PROGRESS REPORT

ON

CORRELATION OF LABORATORY TESTS WITH FULL SCALE SHIP PLATE FRACTURE TESTS

BY

C. WAGNER AND E. P. KLIER

Pennsylvania State College Under Bureau of Ships Contract NObs-31217

COMMITTEE ON SHIP CONSTRUCTION

DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

NATIONAL RESEARCH COUNCIL

MTRB LIBRARY

ADVISORY TO

SHIP STRUCTURE COMMITTEE

UNDER

Bureau of Ships, Navy Department Contract NObs-34231

SERIAL NO. SSC-18

COPY NO.

DATE: MAY 12, 1948

NATIONAL RESEARCH COUNCIL Washington 25, D. C.

May 12, 1948

Chief, Bureau of Ships Navy Department Washington 25, D. C.

Dear Sir:

Attached is Report Serial No. SSC-18 entitled "Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests." This report has been submitted by the contractor as a progress report of the work done on Research Project SR-96 under Contract NObs-31217 between the Bureau of Ships, Navy Department and the Pennsylvania State College.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Construction, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Navy Department and the National Academy of Sciences.

Very truly yours,

+ Te clercel ly Reduce

Enclosure

Frederick M. Feiker, Chairman Division of Engineering and Industrial Research

Preface

The Navy Department through the Bureau of Ships is distributing this report to those agencies and individuals who were actively associated with the research work. This report represents a part of the research work contracted for under the section of the Navy's directive "to investigate the design and construction of welded steel merchant vessels."

The distribution of this report is as follows:

Copy No. 1 - Chief, Bureau of Ships, Navy Department Copy No. 2 - Dr. D. W. Bronk, Chairman, National Research Council

Committee on Ship Construction

Copy	No.	3		٧.	H.	Schnee,	Ch	airman		
Copy	No.	4		J.	L.	Bates				
Copy	No.	5	-	H,	C 。	Boardma	n			
Copy	No.	6	-	Paı	ıl I	field				
Сору	No.	7		M.	Α.	Grossma	n			
Сору	No.	8	_	С.	H.	Herty,	Jr,			
Сору	No.	9		A.	Β.	Kinzel				
Copy	No.	10	-	J.	Μ.	Lessell	.S			
Сору	No.	11	-	G.	s.	Mikhala	pov			
Copy	No.	12		J.	Orr	nondroyd				
Copy	No.	13	-	Η.	W.	Pierce				
Copy	No.	14	-	Ξ.	С.	Smith				
Сору	No.	15		Τ.	Τ.	Watson				
Copy	No.	16	-	Fi	an .	Jonasser	, R	esearch	Coordinator	'n

Members of Project Advisory Committees SR-25, SR-87, SR-92, SR-96, SR-97, SR-98, SR-99 and SR-100

Copy	No.	16	-	Finn Jonassen, Chairman		•	
Copy	No.	17	_	R. H. Aborn			1999 - 1999 1997 - 1997 1997 - 1997
Copy	No.	18		L. C. Bibber			19 - E
Copy	No.	5		H. C. Boardman	· ·		
Copy	No,	6	-	Paul Ffield			
Copy	No.	7	-	M. A. Grossman			
Copy	No.	8	_	C. H. Herty, Jr.			•
Copy	No.	19	-	C. E. Jackson	,	·	
Copy	No.	20	-	C. H. Jennings			•
Copy	No.	10		J. M. Lessells		-	
Copy	No.	11	lasti-	G.S. Mikhalapov			
Copy	No.	12	-	J. Ormondroyd			
Copy	No.	13		H. J. Pierce			
Сору	No.	14	-	E. C. Smith			
Copy	No.	15	-	T. T. Hatson			
Сору	No.	21	-	A. G. Bissell, Bureau of Ships, Liaison	· .		
Copy	No.	22		Mathew Letich, American Bureau of Shipping,	Liaison		
Сору	No.	23	-	James McIntosh, U. S. Coast Guard, Liaison			
Copy	No.	24	-	Capt. F. W. Myers, Jr., Transportation Corps	Board,	Liaís	on
Сору	No.	25		E. Rassman, Bureau of Ships, Liaison			
Сору	No.	26	•••	Comdr. R. D. Schmidtman, U. S. Coast Guard,	Liaison		

Copy No. 27 - T. L. Soo-Hoo, Bureau of Ships, Liaison Copy No. 28 - Wm. Spraragen, Welding Research Council, Liaison Copy No. 29 - R. E. Wiley, Bureau of Ships, Liaison Copy No. 30 - J. L. Wilson, American Bureau of Shipping, Liaison

Ship Structure Committee

Copy No. 31 - Rear Admiral Ellis Reed-Hill, USCG, Chairman Copy No. 32 - Rear Admiral Charles D. Wheelock, USN, Bureau of Ships Copy No. 33 - Brigadier General Paul F. Yount, War Department Copy No. 4 - J. L. Bates, U. S. Maritime Commission Copy No. 34 - D. P. Brown, American Bureau of Shipping Copy No. 3 - V. H. Schnee, Committee on Ship Construction, Liaison

Ship Structure Subcommittee

Copy No. 35 - Captain L. V. Honsinger, USN, Bureau of Ships, Chairman Copy No. 36 - Captain R. A. Hinners, USN, David Taylor Model Basin Copy No. 37 - Comdr. R. H. Lambert, USN, Bureau of Ships Copy No. 26 - Comdr. R. D. Schmidtman, USCG, U. S. Coast Guard Headquarters Copy No. 24 - Capt. F. W. Myers, Jr., Transportation Corps Board, U. S. Army Copy No. 38 - Hubert Kempel, Office Chief of Transportation, War Department Copy No. 22 - Mathew Letich, American Bureau of Shipping Copy No. 39 - R. M. Robertson, Office of Naval Research, U. S. Navy Copy No. 40 - I. J. Wanless, U. S. Maritime Commission Copy No. 30 - J. L. Wilson, American Bureau of Shipping Copy No. 30 - J. L. Wilson, American Bureau of Shipping Copy No. 16 - Finn Jonassen, Liaison Representative, NRC Copy No. 41 - E. H. Davidson, Liaison Representative, AISI Copy No. 42 - Paul Gerhart, Liaison Representative, MRC

Navy Department

Copy No. 43 - Comdr. R. S. Mandelkorn, USN, Naval Administrative Unit Copy No. 21 - A. G. Bissell, Bureau of Ships Copy No. 44 - J. W. Jenkins, Bureau of Ships Copy No. 45 - Noah Kahn, New York Maval Shipyard Copy No. 46 - I, R. Kramer, Office of Naval Research Copy No. 46 - I, R. Kramer, Office of Naval Research Copy No. 47 - W. R. Osgood, David Taylor Model Basin Copy No. 48 - N. E. Promisel, Bureau of Aeronautics Copy No. 49 - K. D. Williams, Bureau of Ships Copy No. 50 - Naval Academy, Post Graduate School Copy No. 51 - Naval Research Laboratory Copies 52 and 53 - U. S. Naval Engineering Axperiment Station Copy No. 54 - New York Naval Shipyard, Material Laboratory Copy No. 55 - Industrial Testing Laboratory, Philadelphia Naval Shipyard Copy No. 56 - Philadelphia Naval Shipyard Copies 57 and 58 - Publications Board, Navy Dept. via Bureau of Ships, Code 330c Copies 59 and 60 - Technical Library, Bureau of Ships, Code 337-L

U. S. Coast Guard

Copy No. 61 - Captain R, B. Lank, Jr., USCG Copy No. 62 - Captain G. A. Tyler, USCG Copy No. 63 - Testing and Development Division U. S. Maritime Commission

Copy No. 64 - E. E. Martinsky

Representatives of American Iron and Steel Institute Committee on Manufacturing Problems

Copy No. 65 - C. M. Parker, Secretary, General Technical Committee, American Iron and Steel Institute Copy No. 18 - L. C. Bibber, Carnegie-Illinois Steel Corporation Copy No. 8 - C. H. Herty, Jr., Bethlehem Steel Company Copy No. 14 - E. C. Smith, Republic Steel Company

Welding Research Council

Copy No. 66 - C. A. AdamsCopy No. 68 - LaMotte GroverCopy No. 67 - Everett ChapmanCopy No. 28 - Mm. Spraragen

Copy No. 69 - F. M. Feiker, Chairman, Div. Engineering & Industrial Research, NRC Copy No. 3 - V. H. Schnee, Chairman, Committee on Ship Construction Copy No. 16 - Finn Jonassen, Research Coordinator, Committee on Ship Construction Copy No. 70 - C. Wagner, Investigator, Research Project SR-96 Copy No. 71 - E. P. Klier, Investigator, Research Project SR-96 Copy No. 72 - A. Boodberg, Investigator, Research Project SR-92 Copy No. 10 - J. M. Lessells, Investigator, Research Project SR-101 Copy No. 73 - Scott B. Lilly, Investigator, Research Project SR-98 Copy No. 74 - C. H. Lorig, Investigator, Research Project SR-97 Copy No. 75 - J. R. Low, Jr., Investigator, Research Project SR-96 Copy No. 76 - C. W. MacGregor, Investigator, Research Project SR-102 Copy No. 77 - Albert Muller, Investigator, Research Project SR-25 Copy No. 78 - E. R. Parker, Investigator, Research Project SR-92 Copy No. 79 - Geo. Sachs, Investigator, Research Project SR-99 Copy No. 80 - C. E. Sims, Investigator, Research Project SR-87 Copy No. 81 - C. B. Voldrich, Investigator, Research Project SR-100 Copy No. 82 - Clarence Altenburger, Great Lakes Steel Company Copy No. 83 - A. B. Bagsar, Sun Oil Company Copy No. 84 - E. L. Cochrane, Massachusetts Institute of Technology Copy No. 85 - George Ellinger, National Bureau of Standards Copy No. 86 - M. Gensamer, Carnegie-Illinois Steel Company Copy No. 87 - O. J. Horger, Timken Roller Bearing Company Copy No. 88 - S. L. Hoyt, Battelle Memorial Institute Copy No. 89 - Bruce Johnston, Fritz Laboratory, Lehigh University Copy No. 90 - E. M. MacCutcheon, Jr., David Taylor Model Basin Copy No. 91 - N. M. Newmark, University of Illinois Copy No. 92 - L. J. Rohl, Carnegie-Illinois Steel Corp. Copy No. 93 - W. P. Roop, Swarthmore College Copy No. 94 - Saylor Snyder, Carnegie-Illinois Steel Corp. Copy No. 95 - John Vasta, Code 442, Bureau of Ships, Navy Department Copies 96 thru 120 - Charles Wright, British Joint Services Mission (Navy Staff) Copy No. 121 - Carl A. Zapffe, Carl A. Zapffe Laboratories Copy No. 122 - International Nickel Co., Inc., Attn. T. N. Armstrong Copy No. 123 - Transportation Corps Board, Brooklyn, N. Y.

Copies 124 thru 128 - Library of Congress via Bureau of Ships, Code 330c Copy No. 129 - File Copy, Committee on Ship Construction Copy No. 130 - NACA, Attn: Materials Research Coordination, U. S. Navy

Copies 131 thru 135 - Bureau of Ships

Copy No. 136 -Copy No. 137 - Case Suscitute of Sectionary, Cleveland, alis : Mappy Copy Nois 138 -Copy No. 138 -Copy No. 139 - mis mariae Sandomire, Buships 1/20/29 Copy No. 140 - C. Robert Ricecie CSS Spr/49 Copy: No. 141 - J.S. me miss - Stors dull-Copy No. 141 - J. o. me man - 37,100 Copy No. 142 - Capt. W. P. Range Stitlso Copy No. 143 - New The W. C. The research of the Copy No. 144 - J.F. Million, Cateronilar Tractor Co. 11-24-52 Copy No. 145 - J. akayona, K- Infon - 2-28-53 Copy No. 146 -Copy No. 146 -Copy No. 147 -Copy No. 148 -Copy No. 149 -Copy No. 150 -۲

(Total - 150 copies)

Mas- HRC (Library) 8/10/56 - 1 corry Mard. C. Markie, Sydney, From Scotio, 1 corry - 9/25/56 •

. . .

se file General

.

e tra de la compañía de la compañía

1 1 m

<u>1</u>-1 t

PROGRESS REPORT

Navy Bureau of Ships, Contract NObs-31217 Project SR-96

CORRELATION OF LABORATORY TESTS WITH FULL SCALE SHIP PLATE FRACTURE TESTS

Date: January 3, 1948

.

.

By: C. Magner E. P. Klier

MINERAL INDUSTRIES EXPERIMENT STATION SCHOOL OF MINERAL INDUSTRIES THE PENNSYLVANIA STATE COLLEGE STATE COLLEGE, PENNSYLVANIA

TABLE OF CONTENTS

Page	
List of Tables	
List of Figures	
Introduction l	
Steels	
Testing Program	
Specimen Preparation	
Testing Equipment	
Testing Procedure	
Representation of Test Data	
Results of Slow Bend Testing	
Discussions and Conclusions	
Bibliography	
Tables	
Figures	
Appendix Tables	

LIST OF TABLES

· ·

	Table	I -	Comparis type spe and with	on of cimens undri	transit with 7 lled sl	ion tempera 2" wide pla ow-bend not	tures c te tens ched-ba	of Schnadt sile tests ar tests	1.	1
	Table	II-	Estimate from lar	d tran ge pla	sition te test	temperature sections	s of ma	terial	l;	2
	Table	A-I	- Data s	ummary	for sp	ecimens			l	a
					·					
8 . s	-				· . :	н 1 1 м	• *	. · · ·	1	
						÷		. **		h ta
					(171) - 17 1	radia di Santa Romania di Santa		- ¹¹ ,	··· , ,9	
.*						r e	, ".			
s¥lomot			9 11 B		1 - 1 - 1 	ts da Norg De Coly (C		. 199		1. S. 4 [
						1. . • ·	• • •	 		ð.,
			a standard and a standard and a standard a s			."		×		
		·		ан Х. — д		•				
						•	, . , .	** ;		L
N.				5 - 112 - 1 - 16 - 1				all an e		м. "
:	: - :			*		. •			÷	
					· .		19. 1			

LIST OF FIGURES

			Page
Fig.	l	Photograph of Schnadt Type Specimen	13
	2	Photograph of Testing Equipment	14
	3	Line Drawing of Specimen	15
	4	Photograph of Bending Fixture	16
5	13	W _O -W ₁ vs. Temperature Curves for Project Steels (BH Orientation)	17-19
	14	Summary of Figs. 5-13	20
15	23	<pre>% Ductile Fracture vs. Temperature Curves for Project steels (BH Orientation)</pre>	20-22
:	24	Summary of Figs. 15 - 23	23
25-:	34	w _o -w _l vs. Temperature Curves for Project Steels (LH Orientation)	23-28
	35	Summary of Figs. 25-34	28
36-	45	<pre>% Ductility vs. Temperature Curves for Project Steels</pre>	29-34
	46	Summary of Figs. 36 - 45	34
	47	Cooling Curve for Notched-Bend Specimen in Ice-Water	35
	48	Load-Deflection Diagrams for Brittle and Ductile Schnadt Type Specimens	35
	49	Energy Absorption vs. Temperature Curves for Steel Br and Material from Large Plate Section BLA	35
	50	Photographs of Ductile Fracture Surfaces from Br and BLA	36
	51	Diagrammatic Sketch Showing Manner of Specimen Designation	37
	52	Photographs of Fractures of E Steel	38-40
	53	Photographs of Fractures of Br Steel	41-43

Navy Contract NObs-31217

Research Project SR-96

CORRELATION OF LABORATORY TESTS WITH FULL SCALE SHIP PLATE FRACTURE TESTS

Introduction

In the investigation of the possible development of a laboratory test for correlation with large plate notched tension tests on ship quality plate, a series of notch bend tests has been conducted. It was expected that an adequate laboratory test would display the same transition temperature or one that was readily adjustable to that observed for the large plate tensions tests conducted at the Universities of Illinois and California.^{1,2}

Initially, standard Charpy impact tests were made on all of the steels³ and the results compared with those for the 72" wide plate tests. The comparisons showed that no direct correlation existed between these two widely differing types of notched specimen tests.

One of the striking inadequacies of the impact test was the failure to show a difference between steels A and C, a difference which was most pronounced in the 72" wide plate tests. Separation of steels A and C to some extent, and in the right direction, was achieved by the use of prestrained Charpy keyhole-notch test bars, but the overall results did not warrant the further use of this test, as the temperatures of tough to brittle transition were too low to use direct correlation procedures. Because of this, a program was initiated in which the effects of speci-

1,2,3 - See Bibliography

men size, geometry, and testing velocity on the temperature of transition from tough to brittle behavior were investigated.

The results of slow bend testing (at 1" per minute) of standard V-notch Charpy impact bars did not separate Steels A and C. The transition temperatures for these two steels were appreciably lowered however, as compared to those obtained from the impact test, and fell in the range of temperatures observed for the large plate test results. An increase in the specimen size to 0.788" high x .394" wide gave transition temperatures for most of the steels tested which were 10° to 20° F below those for the 72" wide plate tests.

Finally, specimens were prepared which were full plate thickness in width and 0.788" in height. The tough to brittle transition, as measured by energy absorption values, occurred for these specimens at temperatures which agreed fairly well with the transition ranges for the 72" wide plates.⁴

Specimens of this type, when tested across a 40 millimeter span, had the disadvantage of not breaking completely. By drilling the compression zone from the specimen and using a hardened steel pin on which to apply the load, as described by Schnadt⁵, it was possible to circumvent this difficulty.

The present report is confined to the outline of experiments with this "Schnadt type" specimen and the results pertaining to those experiments.

The personnel contributing to the collection of these data are as follows:

ار موجود در موجود می مرکز از موجود می از موجود می

- 2 -

J. R. Low, Jr. - Technical Representative

M. Gensamer - Technical Advisor

F. C. Wagner - Supervisor

E. P. Klier - Investigator

Eunice Marks - Research Assistant

M. A. Biship - Research Assistant

Mina Moessen - Technical Labor

Herman Colyer - Technical Labor

Philip Vonada - Technical Labor

Eleanor Tevlin - Drafting

Steels

The steels are those used formerly and are designated in the same manner.³

Testing Program

Tests were first conducted on certain sections from 72" wide flat - 1997 j. plate tests in order to check previous results obtained for undrilled specimens.

Further tests were then conducted on material from all of the project steels, using both LH and BH orientations. The meanings of the designations LH and BH are as shown in Figure 51; L, H. and B represent directions in the plate parallel to the length (taken as the rolling direction), the height or thickness, and breadth, respectively. The first letter in the designation of the specimen indicates the direction of the long axis of the specimen, while the second letter indicates the direction of the notch. For example, an IH specimen is one with the specimen axis in the rolling direction and the notch in the • 11 I. A thickness direction.

Specimen Preparation

Specimens for this set of experiments were prepared in the following manner:

Bars which were about $2\frac{1}{4}$ " in width were sawed from the plate and machined by shaping to 2.16", this latter dimension being the final length of the test bars. These bars were then sawed transversely into bars slightly larger than test specimen height, and again machined by shaping on two sides to 0.788". This procedure gave test specimens of 0.788" in height, full plate thickness in width, and 2.16" in length. The standard V-notch (.079" depth, 0.01" radius, 45[°] included angle) was used. After notching, the specimens were placed in a drilling jig so set up that a $\frac{1}{2}$ " diameter hole could be drilled back of the notch. The distance from the base of the notch to the edge of the hole was held at 0.312". Figure 1 is a photograph of the test specimen, while Figure 3 is a line drawing giving the dimensions of this specimen. Testing Equipment

No changes were necessary in equipment from that used previously⁴ for conducting the slow bend notched-bar test with the exception of the hardened steel pins on which the load was applied. The photograph, Figure 2, shows the equipment as assembled before the testing operation, while Figure 4 shows the bending fixture with a notched bar in place. This fixture has a 40 mm breaking span, with a centering device being used against the back and one end of the specimen. According to whether the desired testing temperature was above or below the freezing point of water, water or acetone was used as the temperature control medium.

• Graps of a straight of the

Testing Procedure

The first step in testing is the adjustment of the temperature of the bath to the desired value.

For temperatures between $60^{\circ}F$ and $140^{\circ}F$, tap water is used, being mixed in the required proportions at the faucets and piped to the container. For temperatures from $32^{\circ}F$ to $60^{\circ}F$, ice is used to cool water as required. Finally, for temperatures below $32^{\circ}F$, acetone is cooled with dry ice to the proper temperature range.

After the desired bath temperature is reached, a holding period of at least 10 minutes is allowed to be certain that the bending fixture attains the bath temperature. Specimens are then immersed in the bath and held for a minimum of 4 minutes before breaking. As shown by the cooling curve in Figure 47 which was determined by means of a thermocouple inserted in a small hole drilled in the side of the specimen just above the notch, this length of time is adequate for the small mass of the slow bend notched-bar test specimen.

- • - <u>|</u>

 $\sim 10^{-1}$

11 - A. J.

The specimen is then centered on the anvils by means of a stop which places the notch in the middle of the 40 mm. breaking span and immediately under the punch which applies the load.

The centering device is then removed and the specimen is bent to fracture at a deflection rate of about one inch per minute. After fracture, the specimen is removed from the bath, dried, and examined for data on deformation and fracture characteristics.

Representation of Test Data

In conducting a slow notch-bend test using the Schnadt specimen, two observations are made, both after the broken specimen is removed

- 5 -

from the testing fixture. First the fracture surface is examined and the percent of the fracture surface which has a ductile (fibrous) appearance is estimated. Second, the width of the fracture at the surface of the drilled hole is measured by means of a point micrometer. This width (w1) together with the original width (w0) at the same point is used to compute the contraction w0 - w1 which is taken as a measure of the energy absorbed in fracturing the metal just below the notch.

The transition temperature can be determined in two ways: namely, from fracture characteristics or from lateral contraction at the fracture edge. The transition temperatures obtained by either of these methods are in satisfactory agreement with each other and with 72" wide plate test results.

Some discussion of the reasons for using the lateral contraction measurements rather than total energy absorption values is in order. In comparing load deflection curves for Schnadt type specimens corresponding to ductile and brittle failures, it was found that there was very little difference in total energy absorption as determined by the wedge extensemeter method. As is shown by the curves in Figure 48 the energy absorption values as represented by the area under the load-deflection diagrams are, in this case, too nearly identical for convenient use in plotting energy absorption versus temperature curves. The energy determined from the load-deflection curves is a total energy which includes the energy of deformation of the specimen at the supports. Since this latter energy represents a large fraction of the total, particularly in a ductile specimen, the behavior of the metal just below the notch is obscured in the load-deflection curves.

- 6 -

Since deformation in the cross-section containing the notch is an indication of the energy absorption of the volume of metal beneath the notch, it is considered a valid procedure to substitute the change in width measurements for total energy absorption values. This is particularly true for the Schnadt type specimen because of the removal of the compression zone, and because of the localized deformation due to the V-notch. After obtaining values of $w_0 - w_1$ and percent ductile fracture for any particular set of specimens, the data are plotted on graphs with wo - wi or percent ductile fracture as the ordinates and temperature of testing as the abscissas. The way in which the curves are drawn on the graphs is dependent on the degree of scatter. In cases where the data, show negligible scatter, a single curve is drawn by visual estimate, and the transition temperature is taken as the point on the curve which corresponds to the midpoint between the upper and lower portions of the curve. However, in cases where scatter exists, scatter bands are indicated on the curves and the transition temperature is indicated as the approximate mean of this range. The summary graphs shown are all drawn as single curves to simplify the representation.

Results of Slow Bend Testing

The fracture type vs. temperature curves are presented in Figures 15 to 24 and 36 to 46, and the curves of $w_0 - w_1$ vs. temperature are shown in Figures 5 to 14, and 25 to 35. The results for both types of curves are summarized in Table I, where it is shown that good agreement exists in a majority of cases.

There are exceptions however, in the case of the Br and H steels particularly. The low transition temperature values for these steels

15

- 7 -

appear to be a function of extreme "fissuring" in the bars. This longitudinal splitting of the bars has the effect of relieving the transverse stress component and hence, lowering the transition temperature to an extent which is presumably dependent on the number and size of fissures present. Experimental confirmation of this phenomenon was obtained for the Br steel by comparison of two sets of data. One of these sets, which was taken from the 72" wide flat plate specimen, BLA, showed no fissuring and gave a transition temperature of about $25^{\circ}F$, while a set taken from virgin plate manifested fissuring and indicated a transition temperature of $-25^{\circ}F$. Curves are shown in Figure 49 for w_o - w_l versus temperature which illustrates this and the photograph in Figure 50 shows the difference in fissuring.

Table II shows the estimated transition temperatures on the basis of $w_0 - w_1$ values for specimens taken from several additional large plates of test specimen sections.

Photographs of the LH orientation specimens of E and Br steels are shown in Figures 52a,-b,-c and 53a,-b,-c respectively. In the photographs of the E steel specimens, it can be seen that there are only three specimens which are not consistent with the general behavior; these are, one ductile fracture at 80° F, one ductile fracture at 75° F, and one partly ductile fracture at 60° F. In the fracture surface of each of these three specimens some fissuring is evident, with the specimen at 60° F being particularly interesting as it shows the remarkable offect of one large fissure on a specimon about 25° F below the transition temperature.

- 8 -

The fracture surfaces of all ductile specimens of Br steel show fissuring to a large extent. The fissures are small, ranging in length from a maximum of 3 mm. downward.

In the previous report on this subject⁴, it was indicated that changing the orientation of the specimen had some effect on raising the transition temperature for steels Br and H. The entire set of project steels was tested in BH orientation, and the indications now are that this method is not effective in eliminating the effects of fissuring, as shown in Table I.

In Table A-I of the appendix, all of the data used in drawing the curves in Figures 5 to 46 are tabulated.

The state

Conclusions

It is evident from the foregoing data that the Schnadt type slow bend test is an adequate test to reveal the large plate fracture characteristics of the project steels so long as fissuring transverse to the notch does not occur. Mhen such fissuring occurs, the transition temperature is markedly lower than that reported for the 72" wide internally notched plate. However, such fissuring is readily evident so should not impair the satisfactory application of the test. At present an inadequate number of steels have been tested to allow an estimate of the general applicability of the test, and it is recommended that many more heats of steel be tested. It is desirable also to determine possible variations through a given heat of steel, for as is indicated in the data for steel Br, these variations may be quite great.

- Research Project SR-92, "Causes of Cleavage Failure in Ship Plate, Flat Plate Tests, and Additional Tests on Large Tubes" Serial No. SSC-8, Contract NObs-31222, dated January 17, 1947.
- Research Project SR-93, "Cleavage Fracture of Ship Plates as Influenced by Size Effect", Serial No. SSC-10, Contract NObs-31224, dated June 12, 1947.
- 3. Research Project SR-96, "Correlation of Iaboratory Tests with Full Scale Ship Plate Fracture Tests", Serial No. SSC-9, Contract NObs-31217, dated March 17, 1947.
- 4. Research Project SR-96, "Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests", Serial No. SSC-15, Contract NObs-31217, dated December 31, 1947.

5. "The Notched Bar Impact Test According to Schnadt" (Abstracted from De Ingenieur, Volume 50, Number 50, December 13, 1946). Engineer's Digest, March 1947.

and the strength of the

TABLE I

Comparison of Estimated Transition Temperatures of Slow-Bend Notched-Bar Tests and 72" Wide Notched Tension Tests

				T	TRANSITION TEMPERATURE - ^O F							
TYPE OF TEST	ORIENTATION	DATA USED	E	C	A	Dr	Dn	Bn	Br	Q	H	N
72" wide tension	-	50% Energy abscrption Ref. 1 & 2	100	9 0	35	30	28	31	32		20	-45
Slow-bend notched- bar tost	LH, except as noted	Energy absorption Ref. 4	73	97	50	19	23	30	ВН 4	-11	BH 18	-35
Slow-bend notched- bar Schnadt Type	LH	₩o - ₩1	85	110	50	25	25	25	-25	- 20	-35	-3 0
Slow-bend notched- bar Schnadt Type	Lh	% Ductile Fracture	85	120	50	25	25	25	-25	-15	-35	-30
Slow-bend notched- bar Schnadt Type	BH	^w o ^{- w} l	70	1004	40	25	20		-20	-15	-10	-15
Slow-bend notched- Bar Schnadt Type	BH	% Ductile Fracture	7 0	1004	40	25	20	-	2 0	-15	-10	-15

t te fa

- 11 -

TABLE II

, **,**

. 🛊

<u>Steel</u>	٩	i Iarge <u>Plate #</u>			Trans 788 x 3/4" V	ition Tempera -notch, 1/2"	ture Drilled Hole*
A A A	•	A1A A2A ¹ A3A		i i	;	60 ⁰ F 25 °F 45 °F	
Bn	1	B4A	1	•		/ 32°F	
\mathbf{Br}		BIA				/ 30°F	
C C	•	CIA C2A		١		95°F 120°F	
Dr Dn	7 î t	1841K 5-7				25°F 10°F	
E	. *	1347			*	110 [°] F	

* All specimens were of IH orientation and transition temperatures were picked on the basis of $w_0 - w_1$ values. Specimens were selected from relatively unstrained material immediately under the notch of the 72" wide flat plate specimen.

> רים איז 1

,

 11.

 γ ,

Figure 1 Photograph of "Schnadt Type" Slow Bend Notched Bar Test.

Figure 2 Photograph of Equipment General Assembly

SLOW BEND TEST COMPRESSION ZONE REMOVED

FIG. 3

٠

_

W -W VS TEMPERATURE

FIGURE 6

FIGURE 14

FIGURE 22

FIGURE 23

W -W VS TEMPERATURE STEEL Br SCHNADT TYPE SPECIMENS L H ORIENTATION

FIGURE 27

FIGURE 29

FIGURE 35

•

FIGURE 37

FIGURE 45

Br

<u>B17</u>

Figure 50

FIGURE 52-A Steel E

STOURE 52-8 Steel E

 $75^{\circ}F$

 $65^{\circ}F$

60°F

FLGURE 52-C Steel E

Steel Br

- 42 -

Figure 53C-Steel Br

		. <u>- la -</u>		
		TABLE A-	<u>I</u> .	
<u>Temp. ^oF</u>	Spec. #	<u>Wo - Wı</u>	% Ductile Fracture	<u>Orientation</u>
+50 +50 +50 +41 +41 +41 +37.4 +37.4 +35.6 +23 +23 +23 +23 +23 +23 +24 +14	A-6 A-13 A-14 A-3 A-7 A-8 A-1 A-11 A-12 A-12 A-5 A-10 A-15 A-2 A-4 A-9	.044 .043 .035 .057 .053 .016 .015 .060 .011 .009 .013 .011 .002 002 001	100 100 100 100 15 15 15 10 10 10 10 10 10	BH BH BH BH BH BH BH BH BH BH BH BH BH
+37.4 +32 +32 +23 +23 +23 +14 +14 +14 +14 +5 +5 +5 +5 +5 +5	Dn-8 Dn-15 Dn-14 Dn-13 Dn-12 Dn-7 Dn-9 Dn-2 Dn-1 Dn-10 Dn-10 Dn-5 Dn-6 Dn-4 Dn-3	.082 .075 .075 .082 .002 .007 .004 .012 .015 .007 .017 .007 .007 .001 .000	100 100 100 100 35 100 10 15 15 15 15 15 15 10 10 10	BH BH BH BH BH BH BH BH BH BH BH BH BH B
+41 +41 +32 +32 +32 +32 +23 +23 +23 +14 +14 +14 +14 +14 +5 -4	Dr-13 Dr-10 Dr-8 Dr-5 Dr-4 Dr-15 Dr-9 Dr-14 Dr-11 Dr-12 Dr-2 Dr-7 Dr-6 Dr-3	.057 .054 .054 .012 .058 .010 .059 .010 .011 .007 .015 .005 .008 .005 .002	100 100 15 100 35 100 15 15 15 15 65 35 15 15 15	BH BH BH BH BH BH BH BH BH BH BH BH BH B

n para National de la companya

- 2a -TABLE A-I (Continued)

.

Temp. ^O F	Spec. #	W ₀ - W ₁	& Ductile Fracture	Orientation
86 86 77 77 77 68 68 68 68 59 59 59 59 59 50 50 50 48.2	E-7 E-8 E-12 E-1 E-1 E-15 E-1 E-1 E-6 E-13 E-3 E-3 E-3 E-4 E-9 E-10 E-14 E-5	.063 .069 .073 .069 .051 .066 .034 .067 .069 .029 .026 .039 .028 .025 .001	100 100 100 100 100 100 100 35 100 100 35 35 15 10 10 10	BH BH BH BH BH BH BH BH BH BH BH BH BH
104 104 95 95 95 86 77 77 77 77 77 68 68 68 68 68 59 59 59	C-11 C-15 C-3 C-8 C-13 C-5 C-2 C-4 C-10 C-1 C-6 C-7 C-9 C-12 C-14	.043 .043 .024 .048 .036 .027 .029 .051 .052 .009 .020 .048 .025 .023 .015	35 50 15 100 15 10 10 10 10 10 10 10 10 10 10 10 15 100 15 100 15 15 15 100 15 15 101 15 15 15 15 15 15 15 15 15 15 15 15 15	BH BH BH BH BH BH BH BH BH BH BH BH BH B
<pre>/14 /14 /14 /14 /5 /5 /5 -4 -4 -4 -13 -13 -13 -22 -22 -31</pre>	Br-5 Br-7 Br-10 Br-4 Br-12 Br-14 Br-2 Br-3 Br-9 Br-1 Br-6 Br-8 Br-13 Br-11	.058 .050 .053 .052 .055 .065 .054 .057 .062 .058 .060 .062 .014 .059	100 100 100 100 100 100 100 100 100 100	BH BH

- 3a -TABLE A-I (Continued)

Temp. ^O F	Spec. #	[₩] ° - [₩] 」	% Ductile Fracture	Orientation
<pre>/14 /14 /14 /5 /5 /5 -4 -4 -13 -13 -13 -13 -22 -22 -22</pre>	Q-4 Q-9 Q-12 Q-1 Q-2 Q-13 Q-5 Q-10 Q-11 Q-3 Q-11 Q-3 Q-7 Q-15 Q-6 Q-8 Q-14	.071 .071 .067 .064 .077 .069 .006 .063 .063 .063 .063 .063 .068 .002 .010 .022 .020 .001	100 100 100 100 100 100 100 100 100 100	BH BH BH BH BH BH BH BH BH BH BH BH BH B
#5 #5 #5 #5 #4 -4 -13 -13 -13 -22 -22 -22 -31 -31	N-5 N-7 N-11 N-14 N-1 N-10 N-13 N-13 N-3 N-6 N-8 N-9 N-15 N-2 N-2 N-4 N-12	.063 .063 .063 .060 .043 .060 .015 .060 .015 .060 .010 .012 .019 .018 .014	100 100 100 100 100 50 100 100 15 15 100 15 15 15 10 15	 BH
-4 -4 -13 -13 -13 -13 -22 -22 -22 -22 -22 -22 -22 -40 -40 -40 -49 -49 -49 -49	H-3 H-8 H-11 H-1 H-9 H-13 H-2 H-5 H-15 H-4 H-7 H-14 H-7 H-14 H-6 H-10 H-12	.067 .008 .005 .062 .008 .065 .065 .066 .005 .004 .008 .009 .003 .004 .005	100 35 15 100 15 100 100 100 100 10 35 35 35 35 10 10 10	BH BH BH BH BH BH BH BH BH BH BH BH BH B

د معر می - 4a -TABLE A-I (Continued)

	- "		% Ductile	
Temp, F	Spec. #	$W_{O} - W_{I}$	Fracture	Orientation
50	Bn-31	070	100	
50	Rn=32	061	100	
50	Bn 23	004 071	100	LH
50	Dn-99	.071	100	
50	DH-94	-000 -04 d	100	LH
50	Bn=35	"U68	001	LH
<u> </u>	Bn-30	.061	100	LH
45	Bn-60	.061	100	TH
45	Bn-19	.06 3	100	$\mathbf{I}\mathbf{H}_{\infty}$
45	bn-26	,059	100	LH
45	Bn22	•069	100	LH
45	Bn-25	.064	100	LH
45	Bn-28	.065	100	IH
40	Bn +37	.065	100	LH
40	Bn-38	,060	100	J H
40	En= 39	. 055	100	LH
40	Bn-40	.058	100	LH
40	Bn-29	.071	100	LH
40	Bn-21	.064	100	LH
35	Bn-18	.010	25	LH
35	Bn-16	.071	1.00	LH
35	Bn-24	.063	100	LH
35	Bn-17	.068	100	LH
35	Bn=30	.061	100	LH
35	Bn=27	,066	100	LH
30	Bn-17	.069	100	LH
30	Bn = 12	001	10	LH
20	DII-42 Drull	066	100	ТН
20	D11-44 Dn-15	022	5	IH-
20	DH-4J	000	ົ້ດ	TH
30	Dn=40	000	20	TH
30 . 05	DD=47	.007		TH
~) 05	Bn=40	.002	10	T.H
25	Bn-49 Dn 50	-002	10	TH
27 05		,000 000	20	TH
20 05	DH-21	007	100	TH
22	Bn-72	•000 00 ² 1	75	TH T
25	Bn-53	.005	100	TH
20	Bn-54	.075	100	TH
20	Bn-55	.006	20	T.H
20	Bn-50	.008	200	TH
20	Bn-57	.071	100	111 111
20	Bn-58	.006	15	141 713
20	Bn-59	.005	15	Ldi Tu
15	Bn-1	.004	T0	111 - T T T
15	Bn-2	8 00 .	15	<u>L./1</u> 7 * *
15	Bn-3	.002	10	
15	Bn-4	004	_10	
15	Bn-5	. 057	100	LH
15	Bn-6	.002	10	LH

- 5a -TABLE A-I (Continued)

0			% Ductile	
<u>Temp, F</u>	<u>Spec. #</u>	<u>Wo - W1</u>	Fracture	<u>Orientation</u>
10	Bn-10	002	~	
10	Du-10	-002 00 1	2	
10		.001	10	LH
10	BU-TT	.000	5	LH
10	Bn-9 Du C		15	LH
10	Bn-8	.007	20	LH
10 E	Bn-7	.004	50 .	IH
5	Bn-13	.002	10	LH
2	Bn-14	003	15	LH
2	Bn-12	-001	10	IH
70	Α	055	100	* 7 *
70	4=1 _20	-055 065	100	LH
70	A=20	005 07	100	
70	H.=1.4 N O	•U51	100	TH
70 6 <i>E</i>	H-9	•003	100	LH
05 4 E	A-05	.059	100	1.H
0) 4r	A-20	.058	100	LH
0) 4 <i>5</i>	A-49	-062 055	100	LH
05 6#	<u>H</u> =0	•055	100	LH
0) 65	A-38	.001	100	LH
60		•U58 0.58	100	
60	A-IC	.020	T00	
60	A=2 A=20	.015	90	
60	A=~~7	•055 051	100	
60	A. /	.050	100	
60	4#4 & 20	.059	100	
60 EE	A -20	.079	TOO	
22	A,∞20	•U14	100	
22% 55	A=39	•054	TUU TUU	
55	A-10	-029	100	
22	A~25	-056	100	
22	₩T8	.062	100	LH TT
55	A. u. 2.7	.063	95	LH
50	A-54	.018	40	
50 ut	A-52	•055	100	LH
50	A-33	.015	15	LH
50° -	A-34	.058	100	1.H
50	A-48	.013	20	LH
50 J	A-41	•059	95	LH .
45	A-55	.009	25	1.H
45.	A-43	1 018	10	
45	A-57	,013	25	LH
45	A-35	.061	100	
45	A-46	, 055	100	1.11 • • • •
45	A-44	.017	10	
40	A-59	.056	100	141
40	A-32	.010	TO (1.11
40	A-40	.012	∪د	TH.
÷ š				

,

- 6a -TABLE A-I (Continued)

Temp. ^o F	Spec. #	W - W1	% Ductile Fracture	Orientation
40 40 40 35 35	A-37 A-47 A-31 A-2 A-51	,061 .017 .009 .008 .008	100 40 5 0 40	LH LH LH LH LH
35 35 35 30 30 30 30 30	A~58 A~3 A-6 A-36 A-7 A~42 A-10 A-21 A~11	.003 .009 .018 .012 .000 .008 .011 .007	25 0 40 0 50 0	IH IH IH IH IH IH IH IH
30 0 0 0	A-23 Br-19 Br-36 Br-18	.009 .070 .070 .071	20 100 100 100	LH LH LH LH
0 0 -5 -5 -5 -5 -5 -5 -10 -10 -10 -10 -10 -10 -10 -10	Br-25 Br-34 Br-9 Br-13 Br-26 Br-27 Br-8 Br-12 Br-15 Br-15 Br-17 Br-32 Br-54 Br-30 Br-3 Br-30 Br-3 Br-23 Br-21 Br-22 Br-52 Br-52 Br-48 Br-1 Br-47 Br-59 Br-53 Br-58 Br-39 Br-56	.069 .067 .071 .067 .066 .067 .071 .069 .045 .066 .050 .003 .001 .002 .069 .072 .072 .072 .072 .072 .072 .067 .000 .066 .070 .004 .000 .069 .073	$ \begin{array}{r} 100 \\ $	IH IH
-25	Br=5	.000	5	IH

.

- 7a -TABLE A-I (Continued)

, '

Temp. [©] F	Spec. #	$_{W_0 - W_1}$	% Ductile <u>Fracture</u>	<u>Orientation</u>
-25 -25 -25 -25 -30 -30 -30 -30 -30 -30 -30 -30 -30 -35 -35 -35 -35 -35 -35 -35 -35 -35 -35 -35 -35 -40 -40 -40 -40 -40 -45	Br-24 Br-20 Br-10 Br-60 Br-29 Br-33 Br-4 Br-28 Br-4 Br-28 Br-43 Br-37 Br-2 Br-55 Br-50 Br-51 Br-14 Br-35 Br-40 Br-51 Br-42 Br-42 Br-42 Br-42 Br-42 Br-57 Br-57 Br-45	.001 .065 .071 .002 .073 .067 .000 .004 .002 .071 .003 .020 .002 .002 .002 .002 .002 .002	$ \begin{array}{r} 10 \\ 100 \\ 20 \\ 20 \\ 100 \\ 100 \\ 30 \\ 30 \\ 10 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 20 \\ 25 \\ 100 \\ 20 \\ 25 \\ 5 \\ 100 \\ 20 \\ 25 \\ 5 \\ 10 \\ 20 \\ 25 \\ 5 \\ 10 \\ 20 \\ 20 \\ 25 \\ 5 \\ 10 \\ 20 \\ 20 \\ 25 \\ 5 \\ 10 \\ 20 \\ 20 \\ 25 \\ 5 \\ 10 \\ 20 \\ 10 \\ 10 \\ 20 \\ 10 \\$	
105 105 105 105 105 105 105 105 100 100 100 100 100 100 100 100 95 9	E - 60 E - 25 E - 58 E - 7 E - 27 E - 29 E - 28 E - 23 E - 23 E - 22 E - 24 E - 17 E - 5 E - 54 E - 5 E - 54 E - 9 E - 59 E - 56 E - 56 E - 51	.065. .061 .058 .057 .052 .065 .062 .066 .005 .065 .057 .065 .073 .055 .054 .054 .062 .077 .068 .057	100 100 100 100 100 100 100 100	LH LH LH LH LH LH LH LH LH LH LH LH LH L

TABLE A-I (Continued)

				· •		•
<u>Temp. ^OF</u>		Spec. #	$W_o - W_1$	% Ductile Fracture		Orientation
90		E-26	_080	100		LH
90		E +3 6	.072	. 100		IH
90		E-37	•068	. 100	· .	IH
90		E-51	.083	. 100		ĨH
90		E-43	.074	· 100	• .	IH
90		E -57	.071	100		IH .
85		E -5 3	.062	100		IH .
85		E -3 3	.034	• 35	1 	IH
85		E-32	.065	100	••	IH
85	-	E-46	.032	35		IH
85		E-44	.031	· 50		LH
85		E-31	•060	100	1 - ₂₀	LH
80 08	i A	E-45	.077	100	·	LH
80		E-20	.031	. 15		IH
80	÷. •	E-39	.027	15	· · ·	I.H
80	÷, •	E-40	.622	10		
80		E-1	.031	15		ILH Com
80		E-16	•030	TO	1 -	
75		E-30	•030	- 35	1. A. A. A.	
75	· ·	E-55	.025	15		
75	1	E-2	.030	15		LH
75		E-34	.071	. 100	a fa va	
75		E-38	•035	- 15		LH the
75		E-14	.0 31	35	i (jan f	IH
7 0		E -1 5	.023	· 15		LH .
7 0		E-4	.018	10		LH
7 0		E-42	•008	15		LH
7 0		E-52	017	· 10		<u>I.H</u> ,
7 0		E-3	.018	/ 10		LH
7 0		E+18	∂ ,012	10		
65	at in the second se	E-11	.011	10		
65		E-47	020	10		
65		E-19	610.	10		Tu
65		E-12	\$10.	01		
65		E-6	013	01 01	7	TH State
65		ビー5 0	•010	01 01		TH
6 0		E=13	010	· 10		TH CA
60		E - 48	.009	· 50		141
60		E-35	.058	0C 0 I	•	TH
60		E-49	. •012	, TO		TH .
60		E-41	110 .	01 01		TH
60	• •	E-10	•OTO	· TO		A BARANA A BARANA A BARANA A BARANA
			n de la companya de l La companya de la comp	· · · ·		2. 1
				; ,		

TABLE A-I (Continued)

Temp.	°F	Spec. #		1 E	Ductil	9	Orienta	tion
55		Dr-27	-042		100		TH	
55		Dr-20	.031		100		TH	
55		Dr - 14	.040		100		1.1	
55		Dr-8	-05/		100		TH	
55		Dr- 9	.040	۰. ۳	100		LH	
50		D 0	OF	anti tan	100			
7 0		Dr=7	.054		100		LH	
50 50		DI-20	000 061		100			
50		Dr-19	100	•	100		LLH T T T	
50 50		Dr-13	_014		47 55		1.H T 11	
50		Dr#32	.019		22		1411 T 11	
20 15		Dr=1	.059		100		141 TU	
42		Dr=40	•009 056		100		- 141 - TU	
42		Dr= 34	-050 07/		100		TU TU	
42		Dr-40	,014 06 E		100		1411 TU	
42		Dr-17 Dr-55	065		100		T.H	
45		Dr-55	-00J 066		, 100 100		TH	
40		Dr-30	.058		100		נבב	
10		Dr=22	005		100		TU	
40		Dr-JO	.057		100		La La	
40		Dr-24			100		LH LH	
20		Dr-57	.065		100		I.H	
40		Dr-12	.017		70		LH	
35		Dr-47	.006		10		IH	
35	:	Dr-54	.062		100		$\mathbf{L}\mathbf{H}$,
35		Dr-36	.025		60		LH	. "
35	• •	Dr-44	.014		10		LH	
35		Dr-42	•018		10		LH	: · ·
35	· ·	Dr-35	.017		40		LH	
30		Dr-26	•000	、	10		IH	," •
3 0		Dr-37	•059		100		LH	. t
3 0		Dr-45	.002		10	•	LH	
30		Dr-38	.003		15		LH	
30	. •	Dr 53	•0 5 3		100		LH	
30		Dr-31	.057		100	•	LH	
25		Dr-41	.061		100		LH	
25		Dr-59	•065		100		LH	
25		Dr-39	.007		25		141	
25		Dr-60	.010		6 0		Lhi тu	
25		Dr-52	•006 005		30 50		Ln TH	
25		Ur-48 Dr-35	-005 005		20		IH	
∠ ∪ 20		ער יי גס חייייןא	-002 -002		10		LH	. • •
20		Dr-28	.052		100	ř.	LH .	
~~~				. 1		•		
	•							6) 45
	:			· · ·				
		**		. **		. <b>.</b>		a. 1

• •

•..

ta k

.

# - 10a -

## TABLE A-I (Continued)

.0				% Ductile			
Temp, F	• - <del></del> -	Spec. #	Wo - Wl	Fracture	<u>Ori</u>	entati	on .
20		D 4			. •		
20		Dr-0 D- 15	.001	15	• •	LH	-
20		Dr=15	.003	10	,	IH	
20		Dr = 3	LIU	50		LH	
15		Dr-50	.07L	100	•	LH	•`
1) 1 <i>2</i>		Dr=29	,000	· · >		LH	
15		Dr <b>-</b> 4	3002	Ŭ TÛ		LH	
15		Dr-33	.002	5	•	LH	
15 -		Dr-5	•009	10	. <b>-</b> .	LH	
15		Dr-49	•004	15	*	LH	
10		Dr-43	•019	· · · · 30	· · ·	LH	
10		Dr-11	.014	, 70	·	LH	
10		Dr-16	.005	. 10	• •	LH	
10		Dr-2	.001	. 20	•- ,	LH	*
10		Dr-21	004	. 10	1. A. C.	LH	.5
10		Dr-23	.056	100		LH	
£5		Q-5	•052	100	·	LH	
£5		Q-4	.051	,100	· .	LH	1. 2. Ta A
<b>7</b> 5	• •	Q-8	.065	100		TTT	\ 'A \
#3		Q. <del>-</del> ∕	.060	, 100			kişk Ciş
+) /-		Q-0	.000	100			
<i>+</i> >		Q-9	·•059	100			
0		Q-10	e.062	100		141	
0	н. н. 1. н.	Q-12	010	¢100	-		
0		Q-11	-001	. 100			÷.,
0		Q-13	.027	30			•. •
0	• •	Q=17	.004	10	· · · · ·	<u>1.61</u> 11.11	•
0		Q-14	.060	100	•• 23		
-5		Q-1	.010	· 50			
-5	r	Q-3	•063	100	1		
-5	2	Q-2	.023	- 15	· · ·		
-5	•	Q-10	.034	. 60	1. A. M. 1	ាប បា	
<b>₩</b> 5		Q-19	.011	- <del> </del>		140 712	
-5		Q-18	.052	100 ·			•
-10	 	Q-20	• 009	2		141 T 13	
-10		Q-22	.040	80			
-10		Q-23	.052	100			
-10		Q <b>-</b> 24	.017	5			·.
-10		Q-25	.062	100		1.11	÷*
-10		Q-32	•058	100	· · ·		
-15		Q <b></b> 26	.000	30	••	<u>ып</u> тű	
-15		Q-27	.028	70	-	1.61 T.51	
<del>-</del> 15		Q-29	•011	15		TTI TTI	с.* Курск
-15	•	ୟ <b>-</b> 28	.014	15	t av	111 111	•
-15		Q <b>-31</b>	.006	25 <b>. 25</b>		LEI TU	
-15		Q-30	.014	:: <b>, )</b>			

--- -

# TABLE A-I (Continued)

Temp. ^O F	Spec. #	<b>w</b> o - w <u>j</u>	% Ductile Fracture	Orientation
<b>-2</b> 0	Q-15	.004	2	<b>7.1</b> 4
-20	Q-36	012	ŝ	TH TH
-20	0-35	.011	ĨÓ	TH
-20	Q-41	.061	100	ТН
-20	0-40	.019	15	TH
-20	0-39	,010	-5	TH
-25	Q-34	.028	20	тн Т.н
-25	0-43	003	5	TH
-25	Q-46	.011	45	T.H
-25	Q-37	.020	25	ĨH
-25	Q-45	.006	25	IH
-25	Q-42	° .020	15	TH
-30	0-17	.012	25	ĨH
-30	ũ <b>−38</b>	.002	10	TH
-30	a-33	.029	25	TH
-30	Q <del>+</del> 49	008	10	LH
-30	Q <b>-</b> 53	.059	100	LH
-30	Q-52	003	2	LH
-35	Q-50	.002	10	LH
-35	Q-51	.029	60	I.H
-35	Q-54	036	20	LH
-35	Q-58	.006	5	LH
-35	Q-56	.021	15	r: LH
-35	Q-55	003	2	it in <b>LH</b>
-40	Q-48	.014	15	LH
-40	Q <b>-44</b>	• • 006	0	) <b>L</b> H
- <b>4</b> 0	Q-57	,000	2	it IH
-40	Q-59	.002	5	IH
-40	Q-60	.004	2	ĹĦ
-15	H <b>-9</b>	<b>.</b> 059	100	LH
-15	H-12	.064	100	LH
-15	H <b>-38</b>	.063	100	LH
-15	H <b>-13</b>	<b>.</b> 065	100	IH
-20	H <b>-37</b>	.075	100	IH
-20	H <b>-2</b> 3	.019	70	IH
-20	H <b>-24</b>	.061	100	TH
<b>-2</b> 0	H <b>-4</b>	<b>.</b> 025⊝.	90	IH
-25	H <b>-</b> 40	.061	100	LH
-25	H <b>-</b> 25	•002	5.	LH
-25	н <b>-36</b>	.063	100	LH
<del>-</del> 25	H <del>-</del> 26	.071 ···	100	LH
-30	H <b>-4</b> 2	.061	100	LH
-30	н-30	<b>_</b> 066 ∫	100	LH
-30	H <b>-11</b>	.029	90	
-30	н <b>-6</b>	.018	50	IH
2. j.		*		
. 1			11 مىلى 13 -	10.3 ( )
		· · · · · · · · · · · · · · · · · · ·	. م.	i tana ara
			•••	

-

- 12a -

TABLE A-I (Continued)

_ 0_			── % Ductile	ile		
Temp. F	Spec. #	<b>WG - W</b> 1	Fracture	<u>Orientation</u>		
	an an an anna anna an an an a		5			
				-		
-35	H-17	.005	5	LH		
-35	H-1	<b>.</b> 00 <b>3</b>	10	LH		
-35	H <b>-22</b>	•066	100	ĽH		
-35	H <b>-35</b>	•0 <b>29</b>	85	LH		
-40	H-34	.054	100	LH		
-40	H <b>-3</b>	.057	100	LĤ		
-40	H <b>-18</b>	.002	30	LH		
-40	H-39	.021	40 ".	LH		
-45	H-32	.003	10	TH		
-45	H-27	-006	20	IH		
-45	H-3]	.005	20	TH		
-45	H <b>-</b> 16	.012	25	TH		
-50	н-28	003	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TH		
50	u_33		10	111 TU		
-50 -50	11-21 11-21	•001 072	100	ŕť		
-50	11-21 10	1072 ·	100			
-50	n-13	•00/	±9 .	بہ ت		
	H-27	010	2 20			
	H=14	.010	<u> </u>	.,⊥an ∵arart		
55	H-2	•007		<u>्रीवी</u> जन्म		
	H-5	.008	20_			
-55	H <b>-8</b>	•00 <b>6</b> °	15	"TH		
in an		· · ·				
×130	C-43	•045	100	- LH		
<b>A</b> 130	C-49	•044	100 -	ĻН		
<b>7130</b>	C-3	.051	100	ĽΗ		
<b>±130</b>	C38	.051	100 .	<u>, тн</u>		
7130	C-42	<b>∎</b> 046	97	IH		
7130	C-57	.050	100_	IH		
+125	C-37	•048	85	IH		
+125	C-48	•039-	55	LH		
/125	C60	.049	70	LH		
<b>/</b> 125	C-50	•040	25	LH		
¥125	C-24	-043	80	LH		
<i>+</i> 125	C-9	.051	50	LH		
<i>+</i> 120	C <b>-</b> 32	<b>.</b> 051	50	IH		
<b>/</b> 120	C-52	.048	60	LH		
<b>/</b> 120	C-23	•055	90	IH		
/120	C46	.030	20	IH		
<b>/12</b> 0	C-34	.048	30	TH		
<b>4</b> 120	C-22	.044	50	LH		
∵. <u>4115</u>	C-/	.053	100	IH		
1775	C-8	028	20	ТН		
· μττ.	0-23	0196	10	<u>с</u> н		
2 JULE	0-22 0-39	022°	20	нī		
	0-40 0-25	- 200- 0041	20	1 TH		
<u>۶۱۱۶</u>	<b>じー</b> Jフ	0KO -	יע קר			
¥115	C-11	•U>3	12	1 تفيل		

## - 13a -

## TABLE A-I (Continued)

_ 0		4	% Ductile	
Temp. F	Spec. #	wo - wl	Fracture	<u>Orientation</u>
0.11	C-12	033	in	<del></del>
4110	0-12	<i>مر</i> ∪. ۲۹۵	40	14
4110	0,00	LCO.	مر	LH
	0-17	.030	40	· TH
/110	G=47	.032	40	LH
/110	0-55	.035	10	LH
/105	G <b>-</b> ∠	.026	10	LH
#105 /10#	16-31	.054	60	LH
/205	0-40	.017	UL UL	LH.
F105	0-10 0 15	.019	2	114
F105	0-19	029	20	
2105 2105	C-14 C-6	•UZ7	20	
4100	0-0	.UZZ	20	
4100	0-30	+029	2	노타
4100	0-41 0-19	.UZZ	2	
4100	0-10	•031 •030	) 5	L M T I I
4100	0-19	.030	2	141 111
4100	0-53	-028 ·	10	- Lei Tu
7 05	C-16	025	±2	141 141
1.05	0-10 C-7	026	5	141 7 14
1.05	c-7	020	5	111
1 35	0-1	100 100	í a	TU
1.35	0-27 C-25	002	n ····	TH'
- JJ	0-29	•00 <b>0</b>	<b>U</b> ,	, 34+ 7-11-1
<i>4</i> 40	Dn-40	.070	100	IH
720	Dn-26	.070	100	IH.
740	Dn-7	.023	50	IH-
<b>F</b> 40	Dn-41	.073	100	$\mathbf{L}\mathbf{H}^{\sim}$
740	Dn-50	.066	100	ΓH.
735	Dn-16	.067	100	LH
+35	Dn-42	.067	100	LH
¥35	Dn-36	.070	100	IH
<del>/</del> 35	Dn-60	.067	100	LĤ
<del>/</del> 30	Dn-37	.067	100	IH.
<del>/</del> 30	Dn-52	068	100	LH ·
430	Dn=3	.075	100	LH "
430	Dn - 17	-065	100	LH
125	Dn = 20	069	100	LH
425	Dn-22	.003	15	TH
420	$Dn \sim 2$	.066	100	LH
<i>4</i> 20	Dn-24	.014	10	LH
420	Dn-44	.017	20	IH
420	Dn-27	.071	100	ĨH
420	Dn=57	.070	100	LH
415	Dn=11	.010	5	LH
415	Dn - 27	.067	100	IH
415	Dn=13	072	100	LH
1-2	<b>1</b>	¥		

# TABLE A-I (Continued)

		-		TABLE A-1 (Cont	inued)			
	Temp. ^o F	• -	Spec. #	<u>wo - w1</u>	% F:	Ductile racture		<u>Orientation</u>
	<i>4</i> 15		Dn-28	.003		100		LH
-	¥15	-	Dn-14	•008		20	•	$\mathbf{L}\mathbf{H}$
· ·	+15		Dn-58	•057		100	•	LH
- •	<i>7</i> 10		Dn-59	.010		3		$\mathbf{L}\mathbf{H}$
	¥10		Dn-4	.010		5		LH
	<b>/</b> 10		Dn-30	.012		5	-	LH
	<b>7</b> 10		Dn-23	•004		5		IH
	<b>7</b> 10		Dn-57	.082		100		LH
	<b>7</b> 10		Dn-34	.009		20		LH
	7,5		Dn-53	.005		5		IH
· .	7,5		Dn-38	.012		30		LH
i.	7,5		Dn-33	.021		50		LH
	¥,5		Dn-35	,000		5		LH
j. g	+ 5		Dn-12	.005		5		IH
7.	0		Dn-56	.010	<u>, '</u>	20	- 1	IH
	0	1	Dn-2	.002	• •	5	. <u>.</u>	LH
11	0	i.	Dn-17	.000		5	. 7	LH
112	0	•,	Dn-48	.00 <b>3</b>	. •	5		TH .
11	0	•	Dn-1	<b>.</b> 006		2		LH
2.1	-10		Dn-54	•000		5		LH
2E t	-10	-	Dn-39	.004	<b>a</b> t	5	<i>.</i>	IH
×4 æ	-10		Dn-5	001		0		LH
* <u>5</u> 1	-10	•	Dn-25	. tj: <b>=.001</b>		l		LH
11,1 27 F	-10		Dn-8	•003		1	•	LH
2, S • 1	-10		Dn-32	<b>,</b> −,002		1		LH
ية بر مانية -	-15		Dn <b>-4</b> 3	. <b>.</b> 001		0	-	LH
	-15		Dn-55	aka <b>, ₀002</b>	· · ·	15		LH
•	-15		Dn-15	‴⊛ <b>.−₊003</b>		2		LH
2 <u>1</u>	-15		Dn-29	.001	• ·	2	÷	LH
14.44 -	-15		Dn-39	001		. 0	·	LH
	-15		Dn <b>-</b> 46	•001	•	1		LH
	-20		Dn-9	001	•	0		LH
	-20		Dn <b>-18</b>	<b></b>		0		LH
·	-20	ч. Э	Dn <b>-6</b>	• 002		0		LH
	-20		Dn-10	.007	-	0		LH
~	-20	•	Dn-49	.000		0		IH
	-20		Dn-19	.001		0		ĨH
					:		÷	
					47		•	
7				s 2. <b>k</b>				
				•			·*.	
• • - + - •#*				e Statura				
-					ي بين من			
				ζζ.·.	1 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1		•	
					- 1			