

SSC-166

Reversed-Bend Tests of ABS-C Steel with AS-Rolled and Machined Surfaces

by

K. SATOH AND C. MYLONAS

SHIP STRUCTURE COMMITTEE

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS, DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY UNITED STATES COAST GUARD, TREASURY DEPT. MARITIME ADMINISTRATION, DEPT. OF COMMERCE AMERICAN BUREAU OF SHIPPING

ADDRESS CORRESPONDENCE TO:

SECRETARY SHIP STRUCTURE COMMITTEE U. S. COAST GUARD HEADQUARTERS WASHINGTON 25, D. C.

April 1965

Dear Sir:

In order to study the effect of gross strain upon the mechanical and metallurgical properties of steel and to relate these variables to steel embrittlement, the Ship Structure Committee is sponsoring a project at Brown University entitled "Macrofracture Fundamentals." Herewith is a copy of the Third Progress Report, SSC-166, <u>Reversed-Bend Tests of ABS-C Steel with As-Rolled and Machined Surfaces</u> by K. Satoh and C. Mylonas.

The project is conducted under the advisory guidance of the Ship Hull Research Committee of the National Academy of Sciences-National Research Council.

Comments on this report would be welcomed and should be addressed to the Secretary, Ship Structure Committee.

COCESSION for CFSTI WHITE SECTION 09**C** UFF SECTION A S ACROSHECCE 1981 171CAT З¥ DISTRIBUTION / AVAILABILITY SORES DIST. Applit, and/or SPECIAL

Sincerely yours,

Cres

John B. Oren Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee

SSC-166

Third Progress Report of Project SR-158 "Macrofracture Fundamentals"

to the

Ship Structure Committee

REVERSED-BEND TESTS OF ABS-C STEEL WITH AS-ROLLED AND MACHINED SURFACES

by

K. Satoh and C. Mylonas

Brown University Providence, Rhode Island

under

Department of the Navy Bureau of Ships Contract NObs-88294

Washington, D.C. National Academy of Sciences-National Research Council April 1965

ABSTRACT

Comparative tests between bars with asrolled and with machined surfaces show a small difference in the compressive prestrain needed to exhaust the original extensional ductility of the steel, as this is determined by the reversed bend test.^{9,10} Machined bars show a higher exhaustion limit (prestrain) than as-rolled bars by 0.03 at 70 F and 0.06 at -16 F. Stress Calculations show that the most brittle fractures may occur at applied elastic macroscopic stresses as low as about 50 ksi at 70 F and about 30 ksi at -16 F. Highly ductile bars sustained a stress close to 90 ksi at both test temperatures.

CONTENTS

Page

PURPOSE OF THE TESTS	• • • • • •		•••		 1
MATERIAL					 1
TESTS FOR THE EFFECT OF	SURFACE	CONDITION	Γ.,	•••	 2
TESTS FOR SIZE EFFECT					 2
STRESS AT FRACTURE			, 		 2
CONCLUSIONS				•••	 7
ACKNOWLEDGMENT				•••	 10
REFERENCES					 10
APPENDIX					 12

- - ----

. .____

PURPOSE OF THE TESTS

The important influence of the history of strain and temperature on the ductility of structural steel and on the initiation of brittle fracture have been demonstrated and discussed in several earlier papers.¹⁻¹⁵ It was shown that precompressed notched mild steel plates tested in central static tension would develop arrested cracks or would fracture at an average net stress as low as 10% of the original yield point. Without prior compressive prestraining this steel, like all other mild steels tested in the laboratory, would not fracture before general yielding of the net section, in spite of the most severe notches and temperatures below Charpy transition. The reduction of the extensional ductility caused by cold or hot compression has been studied with axially compressed bars⁵⁻⁷, 14-17 and with reversed-bend sheets 18-20 and bars. -1^{5} A remarkable result of these tests was the sudden drop of the extensional ductility at a narrowly determined limit of the prestrain, henceforth called the exhaustion limit for the particular testing conditions. Prestrains lower than this limit had little effect on the extensional ductility. This behavior was particularly evident in the reversed bend test (Fig. 1, 2) in which the compressive prestrain at the interior of the bent bar was calculated after stages la and 1b from the radius of curvature and the bar thickness. The test load (as in Fig. 1c) of bars of an ABS-C steel is plotted in Fig. 3 against the prestrain for reversed-bending at 70 F (left) or -16 F (right). Bars prestrained by 0.59 or more and tested at 70 F (left) developed arrested cracks or fractured at loads smaller than 20001b and corresponding extensional strains of the order of 0.01, with hardly any opening of the Ushaped bar. Bars prestrained by less than 0.59 did not fracture even at a load of 5000 lb., at which the bent bars opened up by very large angles corresponding to strains considerably higher than 0.10. For bars tested by unbending at -16 F the exhaustion limit was 0.55 to 0.57 (compressive prestrain). The sudden transition of the ductility makes it unnecessary to measure exactly the strains at fracture. It is only required to know whether the strains are large or very small, and this is directly reflected in the magnitude of the load. Thus the reversed bend test is very simple, requiring only a measurement of the maximum applied load, and the exhaustion limit is a realistic measure of the quality of the steel since it measures its resistance to embrittlement by prestraining.

Earlier tests⁹ did not show any significant size effect for bars varying in thickness from 1/8 in. to 3/4 in., and in width from 1 in. to 4 in. A small number of tests had shown that bars with machined surfaces probably had a slightly higher exhaustion limit as compared with bars having surfaces in the as-rolled condition. The present tests were designed for a more systematic study of the effect of the surface condition and of size on the exhaustion limit determined by the method of reversedbending.

MATERIAL

The material used was 1-1/4 in. thick plate of ABS-C steel (1956 classification) and belonged to the same heats as plates tested at the National Bureau of Standards. The details of plate preparation, composition, and properties are given in Table I (NBS data).

FIG. 2. SHACKLES FOR TESTING PRE-BENT BARS IN REVERSED BENDING.

TESTS FOR THE EFFECT OF SURFACE CONDITION

Plates 242, 243, 245, and 246 of heats C-4 and C-5 were used (Table I) as their finishing temperatures, yield and tensile strength, elongation, and NDT temperature were almost identical. Fifty-eight 1.00 in. wide bars were cut in the direction of rolling, and their thickness was reduced by one-sided machining from 1.25 in. to 0.75 in. The bars were bent to various radii(Fig. 1a, b) half of them with the as-rolled face and the other half with the machined surface at the interior of the bend. The final test in reverse bending was done either at 70 F or at -16 F, in a tension machine equipped with specially constructed sets of shackles for 0.75 in. thick bars, and also for the 1.25 in. thick bars (Fig. 2) used in the tests for size effect. The test results are given in Tables II and III, and in the graphs of Fig. 3 and 4. Machining of the surface raised the exhaustion limit from about 0.59 to about 0.66 for final testing at 70 F, and from about 0.56 to about 0.59 for final testing at -16 F. The final results are summarized in Table V, where they

are also compared with the exhaustion limits of other steel proviously tested in reversed bend-ing.

TEST'S FOR SIZE EFFECT

Comparative tests of bars of full plate thickness (1.25 in.) and of reduced thickness (0.75 in.) by one-sided machining were also made. ABS-C steel heat C-7 was used (Table I), and all tests were performed with the same as-rolled face on the interior of the bend. The test results are given in Table IV and Fig. 5, and the corresponding exhaustion limits are indicated on the last two lines of Table V. The exhaustion limit is slightly different for heat C-7 than for C-4 or C-5, but does not change with the thickness.

STRESS AT FRACTURE

An attempt was made to calculate the macroscopic fracture stress at the inner surface of the bent bars, on the assumption of a smooth bar surface. The bending moment at fracture was calculated from the load and the moment arm, which were measured in each test. But the stress-distribution depends also on the exact stress-strain relations of the prestrained steel, and these were not known. The exact bending stress just before fracture can be found only when the stresses are elastic, i.e. for fractures at very low loads. It can also be estimated for fractures at large loads and deformations, when considerable strain hardening has occurred and the slope of the stress-strain curve is substantially reduced, so that the stress distribution will approach the fully plastic bending stress distribution with a yield stress equal to the fracture stress. In intermediate situations the stress cannot be found exactly from the existing data, but it will certainly lie between the extreme values of stress calculated for an elastic and for a perfectly plastic stress distribution. These two extremes were calculated for all fractures. The upper limit of stress (clastic) is likely to be correct for fractures at the lowest loads, and the lower limit of stress (fully plastic) for fractures at the highest loads.

The deformation of the cross-section due to the large bending strains was also taken into consideration. The true shape of the deformed cross-section is curvilinear (Fig. 6, inset) and was approximated by a trapezoid. It was also assumed that the line parallel to the bases and

FIG. 3. EXHAUSTION LIMITS OF ABS-C (1956) STEEL TESTED ON AS-ROLLED SURFACE THICKNESS 0.75 IN. MACHINED FROM 1.25 IN. TESTS AT 70 F (LEFT) AND -16 F (RIGHT)

FIG. 4. EXHAUSTION LIMITS OF ABS-C (1956) STEEL TESTED ON MACHINED SURFACE THICKNESS 0.75 IN. MACHINED FROM 1.25 IN. TESTS AT 70 F (LEFT) AND -16 F (RIGHT).

-3-

TABLE I. PROPERTIES OF 1-1/4 IN. THICK ABS-C STEELS (1956)*

TABLE II. REVERSED-BEND TESTS. EFFECT OF SURFACE CONDITION 0.75 IN. THICK BARS PRESTRAINED AND TESTED AT 70 F. ABS-C STEEL (1956)

STEEL	Т	SIZE EFFECT			
Heat Code	СЦ	C-4	C-5	C-5	C-7
Plate No.	242	243	245	246	252
Plate Position	Тор	Center	Тор	Center	Center
Ingot Location	Next to Last	Next to Last	Next to Last	Next to Last	Last
Yield Point, (ksi)	32.2	32.9	32.3	32.0	36.7
Tensile Strength (ksi)	62.3	61,8	61.3	61.3	65.0
Elomgation (8") (%)	32.5	32.0	33.0	31.0	30.5
T _{vl0}	-6	-18	-7	-6	-24
^T v15	-1	-10	+7	0	-1.0
Transition Tv25	+10	+12	+19	+18	+17
50% Fibrous	+58	+54	+52	+57	+77
10% Fibrous	-7	-11	+5	-3	-13
NDT (°F) Edge	+20	+20	+30	+10	0
Genver	+20	+20	+10	+10	-10
Finishing Temp. (^O F)	1,840	1,890	2,000	1,950	1,500
Ferrite Grain Size	7.6	7.1	7.5	7.2	7.2
C	0,16	0.16	0.16	0.15	0,15
Mn Chemian]	0.73	0.73	0.68	0,68	0.74
Composition (%) Si	0.23	0.22	0.22	0.23	0.25
P	0,011	0.011	0.011	0.010	0.008
s l	0.032	0.031	0.028	0.027	0.035

STEEL	BAR	PRE-	TEST LOAD (1b)		FRACTURE	STRESS	<u> - · ·</u>
		STRAIN			կм/bd ²	ksi	
			Arr. Crack	Fracture	Arr. Crack	Fracture	
с-4 с-4 с-4 с-4 с-5	2 6 5 7 51	0.55 0.57 0.59 0.59 0.59		5 000+ 5 000+ 5 000+ 5 000+ 5 000+ 5 000+		87.3+ 87.3+ 83.8+ 87.3+ 89.0+	
C-4 C-4 C-5 C-5 C-5	8 4 33 37 38	0.59 0.60 0.60 0.60 0.62	1 110 1 860 1 780 1 080 780	1 820 1 860 1 780 2 700 2 L30	28.0 48.0 45.0 27.2 20.0		Led Surface
0-5 0-4 0-5 0-5 0-4	36 1 34 35 3	0.63 0.65 0.65 0.65 0.65 0.69	560 800 1 020 760 1 490	1 820 2 000 1 820 2 000 1 490	14.5 18.8 26.2 19.2 35.6		As-Rol
	9 10 11 13 31 16 15 12 30 14 14 14 39 59 43 56 55	0.53 0.56 0.59 0.62 0.65 0.65 0.65 0.65 0.67 0.67 0.67 0.67 0.67 0.69 0.71 0.71	- - - - - - - - - - - - - - - - - - -	5 000+ 5 000+ 5 000+ 1 300 5 000+ 1 300 3 720 1 340 3 980 1 600 1 580 1 930 1 490 1 650	16.8 21.3 42.6 42.2 50.5 12.0 15.6	89.3+ 89.0+ 89.0+ 87.3+ 78.0 90.8+ 61.0 88.9 78.0	Machined Surface

* The loading was stopped at 5000 lb.

*NBS test data.

TABLE III. REVERSED-BEND TESTS. EFFECT OF SURFACE CONDITION 0.75 IN. THICK BARS PRESTRAINED AT 70 F AND TESTED AT -16 F. ABS-C STEEL (1956)

TABLE IV. REVERSED-BEND TESTS. EFFECT OF BAR THICKNESS 0.75 and 1.25 IN. THICK BARS PRESTRAINED AT 70 F AND TESTED AT -16 F. ABS-C STEEL (1956)

	<u></u>	1					
STEEL	BAR	PRE- STRAIN	TEST LOA	D (1b)	FRACTURE	JTRESS ksi	
			Arr. Crack	Fracture	Arr. Crack	Fracture	1
-1-1-5-1-1-1-1-5-1-5-1-5-1-5-1-5-1-5-1-	17 23 52 18 22 21 50 21 19 18 19 47 20	0.50 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.57 0.59 0.62 0.62	- 700 310 - 1 320 3 400 - 1 680 380 700 270 430	5 000+ 1 640 5 000+ 1 740 1 710 5 000+ 5 000+ 1 680 1 900 1 620 1 840 2 380	- 17.9 7.7 33.3 35.8 - 42.5 9.6 17.9 6.8 11.0	90.8+ 	As-Rolled Surface
<u>ส</u> สสุททุสุทุทุทุทุทุทุสุทุส อ	25 26 25 46 20 45 57 58 20 32	0.51 0.53 0.56 0.57 0.59 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.62 0.62 0.63	- - - - - - - - - - - - - - - - - - -	5 000+ 5 000+ 5 000+ 5 000+ 5 000+ 1 760 1 760 1 460 2 280 1 450 1 170 1 370 1 340	- - - - - - - - - - - - - - - - - - -	90.0+ 89.0+ 92.5+ 90.8+ 89.3+ 92.5+ - - - -	Machined Surface

+ The leading was stopped at 5000 lb.

STEEL	BAR	PRE- STRAIN	TEST LOA	.D (16)	FRACTURE	STRESS ksi	
:			Arr. Crack	Fracture	Arr. Crack	Fracture	
C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7	8 10 15 19 20 14 5 12 14 5 12 11 16	0.45 0.48 0.50 0.50 0.51 0.51 0.51 0.52 0.52 0.52	- - - - - - - - - - - - - - - - - - -	1 000+ 1 000+ 1 000+ 1 000+ 1 000+ 1 180 1 960 1 960 1 000+ 1 000+	20.8 63.2	87.2+ 87.2+ 89.1+ 87.2+ 85.4+ 87.2+ 87.2+ 87.2+ 89.1+ 87.2+	o.75 wide × 9"long
C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7	17 6 9 7 1 2 3 4	0.52 0.53 0.53 0.56 0.57 0.59 0.62 0.65	480 490 1 300 1 030 1 130 370 560 640	1 290 1 150 1 300 1 320 1 130 1 410 1 330 1 180	15.7 16.5 42.5 34.7 38.1 12.4 19.2 22.2	-	0.75 thick×
C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7 C-7	1 4 10 8 3 5 9 15 7 13 2 6 12 11	0.18 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.52 0.53 0.53 0.53 0.53 0.53 0.53	- - 2 060 1 180 1 000 1 860 2 130 5 710 - 1 510 380 930 2 100 380	7 500+ 7 500+ 7 500+ 4 200 3 030 4 000 3 890 3 680 5 710 7 500+ 4 060 3 390 3 230 3 330 2 690	- 24.2 11.0 47.3 22.0 28.6 66.3 18.2 4.5 11.0 28.6 4.5	85.2+ 88.6+ 81.7+ - 85.8+ 39.6 32.3	1.25 thick × 1.57 wide × 18"long

+ The loading was stopped at 4000 lb. (0.75 0.75 in. bars) or 7500 lb. (1.25 1.67 in. bars).

5-

FIG. 5. EXHAUSTION LIMITS OF ABS-C (1956) STEEL TESTED ON <u>AS-ROLLED SURFACE</u> AT -16 F. <u>9 x 0.75 x 0.75 in. THICK BARS (LEFT)</u>; <u>18 x 1.67 x 1.25 in. THICK BARS (RIGHT</u>)

RADIUS OF CURVATURE R (in)

FIG. 6. ENLARGED WIDTH VS. RADIUS OF CURVATURE OF 0.75 IN. BARS

dividing the cross-section in two equal areas retained its original width b_0 . As the height did not change appreciably during bending, a single measurement of the largest base b_1 was sufficient for the determination of the trapezoid. The width b_1 after various amounts of bending of 0.75 x 1.00 in. bars was plotted against the radius of curvature at the intrados (Fig. 6). The approximate linear relationship found experimentally (Eq. 7 of Appendix) was used in all calculations. Calculations were made according to straight and to curved beam theory for $elastic^{2\circ}$ and for fully plastic behavior²¹⁻²³ according to the formulas given in the Appendix. Stress from axial loading was added to the bending stress only in elastic behavior. In fully plastic action the small axial force of the present tests (about 10% of the yield load in pure tension corresponding to the raised yield strength) causes a negligible reduction of the plastic bending capacity, as can be easily seen from the interaction curve

	Tested a	t -16°F	Tested at 75°F		
Steel	Aged Exhaus- tion Limit	Unaged Exhaus- tion Limit	Aged Exhaus- tion Limit	Unaged Exhaus- tion Limit	
E ABS-O* HY_RO A-7 T-1	0.h0 to 0.h4 0.50 to 0.52 0.59 to 0.63 0.l6 to 0.l8 0.h9 to 0.52	0.50 to 0.55 0.57 to 0.57 0.60 to 0.63 0.52 to 0.55 0.52 to 0.53	0.50 to 0.55 0.52 to 0.56 0.61 to 0.65 0.52 to 0.55 0.56 to 0.59	0.57 to 0.59 0.60 to 0.62 0.65 to 0.69 0.61 to 0.62 0.60 to 0.64	
APS-C-Li ABS-C-5					
As-rolled Surface		0.55 to 0.57		0.59 to 0.60	
Machined Surface		0.59 to 0.60		0.65 to 0.67	
ABS-C-7 As-rolled		+		<u>_l,</u>	
0.75" square		0.50 to 0.52			
1.67 x 1.25 thick		0.51 to 0.52			

TABLE V. SUMMARIZED RESULTS OF REVERSED BEND TESTS

"Tests of 1960.

for combined bending and tension.²¹⁻²³

The results are tabulated in Tables VI and VII. The stresses calculated by straight and curved elastic beam formulas differ substantially, but those for rectangular and trapezoidal cross-sections are surprisingly close. The trapezoidal section gives elastic stresses only 6 to 7% smaller than the rectangular, and fully plastic stresses only 8 to 10% larger. In view of the approximations introduced by the finite bending and by the assumption of the trapezoidal shape, and of the uncertainty of the stressstrain law, these small differences do not justify the laborious calculations for trapezoidal sections. Rectangular curved beam formulas give a sufficiently good approximation.

The fracture stresses calculated by rectangular curved beam theory for the extreme instances of purely elastic and of fully plastic behavior (Tables VI and VII, Columns 4 and 6) have been plotted against prestrain in Fig. 7 and 8. A vertical line joins the points corresponding to the elastic stress (higher) and the fully plastic stress (lower) for the same test. As already discussed, it appears reasonable to accept the stress based on a fully plastic distribution for bars which sustained high loads and deformations (lower end of vertical lines on upper part of graphs), and the elastic curved-beam stress for bars which fractured at low loads and deformations (upper end of vertical lines in lowest part of the graphs). It is quite interesting to find that several brittle bars fractured at a calculated elastic stress of about 50 ksi at 70 F, and even down to 30 ksi or less at -16 F. These stresses are very close to the expected 0.1% offset tensile yield strength, which from analogy with earlier tests with E-Steel¹⁴ and with recent unpublished tests of bars of ABS-B steel compressed axially by 0.50 but unaged, should be about 40 to 50 ksi. The low nominal stress fractures are probably caused by stress concentrations from surface irregularities or from flaws, and to a certain extent by residual stresses, but they indicate an extreme brittleness, i.e. an inability of the steel to yield locally so as to reduce the stress concentrations and wipe out the residual stresses.¹² The calculated yield stress based on an assumed fully plastic distribution was equal to about 90 + 3 ksi for all the bars which withstood large deformations, irrespective of surface condition and test temperature.

CONCLUSIONS

a. Bars of ABS-C steel with machined surfaces have a slightly higher exhaustion limit than bars with as-rolled surfaces, as found by the reversed-bend test. The difference is equal

TABLE VI. STRESS AT FIRST CRACK OR MAXIMUM LOAD FOR ELASTIC OR FULLY PLASTIC DISTRIBUTION. TESTS AT 70 F. ABS-C STEEL (1956)

TABLE VII. STRESS AT FIRST CRACK OR MAXIMUM LOAD FOR ELASTIC OR FULLY PLASTIC DISTRIBUTION. TESTS AT -16 F. ABS-C STEEL (1956)

PRE_

BAR	PRE- STRAIN	MAXIMUM E	LASTIC SI	YIELD ST FOR FULL STRESS DI	RESS ksi. Y PLASTIC STRIBUTION	
		Rectang. Straight	Rectang. Curved	Trapez. Curved	Rectang.	Trapez.
2 6 5 7 51	0.55 0.57 0.59 1	137.6+ 137.6+ 134.2+ 137.6+ 137.6+ 140.2+	217.7+ 222.7+ 270.2+ 229.2+ 233.7+	204.0+ 208.6+ 206.6+ 212.6+ 218.9+	87.3+ 87.3+ 83.8+ 87.3+ 89.0+	95.5+ 96.4+ 93.3+ 97.2+ 99.3+
8 4 33 37 38	0.59 0.60 # 0.62	43.5 74.5 69.8 42.2 31.1	72.9 126.3 117.8 71.5 54.2	68.3 118.7 111.5 67.2 51.0	28.0 48.0 45.0 27.2 20.0	31.2 Pello 53.2 50.4 22.4 28
36 1 34 35 3	0.63 0.65 # 0.69	22.5 29.3 40.8 29.8 55.4	41.0 53.7 74.7 54.6 109.4	37.4 50.4 69.8 51.3 101.7	14.5 18.8 26.2 19.2 35.6	15.3 21.3 29.7 21.7 40.8
9 10 11 13 31	0.53 0.56 0.59 0.62 0.63	140.7+ 140.2+ 140.2+ 137.7+ 122.5	217.7+ 224.7+ 233.7+ 238.7+ 238.7+ 216.2	203.5+ 210.9+ 218.8+ 224.6+ 204.6	89.3+ 89.0+ 89.0+ 87.3+ 78.0	97.0+ 97.8+ 98.0+ 98.2+ 87.8
16 15 12 30 14	0,65 11 0,67	142.9+ 101.7 26.1 140.2 33.1	259.9+ 184.2 47.8 260.5 62.9	244.7+ 173.3 44.9 248.4 58.7	90.8+ 64.0 16.8 88.9 21.3	102.7+ 72.5 19.0 101.2 24.2 W
49 59 45 59 59 59 59 59 59 59 59 59 59 59 59 59	и и 0.69 0.71	122.3 66.0 65.3 78.4 18.6	231.3 125.3 123.9 154.8 38.1	217.2 117.9 116.8 144.8 35.8	78.0 42.6 42.2 50.5 12.0	88.7 48.5 48.0 57.8 13.8
55	0.71	24.2	49 .5	46.6	15.6	17.9

BAR	STRAIN	MAXIMUM ELASTIC STRESS ksi.			FOR FULL STRESS DI	Y PLASTIC STRIBUTION	N
		Rectang. Straight	Rectang. Curved	Trapez. Curved	Rectang.	Tra pez.	•
17 23 52 18 22	0.50 0.55 0.56	142.9+ 27.8 11.9 141.7+ 56.8	213.7+ 44.2 18.9 226.7+ 91.5	200.5+ 43.7 17.8 213.0+ 78.1	90.8+ 17.9 7.7 90.0+ 36.7	97•5+ 19•6 8•5 98•8+ 36•6	lled
24 50 21 49 48	0,56 0,57 0.59	55.6 147.9+ 142.9+ 65.9 14.9	89.4 238.7+ 231.7+ 107.2 25.0	83.9 223.6+ 216.6+ 100.2 23.3	35.8 94.5+ 90.8+ 42.5 9.6	39.4 103.8+ 100.5+ 46.9 10.7	As Ro
19 47 20	0,62 1 0,67	27.8 10.6 17.1	48.5 18.5 32.5	45.6 17.4 30.4	17.9 6.8 11.0	20.1 7.7 12.5	
25 26 25 46 42 42 42 57	0.51 0.53 0.56 0.57 0.57 0.59 " 0.60	141.7+ 140.2+ 145.4+ 142.9+ 140.7+ 145.4+ 36.2 72.1 26.5 91.1	214.2+ 217.5+ 232.7+ 231.2+ 242.7+ 242.7+ 60.7 120.6 45.0 155.3	200.5+ 213.0+ 218.9+ 217.1+ 217.1+ 227.1+ 56.7 113.0 42.4 145.5	90.0+ 89.0+ 92.5+ 90.3+ 90.3+ 92.54 89.3+ 92.53 146.5 17.1 59.2	97.0+ 96.8+ 101.5+ 101.0+ 98.6+ 102.6+ 25.9 51.6 19.0 66.0	nined
58 29 40 32	0.60 0.62 1 0.63	29.8 17.0 43.9 54.8	50.6 29.7 76.7 97.3	47.5 27.7 71.7 91.1	19.2 10.9 28.2 35.3	21.4 12.2 31.6 39.8	Mac

+ stress corresponding to an applied load of 5000 lb. at which no fracture occurred.

+ stress corresponding to an applied load of 5000 lb. at which no fracture occurred.

-8-

YIELD STRESS ksi.

-9-

to about 0.03 for tests at 70 F and 0.06 at -16 F.

b. No size effect was reflected in the exhaustion limit when the thickness of the test bars was increased from 0.75 to 1.25 in.

c. The calculated stress on the assumption of an elastic stress distribution for the most brittle of the bars prestrained beyond the exhaustion limit was close to, and sometimes lower than the 0.1% offset strength after compression. The calculated stress on the assumption of fully plastic stress distribution for bars prestrained below the exhaustion limit (ductile) was close to 90 ksi with few exceptions.

ACKNOWLEDGMENT

The authors are indebted to Mr. Shoichi Kobayashi who carried out a considerable part of the lengthy calculations.

REFERENCES

1. Drucker, D. C., <u>An Evaluation of Current</u> <u>Knowledge of the Mechanics of Brittle Fracture</u>, Ship Structure Committee Report SSC-69(1954).

2. Mylonas, C., Drucker, D. C., and Isberg, L., "Brittle Fracture Initiation Tests," NObs-65917/2. <u>The Welding Journal</u>, Vol. 36, No. 1, Research Supplement, pp. 9-s to 17-s (1957).

3. Mylonas, C., Drucker, D. C., and Brunton, J. D., "Static Brittle Fracture Initiation at Net Stress 40% of Yield," NObs-65917/3. <u>The</u> <u>Welding Journal</u>, Vol. 37, No. 10, Research Supplement, pp. 473-s to 479-s, (1958).

4. Mylonas, C., "Prestrain, Size, and Residual Stress in Static Brittle Fracture Initiation," NObs-65917/4, <u>The Welding Journal</u>, Vol. 38, No. 10, Research Supplement, pp. 414s to 424-s (1959).

5. Drucker, D. C., Mylonas, C., and Lianis, G., "On the Exhaustion of Ductility of E-Steel in Tension Following Compressive Prestrain," NObs-65917/5, <u>The Welding Journal</u>, Vol. 39, No. 3, Research Supplement, pp. 117-s to 120s (1960).

6. Mylonas, C., "Exhaustion of Ductility as a Fundamental Condition in Static Brittle Fracture Initiation," NObs-65917/6. Published in <u>Brittle Fracture in Steel</u>, Proc. of a Conference sponsored by the Brit. Admiralty Advisory Committee on Structural Steel, Cambridge, England 28-30 Sept. 1959. H. M. Stat. Office 1962, pp. 167-173.

7. Mylonas, C., "Conditions favorables a l'initiation de la rupture fragile en Acier," Bulletin du Centre d'Etudes de Recherches et d'Essais Scientifiques du Genie Civil, Liege, XI, pp. 139-166 (1960).

8. Ludley, J. H., and Drucker, D. C., "Size Effect in Brittle Fracture of Notched Steel Plates in Tension," <u>App. Mech.</u> <u>28</u> (1961) 137.

9. Ludley, J. H., and Drucker, D. C., "A Reversed-Bend Test to Study Ductile to Brittle Transition," NObs-78440/3, <u>The Welding Journal</u> Vol. 39, No. 12, Research Supplement (1959).

10. Rockey, K. C., Ludley, J. H., and Mylonas, C., "Exhaustion of Extensional Ductility Determined by Reversed Bending of 5 Steels, "NObs-78440/5, March 1961. <u>Proc.</u> <u>ASTM</u>, Vol. 62 (1962)1120-1133.

11. Mylonas, C., and Rockey, K. C., "Exhaustion of Ductility by Hot Straining. An Explanation of Fracture Initiation Close to Welds," NObs-78440/6 of the Division of Engineering, Brown University, March 1961; <u>The</u> <u>Welding Journal</u>, <u>40</u>(7) Research Suppl. pp. 306s to 310-s, 1961.

12. Mylonas, C., "Static Brittle Fracture Initiation Without Residual Stresses," Report NObs-78440/4, <u>Welding Journal</u>, Vol. 40, No. 11, Research Supplement (1961).

13. Drucker, D. C., "A Continuum Approach to the Fracture of Solids," Chapter I in <u>Brittle</u> <u>Fracture</u> (D. C. Drucker and J. J. Gilman, Eds.) Interscience, 1963.

14. Mylonas, C., <u>Exhaustion of Ductility and</u> <u>Brittle Fracture of Project E-Steel Caused by</u> <u>Prestrain and Aging</u>, Ship Structure Committee Report SSC-162 (1964).

15. Körber, F., Eichinger, A., and Möller, H., "Verhalten Gestauchter Metalle bei Zugbeanspruchung," Kaiser-Wilhelm Institut f. Eisenforschung, part I, <u>23</u> (1941), 123-33; part II, <u>26</u> (1943), 71-89.

16. Allen, N. P., "The Mechanical Properties of the Ferrite Crystal," Eleventh Hatfield Memorial Lecture, Journal Iron & Steel Inst., Vol.

Į.

191, Part I, Jan. 1959, pp. 1-18.

17. Rendall, J. H., Discussion in "Brittle Fracture in Steel," Proc. of a Conference sponsored by the British Admiralty Adv. Committee on Struct. Steel, Cambridge, Sept. 1959, HM Stat. Office 1962, p. 103. Also private comcommunication.

18. Lagasse, P. E., and Hofmans, M., "L'aptitude des aciers au profilage a froid," report CNRM F/c/7-Ra6, Nov. 1958.

19. Lagasse, P. E. "Sur la Fragilisation des Aciers Doux par Formage a Froid," report CNRM F/c/7-Ra6, Nov. 1958.

20. Roark, R. J., <u>Formulas for Stress and</u> <u>Strain</u>, McGraw-Hill, 1954.

21. Onat, E. T. and Prager, W., "The Influence of Axial Force on the Collapse Loads of Frames," <u>Proc. 1st Midwestern Cond</u>. <u>Solid Mech.</u>, Urbana 1953, 40-42 (1954).

22. Hodge, P. G., Jr., <u>Plastic Analysis of</u> <u>Structures</u>, McGraw-Hill, 1959.

23. Prager, W., <u>Introduction to Plasticity</u>, Addison Wesley 1959 Birkhauser Verlag, Basel, 1955.

APPENDIX

CALCULATION OF FRACTURE STRESS FOR RECTANGULAR AND FOR TRAPEZOIDAL CROSS-SECTIONS, FOR STRAIGHT AND CURVED BEAMS, AND FOR PURELY ELASTIC AND FOR FULLY PLASTIC BEHAVIOR

I. Rectangular Cross-Section

a. Straight elastic beam
$$\sigma_{s,e}^{r} = 6M/b_{o}h^{2} + P/A$$
 (1)
b. Straight fully plastic $\sigma_{s,p}^{r} = 4M/b_{o}h^{2}$ $(\frac{P}{A} < \sigma_{s,p}^{r})$ (2)
c. Curved elastic $\sigma_{c,e}^{r} = M\left[\frac{h}{2I} + \frac{1}{b_{o}h}\left(\frac{1}{R} + \frac{1}{R + \frac{1}{2}h}\right)\right] + \frac{P}{A}$ (3)
d. Curved fully plastic $\sigma_{c,p}^{r} = \sigma_{s,p}^{r} = 4M/b_{o}h^{2}$ (2)

II. Trapezoidal Cross-Section

Assumption: The line dividing the cross-section in two equal areas (Fig. 6, inset) retains the initial width b_0 . Then

$$b_2 = \sqrt{2b_0^2 - b_1^2} \tag{4}$$

$$a = h(b_1 - b_0) / (b_1 - b_2)$$
(5)

Distance of centroid from lower base b,

$$\mathbf{c} = \frac{1}{3}\mathbf{h}(\mathbf{b}_1 + \mathbf{b}_2)/(\mathbf{b}_1 + 2\mathbf{b}_2)$$
(6)

From experiment: $b_1 = 1.38 - \frac{R}{3} = 1.38 - \frac{1}{8}(\frac{1}{c} - 1)$ (7)

a. Straight elastic beam:
$$\sigma_{s,e}^{tr.} = \frac{12M}{h^2} (b_1 + 2b_2) / (b_1^2 + 4b_1 b_2 + b_2^2) + \frac{P}{A}$$
 (8)

b. Straight fully plastic: $\sigma_{s,p}^{tr.} = 6M/(A \times L)$ (9)

$$L = \frac{h}{b_1 - b_2} \left[\frac{b_0 + 2b_2}{b_0 + b_2} (b_0 - b_2) + \frac{b_0 + 2b_1}{b_0 + b_1} (b_1 - b_0) \right]$$
(10)

c. Curved elastic:
$$\sigma_{c,p}^{tr} = M \left[\frac{c}{I} + \frac{1}{2b_{l}c} \left(\frac{1}{R} + \frac{1}{R+c} \right) \right] + \frac{P}{A} \quad (11)$$

d. Curved fully plastic:
$$\sigma_{c,p}^{tr} = \sigma_{s,p}^{tr} = 6M/(A \times L)$$
 (9)

- M: applied bending moment
- P: applied force

- A: area of cross-section
- I: moment of inertia about centroid
- R: radius of curvature at intrados of curved beam
- ε: nominal compressive prestrain at intrados

NONE

Security Classification				
DOCUMENT CO	NTROL DATA - R&	D		
(Security classification of title, body of abstract and indexis	ng annotation must be er	2 a REPO	the overall report is classified)	
		NONE		
Ship Structure Committee		25 GROUI	P	
3. REPORT TITLE		4		
REVERSED-BEND TESTS OF ABS-C STEE	L WITH AS-ROI	LED AN	ID MACHINED	
SURFACES				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Progress Report				
5. AUTHOR(S) (Lest name, first name, initial)				
Satoh, K., and Mylonas, C.				
6. REPORT DATE	74. TOTAL NO. OF F	AGES	75. NO. OF REFS	
April 1965	13		23	
S. CONTRACT OR GRANT NO.	94. ORIGINATOR'S R	EPORT NUM	48 E R(^S)	
NObs-88294	NObs-882	94/3		
5. PROJECT NO.		, .		
c. $G_{\text{orial No}} = G_{\text{orial No}} = G_{or$	95. OTHER REPORT this report)	NO(S) (Any	other numbers that may be assigned	
10. AVAILABILITY/LIMITATION.NOTICES	<u> </u>			
Contraction of the second s		S. ATABA.		
Second and Second Second Second Second Second Second	Con Feiles	an ting at 10		
D. C.	·····			
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL	ITARY ACT	IVITY	
	Bureau of Sl	nips, De	ept. of the Navy	
	Washington	, D. C.		
	l			
Comparative tests between bars	with as-rolled	and wit	th machined surfaces	
show a small difference in the compress	ive prestrain n	leeded t	o exhaust the original	
extensional ductility of the steel, as th	is is determine	d by the	e reversed bent test ⁹ ,10	
Machined bars show a higher exhaustion	n limit (prestra	in) than	as-rolled bars by 0.03	
at 70 F and 0.06 at -16 F. Stress calcu	lations show t	hat the	most brittle fractures	
may occur at applied elastic macroscopi	c stresses as	low as a	about 50 ksi at 70 F and	
about 30 ksi at -16 F. Highly ductile b	ars sustained a	a stress	close to 90 ksi at both	
test temperatures				
test temperatures.				
]				
1				
1				
DD FORM 1473		N	ONF	

Security Classification

.

NONE

Security Classification							
14. KEY WORDS		LIN	К А — — —	LIN	КВ		KC WT
·							
INSTDI	CTIONS	<u> </u>	<u> </u>	<u> </u>	4	<u> </u>	4
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automatic downgrading is specified in DoD Di- rective 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. NUMBER OF REFERENCES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES: Enter the total number of references cited in the report. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. A. CONTRACT OR GRANT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numb	CTIONS imposed b such as: (1) (2) (3) (4) (5) (5) (5) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7	y security Qualified eport from 'Foreign (eport by I 'U. S. Got his report by I 'U. S. mile chail requ- 'All distr fied DDC 'All distr fied DDC 'LEMEN' 'All distr fied DDC 'RACT: of the doc PLEMEN' 'A NSORING tmental pine researce (TRACT: of the doc So appear dditional ed. highly de sified. E tion of the in the pa suggester WORDS: threases th rises for ci- so that not h is so that not h is so that not h is so that not h is so that not h is so that not h is so	y classifi requeste DDC." announcer DDC is no vernment directly 1 request ctly from est throug ibution of users sh s been fu mit of Con enter the CARY NO MILITAK roject off thand de Enter an rument in elsewher space is sirable tt lach para e military ragraph. mitation of o security post o security post o security of o security of the o security of the security of o security of the security of o security of the security of the security of the o security of the security of the security of the ollowed i	cation, u ers may o ment and ot authori agencies from DDX through ncies ma DDC. O gh this rep all reque mished t merce, f price, if TES: Us (Y ACTIV ice or lak velopmen abstract dicative of e in the l required. Matthe at graph of security represent on the ler s from 15 ds are te- terize a the repo- classifi.	sing stan btain cop dissemin zed." may obtain c, Other way obtain the quali- brt is con st through or tis con st through or sale to known. We for add /ITY: En oradory st t. Includ giving a l of the rep pody of th a contin stract of the abstra- classific ed as (73 gith of the isotract as t. T. Key w ration is mation, t on, may t	dard statu ies of thi ation of t iin copies qualified copies of ified uses trolled to trolled to trolled to trolled to trolled to the public itional es ater the n ponsoring e address brief and ort, even te technic uation of (s), (s), (C) to e abstrac words. meaning t may be roords muse required. rade name technica	ements s his of DDC this chis chical qual- qual- qual- qual- chnical

DD JAN 64 1473 (BACK)

-

NONE

_

. ____

NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

The Ship Hull Research Committee undertakes research service activities in the general fields of materials, design, and fabrication, as relating to improved ship hull structure, when such activities are accepted by the Academy as part of its functions. The Committee recommends research objectives and projects; provides liaison and technical guidance to such studies; reviews project reports; and stimulates productive avenues of research.

SHIP HULL RESEARCH COMMITTEE

Chairman: RADM A. G. Mumma, USN (Ret.) Executive Vice President Worthington Corporation

Members: Prof. R. B. Couch, Chairman Dept. of Naval Architecture & Marine Engineering University of Michigan

> Mr. Hollinshead de Luce Asst. to Vice President Bethlehem Steel Co.

Dr. C. O. Dohrenwend Vice President & Provost Rensselaer Polytechnic Inst.

Prof. J. Harvey Evans Prof. of Naval Architecture Mass. Institute of Technology Professor J. E. Goldberg Prof. of Civil Engineering Purdue University

Mr. James Goodrich Exec. Vice President Bath Iron Works

Mr. D. C. MacMillan President George G. Sharp, Inc.

Arthur R. Lytle Director

R. W. Rumke Executive Secretary

SR-158 PROJECT ADVISORY COMMITTEE "Macrofracture Fundamentals"

Chairman: Professor W. R. Osgood Professor of Civil Engineering Catholic University of America

Members:	Professor Joseph Kempner	Professor P. M. Naghdi
	Professor & Director of	Professor of Engineering
	Applied Mechanics	University of California,
	Polytechnic Institute of Brooklyn	

Mr. J. A. Kies Head, Ballistics Branch Mechanics Division Naval Research Laboratory

ring Science rnia, Berkeley

Dr. Nicolas Perrone Structural Mechanics Branch Office of Naval Research