SSC—186

The Effect of Ship Stiffness Upon the
Structural Response of a Cargo Ship

" “to an Impulsive Load

SHIP STRUCTURE COMMITTEE




SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES: ADDRESS CORRESPONDENCE TO:
UNITED STATES COAST GUARD SECRETARY

NAVAL 5HIP SYSTEMS COMMAND SHIP STRUCTURE COMMITTEE
MILITARY SEA TRANSFORTATION SERVICE U.5. COAST GUARD HEADQUARTERS
MARITIME ADMINISTRATION i WASHINGTON, D.C, 20891

AMERICAN BUREAU OF SHIPPING

7

September 1968

“4)

Dear Sir:

The Ship Structure Committee sponsored a project to study
the dynamic effects resulting from an impulsive load on a ship and
to determine how these effects tend to vary with' the stiffness of the
ship's girder. The results of this work are described inthe enclosed
report '"On the Effect of Ship Stiffness upon the Structural Response
of a Cargo Ship to an Impulsive Load' by Manley St. Denis,

The report is being distributed to individuals and groups
associated with or interested in the work of the Ship Structure Com-
mittee. Comments concerning this report are solicited.

Sincerely,

0. /5. focbimnar__

D, B. Henderson

Rear Admiral, U, S. Coast Guard

Chairman, ?hip Structure Committee
|



SSC-186

Final Report

on
Project SR-173

"Ship Stiffness Studies"

to the

Ship Structure Committee

THE EFFECT OF SHIP STIFFNESS UPON THE
STRUCTURAL RESPONSE OF A CARGO SHIP
TO AN IMPULSIVE LOAD
by

Manley St. Denis

&
Samuel N. Fersht

National Engineering Science Company
under
Department of the Navy

Naval Ship Engineering Center
Contract Nobs 94321

U. S. Coast Guard Headquarters
Washington, D. C.

September 1968



ABSTRACT

The purpose of the study is to set up a comput-
er program to investigate the dynamic effects resulting
from an impulsive loading on a ship and to determine how
these effects tend to vary with the stiffness of the hull
girder. The hull is treated as a Timoshenko beam and the
solution is obtained by finite difference technique. Two
codes are written: an explicit one, which is more effi-
cient for short durations, and an implicit one, which is
superior for long durations of impulse. Application s
made to a dry cargo ship. Limited analysis of her re-
sponse to a unit impulse indicates that, in general, re-
duced hull rigidity tends to be beneficial.
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1, INTRODUCTION
1.1 Purpose

The purpose of this study is to investigate the dynamic effects re-
sulting from an impulsive loading on a ship and to determine how
these effects tend to vary with the stiffness of the ship's girder. To
a first approximation, such a stiffness is interpreted to be propor-
tional to the second central moment of area of the cross section
through the ship's longitudinally continuous structure. This propor-
tionality is somewhat modified if shear rigidity is taken into account.

1.2 Scope

The inputs to the study are:
a) The geometry of the hull and the grade and basic disposition of

the structural material
b) The time and space distribution of the hydrodynamic impulse

The desired results are:

a) Response of the ship's structure in the elastic modes
b) Maximum dynamic bending moment amidships

A comparison is made between a standard cargo ship for which per-
tinent data are available (the 5SS WOLVERINE STATE) and equivalent
ships of reduced stiffness.

1.3 Background

The structural design of merchantmen has long been an empirical pro-
cess. Such a process has the virtuous claim of reliability of insurance
against structural distress from all environmental conditions save the
extraordinarily extreme. However, such claim is valid and tenable
only so long as one does not exceed the range of experience upon which
the empirical rules have been established. Indeed, as new experience
is accumulated, it should be interpreted to provide a wider statistical
basis and the rules should be examined for possible modification to in-
sure good design practice. But, more urgently, the introduction of new
structural materials or the consideration of greater principal dimen. -
sions or of different proportions of hull geometry and shape of hull all
demand the prudent reassessment of the empirical rules of structural
design. In the absence of éxperience sufficient to provide new em-
pirical rules covering the contemplated changes, such reassessment can
best be made upon the judicious interpretation of available knowledge in
metallurgy and structural dynamics. The proposed study is aimed at
providing the insight and basis for such reassessment, The specific pro -
blem to be examined is as follows:
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Given a basic ship designed according to established rules, how
should her scantlings be modified to insure that, upon the introduc-
tion of higher strength steels or of corrosion-preventing coatings,
her structural performance under the impulsive loading of the sea
"will remain unaltered from that of the basic ship in spite of the de-
creased stiffness of the ship's girder?

1,4 Overview of the Problem

In its simplest form, the problem consists in solving for the im-
pulse-induced stresses in a beam of variable geometry and dyna-
mic properties along its length., The beam is hollow, internally
cross~stiffened, and not of shallow depth with respect to its
length; its boundary conditions are free-free.

The assumption is made that the hollow, cross-stiffened beam
which is the hull behaves as if it were homogeneous. The con-
sequence of this assumption is that the transverse distribution
of stress intensity across the decks at a generic cross section
is uniform (unless influenced by longitudinal discontinuities such
as hatch openings). This appears to be a reasonable assumption
so long as the loading on the hull is sufficiently slow and the lon-
gitudinal gradient of the bending moment is sufficiently low.
These conditions do not obtain under impulsive loading of short
duration.

But determination of the transverse gradient of stress intensity
or shear lag requires the prior knowledge of the bending moment
or deflection curve and since these are obtained as solutions to
the problem, an iterative method is called for at each consecu-
‘tive step of the process. While it appears to be feasible to pre-
pare a code that will take shear lag into account, the process
will necessarily be considerably lengthier.

The effect of shear lag is to reduce the section moduli, hence the
elastic restoration, over the hull length, Such a reduction does
not appear to be quite sensitive to changes in hull rigidity so that,
so long as one is interested in comparative analysis, a first order
approximation to the influence of rigidity of hull on shear and ben-
ding moment can perhaps be obtained upon disregard of shear lag.
Eventually, such hypothesis must be tested.

Since the beam is hollow,question also arises as to the importance

of the local response of structure in way of the loading., The pos-
sible effect of a local response is to modify the intensity and distri-
bution of the loading. Such question will not be considered. It is as-
sumed that local response can be taken into account by a proper de-
finition of impulse loading,
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An additional number of complications exists. The impulsive stres-
ses are additive to an underlying base-line stress field which results
from residual, thermal and bending stresses (both static and dynam-
ic). Moreover, these stresses are not distributed throughout the ship
in a gradually changing pattern but are subject to high local magnifica- -
tions from structural discontinuities (such as from hatch openings,
super-structure endings, etc.).

These complications emphasize the point that the effects of impulse-
induced stresses are meaningful only when considered in the context
of all coexisting stress pattern. '

The ship system is in dynamic equilibrium under the action of an im-
pulsive excitation and of inertial, damping and restoring reactions.
The excitation is specified in terms of arbitrary parameters, The re-
actions and boundary conditions are defined in terms of given phys-
ical factors (mass, material distributions, etc.) and of the motions

of the system. The statements of equilibrium of the forces and mo-
ments is a set of partial differential equations in the axial coordinate
(x) and time (t). The two dependent variables are the vertical displace-
ment v (x,t } and the cross-sectional rotation +v¥(x,t). In considering
what terms should be included in the dynamical equations governing
the motion of the hull, the following observations are pertinent:

a) Inertial Reaction

The essential term is that of transverse (or translational) inertia, In
.addition, consideration is given to the rotary (or rotatory, or rota-
tional) component of inertia, This component is introduced because

it is anticipated that it may have a significant effect on the results;
this argument is made because the depth of the ship is not negligible
in comparison with her length, To be sure, rotary inertia may have
but little effect on the elastic behavior of a ship when she is subjected
to gradual wave action, for, in this case, the dominant mode of de-
formation is that of the ship as a whole, since the ship's structure has
ample time to adjust itself to the transient loading. However, when
the hydrodynamic loading is impulsive in nature, local deformations
tend to predominate at least for an initial period following the impulse,
and it is in the analysis of these that the rotary inertia of the hull sec-
tions need be taken into account.

b} Restoration

The primary restoration is flexural; however, the relation between
flexural moment and deflection is somewhat modified by the effect of
shear flexibility, The argument for including shear is the same as
the one made in the previous paragraph for considering rotary inertia.
The coefficients of the inertial and restoring reactions are measur-
able physical quantities with exception of the shape factor, which is
derivable by structural analysis and which is of importance principal-
ly for the higher modes and local loading.



¢) Damping

Ordinarily, when analyzing the transient response of systems under
impulsive action, the damping term is omitted from the basic equa-
tion describing the dynamic equilibrium. The reason for this is that
the amount of damping (either structural or hydrodynamaic) which may
be present is quite small with the consequence that the behavior of the
system during the important time interval immediately following im=
pulse is validly described by conservative differential equations. To
be exact, this argument is tenable only when gradually changing load-
ing is considered,

However, when the loading is impulsive, high velocities of deformation
can be generated locally with the result that damping could become of
significance at least in the region of-the impulse.

Inclusion of the damping term leads to a set of nonlinear equations
of motion. Admittedly, in a numerical solution, a nonlinearity intro-
duces only a complication but not conceptual difficulty.

But the rigorous determination of damping is in itself a difficult task
which does not promise to yield rewards commensurate with the effort.
For the proposed analysis, it appears that the solution should first be
sought upon neglect of damping and, then, if feasible, allow for damp-
ing in a simple empirical manner, Comments on the damping coeffi-
cients are contained in Appendix A,

d) Excitation

The excitation is impulsive, and the values of the parameters defining
the impulse will be given as the outcome of the parallel study on ship
response, Thus, initially at least, the loading is assumed to be inde-
pendent of the response., Although the validity of such an assumption
should eventually be examined, it does appear that the uncoupling of
excitation from response will not lead to errors of any consequence 50
long as only overall structural performance is considered. For the
analysis of local structural performance, the coupling must be consid-
ered.

During slamming, or other dynamic loading, the ship experiences

a transient hydrodynamic loading of short duration in a localized area.
Such a loading can be built up from a continuous sequence of impulse
distributions over the localized surface of the ship. Such distributions
are resolvable into vertical and horizontal components which can be
separately considered,

Of the two, the vertical component of the transient loading is the most
important. This is fortunate because the vibrations excited by this
component are wholly in the vertical plane; there is no coupling with
horizontal or torsional modes, On the other hand, the horizontal com-
ponent of the loading does give rise to torsional vibrations. Thus, the
first step in the solution is to determine the response of the ship to a
unit vertically directed impulse arbitrarily located along her longitu-
dinal axis.
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Once such a response is known, the work can be extended to yield the
response to any vertical transient excitation. It is believed that further
extension of the analysis to the case of horizontally directed transients
should await the successful solution to the vertical case.

1.5 Philosophy of Solution

The analysis of shock, in contrast to that of vibration, is a problem

in propagation as against one of stationarity, of transient fluctua-

tions as against steady state response. It follows that the techniques
for solution to be applied in the analysis of shock are likely to, and
indeed do, differ from those employed in the analysis of steady state
vibration. Since this point is not always apparent, some brief remarks
are made relative to the distinction.

Following Crandall (1956), physical problems are divisible into prob-
lems of equilibrium, of characteristic values (normal modes) and of
propagation. The first, are problems of steady state, an example of
which, relevant to the present study, is that of determining the stress
intensities and deflections when the hull structure is in static balance
under the action of weight and buoyancy. These problems are time
invariant, i. e., time does not enter as a variable in the problem and the
problem is stated by a set of one or more ordinary differential equations
which are to be solved subject to certain boundary conditions, The
second are problems of steady regime, an example of which would be
the forced response of the hull to a steady alternating excitation by the
propeller. The statement of the problem is, for a discrete or lumped
system, by a set of one or more ordinary differential equations in which
time is the independent variable or, for distributed systems, by a set of
one or more partial differential equations in space and time. But time
does not enter into the problem as a parameter, i.e,, initial conditions
are not specified, these being irrelevant and a solution is sought satis-
fying only a set of boundary conditions. The third are initial value prob-
lems, an example of which is the transient or unsteady response of a hull
to hydrodynamic impact. Here time does enter as an essential para-
meter in describing the time-~characteristics of the transient excitation.
The statement of the problem is as for the previous case, but now a so-
lution is to be sought which satisfies the initial conditions in addition

to the boundary conditions.

1.6 Procedure

The first step toward the solution is to set down the differential
equations governing the motion of the system, This step is car-

ried out in Appendix B. The equations are set up on the assump -

tion that the material obeys Hooke's law and that the hollow built-

up hull of the ship, behaves very much like a homogeneous beam

and on the further consideration that shear deflection and rotary in-
ertia may be important. Additional assumptions are made relative

to the geometry of the ship and to the distribution of her dynamic prop-
erties. As to the first, the hull is slender with respect to length and
symmetric with respect to the longitudinal centerplane. As to the sec-
ond, the dynamic properties vary gradually over the length.




The equations of motion are a set of two simultaneous partial differen-
tial equations, the independent coordinates of which are the longitudinal
distance along the ship and time, while the dependent coordinates are
the vertical displacement and the rotation of the cross-section. The
last pair are the generalized coordinates of the system.

Since the coefficients entering into the equations are of arbitrary dis-
tribution along the ship, resort must be had to numerical methods of
integration. From a practical standpoint, three general methods are
available to solve the system of equations in hand:

a) Method of trial solutions with undetermined parameters
b) Method of finite differences
c) Mixed technique (based on the Runge-Kutta method).

Since each method has advantages and disadvantages, it becomes first
of all necessary to examine them within the context of the problem to be
solved.

The method of trial solutions with undetermined parameters (see, e. g.,
Faedo, 1947/49) consists in replacing the continuous propagation pro-
cess by one described approximately by a limited family of suitably cho-
sen functions. In essence, by so doing, the problem of continuous pro-
pagation (infinite number of degrees of freedom) is reduced to one of
propagation in a system having a finite number of degrees of freedom.
The success of the method rests critically on the selection of the fami-
ly of functions to be employed. A good choice can be made if the solu-
tion is known for a simpler, comparable system (e. g., uniform beam).
Unfortunately, this appears to be wanting, and without guidance in this
regard, the method fails to give good promise.
The method of finite differences consists in writing the differential
equations and the initial and boundary conditions as finite difference
equations and finite difference ratios and then, starting with the in-
itial conditions, marching the solution thru in such manner that the
boundary conditions are always satisfied. In this process, time is
held fixed at a generic instant while the profile of the solution is de-
veloped along the axis of distance. When the whole profile has been
" obtained, the time is incremented. This method is simple to apply.

When setting up the finite difference analog for obtaining the solution
to motion of the system, two choices are possible: the analog may be
written either in explicit or in implicit form,

In the explicit analog, the recurrence formula is an explicit expres-
sion for the value of the dependent variables corresponding to an in-
cremented instant of time based on the values of these variables for
previous times, Each step in the solution yields the dependent variables
at one point in space and time. :
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In the implicit analog, the recurrence formula is a system of 2N
algebraic equations in 2N unknowns, where N is the number of seg-
ments into which the ship is subdivided. Their solution yields the de-
pendent variables at the incremented instant of time for all the sta-
tions,

The method of finite difference (both explicit and implicit forms) is
developed in Appendix C,

The foregoing comparison does not reveal any evident computational
superiority of one analog over the other. However, the explicit analog

is stable only for a time increment which must be determined and which
may be zero, To express it differently, the explicit analog may not have
a numerically stable solution, or,at best, it may not be possible to deter-
mine the time increment for a stable solution. As against this, the im-
plicit analog is always stable, :

The numerical stability of the solutions for both the explicit and implic-
it forms of the finite difference equations is examined in Appendix D.

Whether an explicit or implicit analog is to be preferred depends, in
part, also on external factors such as the duration of the impulse, the
extent over which applied and the number of segments in which the ship
is to be subdivided to provide a reasonable step representation of the
ship's dynamic properties.

The mixed technique consists in replacing thé partial differential equa-
tions describing the motion of the system by a set of ordinary differen-
tial equations in time by introducing finite spatial differences. The or-
dinary differential equations (two to each spatial point) are then solved
by a fourth order Runge-Kutta Method. Such a technique is more stable
then the exp11c1t f1n1te d1fference method and has a smaller truncat1on

error than e1ther the exp11C1t or implicit finite d1fference analogs. The
mixed technique analog and numerical stability of the method are an-
alyzed in Appendix E.

Of the coefficients entering into the equations of motion, three need
elaboration. These are: the coefficient of hydrodynamic inertia, the
coefficient damping and the shear factor. The remaining coefficient,

that of restoration is immediately derivable from the geometry of the
hull,

When calculating the response of the hull to impact, allowance must
be made for the inertial effect of the surrounding water. A direct so-
lution of the problem of the hydrodynamic inertia of a buoyant hull of
arbitrary form is not in hand and in practice an estimate is obtained
by integrating the effect of partial solutions to the problem., The cal-
culation is in three steps:
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a) Determination of the hydrodynamic inertia distribution over the
length of the hull on the basis that the flow over a vertical cross
section is two-dimensional (cross-flow hypothesis)

b) Correction for aspect ratio

c) Correction for free surface.

The hydrodynamic mass obtained on the assumption of two-dimension-
al flow must be corrected for aspect ratio, i. e., for deviations from
the cross-flow hypothesis because of the presence of three-dimensional
flow. This correction can be strong. Methods for making this correc—
tion have been developed for a hull in continuous, sinusoidal, steady-
state deformation over its whole length. Hoewever, for the problem in
hand, the deformation pattern is not this and cannot be determined in
advance. Pending the derivation of a method to cope with this aspect,
no correction has been introduced.

The hydrodynamic inertia must also be modified because of the presence
of the free surface. A method for analyzing the influence of the free
surface on the hydrodynamic inertia of a heaving cylinder is due to Ur-
sell (1949). It is readily apparent that for the durations of impulse con-
sidered herein, the free surface has no effect.

The problem of determining the hydrodynamic inertia is discussed in
Appendix F. The shear factor is discussed in Appendix G.

The computer program with explanatory notes is contained in Appendix
I. The program has been written in Fortran IV language for a Control
Data Corporation 3600 computer. ‘

Both the explicit and implicit techniques have been programmed. The
mixed technique, although investigated and found to be promising, has
not been programmed,

The reason for developing two programs is to provide freedom in selec-
ting the time increment, The explicit and implicit programs are com-
plementary. As brought out above, and developed in Appendix D, the
explicit analog is subject to certain limitations: if the numerical solu-
tion is to be valid, the time increment to be used must not exceed a cer-
tain critical value. On the other hand, the implicit analog is always nu-
merically stable. Of course, this stability is bought at the price of
greater complexity. Thus, the explicit solution is to be preferred if a
sufficiently small time increment can be used or is called for by exter-
nal reasons, otherwise, the implicit analog must be used,

The program for calculations reported herein has been set up so that
the time increment is selected a priori. A test is first made whether
the criterion of stability is met, If it is, the explicit program is se-
lected, if the criterion of stability is not met, the implicit program is
automatically selected.



2. RESULTS

Several numerical runs have been made on a Control Data Corporation
3600 computer. For these runs, the following inputs have been used:

Axial increment, Ax 4,96 ft,

Time increment, At - 0.0001 to 0,02 sec,

Impulse duration 0,001, 0,01, 0.1, 1 sec.
Impulse location . 25 percent of the ship's length from the bow

Also, three sets of values of flexural and shear rigidities have been
introduced, namely, normal, 75 percent of normal, and 50 percent of
normal. The normal set of values corresponds to the ship as built,

The runs have been carried out for a sufficiently long duration to in-
sure that the bending moment wave has reached the stern and has been
reflected to amidships. Typical results are shown in Appendix'J.
From these, the summary Figs 1 and 2 have been derived,

Observations based on the results obtained from the limited number of
computer runs made are as follows:

a) The bending moment at a generic station does not, in general,
attain its maximum value during the first cycle of response but
rather during the second or a later cycle.

b) The highest bending moments occur in the region of the bow for-
ward of the quarter point where the impulse is applied.

c) High bending moments occur at the station where the impulse is
applied.
d) High bending moments also occur in the region of the after quar-

ter point and closer to the stern.
e) The bending moment amidships is not the critical one.

f) An increase in hull flexibility tends to reduce the bending moment
at a generic station.

3. CONCLUSION

The specifications for the task called for the development of a com-
puter program which would make it possible to determine the influ-

ence of ship flexibility on her response to an external loading impul-
sively applied.
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Two complementary programs have been developed: an explicit one,
advantageous for short durations of impulse, and an implicit one, pref-
erable for longer durations: the choice between the two is made auto-
matically on the basis of a criterion of stability, In addition, a third
possible program, based on a mixed technique, has been explored.
Although this technique appears to be superior to the explicit tech-
nique, the corresponding program has not been written.
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Preliminary results indicate that the influence of structural flexibility
is to reduce the maximum bending moment in the hull structure. It fol-
lows that if this flexibility is attained thru application of higher
strength steels, the fraction of yield strength taken up by impulsive
loading will be comparatively less than for medium steel and the fac-
tor of safety will experience a beneficial increase.

4, RECOMMENDATIONS

The following recommendations are made with the view of improving
the program and obtaining an adequate amount of realistic data:

a) Extend the program to take into account the aspect of dynamic -
shear lag in the decks.

b) Extend the program to take into account the local behavior of
the bottom structure in way of the loading.

c) Make production runs for hydrodynamic loadings having real-
istic characteristics. A sufficient quantity of experiment data
appear to be in hand so that runs can be designed to yield mean-
ingful results.

d) Extend the program to include damping, at least in a simplified
form, to verify its influence on hull response.
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APPENDIX A
REMARKS ON ENERGY DISSIPATION OR DAMPING

The dissipation of energy is of two types: structural and hydrodynamic,
Structural damping is made up of material damping and slip damp-

ing, Hydrodynamic damping consists of radial wave dissipation and

of viscous damping. Some remarks are presented on the inclusion

of damping in the equations of motion,

The components of energy dissipation are variously expressed, but
for inclusion in the equations of motion, it becomes necessary to
relate them to a variable of the motion itself (displacement, velocity,
acceleration). ’

a) Material Dissipation

The specific material dissipation (per unit volume per cycle) is ex-
pressed in terms of the amplitude of the stress intensity. A conven-
ient empirical expression is

where:

jo B
l

specific dissipation

experimentally derived coefficients related to

the material and to the amplitude of stress in-
tensity. -Below a critical stress these coefficients
are constants and can be written simply as

S and n,

0
a
3\/
B
Qq
BV
lil}

One is faced with the problem of converting this expression to one
written in terms of a dependent variable, The dependent variables
being all functions of time, it is convenient to replace the given
empirical expression for specific damping by one that is time depen-
dent. Accordingly, write

d_(t) = c_lo,t)+ ™Y
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where cm(o, t) is so chosen that over a cycle

If n does not change appreciably over the stress intensity range
from zero to O’

Il
jsB

dm(t) ni{o + 1 m

Asg a consequence, the damping at any instant at the generic section

is given by
f fdm(t) - dy d¢

where ( is the vertical ordinate measured above the keel and
where the integration extends over the cross sectional area of the
longitudinally continuous structure. At the generic section x, the
stress intensity at any point and instant is

-¢ (x)
olx, ¢, t)= Mé}({;{;:) . CO(;)) = A(x,C) * M(x,t)

where:
M =z flexural moment
Z = section modulus
go = height of neutral axis above keel

time-independent constant.

=
&

e
il
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If this expression for stress 1ntens1ty is introduced in the expression
for instantaneous specific damping and the latter is integrated over

the cross sectional area, the expression is derived for the instantan-
eous sectional damping in terms of bending moment. Since this bending
moment is related to the curvature

M(x,t) = EI(x) - —33’%3)—

the relation between instantaneous sectional damping and instantaneous
curvature is established. A parallel expression can be derived relat-
ing instantaneous sectional damping to the instantaneous shear value.

b) Slip Damping

Slip damping varies with the type of construction (whether riveted
or welded) and approximately with the third power of the load, hence
bending moment, hence deflection. The same logic applies as in the
preceding case, but the bending moment is now raised to a power
which is empirically derived.

c) Radial Wave Dissipation
This component of hydrodynamic damping varies with (the first power
of) the transverse velocity. It's value at any station is

] Bvlx, t)
bw(X) [ Y't;z ]

an experssion which is readily incorporated into the éalculations. The
coefficient bw(x) is calculable by the method given by St. Denis (1951)
among others.

d) Viscous Damping
This component of hydrodynamic damplng varies with the square of
the transverse velocity and is given by

2
d3vix, t)
Abv(x)' [__lig%___]

where the damping coefficient

blx) = e+ = pt(x)

I}
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and L(x) 1is the girth of the underwater hull at station x and c is
an empirical coefficient of viscosity. As for the previous case,

this component of damping is easily introduced into the equations of
motion.

The overall conclusion regarding damping is that hydrodynamic
and structural damping can be incorporated in the analysis without
particular difficulty.
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‘ APPENDIX B
DIFFERENTIAL EQUATIONS OF MOTION

Introduction ‘

The free vibrations of a free-free slender non-uniform beam with
shear deformation and rotary inertia considered has been extensive-.
ly discussed in the literature on dynamics, see e. g. Timoshenko,
(1928). The behavior of such a beam when supported by buoyancy
and loaded impulsively was first developed by Ormondroyd et al
(1948). Their work was followed by that of Polachek (1961),
McGoldrick (1961), Leibowitz (1962), Leibowitz and Kennard (1963),
Andrews (1963), Leibowitz (1963), Leibowitz and Kennard (1964),
Teibowitz and Greenspon (1964), Cuthill and Henderson (1965).

The foregoing references, which deal with the overall problem of
elastic response, are accompanied by complementary studies on
specific aspects of the problem which will be mentioned when con-
sidering these latter aspects.

The equations of motion are set up by equating the excitation to

the sum of the inertial and restoring reactions, their calculation
being made on the basis that the ship is at rest prior to application
of the exciting impulse. The boundary conditions at the ends are
those of a free-free beam. Certain assumptions are made relative
to the ship's geometry, namely, that she is slender with respect to
length, that her dynamic properties (form, distribution of mass and
of structural elements) do not vary rapidly along the length, and
that she is symmetric with respect to the longitudinal centerplane.
An additional assumption is made relative to the ship's material,
namely, that it obeys Hooke's law of proportionality of stress and
strain.

To derive the equations of motion, introduce a right-handed car-
tesian coordinate system, the origin of which is at the center of

gravity of the ship, the x-axis being horizontal and longitudinally
directed, its positive direction being sternward; the y-axis being
vertically directed and positive upwards, see Fig, B-1.
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P <

Fig. B-1  Coordinate System.

Dynamical Equations in Terms of Generalized Displacements
The dynamical equations are written in a convenient form in
terms of a system of generalized coordinates y{x,t) and y(x,1t)
as follows:

a) Force Equation

2
mv(x) ) Y()Zc, k) 3 {k(x) CAl%) - G [M - vix, t;J}
' at Ax ax

+ pgB(x) - ylx,t) = plx,t)
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b) Moment Equation

1
A
r‘zf'(x)- mv(x) . M - -*-a-[EI(x) . BX(X, t)

In these equations:

2

at ax ax
H
C k(x)* Alx) - G[—a—yg’—;’—t—’—-v(x,t) =0

radius of gyration of the virtual mass about the

r =
M lateral axis thru the dynamic center (ft)
-2
m £ virtual mass per unit length (lb sec:2 ft 7)
v
Y = angle of rotation of cross section measured
positive when counter-clockwise (rad)
t = time (sec)
EI = flexural rigidity (lb ftz)
E = Young's modulus of the material (1b ft_z)
I = second central moment of the cross sectional
area of longitudinal structure (ft4)
kAG = shearing rigidity (lb)
k =  shear factor, see Appendix G '
A = cross sectional area of longitudinal structure (ftz)
G =  modulus of rigidity of the material (lb ft_z)
'y = total vertical deflection (rigid plus elastic) of
hull (ft)
Aylet) v (x, t)] = effective angle of shear deformation (rad)
ax .
. 2..-4
p = mass density of water (lb sec™ft )
g = acceleration of gravity (ft sec_z)
Blx) = local beam (ft)

L'}

p(x, t)

1

excitation (Ib ft )
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The following relations hold:

where:

rz(x) + mix) + rz(x) + m, (%)
rz(x) _ h h
v - m(x) + mh(x)
r = radius of gyration of basic mass about the lateral

axis thru the center of gravity of the section (ft)

ry = radius of gyration of the hydrodynamic mass about
the lateral axis thru the centroid of the section (ft)

m =  basic mass per unit length (1b seczft_z)

m, =  hydrodynamic mass per unit length (lb Seczft_z)

The excitation acting on the system is a vertically-directed rectangular
pulse of duration 7 Etl - to , which is considered as a parameter. The

basicrassumption of linéarity permits taking the total impulse as unity
without loss of generality. The impulse is applied in the longitudinal
centerplane in the interval EO to §1 , which is also considered as a

parameter, It is defined as

I(E., &ps t» t)) = 1 (Ib sec)

The amplitude of the pulse is, consequently,

1 1

B Tl

for
§O < x < El

to < t <t1

zero othérwise



-21-

The differential equations of motion can be solved in closed form
and in terms of ordinary functions only if the coefficients entering
into the equations are constants. If the coefficients are simply-de-
fined, well-behaved variables of x alone, closed form solutions can
be hoped for, but not in terms of ordinary functions, or, alternately,
series solutions are feasible. If the coefficients are well-behaved
variables of x, but of arbitrary distribution, resort must be had to
numerical integration. If the coefficients are ill-behaved variables
of x, no reliable solution can be expected.

The solution to these equations is sought on the assumption that the
coefficients are arbitrary and well-hehaved. To this end, the differential
equations must be transformed into difference equations. This trans-
formation is made in the next Appendix,

The assumption of well-behavior does permit obtaining a solution,
but the validity of such assumption bears examination. Of the elastic
and dynamic properties of the hull (k{x), A(x), m(x), r2{x). m(x)

mh(x), rlzl(x) . mh(x) ) all tend to vary gradually except mf(x) and,

consequently, r2(x)+ m(x). In the lightship condition, sudden var-
iations in mass occur at the ends of the machinery compartment and

at the ends of No. 3 hold where the fixed ballast is located. Depending
upon how the ship is loaded, additional steps in the distribution of mass
occur at the ends of holds, see Fig. H-3 .

That the only discontinuities occur in the distribution of mass is
fortunate, for in such case the effect is on the inertial reaction, hence
second time derivative of the displacement. Because of the double
integration, the displacement and its line derivatives (slope, curvature)
result as reasonably well-hehaved.
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_ APPENDIX C
DIFFERENCE EQUATIONS OF MOTION

Transformation of Differential to Difference Equations

The conversion of a differential equation into a difference equation
is made by introducing finite increments in the position (Ax) and
time (At) of the dependent variables, v{x,t), ¥(x,t). The derivative
terms of vy(x,t), v(x,t) and of the dynamical properties obtaining

at discrete points of the independent variables.

In 2 marching problem, the method of solution consists in finding
the values of the independent variables for the next increment in
time given a knowledge of the variables for positions and times up

to the generic ones.

As a first step in the logic of conversion, it would appear necessary
to establish the values of Ax and At. It is preferable, however, to
delay discussion on this problem until after the difference equations
have been set up and solved.

Boundary ‘and Initial Conditions
The boundary conditions of the free-free beam are (for all times)

Miw = My = O
Qi n = 9nn = O '
Consider the conditions at thé end x= -L/2 i.e., n=1, The con-

dition of zero moment is written

LS

EI1

W[Yz,h - Yo,h] =0

where the point 0, h is fictitious, and that of zero shear is

Kin  ?1nt © VZ,h_YO,h_Z(AX)Yl,h] =0
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Atthe end x=L/2, n=N the condition of zero moment is

. EI
-(—)—-‘N - = 0
A< | YN+, b YN_l,h]‘

Where the point N+1 is fictitious, while the condition of zero
shear gives

ky Ay G [VN+1,h YN-1,h ‘Z(AX)‘YN,h]” 0

The Impulsive Load
Upon taking Ax sufficiently small and writing

g, = i+ Ax , & =[i+7) Ax

where i and j are integers, the unit impulse load amounts to

An arbitrary loading is represented by the afray

pn, h

where n denotes the station and h the instant

Computational Form of Equations in Terms of Generalized Coordinates
In this section finite difference expressions will be developed for

the dynamical equations expressed in terms of generalized coordinates.
However, in lieu of single order approximations to the derivatives,
second order ones will be used.
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If the deflection and rotation of a section at the point n. Ax and in-
stant h. At be expanded in a Taylor series, the result is

2.2 3.3 4.4
BYn’h_F(AX) 3 Vo, b +(AX) 3 Yn,h+ (Ax) "3 Yn’h+

Varl,h = Yn, (8% —3 7 5 % 3 74 )
1 aX BX BX

+ e[(ax) 5]

2 .2 C 3.3 4.4

O (8X) By, g (A7, g (W7, g

n-1,h = Yo, n ¥ —g—+ — ) "% 3 127 )
Ax dx ax

- oftan’]

Upon subtracting the two equations and dividing the result by 2({Ax)
one obtains

Ax N 2(Ax)

3y v V.
n,h ntl, h n-1,h + GE(AX)Z]

y‘n+1,h - ~Yn—l,h
2(Ax)

*

Upon summing the two equations and dividing the result by (Ax)2
one has

3 Yn,h Yr1+1,h"2Y1'1,11+Yr1—1

, h
= — + p[(Ax)
. (A_X)z [ 2]

~ Yn+1,h-zyn,h+yn-l,h
- 2
(Ax)
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From the two foregoing equations,

3
® Yn,b oo Ynt1,n T T nt Vao1,h T Vno2n

Bx3 (AX)3

Upon introducing this expression in the first pair, subtracting and
.solving for Byn h/ax, the following second order approximation

for the first derivative is obtained

3y
n,h ~ 1
3x B(AX) [ZV:nﬂ,h+ o, h " o1, n " Yn-Z,h]

-

which has a residue of 6[(Ax)4]. This second order expression
should allow for a more refined treatment of the boundary con-
ditions. Of course, the time derivatives are similarly treated
and result in parallel expressions.

It is possible to set up two finite difference analogs to the dynam-

"ical equations: an explicit one and an implicit one. In the first,

the recurrence formula is an explicit expression for Vo kel and
L

Yo, he1 B terms of Yo, h-1" Yn, b’ Yn,h-1" Ya, b’ The implicit

anadlog is constructed by applying the Taylor series approximation
to vy e The expansion yields

1 2
Vo, h T _4[Yn,h+1 AV nt Yn,h—1]+ 9[(’“) ]

The first term on the right is the time averaged value

a1 5
Yn,h = T[Yn,h-Fl * 2, n T Yn, h-lJ

which is approximately Yo h and will be substituted for it. This

expansion is applied to every-term in the system with the exception
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of such terms that involve time derivatives. The result is a system
f1i i i :
of linear algebraic equations for Vi, bt 1 and Yn, he 1 which rest

upon the knowledge of the terms for the discrete instants h-1 and
h. There will be 2N equations for the same number of unknowns.
This system of equations can be set up in a form for which the ma-
trix of the coefficients will be of the block diagonal type, The two
analogs are now specifically considered.

Explicit Analog _

Application of the expressions for the derivatives given above yield
the following finite difference analog to the dynamical equations in
terms of generalized coordinates

a) Force equation

(m )

v'n

———-—[y - 2y +ty _]
(At)z n, h+1 n, h n, h-1

20 | Y, h " Ye-,h Ymil,h " Ynol,h
~(Ax) Ax 2

G Yn+1,h " Yn-1,h
- 2lax [kn+1'- Aprl - kn-—l" An-l]'[ 2(4x) ) Yn,h:,

+Pan. Y:r1,1r1 = p1‘1,h

b) Moment equation

1

1 .
(rv)n ) (mv)n ) (W[Yn, h+t1 ~ 2Yﬂ,h+ Yn, h-1 |

EI_ B

.
1 - -1 . -
- Y "2y, h T Yn- [I +1" -1 " Yn+l,h Yn-l,h]
(AX)Z[ nt+tl,h n, h n l,hJ 4(Ax)2 n n ray
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b -y
ntl,h n-1,h -
- knAnG[ 5T8%) - Yn, h]_ 0

The terms in the unknowns Yo pey 2nd v, ., are separated

from these equations with the following result:

a) Force equation

Vo, b4l = 2Yn,n " Yn,h-1

4

2
kn'AnG (At) Yn+1,h'_2yn,h+ Yn-1,h Ynt1l,h " Yn-1,hn
(mv)n T ThAx (Ax) B 2

2
G (At) .
Z(mv)n " TAx [kn+1 An+1 - kn-l An—l] '

b) Moment equation
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L . |
* _4_[1114-1 h In—l] [Yn-kl,h - Yn—l,h]s

N knAnG . (At)z_[yn-!-l,h-yn—l,h -y J
(rz m) Z(AX) : n,h |

Boundary Conditions for Explicit Analog

It is now necessary to express the boundary conditions in terms of
discrete values of y and y. As discussed above, the boundary
condition at the point x = -L/2 is given by the second order approx-
imations, )

a) Condition of zero moment

Y2.0 " Yo,n = ©

b) Condition of zero shear

Vo, n - Yo,n -~ &%)y 4 = 0

However, a better approximation to the boundary condition is given
by using the fourth order approximation. This results in

_1f
Yi,h ~ TL'3Y2,h+ OY3 1 Y4,h]
1T .
Yion = 23V nt 6Y3,h_y4,h]+3(AX) Y2, h

The parallel approximation holds at the end x'= L/2.
Implicit Analog _ -
1f the Taylor series expansion for Vo h is introduced in the dy-

namical equations and made to apply to all the terms except those
involving time derivatives and the excitation, the following equations

result:
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a) Force equation

1
(m_) - -—-———[Y - 2y +y ]
) 2 , h+1 n, h n, h=-1
-V n (ét) n
-

kK A G .

n n 1 -2y ry

T 0¥ 2%) ) "n+1,htl n, ht1l n-1,ht+1

+ Z[Vn-i-]_,h - Zyn,h+ Yﬂ—l,h]

* Yar1l, -1 " Vn, o1 T Y1—1-1,11-1}

1. . -
7 {Yn+1,h+1'Yn-l,h+1+2[‘fn+r,h Yn-1,b]

T Ynt1, bl T Yn—l,h—l}}

G
© 8- iAxi[erl An+1 h kn-l An-l ]
- 1 ‘ .
A9 | T+l T Yool mer T 20V n - Yn-1,h]

+ - -
Y1, h-1 Vn—l,h—l} [Yn,h+1+2Yn,h+Yn,h_1]}

pg ]
1 Bn[yn,thl T2yt Vn,h_l] = P, n
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b) Moment-equation

(x> m) .

v'n ’ (At)z I:Yn,h+1 - ZYn,h+ Yn,h-I]'

_E.._._]_:_I}.n_{ Y - Z'Y +Y
-1, ht
4(AX)2 n+l, htl n, h+1 n-1, ht+l

* Z[Ynﬂ,h “2¥,n "t Yn-l,h]

T Yol h-1 T 2Ynyh-1 t Yn-l,h—l}

) { Yo, bt 1~ Yn-1, bkl T 2[le,h - Vn-l,h]
T ¥nr1,h-1 7 Yn-1, k-1 }

L
-knAnG{ - (Ax { Ve, h+1 " Yntl, htl * 2[Yn+1,h - zym—l,h]

T Yni1,he1 ~ Vn-l,h—l}

1 ’ .
"I [Yn,h+1+zyn,h+yn,h—1]} =0
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These equations form a system of 2N linear algebraic equations
for the same number of unknowns, Note that these equations are of
the form

a +bn=y

n\'n-l,thl n,h+l+ Cnyn-l'l,h+1

4

C Vbt T Ve el T Sn

£
4 Vna1, h1
where:
n=1,2,...N
To arrange this system of equations in a form such that the matrix
of the coefficients will have its non-zero elements on a diagonal,

alternate the equations and the unknowns in the fashion that follows
and, to this end, let:

Yn,ht1 & "2n-1, ht1

Yn,htl & “2n,htl

Denote the coefficients of the first dynamical equation of the
system by

il
)]

a = A b =B e v . g

n 2n-1, n 2n-1, n’ 2n-1
and those of the second dynamical equation by
ah < AZn ? bn = BZn ! - 8y B GZn

Then
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for r odd

for r even

where v =1, 2, . . . 2N

The matrix of coefficients for this system of equations will have

the form
By B, G Fy 0
BZ E2 C2 FZ 0
Ay Dy By E; G, T, 0
Ay Dy By By Cy Fy 0
0 0 Ag DS By E G, F, 0
0 0 A, D, B, E, C, F, 0
0 0 ,
Aox-1 Panct Banot Foaned
0 0
Aon Pan Ban  Eay
] J

o

The matrix of the coefficients is a seven band diagonal matrix,
The system of dynamical equations represented by the preceding
expression is solvable by standard techniques for each time step
h-

Boundary Conditions for Implicit Analog

The boundary conditions in the implicit analog are the same as for
the explicit one with the exception that they must be averaged with
respect to time in the same fashion as done for the explicit analog.
This leads to the following:
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a) Condition of zero monment at x = -1./2

Yo, hel “ Yo, he1 T Z{Vz,h - Yo,h'f

T Yo nar " Yoner 0

b)Y Condition of zero shear at ~= -L/2
Vo, me1 " V0, me1 F 202,07 Y0, 08 V2, me1 7 Yo, b1

- 2 (A%

Yime1 T 2V nt Yy poaf = O

and similarly for the stationat x = L/2 .
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APPENDIX D
NUMERICAL STABILITY

General Case

The condition that the equations are computationally stable is
satisfied if any of the dependent variables entering into the equations
are subjected to a small disturbance, at any instant of time t,

and this disturbance does not increase with each successive incre-
ment of time. The condition of stability is given by the relation

8F(x, t + At) 1
§F(x, t)
where
§F(x, t) = perturbation (or variation) in a generic
dependent variable of x and t, at
instant t
§F(x, t + At) = perturbation of same at instant t+ At

The equations of motion are weakly nonlinear in the dynamic
buoyancy and hydrodynamic mass terms., However, the oscillations
of the ship resulting from the application of the impulse are suf-
ficiently small as to justify the assumption that both the restoration
coefficient and the hydrodynamic mass distribution are independent
of the motion, Furthermore, it is assumed that the dynamic prop-
erties of the ship {flexural and shear rigidities, virtual mass and
moment of inertia, and restoration) vary slowly along the ship. Both
of these assumptions lead us to consider the system of dynamical
equations to be a linear one with constant coefficients, such consid-
eration holding only for the analysis of numerical stability.

It may be observed that the validity of such an assumption can be
tested by carrying out numerical computations employing either
the explicit or the implicity method of solution and equating the
time increment to the upper limit given from the solution for num-
erical stability if such a limit exists.
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Explicit Analog

The finite difference explicit analog to the dynamical‘equations in
terms of generalized coordinates and for constant coefficients is

(rnv)n

-5 |V - 2y ty _
(At)z [ n, h+1 n,h n, h 1]

B kn. AnG [Yn+1,h_zyn,h+yn—l,h _ Yn+1,h"Yn-1,h]
(Ax) Ax 2

+ Dan.. Yn,h = pn,h

Consider, as previously, a solution for the homogeneous part of
these dynamical equations in the form

1}

Yn,h C)Lh - explineg)

m

h .
Yo, h DA" - expling)
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where exp(ineg) is a fundamental mode for certain general bound-
ary conditions. Upon introducing these expressions into the homo-
geneous part of the dynamical equations, it results that

2 -

e N S Y R )
(ax) (At) A :
-1 { ij sine } D =0

To obtain a non-trivial solution to this system of homogeneous
equations in C and D, the determinant of the coefficients must

vanish. Therefore,

2-
2EL . kags v el |
{(AX)Z [ COSCD] ' (4t)° u,

2KA G My
1 - cosp |+ pgB + U
{ (8x)° [ ! (81)° }

where
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This equation is a simple quadratic one and can be written

) Il - coso] KAG  KAG- (Ax)°
u + 200 ¢ > + + i >
r m Em 2ZEr " m
) A" A% v v

+ OgB(AX)Z
ZEmV

: r)LZDZ 1
[Erzrn2
viv

) > 5
) {4IkAG[1 - coscp]2 + Z[kAG] [1 ]-::Cosro](éx) +

4
+ 20gBI[1 - cosm](A}§)2 + kA.Gng]?’(A—X) }

7
where

(AY)
(Ax)°

q; ==_.-»}_£:—-
S

is a nondimensional form for the square of the velocity of propagation
of uniaxial elastic stress waves,

The equation defining | c¢an be rewritten in the form

xz-z[l-—%——]KJrl - 0
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To inquire into the stability of the computations, consider the
definitions of Yo h and Vo h* It is evident that an error intro-
] ]

duced at one line of the computation will not grow as the compu-
tation proceeds provided that

[v]< 1

'If this condition is fulfilled, the equations are stable. From the
condition that the dete rminant of the system of equations in C and .
D should vanish, it can be verified that KW is real and it follows
from the equation in ) that

'.|1+J-2‘—|5‘1

i. e.,

A
o

_45}_1

But since the coefficients of the quadratic equation in ) are all
positive, it follows that the condition

|“<O

is fulfilled and it only remains to fulfil the condition
poz-d

Examination of the quadratic equation for indicates that the
smallest values of |4 are obtained when ¢ = m. In this case

0 = - (At)2 [4kAC2} N DgB] .

(Ax)

m
v
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. g .
by = - (ZAt) [ 41312 . kGA]
rom [ (Ax)

»

The {inal statements of the stability conditions are

At =< = 172
[kAG 0B (Ax)” ]
_‘_
m 4m
A% v
* Ax
At < =

™ =

<
<

”[ 1 . kAG(Ax)Z:,NZ
2z

r m “4r " m
vV

The smaller of the two At's is the time increment for which the
explicit analog is stable.

Implicit Analog .
The finite difference implicit analog to the dynammal equations
in terms of generalized coordinates and for constant coefficients
is

t

. R
(rv mv)n 2 [Yn, h+1 ~ ZYn,h+ Yn, h-1
(At)
EIn : ‘
-— (Y - 2y + v .
4(AX)2 l nt1, bt} n, h+1 n-1, h+l

e [Yn+1,h - 2Yn,h-}— Yn—l,h]
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 Ynr1,h-1 ~ %¥n,ho1 T Yn-l,h-—l}
k A_G : . _2fy -2y
nn ETTAx) VVn+l,htl ~ Yntl, hil ntl, h n-’rl,h:l

T Yo41,h-1 Yn-l,h-l}

1 —
'_4[Yn,h+l+zyn,h+yn,h—l]} =0

1

e Poumes ~ Bt Yn’h'l]

kK A G 1 '
LN -2 +
7. (Ax) ) (Bx) { Yotl, b1 7 “Vn, b1 T Yn-l, bt
Z[Yn+1,h " 2ant Yn-l,h‘l
T Ynt1,he1 T Yy, ne1 T Yn-l,h-l}
L + 2
"2 { Yntl,ht1 ~ Yn-1, htl Ynt1,h ~ Yn-1,h

T Ynt1,b-1 ~ Yn-1,h-1 }}

_.io -_—
* 4 Bn[yn, htl * 2Vn,hJF Yn, h-l-\ = Pp,h
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If the expressions for Yo 2nd Y, p are introduced inté the
E] ¥

homogenized form of these equations, the result is

2
r’ m
{ ZEIZ{l -—coscp}+ kKAG + — Y% Zv Ty } C
. (Ax) (At)

; KAG . -
—1{ A Slncp}Dzo

f2cacy. Ty
l—(z\x_)z_{l coscp}+ pgB + (At)z u D

..}y kKAG
+1{ X" Slncp}C:O

where 1 is now

Again, to obtain a non-trivial solution to this system of homogeneous .
equations, the determinant of the coefficients must vanish, Upon
pursuing the same logic as for the explicit analog, the equation de-
fining y becomes

xZ_z%-&-wl =0
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The condition

2o
" will be satisfied if, and only if, .
Arul <«
4 -y
Since is real and negative, it follows that this condition holds

for all At's. and Ax's. In other words, the implicit analog is
unconditionally stable.

The limitations on the choice of both time and spacial increments
imposed by truncation and round-off errors and inherent in both the -
explicit and implicit analogs remain to be considered.

)
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APPENDIX E
MIXED TECHNIOUE

Analog

To apply to mixed technique, only the derivatives with respect to the
variable x are expressed in terms of finite differences, while those

with respect to the time variable are retained in their original form.
Thus:

a) Force Equation

(rn' Yy . dzyﬂ(t) _ knAnG jyn-i-l(t) - Zyn(t) Yn+1(t) - Yn—l(t)'
vin at? (Ax) * . (Ax) 2

G Y +1(t)-Yn_1(t)
- 2(A%) {kn+1An+1 _kn—lAn—l}-{ - 2{Ax) _Yn(t')}

* pgB_ - v () = p_(t)

n

b) Moment Equation
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v,01(t) - v (1)
Introduce
dy_(t)
0 = S
dy_(t)
Zn(t) = dt

This leads to the equation being expressed as follows:
a) Force Equation

(m ) - dz (%) kARG yn+1(t) - 2y, () v,y (t) Yor 118 = vy _q (1)
Mol dt T T AY) ‘ (Ax) - Z
?
b ZlA;d{krﬁ lAn+1—kn—1An-- 1}{ Z(AX;1 - Yn(t)}

+pgB_* y (1) = p_(t)

b) Moment Equation

d¢ (t)
(I‘i)n (mv)n d’?
ET E
v i | |
- (AX) Yn+1 (t) - ZYn(t) + Yn-l(t)}— 4—(Ax)2 {II‘H‘I - In-—l} 1Yn+]_(t) - Yn_l(t)}
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§ v +l(t) “VY _1(t) i
_knA G{ - 2(|AXI)1 — - Yn(t) =0

Thus, the system now consists of four ordinary, first order differential
equations for each discrete point (n). For the total of N discrete
points there are 4N equations. This systermn of equations is integrated
by the standard fourth order Runge-Kutta technique. This technique is
outlined in Abramowitz and Stegun (1965) p. 897.

Stability Analysis for the Mixed Technique

If the assumption is made that the coefficients in the equations of motion
are slowly varying and if finite difference$ are introduced for the deri-
vatives with respect to x, one obtains

dzyn kGA 1 1 )
m_v dtz = (2) (Ax) {Yn‘l']_ _Z'Yn + Yn_l}_ E{Yl’ﬁ‘lu Yn_l}-pry‘n
2 oo
d”y 'EI g -y
rm,— 2 {Ynﬂ - 2vn+vn_1}+ kGAJ2fl “n-l Vn}
at (4x) 2(Ax)

Introducing a general mode shape for the variation with respect to n
in the form of exp{inwm) , one can write .

f(t) - exp(inw)

Z
1]

g(t) » exp(ine)

@
]

Upon substitution of Yo and Y, into the equations of motion, the

following set is obtained

8

kGA

a% g(t) 2KGA
= _{ sine ° f(t)

: 1 - cospy- pgBhg(t) - 1
v gl '(Ax)z{ : CP} i } (Ax)

sing + g(t)

dt

2 . +
B (O I {ﬁ L - cosed - kGab ey 4 5 KGA
vowv 2 (/;x)z{ CP} (Ax)
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Reduce the order of the derivatives in these equations by introducing

-

hit) = %
de(t
o) = el
with the result that
510 | ch‘”; ‘1 - cosnp}- ogB} glt) - i—k—cﬁ—— sinem * {(t)
dt m_| (4x)° \ m_+ (&)
i v v
d_h(tl = - 21 ZEIZ{I - coscp}- kGA’f(t) + —-Zki sine ° f(t)
dt r m {Ax) : l r'm - (Ax)
viov| vV

Thus, one has a sysftem of four first order ordinary differential equations
in four unknown functions. The stability analysis for a fourth-order
Runge-Kutta numerical scheme related to these equations will follow
that of Abdel Karim (1966).

+

To this end, consider a system of ordinary differential equations of
the form

dy (t)
3

"
-
Z

= fn(t, ym) where n

Solve for the characteristic value problem. The characteristic equa-
tion of the system is

af

n .
_n o = 0
Bym A Gmn
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where

1]
3

0 for m

for m

1
ju]

Let Ay be the solutions of the characteristic equation. For a fourth

order, Runge-Kutta process the numerical technique will be stable
only if the criterion is satisfied that

4
(At )F

r=0

<1 for n=1, 2, .. . N

For the % _'s which are pure imaginaries, this equation yields the
condition

0 <|At} A, < 2\/7

The characteristic equation of the system of the four ordinary
differential equations is

A 0 1 0

0 A 0 1
-— ! ZEIZ {l-coscp—l-kGA}% iTl‘—g-A—— A 0
rom_ - ((Ax) rom -+ (&)

<
>

. kGA ' 1\ 2kGA
- -—{—2! 1 - coselt pgB
m_- (&) ™. (Ax)




Expansion of the determinant yields

>\4 + vi 1 [ ZEIZ{I - coscp}+ kGA]+ J—[ZkGA 1 - coscp}+ pr] )\2
T, m (Ax) - ml (Ax)

v

2

1 2EI ']_.[ZkGAn ] [kGA .2
+ 1 - cosept kGA 1 - cosgp+ pgBl- —| sin"p = 0
rZm * [(mz‘ } (Ax)Z{ } (Ax‘)]‘

This equation is of the form

X4+{a+,b}k2+{ab ~cFh= o0

Where

a > 0, b > 0, ab-c2>0

Solving the foregoing equation for )\2 results in

2 o= -_;{a+b}t,*§,/ {a-b}%+ c?

From the statement of inequalities, #t follows that

a+b>J{a—b}_2+c

2

Hence
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The smallest value for )\2 is, therefore

7\.2 = -—%—.{a-!'b}—-%Jr{—a.—b}z-f c2

One can also see that for o =, ‘xz"will have a maximum value.

Hence,

1+

i‘/zl 3 4EI2 +kGAE
T, My (Ax)

1§ 4kGA
iq] — + pgB i
‘[mv; (Ax)°

The characteristic values are pure imaginaries, therefore, one can
apply the criterion which gives

1+

Ao =

At < 4f2 4x) ST
KAG , 0gB* (Ax) ]
m 4m
v v
(Ax)
At < 4f2
\/_[ EI_, kAG- (Ax)Z:IUZ
5
m 4r m
v Vv v v

The smallest of the two time increments {(At) will be the one for which
the system is stable, Note that the time increment for the mixed tech-

nique is greater than that for the explicit finite difference method by a
factor of ‘[ 2 :

*
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APPENDIX F
HYDRODYNAMIC INERTIA

Introduction

The direct determination of the hydrodynamic inertia of a floating
hull of arbitrary form is mathematically untractable with the conse-
quence that the hydrodynamic inertia is commonly determined on the
basis of several assumptions.

The first assumption is that the cross flow hypothesis is valid ac-
cording to which the flow over the hull can be considered to be two-
dimensional, Thus, the hydrodynamic inertia of the hull is obtained.
by integrating along the length the hydrodynamic inertias of cylinders
of varying cross section. One has, consequently,

my = / 1‘111'1 {x)} dx

L

where the integration is over the length of the hull.

The second assumption is that the three dimensional flow that takes
place, particularly at the ends, can be taken into account by an as-
pect ratio correction based on that obtaining for an ellipsoid of same
mass and equal ratios of principal dimensions.

The third assumption is that the hydrodynamic mass of a body at the
surface is, as an initial approximation, equal to one half that of the
fully submerged body consisting of the original body and its reflected
image above the waterline.

The fourth assumption is that the presence of the free surface can be
taken into account by a correction based on the results obtained for a
circular cylinder of diameter equal to the local breadth of the section.

The fifth assumption is that of sectional equivalence, i.e., a section
of arbitrary shape bas the same hydrodynamic mass as that corres-
ponding to a mathematically tractable section having the same cross
sectional area, breadth and draft.
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Aspect Ratio Correction

The aspect ratio correction is made by applying Taylor's (1929)
longitudinal inertia coefficient. But such a correction applies to
the hydrodynamic inertia obtained for the whole body and what is
required in the present application is a correction at each section.
Proportioning of the correction to each section is made by the
heuristic method that follows:

The aspect ratio correction in heave is approximated by the follow-
ing formula of Pabst (see Blagoveshchensky, 1962).

JZE—EH-* 1_0.425-—--i2—
1+ r 1+ r

where r is the ratio of ship length to beam, L/B.

Consider an ellipsoid of semi-axes a, b and ¢ where these axes
are related to the ship's hull by

a = L/2
= B/2
¢ = H

The distribution of cross-sectional area is along the major (x)
axis is '

2
Alx) = mbe X ]
* 2 [ a2

Introduce a distribution of aspect ratio correction of the form

J._Z(X) = 1 —|—-§-—-r
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Upon weighting the aspect ratio correction at a point by the cross-
sectional area at the same point, integrating over the longitudinal
axis and normalizing by dividing by the volume, the overall aspect
ratio correction is obtained, namely,

a

f jz(X) + Alx) - dx

& = T
a Sz

f Alx) « dx

[

The cross-sectional area of the ellipsoid being given by

one has

The integration yields

n-+ 2

) 3[E+ O+ 3]

J'Z(n) = 1

A plot of Jz‘(n) against n is given'in Fig. F-1, From this plot, the

value of n is derived corresponding to a given J'Z and from it the
distribution jz(x).
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Fig. F-~1 Aspect Ratio Correction Coefficient.

The hydrodynamic mass distribution is now taken to be

i) my (%)

where rn}'.l (%) is the hydrodynamic mass distribution based on two-

dimensional flow. The hydrodynamic mass of the hull is by inte-
gration

48
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Pig. F-2 Free Surface Correction To Hydrodynamic Mass In Heave
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Free Surface Correction ,
An adjustment for the influence of the free surface on the hydrodynamic
mass has been determined by Ursell (1949). The parameter on which

the correction depends contains as a factor the frequency of oscillation
(w) and is

wZB

2mg

see Fig. F-2.

Such a correction can be readily applied if the motion of the hull can
be expressed in terms of normal modes, but since the solution pre-
sented herein is not based on normal modes, Ursell's correction can
be used only as a basis for a qualitative argument.
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It is noted in this connection that the natural frequency of the two-
noded vertical vibration of the hull calculated by Schlick's formula
(seward, 1944) lies between 7.7 and 8.9 rad sec™ ! depending upon

the loading (the former corresponding to full load, the latter to light
load). These frequencies give values of the frequency parameter of

21 and 28 respectively, and Ursell's correction factor for these values
is close to unity. Therefore, since in the lowest possible vibratory
mode no correction for the influence of the free surface need be made,
it follows, a fortiori, that no such correction need by made for the
transient response when slamming occurs. -

Sectional Equivalence

The sectional hydrodynamic inertia is obtained by application of
the results of Landweber and de Macagno (1957) for Lewis (1929)
type sections, The hydrodynamic mass per unit length of a section
oscillating vertically is

m! (x) = Eg&cz(x)- B2(x)

where: > _a
p = mass density of water (lb sec™ ft )
Cz(x) = sectional inertia coefficient for vertical motion
B{x) = local beam (ft)

The sectional inertia coefficient is obtained from Figs. F-3. This
coefficient is a function of the sectional coefficient

- Ax)
Cs(x) = Blx) - Hx
and of the beam draft ratio, where
A = sectional area (ftz)

y
I

draft (ft)
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APPENDIX G
SHEAR FACTOR

Consider a beam, not necessarily uniform, which is symmetric
with reference to the plane xy, where x is measured longitudinally
and y vertically, and which is symmetrically loaded. The mean
vertical displacement of the beam is

37=—i—-ffvdA

A

where A is the cross-sectional area and the mean rotation about
a transverse is obtained from

f/?vszz ffuydA

A

where u is the longitudinal displacement of the section. In both
cases, the integration is over the cross-sectional area,

The second relation can also be written

:{—:-il—-'/‘./‘uydA

A

where 1 is the second central moment of area. This is the form
given by Cowper (1966).
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Upon introducing the strain-displacement relations -

_ 23u -
ex T ¥}x and Ux - Eex

and differentiating with respect to % the second expression fo;-'
mean angle of rotation, the slope gradient is obtained, namely,

or

which is the well-known expression for bending moment.

Consider the shear stress equation

"x<y ¥ Th

where Q is the shear and S is the first central moment of area.
The mean angle of shear deformation of the cross section is

- =

%y

| Qs
wt

- v

The assumption that the shear strain energy is conserved results in
the shear strain energy relation

ff C o T . an
Xy Xy
A

1
Q-
~
e
N_EN
G
(o P
h>3



Therefo re,

or

where the shear factor

k
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3y =
- Ex Y

is given by .

B
2
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APPENDIX H
BASIC INPUTS

The basic inputs for evaluating the physical parameters of the ship are:

a) The body plan
b) The transverse structural sections

c) The weight and load distributions

The, ship chosen for the study is the WOLVERINE STATE of the States
Marine Lines.

The particulars of the ship are listed in Table H-1. The items of
weight are given in Table H-2.

The body plan of this ship is shown in Fig. H-1. The midship section

of the ship, as designed, is shown in Fig. H-2. The weight and load
distributions are given in Fig. H-3. The hydrodynamic mass distribution
is plotted in Fig. H-4.

The shear factor has been determined to be 0,91 in the midship region.
Because of its small variation with change of shape forward and aft

and of the relatively small influence of the shear component to the
overall flexibility, the value of 0. 91 was kept constant for the full length
of the ship,
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TABLE H-1

WOLVERINE STATE - PARTICULARS

Type C4-5-B5 _

' (machinery aft dry cargo
vessel)

Length, overall (ft) 520

Length, between perpendiculars (ft) 496

Beam, molded (ft) 71.5

Depth, molded (ft) 43,5

Condition Design Light Operating

Draft, molded (ft) 30.0 18.0

Displacement (tons) 20,000 11, 130

Block Coefficient 0. 654 0.610 .

Longitudinal Coefficient 0. 664 0.628

Waterplane Coefficient 0. 752 0. 685

Machinery - Two State Turbine

Design power (hp) 9,000
Normal propeller speed (rpm) 80 to 85
Normal operating speed (knots) 16 to 17

Builder: Sun Shipbuilding & Dry Dock Co., Chester, Pennsylvania

Owner: States Marine Lines
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TABLE H-2

WOLVERINE STATE - WEIGHT CURVE

Hull Weight Per 5 Ft, Interval (lb)
1 <« n < 29 85,400 + 1930 n
29 < n < 69 141,100
69 < n <« 100 141,100 - 605 n - 69
Machinery
71 < n < 84 123,200

Fuel Oil + Reserve Feed

71 « n < 84 ‘4438, 000
Deep Tanks

26 « n < 36 . 134, 400

Cargo

#1 Hold 159, 000

2 Hold 389, 800

3 Hold 304, 600

4 Hold 492, 800

5 Hold ‘ 457,000

6 Hold | 441,300

7 Hold 147,900

Note: The index n indicates the station. These are spaced 5 {t apart,

n = 1 1is at the foreperpendicular
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APPENDIX I
PROGRAM

Program Components

DRIVER

INPUT

PARAM

STABLE

CONST

INITL

FORCE

Main routine to handle general flow, namely, calls
all pertinent subroutines, determines, which finite
difference scheme to use (implicit or explicit), and

determines at which times output is desired.

Subroutine to handle ship input and initial input

Actual FORTRAN input statement may change in

accordance with the format of the user's data,
Subroutine to compute coefficients in the pertinent
differential equations. The statements in this pro-
gram may change in accordance with the changes

made in subroutine INPUT,

Subroutine to check the stability criterion and

compute the proper time stepsize if necessary.

Subroutine to initialize all constants used in program.

Subroutine to set up initial conditions (zero deflection

and zero angle).

Subroutine to compute the impulsive load, p(x,1t)



GENER

BNDRY

COMPUT

SOLN

FICTP

OUTE

XIMPULSE
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Subroutine to generate the matrix coefficients in .

the implicit technique,

Subroutine to set up boundary conditions (has two

entry points, one for each different technique).

Subroutine to compute vy and y for the explicit

technique.
Subroutine to perform a Gaussian elimination to
arrive at a solution for ¥ and vy for the implicit

technique.

Subroutine compute y and y at the fictitious points

in the implicit technique.

Subroutine to handle all output for both difference

schemes (two entry points).

Subroutine to handle all load inputs.,
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SUBROUTINE INPUT

Quantity Format
Information card 9 A 8
M Control card 10 I 5
M(1) = 0
M(2) = 0 - Normal boundary conditions
1 - Refined Boundary conditions
M(3) = n - Print every n -+ At
M(4) = Unspecified
M(5) = Logic control for computing K
M(6) = Logic control for computing EI | Zero
M(7) = Logic control for computing m presently
M( 8) = Logic control for computing 1:"2/rn,V
M(9) = n - use for last run as number of
cross sections in input
M(10) = O - there are XNN stations
1 - there are M(9) stations
DT = At 5 E14.6
DX = Ax
SC - If vy + vy » SC stop program
FINIS - Time to stop
XNN - Total number of stations including
fictitious ones; maximum number
= 204
RSTL - Mass density of steel p = 15.2 5E 14.6
(1b sec? ft =4y
RSEA - Mass density of sea water
6 = 2.0 (b sec? ft-%4)
GC - Shear modulus GC = 1. 66 x 109 (1b ft‘z)

GE - Elastic modulus

GE = 4.32 x 107 (1b ft %

)

TAU -Time duration of impulsive load profile
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CK - Shear coefficient 5 E 14.6
6 RI - Radius of gyration 5E 14.6

The following data input cards depend on the number of stations
M(9) which are declared on Card 2

7 CB - Half beam b(x) 7E10,5
8 CHZ - Hydrodynamic inertia coefficient in heave

CI - Second central moment of cross sectional area, 1.

10 CA - Shear area, A
11 CK - Shear factor K
12 SM - Weight curve, (tons ft _1)

The number of ship weight stations depends on M(10) declared in Card 2.
If M(10) = 0 there are XNN stations
If M(10) = 1 there are M(9) stations

SUBROUTINE XIMPULSE

All loading inputs are read in this subroutine. This routine is
called at TIME = 0 and thereafter for each time duration TATU.

Card No. Quantity Format

13 NP - Number of points in NPS(I) 115

14 NP5 - Actual number of points where load 10 I 5

is applied maximum of 200

15 P(X) - Force 5 E 14.6
16 TAUC - Start of force application 5 E 14.6
17 KTAU - Duration of load application 5 E 14.6
18 CF - Circular frequency of load -~ set to 5 E 14.6

zero if load is impulsive
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PROGRAM S4|P

DRIvER = FRUGWRAM SHIF = MAIN ROUTINE TOQ WAMDLE GEMRERAL Foou

DIMENSION MC10)4CAYGACZOA),CAYBL20a),VMI2N&) ,ET(204),RI(204),
151¢2043,52(208),53(204),54(204),55(209),85(204),87(204),58(204),
153¢204) 51002040, UC40R,3) ,A(408),0(408),0(408),Dte08),ECanR),F(4n
187,50408:,P12064),Y(204),NPS(200Y,CL204),0H2(204), SH(204),CK{2ﬂ4)
1:C00¢204),040206) ,4EADER(G)

COMMON M, CHACUHZ, SMaCK,Cl CA TIME, DT IC NaNLaNZANI, N, NS NE, N7,
INN,SC M3, MMM FINIS, OX,0X2,J0, CAYGA,CAYR, VN, ET1,RL,&,RFD,D2x, 03X,
LUX24,02T,TAU, THX,87P,51,52,53,54,55,56,57,88,59:510,UsA8,0,0,k,
1F Gy T L, TEe T3, T4, VahSTL,RSES, GO CE,NPSapT2

COMMON /A7 TAUC,Px,XTAU,XTNX,NP

BIVENSTON XTAUCZ04),TalCt2n4) PX{2N4),XTNX{204)
1111 CALL INPUT

TAJD=TAU

CALL X][MPJLSE

CALL PARAM

CalL. STABLE

CalL. CoNsT
O IF (ME1)) 10.10,11

EXPLICIT SCHEME

10 CALL, INITL
50 CALL ANDRY
TIMZ = T]ME+DT
FF{TIMETAUDI 360,370,370
S/70 TAUDSTAUD+TAU
DESIGNATE A NSW LOAD PROFILE
CALL X]MPJLSE
360 COUNTINUE

IC = 1Ce*t
DO 51 I1s1,N

ull,13¥=u(tl,2)
21 Utl,2)=u¢l,3)
&2 CALL FORCE
61 CALL COMPJT
DO 52 1=3,N2,2
Als ABSIUCT3))+a3S5(ULL[+1,3))
1F tA1-5C) 52,53,53
2y CaLy EROK
52 CUNTJINUE
IF{IC=MMM3m1) B5,56,56
26 MMMz MMM3I+M3
CALL ANDKY
CALL DUTE
55 [F {TIME-FINES)Y S0,1112,1111
IMP_ICIT SCHEME
11 CALL INITL
S00 CONTINUE
BO 30t t=q,N
Uil 1sudl. )



72
501 Ut 2)s01,®)
601 CALL GENER
CALL aNDRY]
TIMESTIME+DT
IF(TIME=TAUD)3600,3700,3700
TAUDRTAUD#T Y

<3
L=}

7

.l

5 DESIGNATE A4 NEW LODAD RROFILF
CALL XIMPJLSE
3600 CONTINUE
682 CaL, FORCE
[C=1Cey
CALL SOLN
CALL FICTR
JF {]CaMMM3I=1) 504,505,505
HMH3S MMM S o h 3
CALL ouTl
I¥f (TIMEaFINIS) 500,1111,1111
END

Ut
[ =
X}

(v 13
=]
»

(]

. SUBRQUTINE INPUT
> THIS ROJYINE READS ALL SHIP DATA

NIMINSINN MYD(+NA)Y DUTIMIAAan.T)Y
W ALY WY L A AN TV TR W Ny LR

DIMENSION MO10},CAYGA(204),CAYBI204),VMI204),E]1(204),R](2N4),
181(204),52¢(204}1,53(204),54(204),85(204):56(204),87(204}),88(204,,
189(204),5100204),U(408,3) ,L,A(408),8(408),C¢408),Dt408),E{408),F(4n
18),5(408),P(204),V(204) ,NPSL200),CB(204),CHZ{204), SM{204},0K(2n4d)
1,0](204),0A0204),MEADER(Y)

COMMON M,CB,CHZ, SM,CK,0N],CAsTIME, DT, IC N, N1,N2,NJ,N4,N5,Ng,NT7,
ANN,SC, M3, MMMI,FINIS,DX,NX2,C,CAYGA,CAYB, VM, EIl,R],P,RFD,D2x,D3X,
1D¥24.027.TAU.TUKaSTP.51,82,S3.54.55-56.57388.89.S1B;U1A.3}C.D.E.
1FeG, TL, Y273, T4, VsRSTL,RSEA,GCHCE,NFSsDT2, MM

COMMON 74/ TAUC,PX,XTall,XTNX,NP '

TUOMMON /B/ ANPS
DIVMENSION XTAUC204),TALUC{204),PX{204),XTNX(204)
DIVENSION XNPS(204)

READ(S,1) (HEADER{I),1=21,9)

FORMAT (948}

IF (HEADE=R(1)¥2:3072

CALL EXIT

READ(B,4)(ML]),I=3,10)

FORMAT (14]5)

FORMATY (5E14,6)

READ(S,5)DT DXy SCeFINIS, XNN,RSTL+REEALGC,CEFTAU
NNEXNN
MMENN=1
MS=¥(9)

-

U b
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517

21

READ (5,4) (NXP(]),I=1,M9)
READ (5,5 LK (2)
READ (5,5) RI (2)
READ (5440 (PUTINCIs1),1=1,M9)
READ (5,49) tPUTINC(I2),151,M9)
READ {5,40) (PUTINCT, 3),121,M9)
READ (5,40) (PUTINCIS4)Y,1=1.M9)
FORMAT (7E10,5)

IF(M(10))39,39,41
READ (5,40) ( SM(I) 1 1=2,MM)
G0 TO 42

READ (5,40) (PUTIN(1,5),1=1,M9)
COUNTINUE

DG 3D 1=1.M5

LMaNXP(])

CB (LMISPUTINCI.1?
CHZILMISPJTIN(]L»2)

Cl (LM)=PUTINC].3)

CA (LM)=PJTIN(],4)

IF(M{1L0))30,30,44

SMOLMYsPUTINC].8)

CUNIINUE :

SHI> DATA 1> INTERPOLATED HWER
MI1=M9~1

DO 31 1=1.M9)

LM1aNXP(]#1) =1

LMsUXP(1)+1

FATz| Mi-L M2

XJ1=LHM1
T1=_ M1+t

[25 My
O 32 J=Lv,LM1
XJd=
WOW= (X JmXJ1)/FAT
CB (J¥=(C3 (l1)=CB ([2))wWpu+Cg (12)
[F(M(1D0))39439,51

SMeJY=t SMOI1)= SMOI2)Y*WQwWw SM(T2)
CHZC) = (CHZTL)=CRZ(I2))IxWQW»CWZ(T2)
Cl (JY¥=(CI C11)=Cl (12))*WQW+CI (12).
CA (JY=(CA (11)"CA (I2)Y%WQW+CA (12)
CUONTINUE

DO 517 1 = 3,MM

CK (1) = CK  (Im1)

RI (1) = Rl (Iml)

WRITE [NITIAL QUTPUT

WRITE (6s21)

WRITE (641) (HEADERCI),1=1,53)
FORMAT ¢141)

WRITE (6222) DT+UX,TaU,¥XNN,SC,FINIS
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22 FORMAT(//10H DELTA T =,E15,7/10H DELTA X =,EL15,7/6H TAU %,E15,7/
119H NO, OF INTERVALS =,E15,7/18H STABILITY BOUND #,E15,7/44H TIHE
1TO END =,E81%,7)

WRITE (6,23) (MUI),I1=1,10)
25 FORMAT ¢//317H M CONTROL CARD =,1015)

. PRINT 4551 ,CE,GC _

4551 FORMAT(/,* ELAST]C MODULAS SHEAR MODULAS LB/S0, FT. #,/2E16,2,/)
PRINT 230

250 FORMAT(/,+ HaALF BREADTH AREA HEAVE COEF, SHIP WT,/FT,
1 SEZOND MOMEWNT SHEAR COEF, GYRATION RaADJUS w,/)
WRITE (6s9)CCBCI)sCACTI) CHZEIY, SMCID)a CLUI)CKODI,RT (10, 122.MM)

9 FORMAT (7F13,4)

RETURN
END

SUBROUTINE PARAM

ROUTINE TD COMPUTE COEFFICIENTS IN DIFFL, EQNS,

DIMENSJON M(10),CAYGA(204),CAYBL204),VM(204), E1(2o4).R;<204p,
151¢204),52(204),53(204),54(304, 85(204)a56(204).87(204) §8¢204),
189(204),510¢204),U(408,3) ,A(408),B(408),C(408),D(408),E(408),F (40
18),3(408),P(204),V(204),NPS(R00),C8(204),CHZ(204), SM(204) eK(2n04)
1,C01¢204),CAC204),HEADER(9). o

COMYON M, CBsCHZ) SM,CK4CIsCA» TIME, DT, IC/NaNLIN2INI,N4,NE,Ng,N7,
1NN, SG, MS.*MMS FINIS.DX DX2,JC,CAYGA,CAYB,VM,EI,RI,P,RFD,D2x,D3X,
1Dx24.nzT TAU,TDX,S5TP,S51.52,53,54,55,56,57,58,859, 310 WiasBL.CaDE,
1FsG,T1,72.T73.T4,V,RSTL,RSEA,GC,CE,NPS,DT2,MM

COMMON /A7 TAUC,PX,XTAU,XTDX,NR
DIMENSION XTAU(C204),TAUCt204),PX(204),XTNHX(204)

MMz UNmi

DO 1 {=2,YM

CAY3(1)=2,*CB{])*RSEA*3I2,?2

IF (ME7)) 32243

2 CONTINUE
. CAN [NSERT _ o

MULTIPLY SM BY 2240/ G FOR S,MASS/F,$,

I VM(I)z SM(])/32,2%2240, +1,570796327+«RSEA+CHZ(])I*CB(])ww2

IF (Mtg)) 445.4

5 EI(1)=cE*aICD)
GAN |NSERT
4 IF (Mt8)) 61746
CAN INSERT
6 CONTINUE
7 1F¢M(8)) 8,9,8
CAN INSERT
9 CONTINUE
8 CAYSA(]I®CK(])#CAL])*GC
RICI)=RICI)* SM(])»2240, /32 2
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1 CONTINUE

3k

EI(11=2EILR)
CAY3A(1)SCAYGA(2)
EI(NNY=ET (MM}
CAYIAINNI=SCAYGA(MM)
RETJIRN

END

SUBROUTINE ERDR (1)
WRITE (Hatl) 1
FURMATI(LIS)

CALL EXIT

RETJRN

END

SUBROUTINE CONST

THIS ROJTINE SETS UP CONSTANTS AND !NITIALIZES LOGIC CONTROLS

USEN THROJGHOUT PROGRAM

DIMENSION X(205)

DIMENSION M(10).CAYGA(2N4),CAYB(204),VM(204),ET(204),RI(204),
151(204):52(204),53(204),54(204),55(204),56(204),587(204),5p(204),
159(204),510(204),U(408,3) ,A(408),8(408),C(408),0(408),E(4a8),F(4n
18),53(408),P(204),V(204),NPS5¢200),CB(204),CHZ(2D4), SM(204),CK(204)
1:C102047,0A0204) ,HEADERLS)

COMMON M, CB+CHZs SMyCK,CloCA+TIME,DTSIC/NsNI,N2,NI,NG,NSsNgyNT7,
1NN, SC, M3, ¥MM3,FINIS,DX,DX2,JC,CAYGA,CAYB, vM,EI,R],P.RFD,D2x,D3x,
1DX24,02T,TaU, TDX,S5TP,51,52,53:54455,56,57,58B,59,810,UsA.8,Cs0.E,
1FsG,T1,T2:T32T4.V4RSTL,RSEA,GC,CE,NPSSDT2,MM

COMMON X,JUTPLOT,DSCALE,VSCALE,RBMSCALE,XSCALE

COMMON Fa/ TAUC:PX . XTAUXTDX NP
TOMMON B/ XNPS
DIMENSIQN XNRPS5(204)

DIMENSION QUTPLOT(400)

DIMENSTION XTAU(204),TAUC(204).PX(ZD4),XTﬂX(204)

CALL PLLOTS (OUTRPLOT,400,20,10)

N=2¥NN

Nizvmq

N2zNleq

N3sN2w1

NA4zNImy

NS=Ngwy

N&=NGmq

N7=V6my

RFD=M(2)

D2x=2,*DX



~76-
 D3x=3, DX e

DX24u4, +DX2
__D2Tm2,«DT

DTZagbapr " — -
ies0
TiME=0,0

MIzM(3)wJC .
MMM3IEM3
STPag,0 _
x{i)ymp,0
DO 100 Im2,MM
[imley '
Mis]et .
XCI)ax(IM{)*DX
Pt1ra0,0 o
RisE](I11)«EI(IML)
R2Z=QAYGA(IL)wCAYGA(IMLY
S1(1)wm{Rimd, #EI(1))/(16,%DX2) ‘
S2(1)mat (BwE](])/DX29CAYGA(L)/4,%RI(]1)/DT2)
SI(1)seBL(] )%, 5%EI(1)/DX2
SA(L)malAYRACIN/ (8, wDX) | )
S5(1)maR2/18, #DX) e
S6(1)swl{R2nd, ¥CAYRAC]))/(16,#DX2) -
S7(1)e ,SwCAYGA(I)/DX2eyM(1)/DT2
SB(I)=eS6(1)e,54CAYGA(])/DX2
S9(1)=R1/(16,*#DX2) s
100 S10¢l)=R2/(8,%DX)
XSCALE ® B,/ X(MM)
DSCALE = 10,%#7
DSCALE®5*DSGALE
VSCALE = 3,74, -
BMSTALE =12,/X(MM) w6,
RETJRN
END
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SUBROUTINE STABLE

TMIS RQUTINE COMPUTES THE PRQPER TIME MESHWSIZE

DIMENSION M(10),CAYGA(204),CAYB(204),VM(204),E1(204),R1(204),
151(204),52(204),53(204),54(204),55(204),56(204),5S7(204),58(204),
1$9(204),510¢(204),U(408,3) ,A(408),B(408),C(408),D(408),E(408),F (40
18),3¢(408),P(204),V(204),NPS(200),CB(204),CHZ(204), SM<204) CKE204)
1,C7t204),2A¢204), HEADER(9)

COMMON M,CBsCHZy SMaCK,ClyCAsTIMELDT,ICaN,NLsN2/N3, N4y NSsNgNT,
1NN, S0, M3, MMM, FINIS,DX,DX2, C, CAYGA,CAYB, VMEL,RI,P, RFD D2x,D3X,
1DX24,D2T,TAY,TDX,STP, 81,52 $3,54,55,56, 57.58 59.510.U A.B C.U:E,
1FaGaT4,T2,73,T4,V4RSTL,RSEA,GC,CE,NPS,DT2,MM

COMMON /A/ TAuc.Px XTAUZXTDX ) NP
DIMENSION XTAU(204),TaAlC(204),PX(204), XTDX(204)
Dx2=px*Dx
20 TEM=100p0,
DO 1 1=2,94M
Q1=DX/SQRTC(CAYGA(I)I*CAYB(1)*DX2/4,)/VM(]))
QA2=DX/SORT((EI(I)«CAYGACII*DX2/4 ) /R}(IN)
IF (Q1e.02) 2,3,3 )
SAVaQY
"GO TO 4
SAV=Q2
[F (SAy=TEM) 5,1,1
TEMeSAyY
CONTINUE
JGe1
IF (DT»TEM) 6467
JK3=JC»2
IFCJKC)®,10410
9 DT = DT/2|
JE= 2«JC
GD T0 8
1p M(1)=1
GO TD 21
6 M(1)=0
21 WRITE (6425) M(1).DT.TEM
25 FORMAT (///18H CODE FOR SCHEME =2,113,10X,4nDT =,1E16,8,10¥%,11HCRIT
1ERIIN =,1F16,8)
RET JRN
END

[l N ] I /] vl

~ 0o

SWUBROUTINE INITL

THIS ROUTINE SETS UP THE INITIAL CONDITIONS

DIMENSION M(1D0),CAYGAL204),CAYB(204),VM(204),E]1(204),R1(204),
181(204),52(204),53(204),54(204),S5¢(204),56(204),87(204),58¢204),
159¢204),810¢204),U(408,3) ,A(408),B8(408),0(408),0(408),E(4nR),F(4D
18),3(408),P(204),V(204),NPS(200),CB(204),CH2(204), SM(2D4),CK(204)
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1,C1(204),CA204),HEADER(9) ‘

COMMON M,CBaCHZs SM,CK,CT+CAsTIME, DTS IC NaNL, N2 NE, N, NG, No N7,
INN, SC, M3, YMM3,FINIS,DX,DX2, JC, CAYGA,CAYB, VM EL,RI,P,RFD,D2x,D3X,
1DX24,02 Y. TAU, TDX,STP,51,52,83,54,55,56,57,58759,540 U A2020s0sEs
1F+GaT1,T2.73,7T4,V,RST,,RSEA,BC,CE,NPS,DT2

CQUMON 7A/ TAUC;FX.XTAU;XTDX.NP T
DIMENSION XTAU(204),TAUC(204),PX(204),XTDX(204)

‘DO {1 Tmi,N ) - o

U(I,{S):0.0

U] 2¥=0,0

CONTINUE

RETJRN

END

SUBRQUTINE FQRCE
FORCE IS DETERMINED WITH RESPECT TO TIME HERE
DIMENSION M(10),GAYGA(204),CAYB(204),VM(204),E](204),R1(204),
151(204),52(204),55¢(204),54(204),55(204),56(204),57(204),58(204),
159(204),510¢204),U(408,3) ,A(408),B8(408),C(408).D(¢408),E(408),F (40
18),3(408),P(204),V(204),NPSL200),CB(204),CHZ(204), SM(204),CK(2n04)
1,C1€204),CA(204) ,HEADER(9) ) ) - S
COMMON M, CBsCHZy SMCK,C1 CAsTIME, DY, ICAN, N1, N2,N3 ,NG,NE,Ng, N7,
INN, SC, M3, MMM3,FINIS, DX, DX2,.JC,CAYGA,CAYB, VM, EL,R],P/RFD,D2x, 03X,
1Dx24'D2TnTAulTDX[STPlslo32a53154195036357038059)51DIUIA191C’DJE1
1F»GaTL,T2sT3,T4,V,RSTL,RSEA,GC,CE,NPSDT2,MM
COMMON ZA/7 TAUCPX;XTAU,XTDX,NP
COMMON /8/ CF ) o
DIMENSTOV XTAU(204),TaUC(204),PX(204),XTNX(204),CF(204)
ROUTINE TO COMPUTE- SMALL P
PIE=3,14156
DO 1 1=22,MM

CONTINYE o _ ]
IF(TIMEnTAUG{]))?,4,4 .
IF (TIME=XTAUCT)=TAUC(IN)S,949
P(I)=0,0
Go vfo ¢
PCIYSXTDX(])
IFCCFRCINdLadeb o o
ERIODIE FORCE IS CALCULATED HERE
ARGs 2, *PlE*CF(I)*TIME
PCI)SP(1)*SINCARG)
CONTINUE _ . ...
FORMAT(4E13.,3)
RETURN
END

- - -
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SUBRQUTINE GENER
s GENERATE YATRIX COEFFICIENTS

DIMENSION M(10),CAYGA(204),CAYB(204),VM(204),E](204),R]1(204),
151(204),52(204),53(204), 34(204) 85(204)-Sét204).57(?ﬂ3) Ss(204),
189(204),510(204),0U(408,3) ,A(408),8(408),C¢408),D(¢408),E(4p8), Fean
18),5(408),P(204),V(204),NPS(200),CB(204),CH2(204), SM(204).CK(204)
1,C1€2043,CA0204) ,HEADER(Y)

COMMON M CBaCHZ, SM,CK,C1sCAaTIME,DT, ICsN,N1,N2,N3, N4 NEINg N7,
1NN, 5C, M3, MMM3,FINIS, DX, DX2,  JC.CAYGA,CAYB,VM,EI,R]L,P, RFD D2x,D3X,
10X24:02T,TAU, TDX,8TP,51,52,53254,55,56,57,58, S9 S10,UsA.3,C,D.E,
1F+GsT1,72,T3,T4,VsRSTL,RSEA,GC,CE, NPSaDTZ MM

00 1 1:3.N2.2

RESEZ]
Kz J/?2
i=ley

[22lm2

Ja4=1+2

[BrJ*2

13=de2

ACI2)=81(X)

A{11YamS4(K)

B(I2)=s§2(x)

B(]1)=85(K)

ClI2)=83(x})

ClIt)=zwa(l1)

DUI2)254(X)

DUIL)=s56(<)

EC(]2)=0,0

E(Il)ﬂ-(&7(K)*,25*CAYB(K))

Feraysaliy)

F(I1)1=5B(X)

GOJ2)=RICKI*(UCT 1) m2,wU(1,2))/DT2e ,25%E[(KIW(2,*(Y(]4,2)m2,*U(],
120+J(12,2))%UCJ4,1)»2,%U(T,1)%Ut]2,1))/DX2~S9(KI*(2,*(Y(]4,2)mU(]2
1a2))+u(14, 1)mU(12,1))*54<K)*(2 *(U(I5123nU(I3,2))+U(15 1YeUl13,1 )
1+, 25*CAYGA(K) (2, *UC],2)+U(1, 1))

Tis <uc15.2)mU(15.2))/nzx

T2=(U4,2)~Ul12,2))/D2X

GOI1)=mP ()%, 254CAYB(K)w(2,oUlJ,2)4U(J,1))eVMIKIWCULI 1)n
12,%0¢(J, 2))/DT2*S4(K)*((?,*(U(15 2)=2,*u(J,2)+U(13,2))wyll5,1)e2 »
1u(4,1)¢u(13,1))*2 ADXa (2, % (U(14,2)~UC12.2Y)+UlTId,1)=UC]2,1)))
1eS510C(K)*(2,*T1+(U(]5,1)m U(13.1)>/sz-(2.wU<I 2)+«UCT.10))

1 CONT]INUYE
RETJRN
END

SUBRQUTINE BNDRY

THIS ROUTINE SETS UP THE BOUNDARY cONDITIONS

DIMENSION MC10),CAYGA(204),CAYB(204),VM{204),E1(204),R](204), _
151(204),52(204),53(204),54¢204),55(204).56(204),57(204),58(204),
1$?(204).810(204>.U(408;3) +A(408),B(408),0(408),D¢408),E(408),F (40

[ 9]
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18),0(408),P(204),V(204),NPS(200),CB(204),CHZ(204), SM(204),6K(2n4)
1.C1€204),CAC204),HEADERtYY e e
COMMON M,CBaCHZs SM,CK,ClsCA+TIME,DT,ICININL, N2, N3, N4, NS NgsN7,
INN,SC, M3, 4MM3,FINIS,DX,DX2, JC,CAYGA,CAYB, VM EL,RI PaRFD,D2X,D3X,
1DX24,027,7aU,YDX,5TR,54,52,53,54,55,56,57,58,59,510,U,4,8,0,0.E,
1FsGsTy,72.73,74,V,RSTL,RSEA,GC,CE,NPS,DT2

COMMON /47 TAUC,PX,XTAU, XTDX,NP

DIMENSION XTAUC204),TAUC(204),PX(204),XTDX(204)
EXPLICIT SCHEME

IF (RFD) 1,2,1

NORYMAL ANALDGUE
UINL,3)3U(N5,3) B
UINS 3 mU({ V423D +02X*U(N3, 3)
Ut1,3)eU(s5,3) .
U‘2|3)=U(6:3"DEX*U(313’

GO TO 50 S

REFINED CONDITIONS ‘ :

UCNL 3y = 5% (6 #U(NS,3)wl(N7,3)03 ) *U(N3,3)) e
UCN23)m, 5% (6, *UCN4,3)m0tN6,3)m3, *U (NS, 31 ¢D3IX*U(N3, 3)
UCLs3)u, 5% (6, %U(5,3)=U(7,3)n3,»U(3,3)) ,

UCR23) e 5% (6, *UC6s3 nU(B,3)ad,wU(4,3))«D3xXnU(3,3)

GO TO 50 .

IMPLICIT SCHEME
ENTRY BNDRY!
Cliy=c(1)+all)
Cl2)sc(2)+al2)
FO1)3F(1)+D01)
Flaysp(2a)+Dte)
B{1)aR(1)»=D2X*D( 1)
B(2)=zg(2)=D2X%D{2) : _ - ,
GELIEG( 1) wAlD) w2, %(U(5,2)eU(d,2)34U(5,1)autls1))oD(L) w2, wtUl6,2)
leU(2,2))%U(6,1)rUl2, 1) mN2Xw(2,%U(3,2)¢U(3,1))) . .
G(2)aG(2) a2 w2, w(Ut5,2)=U(4,204U(5,1)ny(1:1))mD(2)%(2,e(U(6,2)
1rl(2,2))J06,1)=U02,1)wD2Xw 2, wU(3,2)+U(3,1)))

A(N4)=A(NA)*CINA) .
ACN5)mA(NS)*C(N5)
DIN4)SDIN4)*F (N4)
DENB)=DI(NS)*+F(N5)
BIN4)=B(N4)*D2X*F (N4)
BINS)=B(NS)*D2X*F(N5) o
GIN4)3G(N4)*CINA)» (2, (U(NL, 2)oUINBE 2D *UINL, 1) =UINS, 1)) F (N4 (2,
12 (UCN,;2)mJ (NG, 2) ) *UCN, 1) =U(N4,1)wD2X ¥ (2, #U(N3S,2)%U(NI,13))
GIN3) =G({NBI#CINGIw(2,#(UINL,2)wUtNS,2))#U(NL L) eU(NS, 1Y IaFINS)I (2
1o*(UIN,2)nUCN4,2))%UCN, 1) wUIN4, ) wD2X* (2, #UIN3,2)%UIN3,1)))

RETURN '

END
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SUBROUTINE COMPUT ‘ .

THIS RQUTINE COMPUTES TWETA AND OMEGA FROM YHE EXPLIGIT OYFFERENCE
ANALDGUE - .
DlméNson MUTE)TCAYGA(204),CAYET204),VM(204),E1(2047,R[(204),
151(204),52(204),53(204),54(204),55(204),56(204),57(204),58(204),
159(204),510¢2043,U(408,3) ,A(408),8(408),C(408),0(408),E(408),F (40
18),3(408),P(204),V(204),NPS(200),CB(204),CHZ(204), SM(204),CK(204)
1,01(204)25A0204) ,HEADER(Y)

COUMON /47 TAUC,PX,XTAUXTNX,NP ) .

DIMENSION XTAUTZ204),TAUC(204),PXE204),XTDX(204)

COMMON M, CBsCHZ, SM.CK,CI,CAsTIME,DT,1CaNsNL,N2,N3,N4,NE,Ng, N7,

- NN, SC,M3,MMM3,FINIS,DX,NX2,JC,CAYGA,CAYB,VM,EL,R],P,RFD,02X,D3X,

1DX24,02T,TAU, TDX,STP,51,52,53,54:55:586,57,58,89,510,U,4,3,C.0E,

1F!GaT1|T21TslTalVlRSTLipgeAchICElNPSJDTE
DO 1 te3,N2,2
JET+]
KaJrs2 S o
Tla(UJ+2,2)wl(Um2,2)) /02X
T3=y(le2,2)mUl]=2,2)
T2=T3/Dp2X
TézTiel(].2) ) e ) L -
; U(l.3)=2|tU<I]Z)HU(I,l)iDTai((EI(K)*‘U<1*2’2)'2.'U(132)*U(1-2'2,)*
1,254 (E](K+1)sE](Kng) ) *T3)/DX2¢CAYBACKI#T4)/RI(K)
UCY,3)m2,%U(Jy2)eU(J,1)wDT2«(P(KInCAYB(K)*U(Js2)%CAYGA(K]»
1CEUCU»292)22,%U(Jg2)*U(Jm2,2))/DXm 5¢T3)/DX+(CAYGA(K#1)=CAYGA(K>1)
1)*T4/702X) /VM{K)
1 CONTINUE
RETJRN
END

SUBROUTINE SOLN

THIS RQUYINE EVALUATES GENERATING SFQUENCES AND COMPUTES

SOLUTIQN VECTOR _

DIMENSION M(10),CAYGA(204),CAYB(204),VM(204),E](204),RI(204),
151(204),52(204)+53(204),54(204),55(204)256(204),57(204),58(204),
159¢204),510(204),U(408,3) ,A(408),B8¢408),C(408),D(408),E(409R),F¢dn
18),G(408),P(204),V(204),NPS(200),CB(204),CHZ(204), SM(204),0K(2N4)
1,C[(204),CAC204) ,HEADER(9Q)

CDM“QN MaCBaCHZ, SMICKOCIQCAITIMEJDTJICINlNlJNEIN3'N4jN51N6|N7‘
INN, SC,M3sMMM3LFINIS,DX,DX2,JCaCAYGASCAYB, VM, EL,R].P4RFD,D2X,D3X,
1Dx24l02TlTAU!TDX;STPlSL;SZQSga54955136:S7g55139151ﬂng,A,B,Q,DQE,
1FJG,Ti.TZ;TSJT4'VaRSTL.RSEA.GC;CE.NPS]DTZ

FIRST FORM 5=BAND DIAGONAL MATRIX FROM 7=BAND MATRIX

DO § I=5,N2:2 .

I1z1=1

j25lw2

[3=1a3 _

Jdz=]I=4
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K2

2

Glitiegtit)mpMeG(I)

FMaa(11)/74(12) ,
B(lL)mB(]1)sFMwB(12)
CUIL)=Cc(l1)=FMwC(I2)
DOTL)=pCIl)=FMwD(12)
E([1)=E([1)=FMuE(]2)
FOIL)sp (1) =FMeF(12)

FMer(14)/F(13)

COla)aC(]4)=FMeD(13)
D(I4)=nCl4a)eFMeD(13)
ECT4)sE(]4)»FMeE(] )
G(i4)=G([4)"FMeG(I3)
CONTINUE

EVALUATE SEQUENCES
E{1)aE(L)/B(1)
Clyyzgqiy/BtL)
Gl1)=G(1)/6¢(1)
Ef2)sE(2)=E(1)#B(2)
Cl2)sc(2)=CllIwB(2)
G(2)=G(2)sGlL)wB(2)
B(2i=0,0

DO 2 Ks1,N7:2

Klzsx+1

K2sK+2

K3ak+3
ECKL)=E(KL)=E(RI*B (K1)
CEKL)=(C(<1)nC(K)*BIKL)Y/E(KL)

F(KL)mF(KL1Y/EC(KLY

GIKL)e(G(<1eG(K)*B(KL1)I/E(KL)

D(K2)aD(K2)=E(K)*A(K2) _
B(K2)=B(K2)2C(K)*YA(K2) e (KL)®D(K2) _

TGUK2)2(G(X2)mG(K)YALK2)wGIKL)*D(K2))/B(KR)

E(K2)2(E(CQ)wF (KL)wD(K2))/B(K2)

C(K2)aC(K2)/B(K2)

B(K3)sB(K3)=C(KL)*D(K3)

E(K3)SECK3I)=F(KL)*D(K3)

GIK3)aG(K3)G(KL)*D(KI) ' <

: ] .
E(N4)=E(N4)=E(NB)#BIN4) -
GINd)=(G(N4)mG(NS)IWB(N4))/E(N4)
COM3UTE SALUTION
VIN2)=G(N4)
VINI)=GINS)I=E(NB)*V(N2)
DO 3 lad,v4.2
JENdm]+4 _ _ ) .
VIJIaG(Jm2)mF (Je2) eV (Jes2)wp(Jm2) 0V (J*1)
VIJm1)3G(Jm3)mCl n3)*V (Jel) mECJu3) 4V (J)
CHESK FOR AN UNSTABLE SOLUTION
IF CABS(V(J))*ABS(V(Jw1))=8C) 3,4,4
CALL! EROR (1)

CONTINUYE
RETURN
END

R im0 r o e s ey e Al e a7 e an 0 i o -
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SUBROUTINE FICTP

THIS RQUTINE COMPUTES VALUES FQR THE DISPLACEMENTS AT THE FOUR
FICTITIOUS POINTS

DIMENSTON M(10),CAYGAC204),CAYB(204),YM(204),E](204),RI(2D4),
181(204),52(204),83(204),54(204),55(204),56(204),S7(204),58(204),
189(204),510(204),U(408,3) ,A(408),B(408),N(408),D(408),E(408),F(4n
18),8(408),P(204),V(204),NPSt200),C0(204),CHZ(204), SM(204),0K(2n4)
1,C1(224),CAL204),HEADER(9) ' & ‘
COMMON MpCBsCHZs SMyCK,CIaCAsTIME, DTS ICINNLINZINT, N4, N5.N6, N7,
INN, SC, M3, MMM34FINIS, DX, X2, CsCAYGASCAYB,VM.EL,R],P.RFD,D2X,D3X,
iuxzq'nzr’TAu’TDX'STP'SllSEIss!S4IS5U36JS71581591510|U.A.S;C,D,E,
1F,G,74,T2,73,74,V,RSTL,RSEA,GC,CE,NPS,DT2 -

COMMON /A7 TAUC,PX,XTAU,XTDX,NP

DIMENSION XTAU(204),TAUCCE204),PX(204),XTDX(204)

DO 1 [33,N2

1 Ul1,3)svil)

UCL,3)8U(5,3)42,(U€5,2)nU(1,2))%U(5,2)Ut141)

UC243)2U(6, 302, % (U(6,2)mU(2,2))%U(6,1)myt2,1)=DRX*(U(3,3)02,
1UC3,2)%U(3,1))
UONLa3)sUIND,3)a(2, % (U(NL,2)mU(NS,2))%U{NL, 1) =U(NS, 1))
U(N's"u‘V4‘3)“2l*‘U‘N!E’ﬁU(&fqal)ﬁU‘Nll)-U(N4|1))*sz*(U(Ma,s)

142, «U(N3,2)+UIN3, 1))
RETJRN
END

«

SUBROUTINE OQUTE ]
THIS ROUTINE MANDLES OUTPUT FOR EXPLICIT SCHEME

IMENSION X(205)
glMENSiON Mtin).CAYGA(204),CAYB(204).VM(204).E1(204).R1(gn4a.
151<2a4>.sz<204).53¢204>.54t204).55c204).Sb<204)as7(204>.q8(204>,
159(204),5100204),U(408,3) LAC408),B(408),0(408),D(408),E(408),F (40
181.3(408),P¢204).V(2u4;,NPstzon).CB¢204),CHZ(204). SM(204),0K(204)
1,C1(204),CA8204) ,HEADER(D)

61&558!0& NO(204,ITH0(204)'XM0(204)ISHO(204)INV<204)ITHV(2O4)
COMMON M,38sCHZ, SM,CK,CI,CAsTIME,DT,ICsN,N1,N2, N3, N4 ,NEs N6, NT,
1NN,sc.ms.WMM&.FINIs,Dx,nxz,JC.CAYGA.CAYB.VM.EI.RI.P,RFD.Dgx,D3x,
1DX24|DQTQTAU,TDXjSTP.51,52,53.$4|85356:57358159351DDU0A:BnC:DlE:
1FIGITl:TEITSIT4lVIRSTLIRSEAJGCICEONPS'DTleM_
COMMON ¥,0UTPLOT,DSCALE,VSCALE.BMSCALE,XSCALE

DIMENS]ON OUTPLOT(400) .XX(205)

TIO= TIME = DT

J s 0

DO 1 I=3,V2,2

LE]e+l

JEIL

K=L/2

WOCJ)sytiLe2)

THOCJY=UC(T, 2)

XMOGISEIC(RKI #(UCI+2,2)wU(T=2,2))/D2X
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SHO(J)zCAYGA(K)*{ (Ul +2,2)s U(L-E;Q))/DEX-U(I 2))

e Wb b s e e e - s =

WY O, )01 /D27
THY (J)mtU(]23)mU(],4))/D2T

e R —— e A e ———— s = s s ks 4 < ummm

1 CONTINUE
& CONTINUE e
WRITE (6,2) TTO - T TTTTmm T T T e
2 FORMAT (7HITIME 3,1F9,4//9X,1HX, 13X, 1HY 18X, SHGAMMA,8X, 6HMOMENT, 7X),
15HSHEAR, BX,5HYwD00T,6X, 9HGAMMA-DOT/) T
3 FORMAT (7E413,4) I ———
WRITE (6,30 (XCTVAWOCTY T TROTTY s XMOT 1) 7 5H0 CII NV STRVTTT T8i0dy
DMAXBDMINJVMAXIVMIN=BMAX=BMINHOL
DO 25 I=1,J
XX({1)aX([)*XSCALE
DMAX = MAXL1F(DMAX, WO(
DMINZMINLIF(DMINWO(I))
VMAXBMAXLF (VMAX,SHOC]
VMINIMINIF(VMINSSHO(]
[
l

BMAXAMAXLIF (BMAX ¢ XMO(
25 BMINSMINLIF(BMIN, XMO¢ L
TFCEOMAX*DMIND 4 LT 04) pMAX = DMIN
IF((vMAX*vMIN),LT.O ) YMAX = VMIN
JFCBMAX*BMIN) (LTe0,4) BMAX .= BMIN
CALYL SYMBDL(3QSJ'|2501141 oHX IN FEET 10,09)
CALL NUMBER(7,5,w,25,,14,X(Jd)a0,24HF5,0)
CALL PLOT(B..U,.S)
CALL‘SYHBDL(6|JO'D1070300|J'2,
~ CALL SYMBOL(4,,0,4,07.43,0,,~2)
CALL SYMBOL(2,,0,4,0743,0,,=2)
CALL PLOT(0:a0,,2)-
CALL SYMBOLKe,17, 1'||14l§l0|l'1,
CALL SYMBOL(w,141:25,,14,17H4w SHEAR [N PQUNDS.90,,17)
CALL NUMBER(=,1,4,5,,14,VMAX,90,,5HE10,2)

CALL SYMBOL(0,s6,1,,14,49HSHIP STRUCTURE RESPONSE TO IMPJULSE LOAD
o= TIME = ,0,249)

CALL NUMBER(5,9,641:,14,T10, u..aHP5.3>-
CALL SYMBOL(64546¢1,,14,6H, D¥s ,0,,68)
CALL NUMBER(7,246,1,,14,D7,0,,4KF6,3)
CALL:PLOT(BupU,la’
CALL PLOT(B1a46,42)
CALL PLOT(O:.&.;?’
CALL SYMBOL(D,,4,5,,07,3,0,,02)
CALL(SYMBJL(DQQS ul|07isl°!l'2’
CALL'SYHBOL‘O.;l 5;.07 30 10'2) N
CALL'PLDTtﬂan.JE)

CALL SYHBOL('.67 1'3114‘0 D'l'l)

CALL: SYMBILTw,6,1+25,,14,22H% MOMENT IN POUND~FE§T'90..22)
CALL NUMBER(f,6a4c5:!14aBNAX:9D,|5HEln 2) o .
CALL PLOT(w®45,6443)

CALL SYMBOL(#,5,4,5,,07,340,4472)
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150
200

250
300
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CALL SYMBOL(m,5:3,0,,07,3:0.s%2)

CALL SYMBOL(my5,145,,07,3,0,¢%2)
CALL PLOT my500442)

CALL: SYMBOL(=1,17,1,,,14,4,0,,%1) ‘ e
CALL SyMBOL(wl,1,1,25,,14, 15HP DEFL, IN FEET,90,,15)
CALL  NUMBER(s1,1,4,5,,14,DMAX, 90, SHEL0,2)
CALL: PL0T481.16|13)

CALY SYHBOL(51.J4,5;|07 $10,022)

CALL SYMBOL(=1,,3,0,,07,340,¢w2)

CALL SYMBOL(ed,4145,,0743000%2) . _
CALL PLOT(ngI°|52)

CALL PLOT(0420,02)

CALL SYMBOL(w1,,m,25,,14,4HTAUR,0,,4)
CALLfNUMaER('|4n'|25|!14 TAU;B|,4HF5 2)

YY = W) « DSCALE « 3,

CALL SYMBQL(XX,YY..U? 4,04,»1)

po 100 | = 2.4

YY = WQ(]) * DSCALE + 3,

[F(Cl/710)#%10~1) GO TO 50
CALL‘SYMBOL(XX(I)lYY;g07J4|0.l'2)
GO 10 100

CALL PLOTU(XX(I),YY,2)

CONTINUE

YY = xM0(J)* BMSCALE + 3,

CALL SYMBOLC(XX(J)aYYay07,0,0,,=1)
DO 200 1 s 2:4d

K = Jel®l

" YY = xMO(K) % BMSCALE + 3,

[FCC]/740)#10m]) GO TO 1m0
CALL: SYMBOLIXX(K)YY, 07,0,0,,=2)
GO TO 200

CALL PLOTU(XX(K),YY,2)

CONTINUE

YY = SHO » VSCALE + 3,

CALL SYMBOL (XX, YY:.07.5 0y.=1)

DO 300 1 = 2.4

YY = SHO(I1) » VSCALE + 3,
IF(tl/z10)%10m]) GO T0 250
CALL SYMBDL(XX(I)JYYO|0715.0||'2)
GO TO 300

CALL PLOTIXX(1),YY,2)

CONTINUE

CALL. PLOT(12.10|¢“3)

RETJRN

ENTRY QUT!

TIQaTIMEDT

Ja20

DD 5 1a3,¥2,2

L21+]

NENED]

K= /2
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[1s1#2

[25]e?

[3a w2 ) e e
[4= w2

WOCJD=¢UCLa3)®2,vU(La2)0Ut,1))74,

THO (Y m{U(]p3)*2, *U(1.2)*U(Ini))/4
XMD(J)aEI(KJw(U(11.3)-U112£3)*2 -(utli 2)ey12,2))eU(11,3)eU(12,1)

LA/ 14,2p2X)

THI

5

SHO(J)EGAYGA(K)*((U(I3 3 eU(14,3)%2,%(UC]3,2)70C]4,2))+U013,1)
1UCT4,10)/02XalUC]a3)+2,#U(1,2)4U(1,1)))/4,
WViJdieqully, ,3)FU(L11))/D2T . , e o
THV(J}G(U(I-S) Uel,1)3 /02T

5 CONT]NYE . e m e e e =
G0 TO 6 .
END .

SUBROUTINE XIMPULSE
§ ROJTINE READS ALL FORCE DATA:

DIMENSTION M(10),CAYGA({204),CAYBE204),VM(204),E1(204),R1(204),
151(204),52(204),53(204),54¢204), 35(204)156(204).57(204) $8(204),
159(¢204),510(204),U(408,3) ,A(408),8(408),C(408),D(408),E¢(408),Ft4n

18),5(408),P(204),V(204),NPS(200),CB(204),CHZ(204), SM(204),CK(204)
1,C0](204),0AC204) ,HEADER(9)

CUMMON M,CBsCHZ, SM,CK,ClsCA»TIME,DTICINSNTL, N2sN3,N4, N5, Ng,N7,
ANN,SC, M3, MMMI,FINIS,DX,DX2,JC,CAYGA,CAYB,VM,ET,R},P,RFD,D2x,D3X,
1DX24,D27.TAU,TDX,5TP;31,52,S3¢S4¢55:5615715805915100U1A0BanUOEn
1FQG|T1,72:T31T4aVnRSTL,RSEA,GC:CEJNPS!DT21MM

COMMON /ZA/ TAUCPXsXTAUXTDXsNP

COMMON /37 CF

DIVENSION XTAUC204),TAUCC204),PX(204),XTDX(204),CF(204)
DIMENSIQN XNPS(Z204)
FORYMAT (5E14,6)

6 FORMAT(L15/1(10]5))

440

LOAD LOCATION

READ (5,6)NP,(NPSCL]),139,NP)
FORZE

READ(5,5) ( PX(]}),1=1,NP)
START OF LOAD APFLJCATION
READ(5,5) (TAUC(1),I=1,NP)
DURATION 2F LOAD

READ(S,5) (XTAUCI),1=21,NP)
CIRCULAR FREQUENCY

READ(S,5) ( CFCl),lay,NP)
DO 448 [=1)NP
XNPSEI)=DX«NPS(I)

PRINT 920

WRITE(E,20) CXNPSCI)aPXCI),TAUCCIY o XTAUCT),CFRUT) ]1222MM)



20 FURMAT(%E13,4)
NEL]
JT=1
D0 442 1=m2,MM
KENRSCYT)
IF (ImK) 948,9
8 PX{1)=pPX(J)
XNPS(1)=DX*NPS(J)
TAUZCT)=STAUCCY)
XTAUCTI)Y=XTAN()
CECly=crY)
JTEUT+1
NENLSA
GO YO 442
¥y PX(I1)=p,0
TAUC(1)=0,0
XTaJ(1)=0,0
CFetly=0,
XNPSC1YSDX¥>]
442 CONT]INUE
PRINT 920
920 FURMAT(/,* LLOCAT]ON FORCE START UURATION
1FREJUENCY w#a/)
WTal
DO 542 [=2,MM
KaN2S5(JT)
IF (ImK) 19,18:19
la XTOXCLF=PXCLYZDX/XTAYLD)
JTadT+1 '
G0 TO 542
19  XTDX¢])=0,
542 CONTINUE
WRITE(6221) (XNPS(I)aXTDX(1)]m2,MM)
21 FURMAT(2E13,:4)
RETURN
END

The following pages are the logic flow charts. Please note the
following:

a) Page 00,07.00 is identical to Page 00. 08, 00,
b) Page 00, 16.00 is intentionally missing.
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CALL INPUT

CALL PARAM TAUD = TAU

CALL STABLE

CALL CONST

SEE PAGE
00.04.00

CALL BNDRY

TIME = TIME » TAUD
TIME + DT

370

TAUD = TAUD
+ TAU

_ CALL
IC = IC + 1 | XTMPULSE

SEE PAGE
00.02.00

PAGE 00.01.00

SET INDEX
I=1

u(r,1) = u(L,2)

STAT. g1

U(1,2) =4{I,3)

CALL FORCE

STAT. 61

CALL COMPUT

SET INDEX
I=3

ABS (U(I,3)) + ABS(U(I+l,3))

SEE PAGE
00.03.00

.PAGE 00.02.00.



CALL EROR

STAT. 52

CONTINUE

e

ADD 2
TO INDEX

I8 TNDEX
> N2

MMM3 =
MMM3 + M3

CALL BNDRY

CALL QUTE

SEE PAGE
nn.oa.nu

SEE PARGE
nn,.n2.00

TAGL 00,03.30

-89-

STAT. 500

CONTINUE

\

SET INDTY
I 1

Uz, 1) = u(1,2)

STAT. 501

u(1,2) =A(I,3)

v

ADD 1 TO
INDEX I

TMDEX T
D

SEE
Y

PAGL
5,00

PAGE

U
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é

TIME = TIME TIME > TAUD
+ DT

3700

60 TAUD = TAUD
+ TAU
CALL

XIMPULSE

6 READ STATEMENTS

IC=1C+ 1

SET INDEX

I=1
CALL SOLN

CALL FICTP

STAT. 440

XNPS (1) = DX
+NES (1)

ADD 1 TO
INDEX I

CALL OUTI

SEE PAGE
00.04.00

SEE PAGE

00.01.00 ¥N =
MM = NN-1

SEE FAGE
0p.07.00Q

PAGE 07.05.00 PAGE 00.06.00
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7 READ STATE

READ (5.40)

STAT. 41

READ (5,40)

STAT. 42

CONTINUE

SET INDEX
I=1

LM = NXP(I)

CR(TLM) = PUT IN(I,1)

CHZ (LM) = FUT IN(T,2)
¢r(LM) = PUT IN(I,3)

CA(LM) = PUT IN(L,4)

SFF DAGL
00.0%.00

TAGE 001,



STAT, 44

SM(LM) =
PUT IN(I,5)

(»0)
STAT. 20
CONTINUE “
ADD 1 TO
INDEX 1
INDEX I
oMa
MOl = M9 - 1
EET INDEX
I=1
Ml = NXP(I+l) - 1
LM = NXP{I} 4 1
FAT = TML — LM + 2
XJ1 = LM = 1
Il = LMl + 1
I2 = LM - 1
SET INDEX
J = LM
SCE PAGE
00.10.00

SEE PAGE
00.08.00

-972-

XF =T
WOW =
CB(J) =

(X7 - XJ1)/FAT
(CB(I1) - CB({I2))
*WOW + CB(T2)

STAT.

59

CHZ (J)

= (CHZ(x1)
+ CHZ (Z2)

— CHZ(I2))*WOW

PAGE 00.09.00

STAT. 51
SM(T) = (8M (I1) - &8M{I2))*WOW
+  5M(I2)
CI(T) = (CI(I1) - CI(I2))*WoW
+ CI(I2)
STAT. l 3z
CA(T) = (CA(I1l) = CA(IZ))*WOW
+ CA(T2)
STAT. l 31
CONTTNUE
ADD LMITC
INDEX J

IS INDEX
g > LM

ADD 1 TO
INDEX I

SEE PAGE
00.11.00

PAGD

Y000
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SEE PAGE
00.09.00

I8 INDEX
I > Mol

EET INDEX
I=23

CK(I) =
CK(I-1)

STAT. 517

RI(I) =
RI(I-1)

I8 INPEX
I = MM

6 WRITE
STATEMENTS

PAGE 00.11.00

SUBR.
PARAM

MM = Nn-1

SET INDEX
I=2

CAYB(I) = 2.*CB(I)
+RSEA*32.2

(<0 OR »0)

STAT.

CONTINUE

COMMENTS

STAT. 3

SM(1)/32.2%#2240_ + 1.570796327
*RSEA + CHZ(I)*CB(I)**2

SEE PAGE
0n.l3.00

EI(I) =
CE*CI(T)

v

COMMENT

SEE PAGE
g 00.13.00

BACE 00.12.00



-94-

(<0 OR >0)

COMMENT

STAT. &

CONTINUE

STAT. El

CONTINUE

STAT. 8 y

CAYGA(I) = CK(I)*CA(I)*CG
RI(I) = RI(I)*SM (I)*2240./32.2

STAT. 1

CONTINUE

ADD 1 TO
INDEX I

SEE PAGE

I8 INDEX 00.12.00
> MM

S5EE PAGE
00.14.00

PAGE 00.13.00

EI(1) = EI(2)

CAYGA(1)
EI({NN) =
CAYGA (NN)

= CAYGA(2)
ET (MM)
= CAYGA (MM)

PAGE 00.14.00



SUBR.
CONST

CALL PLOTS

N =
N1l
N2
N3
w4
N5
Ne&
N7
RED
n2¥
D3X
bX24
D2T
nT2

mmon B ononn

Ic =
TIME = 0.0
M3 = M(3)*JC

MMM3
xh

2*NN
H-1
Nl-1
w2-1
N3=1
N4-1
N5=1
Me-1

= M(2)

= 2.%DX

= 3.4D%
= 4,%*D¥2

= 2,%*DT
= DT*DT
1]

= M3
= 0.0
= 0.0

SEE PAGE
26 | 00.17.00
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PAGE 00.15.00

SET INDEX
=2

I1 = I+l

IML = I-1

X(I) = X(IML)+DX
P(I) = 0.0

Rl = EI(I1)-EI(IM1)
R2 = CAYGA(Il)-CAYAGA(IML)

51(I) = ={(R1-4.*BI(I))/(16,*DX2)

S2(I) = - (.5%EI(I)/DX2+CAYGA(I) /4.
+RI(I)/DT2)

83(I) = -51(I)+.5*EI(I)/DX2

54 (I) = —CAYGA(I)/(8.*DX)

$5(I) = -R2/(B.*DX)

S6(I) = —(R2-4.*%CAYGA(T))/16.*DX2)

S7(I) = ,5*CAYGA(I)/DX2+RA(I)/DT2

58 (1) = -56(I)+.5*CAYGA(I)/DX2

8§9(I) = RL/(16.*DX2)

STAT, 100
S10(1) =
R2/8,*DX)
SEE PAGE
27 ) o0o.18.00

PAGE 00.17.00



ADD 1 TO
INDEX I

15 INDEX
I > MM

XSCALE = 8,/X(MM)
DECALE = 10.%*7
DECALE = 3I*DSCALE
VSCALE = 3./2.
BMSCALE = &./X(MM)

RETURN

-96~

SEE PAGE
00,17.00

PAGE 00.18.00

SUBR
STABLE

DX2 = DX*DX

STAT. 4 20

TEM = 1000,

SET INDEX

0l = DX/SQRT((CAYGA(I)

+CAYB (1) *Dx2/4.) /VvM(1))
Q2 = D¥/SQRT((EI(I)

+CAYGA(I) *DX2/4.)/RI(1))

S5AV = Q2

STAT.

2

5Aav = Ql

TEM = SAV
STAT. 1
CONTINURE

»

RS,

SEE PAGE
00.20.00

PAGE 00,12.00



ADD 1 TO
INDEX I

IS INDEX
I > MM

JC = 2%IC
-
STAT. 10
M(1) = 1
STAT. 6
M{1) = 0

SEE PAGE

w‘ 00.19.00
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p

PAGE 00.20.00

SET INDEX
I=1

FTN

o

U(r,3) =
U(r,2) =

o Q
oo

STAT 1

CONTINUE

‘ADD 1 TO
INDEX I

I8 INDEX
I>N

/A

PAGE 00.21.00



CF(I)»0
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SRR
FORCE

PIE = 3.1416

SET INDEX
I=2
CF(I) >0
h 4
STAT, 5

P({I) = XTDR(I)

ARG = 2XPIE
XCF (I)XTIME

(TIME-XTAU(I)
-TAUC(I))

STAT. 9

B(I) = 0.0

STAT, 1

P(I) = P(I)
E
SIN(ARG) CONTIND
ADD 1 TO
INDEX I

IS INDEX
I > MM

| RETURN

BAGE 00,22,00
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SET INDEX
I=3
FTN
jols]

I = I+l
K=3/2
Il = I=1
I2 = I-2
I4 = I+2
15 = J+2
I3 = J-2
A(I2) '= 51(K)
A(Il) = =54 (K)
B(I2) = 82 (K)
B(Il) - 55(K)
c(12) = 83(K)
c{Il) = =A{1l)
D(I2) = 84(K)
D(Il) = 56(K)
E(12) = 0.0
E(I1) = =(87(K)+.25%CAYB (X))
F(I2) = A(I1)
F(I1) = SB(K)

PAGE 00.23.00
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G(I2) = RI(K)*(U(L,1})-2.%U(T,2))/DT2-.25%ET (¥)
*{2.%(U(14,2)-2,%U(L, 2)+U(12,2))+u(14,1)
-2.%U(1,1)+U(I2,1))/DX2-59 (RKY* {2.* (U(14,2
=U(I2,2))+U(I4,1)=-U{I2,1)+54 (K)*(2.%(U(I5,2)
=U(I3,2))+U(I5,1)=-U(I3,1))+.25%CAYGA(K)
*(2.%U(I,2)+U(I,1)) .

Tl = (U(I5,2)-1(I3,2))/DX

G(I,1) = -P(K)+.25*CAYB(K)* (2.*u(J, 2)+U{7,1))
+ RA(K)* (U(T,1)=-2.%U(J, 2))/DT2+54 (K) *
((2.%(U(I5,2)=2.%U(J, 2)+U(13, 2))+0U(I5,1)
=240 (2, L) +U(I3,1) %2, /DX~ (2.% (U (T4, 2
-U(12,2)}+U(I4,1)-U(I2,1))~510(K)
* (2, *T1+(U(I5,1)-U(13,1))/DX-(2,*0(I,2)

+U(I,1)))
STAT. 1
CONTINUE
ADD 2 TO
INDEX I

TS INDET SEE PAGE
Qo, .00
I » 2 2

PAGE 00.24.00
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(#0)

Xi(N1,3) = U(NS,3)
AN, 3) = U(N4,3)+DX2*U(K3,3) SEE PAGE
A1(1,3) = U(5,3) —_.@ 00.26.00
Ji(2,3) = U(6,3)=-D2X*U(3, 3)
STAT. 1
X(N1,3) = 5% (6.*U(NS,3)-U(N7,3)-3.*U(N3,3)

AL(N,3) = .5%(6.*U{N4,3)-U(NE,3)-3.+*U(N2,3)) SEE PAGE
+D3X*U (N3, 3) ———.@oo,ze.oo
Tl (T,3) = .5*%(6.*U(S5,3)-U(7,3)-3.%U(3,3))
x(2,3) V5% (6. %U(6,3)-U(8,3)=-3.%U(4,3))
+D3X*U(3, 3)

PAGE 00.2%.30
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ENTRY
BNDRY

c(1) = c(1)+Aa{1)

c(2) = c(2)+a(2)

F(l) = F{L)+D(1)

F(2) = F(2)+D(2)

B(l) = B(1l)-D2x*D(1)

B(2) = B(2)-D2X*D(2)

G(1) = G(L)=A(L)*(2.*(U(5,2)-U(1,2)

+U(5,1)-U(1,1))=D(L)*(2.%U (6, 2)
-7(2,2))+U(6,1)-U(2,1)-D2x*
(2.%0(3,2)+0(3,1)) .

G(2) = G(2)-A(2)*(2.%U(5,2)-U(1,2))+U(5,1)
=U(Ll,1))-D(2)*(2.*(U(6,2)-U(2,2))
+U(6,1)-U(2,1)-D2X* (2.+%U(3,2)+U(3,1))

A(N4) A(N4)+C(N4)
A(N5) A (N5)+C (NS)
D(N4) = D(N4)+F(N4)

D{N53) = D(NS)+F(N5)

B(N4) = B(N4)+DIX*F (N4)
B(N5) = B(N5)+D2X*F (N5)
G(N4) = G(N4)+C(N4)* (2, % (U(NL,2)-T(N5,2))

+U(NL, 1)-U{N5, 1) )+F (N4)* (2.% (U(N,2) =~

(N4, 2))+U(N, 1) =U(N4, 1) -D2X* (2.*U (N3, 2)

+U(N3,1)))

G(N,5) = G(N,5)+C(N5)*(2.*(U(NL, 2)-U(N5,2))+U(NL, 1)

—U(N5,1))+F(N5)+ (2. * (U(N, 2)-U(N4, 2))

+U (N, 1) -u (N4, 1) -D2X* (2% U (N3, 2)+U (N3, 1) ))

STAT.g 50

RETURN

PAGE 00.26.00
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SUBR
COMPUT

SET INDEX

J = I+l

K = 1/2

T1 = (U(J+2,2)-U(J-2,2)) /02X
TA = U(I+2,2)-U(1-2,2)

T2 = T3/D2X

T4 = T1~U(I,2)

JI(I,3) = 2.*U(I,2)-U(T,1)+DT2*
((ET(K)* (U(I+2,2)=-2.%
JL(T, 2)+U(I-2,2) )+, 25%
(ET (K+1)-EI(K~1))*T3)/
DX2+CAYGA (K) *T4) /RT (K)

X(T,3) = 2,%U(J,2)=U(JT,1)+DT2* (P (K)~-
CAYB (K) *U (., 2) +CAYGA (K) *
((U(T+2,2)=2.%U(J, 2)+U (T2, D))/
DX-.5*T3) /DX+ (CAYGA (K+1) =
CAYGA (K-1) ) *#T4/D2X) /RA (K)

STAT. 1

CONTINUE

RETURN ___—-—.—‘

PAGE 00.327,00
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SUBR
S0LN
l.'
SET INDEX
I=275
Il = I-1
I2 = I=3
I3 = I1-3
I4 = I-4
FM = A(I1)/A{13)
B(I1) = B(I1)-FM*E(12)
C(I1l) = C(I1l)-FM*C(I2)
b(rl) = p{Il)~FM*D(I2)
E(I1) = E(I1)-FM*E(12)
F(Il) = F(ILl)=-FM*F(12)
G(Il) = G(I1)-FM*5(I2)

FM = F(I4)/F(13)

B(I4) = B(I4)-FM*B(I3)

C(14) = Cc(14)-FM*C(I3)

D(I4) = D(I4)-FM*D(I3

B(I4) = E(I4)-FM*E(I3)

G(14) = G(14)-FM*G(I3)
STAT. 1

CONTINUE

SEE PFAGE
00.29.00Q

PAGE 00,28.00

E(l) = E(1)/B(1)
C(1) = ¢(1)/B(1)
G(1) = G(1)/B(1)
E(2) = E{2)-E(1)*3(2)
c{2) = c(2)-¢(1)*B(2)
G(2) = G(2)-G(1)*B(2)
B{z) = 0.0
SET INDEX
K=1
FTN
no

Kl =
K2 =

E{KL)
C(Kl)
F (K1)
(K1)
D(K2)
B (K2)
G{K2)
E(K2)
c(k2)
B (K3)
E(x3)

K+l
K+2

LT | | | O - O /R O 3 f
=)

B(KL)=E (K)*3 (K1)
(C(K1)-C(K)*B{K1))/E(K1)
F{K1)/E(x1)
(G(K1)-G(K)*B(X1))/E (K1)
D(K2)-E (K) %A (K2)
B(K2)=-C(K)*A(K2)-C (K1) *D(K2)
(G (K2) -G (K)*A(K2) -G (K1) *D(K2)) /B (K32}
(B(K2) ~F (K1) *D (K2) ) /B (K7)
C(K2) /B (K2Z)
B(K3)=C(K1)*D(K3)
E(K3)-F (K1) *D(K3

SEE PAGE
00.30.00

DPAGE 010_29.00
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STAT. 2

G(K3) = G(K3)-G(K1)*D(K3)

ADD 2 TO
INDEX K

I5 INDEX
K > N7

E(N4) = E(N4)-E(N5)*B(N4)
G(N4) = (G(N4)-G(N5)*B(N4))/E(N4)
v(N2) = G(N4)
V{N3) = G(N5)-E(N5)*V(§2)
. SET INDEX
. I=4 .
L]
FTN
po /T
J = N4-I+4

V{J) = G(J-2)-F (J=2)*V(J-2)
-C(J-2) *v(J+1)
V(T-1) = G{JT=3)=-C{T-3)*Vv(JT+1)
—-E(J-3)*v (1)

SEE PAGE
00.31.00

SEE PAGE
00.29.00

PAGE 00.30.00



——— e w ot

SUBR
FroTp
o . . - SET INDEX
(ABS(V(J))+ (<0} T
BBS(V(J-1)) -5C)
. STAT. 1
EROR (1) u(I,3) = v(1)
STAT, 3 - . o T ADD 1 TO
INDEX I
-1
CONTINUE
I5 INDEX
I> Nz
ADD 2 TO
INDEX I
AX(1,3) = (5,3)+2.% (U(5,2)-U(1,2))
+U(5,1)=u(1,1)
R A2(2,3) = U{E,3)+2,%(U(6,2)-U(2,2)}
HWA(6,1)-U(2,1)~D2x* (U(3, 2)
SEE PAGE +2.% U(3,2)+U(3,1))
00.30.00 A(N1,3) = U(N5,3)-(2.* (U(NL,2)-U(N5,2))
+U(N1,1)-U(N5,1))
AN, 3) = JI(N4,3)~(2.% (U(N,2)-U(N4,2) )+
M, 1) -U{N4, 1) *D2X* (7 (N3, 3)
+2.RIL(N3, 2) LL(N3, 1))
I
I

PAGE 00.31.00 PAGE 00.32.00
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SUBR
DUTE

TIO = TIME-DT

J=0
SET INDEX
I=2
sl FTN
L = I+l
J = J+1
K= 1/2
Wo(J) = U(L,2)
THO(J) = U(I,2)
XMO(J) = EI(K)* (U(1+2,2)=-U(I-2,2))/D2X
SHO(J) = CAYGA(K)*(U(L+2,2)-U(1-2,2))/
DRN=U(I, 2))
Wv(J) = (U(L,3)-U(L,1))/D2T
THV(J) = (U(I,3)-U(I,1))/D2T
STAT. 1
CONTINUE
ADD 1 TO
INDEX I

15 INDEX

I »N2

SEE PAGE
CONTINUE 00,34,00

PAGE 00.33.00
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WRITE
(6,2)

WRITE
(6.3)

DMAX = DMIN = VMAX
VMIN = BMAX = BMIN

i

SET INDEX

I=1

WL(I) = X(I)*XSCALE
DMAX = MAX1F (DMAX,WO(I))
DMIN = MINLF (DMIN,WO(I))

VMAX = MAXLF (VMAX, SHO(I))
VMIN = MINLF (VMIN, S8HO(I))
BMAX = MAXIF (BMAX,XMO(I))

STAT. 25

BMIN = MINIF (BMIN,XMO(I))

ADD 1 TO
INDEX I

IS5 INDEX
I>J

SEE PAGE

00.35.09

PAGE 00.34.00
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DMAY = DMIN

VMAX = VMIN

BMAX = BMIN

CALL 40 SUBROUTINES

SET INDEX
I=2

YY = WO(I)*
DSCALE+3.

SEE PAGE
00.36.00

PAGE 00.32%.00




STAT. 100

CONTINUE

ADD 1 TO
INDEX I

IS INDEX

YY = XMO(J)*
BMSCALE+3.

A
CALL
SYMBOL

SET INDEX
I=2

SEE PAGE
w 00,35.00

FTN
Do -

K= J-I+1
YY = XMO(J)*BMSCALE
+3.

CALL FLOT

ADD 1 TO
INDEX I

15 INDEX
I>J

SEE PAGE
Q0.37.00

PAGE 00.36.00



YY = SHO*
VSCALE+3.

CALL
SYMBOL

SET INDEX
T =2

YvY = sHO(T)
*VSCALE+3.

STAT. 300

CALL FPLOT

CONTINUE

-111-

ADD 1 TC
INDEX I

SEE PAGE
00.38.00

PAGE 00.37.00

SET INDEX
I=213

L = I+l
J = J+1
¥ = L/2
Il = 142
2 = I-2
I3 = L42

14 =
WO (J)

-2 SEE PAGE
= (U(L,3)+2.%U(L, 2)+U(L, 1)) /4. .__..' 00.39.00
THO(J) = (U(L,3)+2.%U(I,2)+U(L,1))/4.

KMO (T)

; BI{K)*(U(Il,3)-U(I2,3)+2.*
(u(ry,2)-U(r2,2))+u(Il.1)
-U(I2,1})/(4.*D2X)

PAGE 00.33.00Q
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\ J

SHO(J) = CAYGA(K)* ((U(I3,B)-U(14,3)+2.*
(U(I3,2)-U(I4,2))4U(13,1)-U(14,1))/
D2X~ (U(I,3)+2.*%U(I,2)+U(I,1)))/4.

Wv(J) = (U(L,3)-U(L,1))/D2T

THV(J) = (U(1,3)-U(I,1))/D2T

STAT. 5

CONTINUE

Qé see pace
|
|
|
|
]
|
|
|

T

PAGE 00.39.00
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APPENDIX J

RESULTS

The distribution of vertical shear, bending moment and vertical de-
flection for the specific case of a hull rigidity corresponding to 75 per-
cent of normal and of a unit impulse having a duration of 0.1 sec and ap-
plied at the forward quarter point are plotted Figs., J-1 thru J-44 for
consecutive instants of time., The values shown on the ordinate scale
are the maxima for the instant shown, :

To inquire into maximum bending moments experienced regardless of
time at which occurring, profiles of the envelopes of such maximum
values were derived. The envelopes for the case corresponding to the
figures to which reference has already been made are shown in Fig. 1
of the text.

To bring out the influence of hull rigidity cross plots of maximum val-
ues of bending moment at four important locations are presented in Fig.
2 of the text, The conclusion to be drawn from this figure is that an
increase in hull flexibility tends to reduce bending moment. At the bow
and amidships the reduction in maximum bending moment is close to
the square root of the ratio of hull rigidities, but at the quarter points
this reduction is considerably less.
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