30	332	1.16	1.08	2.50	2.56	+2
$9-10$	50	516	0.710	0.843	1.75	2.11	+20
$10-11$	30	216	0.860	0.927	1.75	2.15	+23
$11-12$	30	197	1.04	1.02	2.15	2.35	+9
$12-13$	30	187	2.31	1.52	4.10	3.45	-9
$13-14$	30	205	3.88	1.97	4.10	4.49	+9
$14-15$	30	188	3.88	1.97	4.60	4.45	-3
$15-16$	30	257	2.93	1.71	3.30	4.02	+22
$16-17$	30	195	4.26	2.06	5.10	4.73	-7

				RMS	Observed	Calculated	
	Record	Total	VarLance	Stress	Maximump-P	Maximum P - P	
Record	Duration	Counts	(E)	($\sqrt{\text { E }}$)	Stress	Stress	
Incerval	(Minutes)	(N)	(KPSI) ${ }^{2}$	(KPSI)	(X_{11}) (KPSI)	(X^{\prime}) (KPSI)	\% Difference

TABLE 6a. SS WOLVERINE STATE - - VOYAGE 170 EAST-NORFOLK/NEW YORK TO ROTTERDAM, DEC. 19, 1962-JAN 2, 1963.

17-18	30	248	2.39	1.55	2.80	3.64	+29
18-19	30	191	2.61	1.62	3.15	3.71	+18
19-20	30	311	1.85	1.36	3.20	3.26	$+2$
20-21	30	175	2.21	1.49	3.50	3.38	- 3
21-22	30	214	2.20	1.48	3.00	3.40	$+13$
22-23	30	167	2.49	1.58	3.25	3.54	$+9$
23-24	30	356	2.14	1.46	3.40	3.53	$+4$
24-25	30	252	2.38	1.54	3.50	3.62	+ 3
25-26	30	292	2.70	1.64	3.85	3.90	+1
26-27	30	210	3.01	1.73	3.50	4.00	+14
27-28	30	266	2.83	1.68	4.15	3.96	- 4
28-29	30	208	3.01	1.73	3.90	3.96	+ 2
29-30	30	226	4.17	2.04	4.15	4.71	+14
30-31	30	193	5.36	2.31	5.10	5.29	+ 4
31-32	30	208	6.12	2.47	5.95	5.66	- 5
32-33	30	211	4.08	2.02	4.10	4.63	+13
33-34	30	184	4.36	2.09	3.85	4.72	+22
34-35	30	200	5.43	2.33	5.10	5.36	$+5$
35-36	30	194	4.00	2.00	4.95	4.60	- 7
36-37	30	226	3.60	1.90	5.00	4.39	-12
37-38	30	264	4.05	2.01	3.90	4.74	+21
38-39	30	398	2.35	1.53	3.85	3.75	- 3
39-40	30	496	3.30	1.82	4.00	4.50	+12
40-41	30	486	3.46	1.86	3.60	4.63	$+28$
41-42	30	435	3.87	1.97	5.05	4.87	- 4
42-43	30	461	4.54	2.13	6.10	5.28	-13
43-44	30	379	3.68	1.91	5.50	4.62	-16
44-45	30	481	3.56	1.89	4.50	4.71	+ 5
45-46	30	509	3.43	1.85	3.90	4.63	+19
46-47	30	492	4.77	2.18	4.70	5.43	+16
47-48	30	466	5.51	2.35	4.85	5.83	+21
48-49	30	423	4.97	2.23	5.00	5.49	+10
49-50	30	362	6.05	2.46	5.65	5.98	$+6$
50-51	30	470	5.51	2.35	6.00	5.83	- 3
51-52	30	506	4.31	2.30	5.60	5.75	$+3$
52-53	30	435	4.33	2,08	5.50	5.14	- 7
53-54	30	433	2.98	1.73	4.75	4.26	-12

				RMS	Observed	Calculated	
	Record	Total	Variance	Stress	Maximump-p	Maximam P - P	
Record	Duration	Counts	(E)	($\sqrt{\mathrm{E}}$)	Stress	ress	
Interval	(Minutes)	-(N)	(KPSI) ${ }^{2}$	(KPSI)	($\mathrm{X}_{\text {IT }}$) (KPSI)	($\mathrm{X}_{\text {'II }}$)(KPSSI)	\% Difference

TABLE 6a. SS WOLVERINE STATE - - VOYAGE 170 EAST-NORFOLK/NEW YORK TO ROTTERDAM, DEC. 19, 1962--JAN. 2, 1963.

$54-55$	30	584	2.94	1.71	4.35	4.31	-1
$55-56$	30	414	0.942	0.307	2.65	2.75	+4

TABIE 6b. SS WOLVERINE STATE - - VOYAGE 171 WEST ROTTERDAM TO NEW YORK JAN. 2--19, 1963.

1-2	30	294	2.03	1.42	3.60	3.32	-8
2-3	30	255	1.90	1.39	3.80	3.27	-14
3-4	30	350	1.72	1.31	2.80	3.17	+13
4-5	30	264	2.28	1.50	3.60	3.54	- 2
5-6	30	311	2.00	1.41	3.10	3.38	$+9$
6-7	30	435	1.79	1.34	3.10	3.31	$+7$
7-8	30	380	2.32	1.52	3.60	3.71	$+3$
8-9	30	416	3.98	1.99	4.90	4.90	± 0
9-10	30	464	4.14	2.03	4.60	5.04	+10
10-11	30	460	4.87	2.20	4.85	5.46	+13
11-12	30	395	4.43	2.10	5.90	5.15	-13
12-13	30	471	4.25	2.06	5.40	5.11	- 5
13-14	30	423	2.83	1.68	4.10	4.13	$+1$
14-15	30	519	3.23	1.79	5.00	4.48	- 1
15-16	30	410	3.89	1.97	4.30	4.83	+12
16-17	30	420	5.15	2.27	5.95	5.58	- 6
17-18	30	377	6.90	2.63	7.15	6.42	-10
18-19	90	1143	7.34	2.70	7.50	7.16	- 5
19-20	30	411	6.89	2.62	6.30	6.42	$+2$
20-21	30	420	5.64	2.37	5.95	5.83	- 2
21-22	30	377	6.35	2.52	5.95	6.15	+ 3
22-23	30	437	5.90	2.43	6.85	6.00	-12
23-24	30	336	5.13	2.26	5.15	5.22	$+1$
24-25	30	468	5.28	2.29	5.00	5.68	+14
25-26	30	472	5.13	2.26	5.25	5.60	$+7$
26-27	30	441	6.91	2.62	5.30	6.47	+22
27-28	30	409	5.50	2.36	5.10	5.73	+12
B-29	30	420	4.91	2.22	5.05	5.46	$+8$
29-30	30	371	4.56	2.14	5.30	5.20	- 2
30-31	30	456	3.92	1.98	4.55	4.89	$+7$
31-32	30	419	2.66	1.63	4.90	4.01	-18
32-33	30	554	3.03	1.74	4.80	4.37	- 9

Record	Record Duration	Total	Variance	RMS	Observed	Calculated	
				Stress	Meximumpe	Maximum P - P	
		Counts	(E)	($\sqrt{\mathrm{E}}$)	Stress	Stress	
Interval	(Minutes)	(N)	(KPSI)	(KPSI)	(X) (KPSI)	(X^{\prime}) (KPSI)	\% Difference

TABLE 6b. $\frac{\text { SS WOLVERINE STATE }}{\text { JAN. } 2--19,1963 .}$
VOYAGE 171 WEST ROTTERDAM TO NEW YORK

33-34	30	459	4.04	2.01	4.90	4.96	$+1$
34-35	30	469	4.63	2.15	4.55	5.33	+17
35-36	30	417	4.20	2.05	5.20	5.00	- 4
36-37	30	508	3.75	1.94	5.20	4.77	-10
37-38	30	538	1.92	1.39	4.20	3.49	-17
38-39	30	496	4.92	2.22	5.10	5.48	$+7$
39-40	30	382	5.36	2.32	5.05	5.66	+12
40-41	30	402	7.87	2.81	6.60	6.88	$+4$
41-42	30	403	5.57	2.36	6.40	5.78	-10
42-43	30	417	4.37	2.09.	5.20	5.14	- 1
43-44	30	472	4.17	2.04	5.20	5.06	- 3
44-45	30	525	2.84	1.69	4.95	4.23	-15
45-46	30	469	3.95	1.99	4.60	4.94	$+7$
46-47	30	449	4.17	2.04	6.15	5.00	-19
47-48	30	479	3.48	1.87	4.05	4.64	+15
48-49	30	474	2.51	1.58	4.30	3.92	- 9
49-50	30	554	2.60	1.61	4.25	4.04	- 5
50-51	30	495	1.78	1.33	3.70	3.29	-11
51-52	30	549	1.76	1.33	3.70	3.31	-11
52-53	30	547	2.04	1.43	3.95	3.56	-10
53-54	30	570	1.55	1.24	3.25	3.12	- 4
54-55	30	556	1.53	1.24	4.00	3.12	-22
55-56	30	634	1.29	1.14	3.65	2.90	-21
56-57	30	484	0.43	0.65	1.90	1.62	-15
57-58	30	144	2.65	1.63	4.25	3.63	-15
\$-59	30	180	4.47	2.11	5.05	4.81	- 5
59-60	30	257	3.78	1.94	4.00	4.58	+15
60-61	30	219	4.00	2.00	5.70	4.64	-19
61-62	30	181	2.44	1.56	3.25	3.56	+10
62-63	30	21.3	1.90	1.38	4.30	3.19	-26
63-64	30	123	2.42	1.50	3.10	3.26	+ 5
64-65	30	182	1.00	1.00	2.75	2.28	-17
65-66	30	178	0.89	0.94	1.95	2.14	+10
66-67	30	135	0.43	0.65	1.65	1.42	-14
67-68	30	157	0.57	0.75	1.60	1.69	+ 6
68-69	30	136	0.77	0.88	1.95	1.93	- 1
69-70	30	231	0.34	0.58	1.70	1.35	-21

				RMS	Observed	Calculated	
	Record	Total	Variance	Stress	Maximumpep	Maximum \boldsymbol{P} - \boldsymbol{P}	
Record	Duration	Counts	(E)	($\sqrt{\mathrm{E}}$)	Stress	Stress	
Interval	(Minuces)	(N)	(KPSI) ${ }^{2}$	(KPSL)	(X) (KPSI)	(X^{\prime}) (KPSSI)	\% Differenc

TABLE 7a. SS WOIVERINE STATE JAN. 23--FEBB. 8, 1963.

1-2	30	-	----	--	<0.5	----	---
2-3	30	---	----	***-	<1.25	----	--*
3-4	30	---	---*	--	<1.25	--	---
4-5	30	---	----	----	< 0.5	-*-*	---
5-6	30	---	-	----	< 0.5	----	---
6.7	30	---	--.*	----	<0.5	----	---
7-8	30	-**	----	----	<0.5	----	---
8-9	30	---	-	----	<0.5	----	---
9-10	30	---	---*	----	<1.25	----	---
10-11	30	---	-*--	-	<1.25	+--	---
11-12	30	---	--	--	<1.0	-	---
12-13	30	---	----	----	<1.0	----	---
13-14	30	287	1.16	1.08	1.95	2.57	+32
14-15	30	215	1.76	1.33	3.00	3.09	$+3$
15-16	30	195	3.24	1.80	3.50	4.14	+18
16-17	30	204	2.42	1.56	3.50	3.55	$+1$
17-18	30	228	3.08	1.75	3.90	4.04	$+4$
18-19	30	221	5.80	2.40	5.50	5.59	$+2$
19-20	30	204	4.13	2.03	4.55	4.69	$+3$
20-21	30	206	3.87	1.97	4.45	4.50	$+1$
21-22	30	198	4.33	2.08	4.20	4.78	+14
22-23	30	206	2.84	1.69	4.55	4.02	-12
23-24	30	214	4.63	2.15	4.70	4.99	$+6$
24-25	30	198	2.09	1.45	3.45	3.34	- 3
25-26	30	189	1.94	1.39	2.90	3.18	+10
26-27	30	188	1.31	1.14	2.80	2.61	- 7
27-28	30	241	2.47	1.57	3.40	3.67	$+8$
28-29	30	222	3.57	1.89	3.90	4.38	-12
29-30	30	242	3.35	1.83	3.50	4.30	-23
30-31	30	204	2.32	1.52	4.25	3.50	-18
31-32	30	215	2.98	1.73	4.50	4.01	-11
32-33	30	217	2.88	1.70	3.80	3.94	$+4$
33-34	30	201	3.34	1.83	4.05	4.10	$+1$
34-35	30	178	3.93	1.98	5.00	4.51	-10
35-36	30	217	2.47	1.57	3.20	3.64	+14
36-37	30	185	2.77	1.66	4.30	3.78	-12
37-38	30	196	2.55	1.60	3.75	3.68	- 2

TABLE 7a. $\frac{\text { SS WOLVERINE STATE }}{\text { JAN. } 23-- \text { FEB. } 8,1963 .}$

38-39	30	203	2.06	1.44	3.05	3.33	$+9$
39-40	30	164	2.51	1.58	3.55	3.57	+1
40-41	30	154	2.08	1.44	3.60	3.31	- 8
41-42	30	205	1.77	1.33	3.45	3.07	-11
42-43	30	189	2.11	1.45	3.25	3.34	+ 3
43-44	30	169	1.34	1.16	2.35	2.62	+11
44-45	30	195	1.47	1.21	2.78	2.65	- 5
45-46	30	131	1.14	1.07	2.35	2.36	$+1$
46-47	30	192	1.51	1.23	2.50	2.82	+13
47-48	30	161	1.31	1.14	2.30	2.57	+12
48-49	30	189	1.53	1.24	2.90	2.84	- 5
49-50	30	200	1.23	1.11	2.70	2.55	- 6
50-51	30	164	1.21	1.10	2.75	2.49	- 9
51-52	30	189	1.41	1.19	2.60	2.73	+ 5
1-2	30	142	0.92	0.96	2.05	2.14	$+4$
2-3	30	150	0.45	0.67	1.55	1.50	- 3
3-4	30	---	-	--	< 1.0	----	*--
4-5	30	***	----	-*	<0.5	---*	--*
5-6	30	**-	--	-**-	<0.5	----	-**
6-7	30	---	----	*	<0.5	----	-
7-8	30	---	-***	----	<0.5	----	**
8-9	30	---	----	---*	<1.0	--**	---
9-10	30	285	0.79	0.89	2.45	2.12	-13
10-11	30	140	0.43	0.66	1.50	1.46	- 3
11-12	30	234	0.48	0.69	1.50	1.62	+8
12-13	30	---	----	---*	<0.5	----	-*
13-14	30	---	-*-*	----	<0.5	--*	---
14-15	30	***	----	----	<0.5	****	--
15-16	30	189	0.62	0.79	1.90	1.80	- 5
16-17	30	132	0.70	0.84	1.90	1.85	- 3
17-18	30	---	----	----	<1.0	----	**
18-18A	30	174	0.65	0.81	1.50	1.85	+23

TABLE 7b. SS WOLVERINE STATE - - VOYAGE 173, ROTTERDAM TO NEW YORK
FEB. 11--22, 1963.

18A-19	30	334	0.46	0.68	1.30	1.61	+24
19-20	30	702	1.05	1.02	2.80	2.61	-8
20-21	30	675	1.35	1.16	3.20	2.96	-8
21-22	30	541	2.73	1.65	3.55	4.14	-17
22-23	30	520	3.68	1.92	4.45	4.80	$+8$
23-24	30	506	3.45	1.86	6.10	4.65	-24
24-25	30	581	3.43	1.85	4.40	4.66	$+6$
25-26	30	599	3.35	1.83	5.40	4.63	-14
26-27	30	651	3.03	1.74	4.60	4.43	-4
27-28	30	574	2.90	1.70	4.60	4.28	- 7
28-29	30	603	2.86	1.69	3.85	4.28	+11
29-30	30	574	2.88	1.70	4.28	4.40	- 3
30-31	30	595	1.84	1.36	4.20	3.44	-18
31-32	30	401	1.36	1.17	3.15	2.87	- 9
32-33	30	318	1.18	1.09	2.50	2.62	+ 5
33-34	30	252	0.75	0.87	2.10	2.04	- 3
34-35	30	398	0.92	0.96	2.15	2.35	+10
35-36	30	351	0.87	0.93	2.55	2.25	-12
36-37	30	350	0.73	0.86	2.00	2.08	$+4$
37-38	30	350	0.72	0.85	2.05	2.06	+1
38-39	30	371	0.93	0.97	2.60	2.36	-12
39-40	30	683	1.72	1.31	3.30	3.35	+ 2
40-41	30	594	2.36	1.54	3.70	3.90	+ 5
41-42	30	559	2.07	1.44	3.25	3.63	+12
42-43	30	543	2.09	1.45	4.10	3.64	-11
43-44	30	583	1.97	1.40	3.80	3.53	- 7
44-45	30	515	2.82	1.68	4.30	4.20	- 2
45-46	30	345	3.78	1.94	4.15	4.69	+13
46-47	30	533	5.98	2.45	5.70	6.15	+ 8
47-48	30	357	5.48	2.34	6.05	5.66	- 6
48-49	30	370	5.84	2.42	5.00	5.88	+21
49-50	30	415	4.38	2.09	5.45	5.14	-6
50-51	30	371	4.33	2.08	4.30	5.05	+17
51-52	30	352	2.85	1.69	4.20	4.09	- 3
52-53	30	375	1.99	1.41	3.00	3.44	+15
53-54	30	476	2.34	1.53	3.50	3.79	$+8$
54.55	30	590	4.44	2.11	6.35	5.34	-16

TABLE 7b. $\frac{\text { SS WOLVERINE STATE }}{\text { FEB. } 11--22,1963 .}$

55-56	30	611	2.69	2.64	4.35	4.15	- 5
56-57	30	541	1.02	1.01	2.25	2.54	+13
57-58	30	343	. 0.69	0.83	1.85	2.01	+9
58-59	30	234	1.35	1.16	3.05	2.70	-12
59-60	30	584	7.99	2.83	7.70	7.13	- 7
60-61	60	694	7.86	2.80	6.70	7.17	$+7$
61-62	80	908	11.32	3.36	8.30	8.77	$+7$
62-63	45	521	8.30	2.88	7.20	7.20	0
63-64	30	349	6.91	2.63	5.45	6.36	+17
64-65	30	298	9.01	3.00	6.30	7.17	+14
65-66	30	291	7.81	2.79	5.60	6.64	+19
66-67	30	560	3.27	1.81	5.55	4.56	-18
1-2	30	519	1.37	1.17	2.80	2.92	- 4
2-3	30	---	----	--	<1.25	--	-
3-4	30	219	3.28	1.81	3.50	4.20	+20
4-5	30	231	3.33	1.82	3.95	4.25	$+8$
5-6	30	498	4.42	2.10	5.10	5.23	+ 3
6-7	30	448	6.44	2.54	6.27	6.90	+10
7-8	30	492	4.00	2.00	5.50	4.96	-10
8-9	30	576	2.47	1.57	4.25	3.96	- 7
9-10	30	674	3.51	1.87	6.05	4.77	-21
10-11	30	613	4.27	2.07	5.10	5.24	$+3$
11-12	30	562	1.24	1.11	2.70	2.80	+4
12-13	30	\cdots	----	*---	<1.0	--**	-
13-14	30	*--	----	-	$\leqslant 1.0$	--	\cdots
14-15	30	-*-	----	--	<1.0	-*--	-
15-16	30	---	----	----	$\leqslant 1.0$	----	---

SHIP HULL RESEARCH COMMITTEE

Division of Engineering \& Industrial Research National Academy of Sciences-National Research Council

Chairman:

A. G. Mumma
Vice President
Worthington Corporation

Members:
Hollinshead de Luce
Shipbuilding Division
Bethlehem Steel Co.
J. Harvey Evans

Professor of Naval Architecture
Massachusetts Institute of Technology
M. G. Forrest

Vice President, Naval Architecture Gibbs \& Cox, Inc.

James Goodrich
Vice President and General Manager
Todd Shipyards, Los Angeles Div.
N. J. Hoff

Head, Dept. of Aeronautics \& Astronautics Stanford University
M. W. Lightner

Vice President, Applied Research
U. S. Steel Corporation
J. R. Low, Jr.

Metallurgy \& Ceramics Research Dept.
General Electric Research Laboratory

Arthur R. Lytle	R. W. Rumke
Director	Executive Secretary

