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Abstract

The brittieness of mild steel subjected to tension after prior
compressive prestraining has been in part attributed to the collapse of
microscopic flaws or voids and to the resulting severe straining, work
hardening, and sharpening of the flaw edges. A similar mechanism of
embrittlement should operate also with artificial macroscopic flaws such
as holes. This was checked with tests of axially compressed bars of ABS-B
and of E-steel with transverse pre- or post-drilled single or double
holes. The overall nominal compressive prestrain (exhaustion Timit) caus-
ing brittleness in subsequent tension in bars with pre-drilled holes was
about 1/4 the corresponding prestrain for solid bars of E-steel and about
1/2 for ABS-B steel. The possible causes of this difference and the modes
of fracture initiation and propagation are discussed. The strong differ-
entiation of steel quality achieved with these tests is very promising for

the development of a related acceptance test.
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Embrittlement by Prestraining

A reduction of the initial ductility of steel by suitable prior cold
or hot straining has been shown in earlier papers to be an important cause
of brittle fracture initiation under subsequent tension. In particular
precompression of notched mild steel plates has resulted in fracture in
subsequent static tension at loads as low as 10% of the load limit for gen-
eral yielding [1~5]. Uniform axial prestraining of smooth bars by about
0.65 or more when cold (70°F) or about 0.52 when hot (600°F) caused a sud-
den drop of the reduction of area at fracture from 0.80 or more to about
0.02 [3,6,7]. Prestraining in compression by bending followed by tension
in reversed bending [3,4,7-10] showed embrittlement after cold prestraining
of about 0.50, or after hot prestraining of about 0.25. 1In all instances
the ductility was reduced only when the prestrain reached a narrowly defined
value, the exhaustion 1limit, but remained almost unimpaired at smaller pre-
strains. Lighter prestraining, however, can also cause brittle behavior
when aggravated by notches. Bars with deep circumferential grooves machined
after uniform prestraining showed a rapid reduction of fracture elongation
at prestrains as low as 0.05 [6].

The importance of the phenomenon of exhaustion of ductility by suitable
prestraining is made evident by numerous brittle fractures of structures in
service, which have been found to start at stress concentrations within cold
vworked regions or close to welds where severe hot straining had occurred. In
general the ductility of the steel was found to depend on the whole history
of strain (including temperature) as well as on the conditions at fracture

(stress, strain rate, temperature, etc.). Few types of controlled prestrain



history have been tried because of considerable experimental difficulties.
Of those tested, precompression seems to be the most embrittling in a sub-
sequent reversal to tension in the same direction, but not in a transverse
tension [11]. One explanation has been suggested at past meetings of the
Ship Hull Research Committee [12]. Precompression flattens pre-existing
flaws or voids, sharpening the notches with axis perpendicular to the di-
rection of precompression and blunting theose with axis parallel. The
sharper notches are also work-hardened in compression, and they are at
right angles to the applied tension parallel to the precompression, hence
give rise to very high local stresses. On the contrary, the sharpened
notch axes are parallel and the blunted edges perpendicular to an applied
transverse tension, hence both are relatively inoffensive. In a study of
the possible explanations of macroscopic properties based on a continuum
approach, D. C, Drucker [4] discusses the mechanism of flaw sharpening by
precompression, He shows that the resulting straining and hardening does
explain the observed behavior. He also explains why prestraining in tor-
sion causes less embrittlement than ir compression. It is interesting to
note that initially oblate filaws with their large dimension mnormal to the
precompression may close up and avoid further local work-hardening. Con-
versely oblong flaws compressed along their length may never get to be too
sharp, and starting with a small factor of stress concentration, may never
cause much work hardening, except at extremely large prestrains. The shape
of the worse flaw will lie between the two extremes and will cause the worse
combination of high straining and notch sharpening.

All the above may be extended to the case of a flaw within the strained
region of a larger flaw with only a substitution of the strain at the large

flaw for the overall macroscopic strain. Tt may be necessary to consider



also the size of the strained region and of the highly stressed region,
and their distribution density when several exist. The size effect in
brittle fracture has been disputed [13], but the problem is somewhat be-
clouded by the difference between initiation and propagation of fracture

[2,5,14].

Tests with Flattened Holes

The explanation of embrittlement by precompression as due to the flat-
tening of holes was checked by tests of specimens containing controlled
known flaws or cavities. A gemeral study with various cavity shapes and
sizes did not appear possible, but meaningful limited tests could be done
with drilled cylindrical holes. The round hole, though probably not the
"worst" shape, is intermediate to the oblong and oblate, and the eylindri-
cal form ensures the constraint severity of plate strain for,the local
straining. Even if the holes are not the most damaging cavities, they do
cause much larger local compressive straining and work hardening than the
average in the specimen and give rise to high stress concentration in ten-
sion, hence they should intensify the damage and cause brittleness at lower
overall strains.

Three types of tests were made with bars of 0.75 in. square cross-
section and 9 in. length cut in the direction of rolling of 0.75 in. thick

plates of ABS-B and of E-steel (composition and properties in Table I).

a. Bars with two transverse holes drilled before compression., One hole

was perpendicular, the other parallel to the as-rolled surfaces and far

enough not to affect the first (Fig. 3, inset). both of 0.031 in. dia. The



TABLE TI. TYPICAL COMPOSITION AND PROPERTIES OF STEELS.

Ultimate Elongation Charpy

T t

I Element, per cent Yield Tenaile per Fent mp’ac
8 Temp.

@

E Strength | Strength In n Fro deg.
c Mn P 5 si Cn Ni Cr Mo psi psi 8 in, | 2 in.| 1b | Fam
E 0.20] 0.33|0.013|0.020 (0.01 (0.18 |0,15 |0.09 |0.02 32 000 65 000 36 30 18 55
to to
3.3 =11
0.14 | 21.04 (0.011]0.018 | 0.056({0.083|0.023|0,031 33 8OO+ 58 400 33 20 18
i . to to
ABS-B 10 -5
0.15( 0.9% | 0.009 | 0.027 [ 0.046|0.094| 0,040|0.023 35 700 59 800 32 20 11
to to
10 -11

bars were prestrained axially in compression at about 70°F in a machine de-

scribed in an earlier paper [3], were artificially aged for 90 minutes at

300°F and machined into standard 0.505 in. dia. tension specimens, and were

then tested in tension at -16°F. The results are given in Table II and Fig-

ure 1 for ARS-B steel and in Table IITI and Figure 2 for E-steel.

Nominal prestrains up to 0.60 (length compressed by 80%:

-0,92) were applied to ABS-B and up to 0.30 (natural strain -0.36) to E-steel

natural strain

bars. The strain non-uniformity around the holes was checked with measure-

ments of the deformation of scribed 1/4 in. squares centered on the holes
{(Fig. 3,inset) and with microphotographs of the flattening of the holes. The
change of hole diameter along the bar was much greater but propertional with
the applied nominal prestrain up to about 0.18-0.20, when the holes closed up
(upper two curves of Fig. 3). The curves of transverse diameter expansion
showed a gradual change of slope at the same prestrain of about 0.20 and in-
creased rapidly at prestrains of about 0.45 to 0.60. The curves of lateral
expansion over the 1/4 in. grids, parallel and across the initial plate thick-
ness (two lower curves in Fig. 3) matched reasonably well the overall expan-

sion curves of ABS-B bars without holes given in an earlier report [6], except
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TABLE II. ABS-B STEEL BARS WITH HOLES, AXIALLY PRECOMPRESSED AT
72°F AGED 2 HRS. AT 330°F, TESTED IN TENSION AT -16°F.
TABLE 11 ABS-B STEEL
BARS WITH HOLES, AXIALLY PRECOMPRESSED AT 72°F
AGED 2 hrs. AT 330°F, TESTED IN TENSION AT -16°F
' NOM. BAR DIA., in. HOLE DIA., 10_3 in. FRACTURE DJ'.rect:l‘.onf
BAR Fy 5 = I S and
COMPR. Orig. | Fract. Orig.| Compr. |Fract. ksi” |Strain |Fract. Type
B-272 | 0 0.501 | P 0.432 30 30 20 103 | 0.u3 shear
N 0.374
B-273 | 0 0.501 [P 0.u35 31 31 .20 79 | 0.36 shear
N 0.394
B-227 0.10 0.505 P 0.465 32 T 35 28 104 0.37 PF, shear
N 0.387 L 18
B-228 0.15 0.504 P 0.473 32 T 36 34 20 0.34 NF, shear
N 0.391 L 8
B-229 0.20 0.500 F 0.479 33 T 40 40 113 0.27 PF, shear
N 0.%10 L 0
B-230 0.25 0.504 P 0.484% 32 T 43 L3 118 0.32 NF, shear
N 0.392 L 0
B-270 0.30 0.504 P 0.470 31 T + 41 106 0.26 55% sh.
N 0,425 L 0
E—237g 0.30 0.507 P 0.u40 T 41 ul 131 0.43 shear
N 0.393 L o
B-2u49 0.40 0.504 P 0.491 31 T + us 111 0,17 shear
N 0.u441 L o
B-2u46 0.40 0.498 P 0.450 32 T 50 L3:] 131 0.25 25% sh.
N 0.u436 L 0
B-231 0.41 0,510 P 0.465 32 T 50 45 132 0.33 NF, shear
N 0.410 L 0
B-239h 0.4l 0,501 P 0.460 T 50 ug9 122 0.34 PF, shear
N 0.u03 L 0
B-238" 0.u3 0.504 P 0.502 T 52 52 61 0.01 NF, cleav.
N 0.502 L 0
B-271 0.50 0.504 P 0.502 31 T + u9 35 0,005 cleav.
N 0.501 L 0
B-245 0.50 0,496 P 0.488 31 T + 55 106 0.06 3% sh.
N 0.477 L 0
B-232 | 0.36 0,499 [ P 0.499 32 T + 55 73 | 0.005 cleav.
N 0.498 L ©




TABLE II. (continued) ABS-B STEEL BARS WITH HOLES, AXIALLY
PRECOMPRESSED AT 72°F AGED 2 HRS. AT

330°F, TESTED IN TENSION AT -16°F.

Z K T
NOM. BAR DIA., iIn. HOLE DIA., 10 3 in. FRACTURE Direction
BAR 5 = i Y and
COMPR. Orig. Fract.” |oOrig. | Compr.”|Fract.® |ksi” |Strain”|Fract. Type
B-248 0.60 0.502 P 0,502 34 T + 59 52 0.002 cleav.
N 0,502 L 0
B~247 0.60 0.503 P 0.503 33 T + 58 69 0.003 cleav.
N 0.502 L 0
B-235 0.10 0.4986 P 0.430 32 22 103 0.u0 NF, shear
N 0.380
B-236 0.15 0.512 P 0,420 32 23 120 0.49 PF, shear
N 0.375 Holes
B-234 0.20 0.502 P 0.420 32 made 24 118 0,46 PF, shear
N 0.375
after
B-235 0.25 0.510 P 0.430 32 24 125 0.52 NF., shear
N 0.360 com=
B-243 0.40 0.502 P 0.416 32 pres- 17 136 0.43 PF, shear
N 0.383
sion
B-2uk4 0.60 0.498 P 0.4u45 32 16 121 0,23 NF, shear
N 0.u424

Bar diameter parallel (P) or normal (N) to axis of hole

Hole diameter transverse (T) or longitudinal (L) to length of bar
Transverse diameter of hole after fracture

Average fracture stress based on net area at fracture

Natural strain based on change of net area at fracture

Fach bar had two holes, one parallel (PF) and one normal (NF) to the

original face of the parent plate. The fracture initiating hole is
indicated.

- m o 0O T oo

g. Holes redrilled at 18% nominal strain. Hole diameter was 0.038 in.

h., Holes redrilled at 18% and 31% nominal strain. Hole diameters were
0.038 in. and 0.046 in., respectively.

i. Holes redrilled at 18% and 33% nominal strain.
0.038 in. and 0.046 in., respectively.

+ Closed-up hole could not be seen.

Hole diameters were
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Fig. 3 Dimension Changes Of ABS-B Steel Bar With Holes During Compression.

at compression ratios of 0.80 or more, when the lateral expansion around hole

B (lowest curve +,||) increased faster, and around hole A (curve x) slower

than the expansion in the absence of holes.
the bar axis (curves + and x, |[|) was almost

faster than the applied prestrain up to 0.20,

The grid contraction parallel to
exactly linear but slightly

when the holes closed. At pre-

strains above 0.20 the longitudinal grid contraction matched exactly the

neminal bar compression.

It appears, therefore. that all the strain concen-

tration caused by the hole occurred within the region of the 1/4 in. squares



and maybe within an even smaller region, as indicated by microphotographs
of the etched surfaces.

The strain concentration around a flattened hole is also indicated by
the surface deformation as in Figure 4 for a 0.03 in. hole after a nominhal
prestrain of 0.18, and in Fig. 5 after re-drilling to a 0.041 in. dia. at
a prestrain of 0.18 and then continuing the axial prestraining up to 0.31
(nominal total). At the upper left of each figure is a photograph of the
free surface showing shadows caused by the ridges of lateral expansion at
the sharp corners and along the shear zones emanating from them. The lower
left corner shows a polished section along the longitudinal mid-plane, and
the upper right the same area after heating to 400°F and etching by repeated
immersicn in a solution of 6 gr. each of cupric and ferric chloride and 10
ml. hydrochloric acid in 100 ml. of ethyl alcchel. The defermation of the
banded structure indicates the more highly strained regions and the shear
zones emanating from the sharp cormers. Completely flattened holes after
prestrains of 0.32 and 0.60 are shown in Figure 6 (not re-drilled).

The results of main interest in Tables IT and III are the fracture
strain and stress at each prestrain shown in the 2nd and 3rd columns before
the last and in Figures 1 and 2. At prestrains between 0 and 0.41 the frac-
ture strainsof ABS-B bars (Fig. 1, right) show a lot of scatter but gener-
ally decrease from about 0.40 % 0.03 to about 0.25 * 0.08. This is about a
half to a third of the fracture strain of solid bars [5] but still large
enough to qualify the behavior as ductile. A reduction of the fracture
strain to about 0.0l (with an exception of 0.05) was found to occur at nom-
inal prestrains between 0.41 and 0.50 or about 2/3 of the exhaustion limit

for solid bars (0.75). The difference is actually much bigger. as shown by
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TABLE TIT E-STEEL BARS WITH HOLES, AXIALLY PRECOMPRESSED AND
AGED, TESTED IN TENSION AT -16°F

oM. BAR DIA., in. HOLE DIA., 107° in. FRACTURE Direction®
BAR 2 5 o a and
COMPR.. Orig.| Fraet. Orig.| Compr.” |Fract. ksi%|Strain®|Fract. Type
E-318 | 0.10 0,504 | P 0,474 33 T 36 30 a4 | 0.21 Pr, 50% sh.
N 0.428 L 18
E-319 | 0.15 0.504 | P 0.480 32 T 36 35 92 | 0.13 NF, cleav.
N 0.u67 L 10
E-320 0.20 0.495% P 0.u482 a3 T 37 37 92 0.06 NF, cleav.
N 0.478 L 0
E-321 | 0.25 0.505 | F 0.485 32 T 40 40 95 | 0.06 PF, cleav.
N 0.483 L 0
E-322 | 0.30 0.500 | P 0.49) 32 T 44 b 90 | 0.05 PP, cleav.
N 0.483 L 0
E-326 0.10 0.491 P 0.420 32 Holes 26 105 0.37 NF, shear
N 0.392
made
E-327 | 0.15 0.502 | P D.450 32 30 95 | 0.2u NF, 15% sh.
N 0.440 after
E-32u | 0.20 0.510 | P 0.u60 32 com= 31 98 | 0.23 PF, 15% sh.
N 0,450
pres-
E-325 | 0.25 0.512 | P 0.460 32 31 105 | 0.25 PE, 10% sh.
N 0.455 sion

Bar diameter parallel (P) or normal (N) to axis of hole

Hole diameter transverse (T) or longitudinal (L) to Iength of bar
Transverse diameter of hole after fracture

Average fracture stress based on net area at fracture

Natural strain based on change of net area at fracture

. Each bar had two holes, one parallel (PF) and one normal (NF)
to the original face of the parent plate. The fracture
initiating hole is indicated.

—H D OOT @
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Fig. 6 Completely Flattened Holes

the corresponding natural strains: -0.51 to -0.64 vs. -1.30 for solid bars.
The net fracture stress exceeded 100 ksi (with one exception) at prestrains
up to 0.50. This is well above the 0.1% offset yield strength of solid bars
which rises gradually from about 36 ksi at O prestrain to about 70 ksi at

0.50 prestrain [6], but less than their corresponding fracture stress (about
150 ksi). At prestrains of 0.56 and 0.60 the fracture stress was between 73

and 52 ksi, which is about equal with the corresponding 0.1% offset value
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(about 71 ksi) and much smaller than the fracture stress fabout 160 ksi) of
solid bars.

With E-steel the fracture strain was 0.21 at a prestrain of 0.10 (Fig. 2,
right)., which is a quarter or fifth of the fracture strain of solid bars [3.5].
and was reduced to about 0.05 at prestrains of 0.20 or more. The drop in duc-
tility occurred at the low prestrains of about 0.15 to 0.20 (natural prestrains
-0.15 to -0.21), much less than with solid bars (nominal -0.60, natural -0.85).
The reduced ductility of 0.0%5, though higher than with solid bars (about 0.02).
is low enough to gqualify the bars as brittle.

The reduction of the exhaustion limit in E-steel to 1/3 or 1/4 its value
for solid bars appears as a reasocnable consequence of the local straining,
work hardening, and stress concentration of collapsing holes. The correspond-
ing reduction to 2/3 of the nominal or 1/2 of the natural prestrain in ABS-B
steel could be attributed to an early closing of the holes which stops fur-
ther strain concentration and hardening. Enlargement or re-drilling of the
holes before continuing the prestraining would then permit additional strain-
ing and hardening. Accordingly at a compressive prestrain of 0.18, the holes
of bar B-237 were re-drilled to a 0.038 in., diameter, slightly smaller than

the width of the collapsed hole and prestraining was continued. Bars B-239
and B-238 (Table II and Fig. 1) were re-drilled twice, at a nominal pre-

strain of 0.18 (new diameter 0.038 in.) and at about 0.32 (new diameter
0.046 in.), when they appeared to have closed again. The re-drilling did
not reduce the ductility of bars B-237 (prestrain 0.30) or B-239 (pre-
strain 0.41). Their fracture strains were about the same or slightly
larger than bars of equal prestrain but no re-drilling. Bar B-238 (pre-

strain 0.43) did fracture with the small strain of 0.01, but its prestrain
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was in the region between 0.41-0.50 where ductility was found to drop even
without re-drilling, hence the brittle fracture cannot be attributed mainly
to re-drilling. Apparently re-drilling and re-compressing did not cause
fracture at smaller prestrains than without re-drilling. The results of
these few tests, if confirmed, are not incompatible with the discussed con-
cept of embrittlement by the collapse of voids. The local work hardening
may be so high as to produce arrested cracks at very low loads as in earlier
tests of notched precompressed plates [2,5] and in tests of plates contain-
ing welds running over notches [15-20], occasionally even "spontaneous cracks'
without any external loading. Such an arrested cleavage crack followed by a
rougher jagged fracture surface could be seen in bar B-239. In all these
cases the arrest is the result of a low crack velocity at the end of the
small damaged region, insufficient for propagation in the sound region at
low stress., Re-initiation of fracture in the sound region is not easy when
the triggering effect of the damaged region is used up. In fact, fracture
was then found to occur only when the load was increased to the level of
general yielding. Early arrested cracks can have the peculiar result of
strengthening a structure. This would explain the existence of many arres-

ted cracks in welded regions of stress concentration observed in ships [211.
If such arrested cracks do occur in the compressed bars with re-drilled

holes, the final fracture should depend on the brittleness or ductility
of the region beyond the hipghly work-hardened edges of the flattened re-
drilled holes where fracture must re-initiate. Indeed this seems to be
the case since all bars of one steel, whether re-drilled or not, became
embrittled at the same overall prestrain,

It would then seem that the process of embrittlement requires not
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just sufficient local work hardening and stress concentrationto start a
crack, but also conditions which will ensure propagation in the region
beyond the local damage. The necessary condition must combine suitable
degrees of work hardening and stress concentration and a sufficient size
of the embrittled region. Such an explanation of the size effect was ad-
vanced in earlier papers [14]. Exact similarity is possible between speci-
mens of different sizes under static loading. The stress and strain dis-
tributions can be exactly similar and their peaks equal, so that the size
effect cannot be explained on a basis of stress magnitude. Similarity
breaks down in the dynamic case of an advancing crack. as velocities and
strain rate or inertia effects cannot be similar, hence will cause a size
effect. This is clearly a dynamic size effect indirectly related with the

static stress distribution or with the singularity at the crack tip.

h. PRars with 0.031 in. holes drilled after uniform compression. Another

check on the effect of local work hardening and stress concentration was
made with uniformly prestrained bars drilled transversely after compres-
sion. Six hars of ABS-B were tested, five prestrained by 0.10 to 0.40

(end of Takle II and Fig. 1) giving fracture strains between 0.40 and 0.52
and one prestrained by 0.60 giving a fracture strain of 0.23. Four bars

of E-steel were also tested (end of Table III and Fig. 2), one prestrained
by 0.10 which fractured with a strain of 0.37, and three prestrained by 0.15
to 0.25 which fractured at strains of about 0.25. No bar was considered
brittle, even at the highest prestrains. They all exhibited appreciably
higher ductility than bars with pre-drilled holes, but much lower than solid

bars.
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TABLE IV ABS-B STEEL BARS WITH PARALLEL AND WITH
BLIND HOLES AXIALLY COMPRESSED
AGED AND TESTED AT -16°F.

|
‘ 2
_— oRTE. AREA, in : Lo;inxkp FRACTURE
BAR | COMPR. | DIA. in. FRACT. FRACT. | ksi®  Strain®
d c
0.16.3 15.6 .
| 0.20 0.5085 Pt B 1009 0.0 4 = 0,089"
[}
0.1653 15.7 o
20 | 0.20 0.5050 ey =7 | ws2 0.2 g | a=o.18m
=]
0.1722 16.2 o
® | 0.20 0.5055 o= 22 | w067 0.17 g | o-oam
(-9
0.1820 16.0 _ "
yp | 0.20 0.5055 b 2 9.7 0,28 d = 0.386
0.1853 15.9 B "
1B | o.20 0.50u5 9.1850 B 99.1  0.33 € = 0,140
2B | 0.20 0.5045 o i 9.3 0.42 g e = 0.agan
=
0.1933 16.2 2
2199, .- =1 = n
3 | o.20 0.5055 e 192 11168 0.65 5| = oo
4B | 0.20 0.5045 0.1361 8.2 lne 0.0 ¢ = 0.405"
- - 070781 T2 - - :

a. Net original area and at fracture after subtraction
of holes.

b. Average fracture stress based on net area.

c¢. Natural strain at fracture based on change of net
area, or natural logarithm of ratio of initial to
fracture area,.

¢. Bars with pre-drilled parallel or blind holes. Attempts were also made

to find more damaging configurations with double holes in bars of ABS-B steel.
Two transverse symmetrical 0.032 in. dia. holes with axes lying in a cross-
section were drilled before compression (inset in Table IV, top right). Four
tests were made with a distance d between parallel holes changing from
0.089 in. to 0.386 in., all with the same compressive prestrain of 0.20. The
closest hole spacing gave the lowest fracture strain of 0.10. The other three
gave fracture strains between 0.17 and 0.25, the highest for the widest spac-
ing. Four more tests were made with aligned double blind holes, drilled from
diametrically opposite points of a cross-section so as to leave an undrilled
solid central length ¢ . Tests were made with values of ¢ from 0.140 in.

to 0.405 in., all with prestrains of 0.20. All four gave appreciable fracture
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strains, increasing with the length ¢ from 0.33 to 0.91, equal or larger
than bars of the same prestrain and a single through hole.

The worse effect was achieved with parallel holes of the closest spacing
which gave the lowest fracture strain of 0.10, much less than with a single
hole at the same prestrain, and small enough to border on the brittle. Prob-
ably the region between holes gets damaged more and fractures more easily.

Several fractured kars are shown in Figures 7-9, Symmetric inclined

yvield zones emanating from the flattened edges were visible in all but the

s

B-231  €,20.41  €=033  B-228  €,50.15  €=0.24

7 Beginning Of Yielding And Fracture Of Bars With Holes Drilled Before Prestrain-
ng.
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Fig. 8 Fracture Of Bars With Holes Drilled Before Compression.

most brittle bars. Figure 7 left, shows the beginning of yielding along
éymmetric planes intersecting along the hole and inclined by about 45% to
the bar axis. Figure 7, B-231, shows how such intense cross-yielding forms
a neck by lateral contraction mostly across the hole axis, and leads to a

shear fracture along the inclined planes. This mechanism of yielding and
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B-244  €,20.60 €023 - E-325 €,2025  £=025

Fig. 9 Fracture Of Bare With Holes Drilled After Prestraining.

Ffracture was evident in all ductile bars. The fracture surface, however,
was seldom as uniform as in bar B-231 (Fig. 7, center). Instead,the frac-
ture appeared to occur along changing inclined planes, so as to form the
familiar shape known as '"dog's ears" (Bars B-228 and B-229, Fig. 7).

At higher prestrains fracture again started in shear along the in-
clined planes of cross yielding and changed into a fracture perpendicular
to the bar axis (Bar B-270, Fig. 8, top right) but not with a typiecally
cleavage appearance. As the prestrain increased the inclined shear frac-
ture was confined to an ever narrower zone parallel to the hole axis, un-
til with brittle bars it vanished completely (Bar B-2u48, Fig. 8), though
traces of inclined yield zones were occasionally visible on the cylindrical
bar surface very close to the hole. The behavior of bars of E-steel was in
general similar, but the changes from oblique to normal fracture occurred
at lower prestrains (E-318, E-322, Fig. 8). The oblique fracture is called
a "shear" fracture and the normal "cleavage," and the percentage of shear

failure is indicated in the last columns of Tables II and III.
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The oblique yielding and initiation of fracture by shear at the hole
edges was evident also when the holes were drilled after uniform prestrain-
ing. All ABS-B bars had 100% "shear" (oblique) failures (B-2u44, Fig. 9).
In bars of E-steel prestrained by 0.15 or more, the fracture changed from
oblique to normal a short distance away from the hole even though the total

ductility was relatively high (0.25).

Conclusion

The existence of holes reduced the amount of compressive prestrain
causing brittleness to 1/3 or 1/4 the amount needed in solid bars of E-
steel and to 2/3 or 1/2 of ABS-B steel. The results with E-steel are in
agreement with the notion of compressive embrittlement by the collapse of
voids or flaws, less so the results with ABS-B steel. The large differ-
ence observed between L and ABS-B steels indicates that these tests could
be quite suitable for distinguishing steels as to their resistance to em-
brittlement and fracture.

The geometry of the specimens appears to facilitate cross yielding by
shear along inclined planes containing the axis of the hole, during both
prestraining (Figs. 4~6) and final testing. Such reversed shearing defor-
mation is less severe than compression reversed to tension [4] and may be
the cause of the observed relatively high ductility. Containment of plas-
tic deformation would then lead to a more brittle behavior. Such a con-
straint of extreme severity develops in bars with deep circumferential
grooves machined after uniform straining and causes extreme brittleness at
prestrains as low as 0.05 [6]. A further check could be obtained with tests
of bars prestrained after notching. Such tests were included in the initial

plans but were not completed.
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