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ABSTRACT

The purpose of the study is to set up a comput-
er program to investigate the dynamic effects resulting
from an impulsive loading on a ship and to determine how
these effects tend to vary with the stiffness of the hull
girder. The hull is treated as a Timoshenko beam and the
solution is obtained by finite difference technique. Two
codes are written: an explicit one, which is more effi-
cient for short durations, and an implicit one, which is
superior for long durations of impulse. Application is
made to a dry cargo ship. Limited analysis of her re-
sponse to a unit impulse indicates that, in general, re-
duced hull rigidity tends to be beneficial.
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1. INTRODUCTION

1.1 Purpose

The purpose of this study is to investigate the dynamic effects re-
sulting from an impulsive loading on a ship and to determine how
these effects tend to vary with the stiffness of the ship’s girder. T’o

a first approximation, such a stiffness is interpreted to be propor-
tional to the second central moment of area of the cross section-
through the ship’s longitudinally continuous structure. This propor-

tionality is somewhat modified if shear rigidity is taken into account.-=

1.2

The

a)

b)

The

a)
b)

Scope

inputs to the study are:

The geometry of the hull and the grade and basic disposition of
the structural material
The time and space distribution of the hydrodynamic impulse

desired results are:

Response of the shipl s structure in the elastic modes
Maximum dynamic bending moment amidships

A comparison is made between a standard cargo ship for which per-
tinent data are available (the SS WOLVERINE STATE) and equivalent
ships of reduced stiffness.

1.3 Background

The structural design of merchantmen has long been an empirical pro-
cess. Such a process has the virtuous claim of reliability of insurance
against structural distress from all environmental conditions save the

extraordinarily extreme. However, such claim is valid and tenable
only so long as one does not exceed the range of experience upon which
the empirical rules have been established. Indeed, as new experience
is accumulated, it should be interpreted to provide a wider statistical
basis and the rules should be examined for possible modification to in-
sure good design practice. But, more urgently, the introduction of new

., structural materials or the consideration of greater principal dirnen. -
sions or of different proportions of hull geometry and shape of hull all
demand the prudent reasses srnent of the empirical rules of structural
design. In the absence of &xperience sufficient to provide new em-
pirical rules covering the contemplated changes, such reassessment can
best be made upon the judicious interpretation of available knowledge in
metallurgy and structural dynamics. The proposed study is aimed at
providing the insight and basis for such reassessment. The specific pro -
blern to be examined is as follows:
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. .
Given a basic ship designed according to established rules, how
should her scantlings be modified to insure that, upon the introduc-
tion of higher strength steels or of corrosion-preventing coatings,
her structural performance under the impulsive loading of the sea
will remain unaltered from that of the basic ship in spite of the de-
creased stiffness of the ship’s girder?

1.4 Overview of the Problem
,.-. .

In its simplest form,

,“

th”e problem consists in solving for the imp-
ulse-induced stresses in a beam of variable geometry and dyna-
mic properties along its length. The beam is hollow, internally
cross-stiffened, and not of shallow depth with respect to its
length; its boundary conditions are free-free.

The assumption is made that the hollow, cross-stiffened beam
which is the hull behaves as if it were homogeneous. Thb con-
sequ~nce of this assumption is that the transverse distribution
of stress intensity across the decks at a generic cross section
is uniform (miless influenced by longitudinal dis continuities such I
as hatch openings). This appears to be a reasonable assumption
so long as the loading on the hull is sufficiently slow and the lon-
gitudinal gradient of the bending moment is sufficiently low.
These conditions do not obtain under impulsive heading of short
duration.

But determination of the transverse gradient of stress intensity
or shear lag requires the prior knowledge of the bending moment
or deflection curve and since these are obtained as solutions to
the problem, an iterative method is called for at each consecu-

tive step of the process. While it appears to be feasible to pre-
pare a code that will take shear lag into account, the process
will necessarily be considerably lengthier.

The effect of shear lag is to reduce the section moduli, hence the
elastic restoration, over the hull length. Such a reduction does
not appear to be quite sensitive to changes in hull rigidity so that , -
so long as one is interested in comparative analysis, a first order .
approximation to the influence of rigidity of hull on shear and ben-
ding moment can perhaps be obtained upon disregard of shear lag.
Eventually, such hypothesis must be tested.

Since the beam is hollow, question also arises as to the importance
of the local response of structure in way of the loading. T’@e pos-
sible effect of a local response is to modify the intensity and distri-
bution of the loading. Such question will not be considered. It is as -
sumed that local response can be taken into account by a proper de-
finition of impulse loading.



-3-

An additional number of complications exists. The impulsive stres -
ses are additive to an underlying base-line stress field which results
from residual, thermal and bending stresses (both static and d~am -
ic). Moreover, these stresses are not distributed throughout the ship
in a gradually changing pattern but are subject to high local magnifica -
tions from structural discontinuities ( such as from hatch openings,
super- structure endings, etc. ).

These complications emphasize the point that the effec& of impulse-
induced stresses are meaningful only when considered in the context

> of all coexisting stress pattern.

The ship system is in dynamic equilibrium under the action of an im-
pulsive excitation and of inertial, damping and restoring reactions.
The excitation is specified in terms of arbitrary parameters. The re-
actions and boundary conditions are defined in terms of given phys-
ical factors (mass, material distributions, etc. ) and of the motions
of t~e system. The statements of equilibrium of the forces and mo- ,
ments is a set of partial differential equations in the axial coordinate
(x) and time (t). The two dependent variables are the vertical displace-
ment y (x, t ) and the cross-sectional rotation 7(x, t ). In considering
what terms should be included in the dynamical equations governing
the motion of the hull, the following observations are pertinent:

a) Inertial Reaction
The essential term is that of transverse (or translational) inertia. In
addition, consideration is given to the rotary (or rotatory, or rota-
tional) component of inertia. This component is introduced because
it is anticipated that it may have a significant effect on the results;
this argument is made because the depth of the ship is not negligible
in comparison with her length. To be sure, rotary inertia may have
but little effect on the elastic behavior of a ship when she is subjected
to gradual wave action, for, in this case, t-he dominant mode of de-
formation is that of the ship as a whole , since the ship’s structure has
ample time to adjust itself to the transient loading. However, when
the hydrodynamic loading is impulsive in nature, local deformations
tend to predominate at least for an initial period following the impdse,
and it is in the analysis of these that the rotary inertia of the hull see- ‘-
tions need be taken into account.

b) Restoration
The primary restoration is flexural; however, the relation between
flexural moment and deflection is somewhat modified by the effect of
shear flexibility. The argument for including shear is the same as
the one made in the previous paragraph for considering rotary inertia.
The coefficients of the inertial and restoring reactions are measur-
able. physical quantities with exception of the shape factor, which is
derivable by structural analysis and which is of importance principal-
ly for the higher modes and local loading. i
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C) Damping
Ordinarily, when analyzing the transient response of systems under ‘
impulsive action, the damping term is omitted from the basic equa-
tion describing the dynamic equilibrium. The reason for this is that “
the amount of damping (either structural or hydrodynamic) Which may
be present is quite small with the consequence that the behavior of the
system during the important time interval immediately following im-
pulse is validly described by conservative differential equations. TO
be exact, this argument is tenable only when gradually changing load-
ing is considered.

However, when the loading is impulsive, high velocities of deformation
can be generated locally with the result that damping could become of
significance at least in the region of ’the impulse.

Inclusion of the damping term leads to. a set of nonlinear equations
of motion. Admittedly, in a numerical solution, a nonlinearity intro-
duces only a complication but not conceptual difficulty.

But the rigorous determination of damping is in itself a difficult task
which does not promise to yield rewards commensurate with the effort.
For the proposed analysis, it appears that the solution should first be
sought upon neglect of damping and, then, if feasible, allow for dam-p- ,
ing in a simple empirical manner. Comments on the damping coeffi-
cients are contained in Appendix A.

d) Excitation
The excitation is impulsive, and the values of the parameters defining
the impulse will be given as the outcome of the parallel study on ship
response. Thus, initially at least, the loading is assumed to be inde-
pendent of the response. Although the validity of such an assumption
should eventually be examined, it does appear that the uncoupling of
excitation from response will not lead to errors of any consequence so
long as only overall structural performance is considered. For the
analysis of local structural performance, the coupling must be consid-
ered.

During slamming, or other dynamic loading, the ship experiences
a transient hydrodynamic loading of short duration in a localized area.
Such a loading can be built up from a continuous sequence of impulse
distributions over the localized surface of the ship. Such distributions
are resolvable into vertical and horizontal components which can be I
separately considered.

Of the two, the vertical component of the transient loading is the most
important. This is fortunate because the vibrations excited by this
component are wholly in the vertical plane; there is no coupling with
horizontal or torsional modes. On the other hand, the horizontal com-
ponent of the loading does give rise to torsional vibrations. Thus, the
first step in the solution is to determine the response of the ship to a
unit vertically directed impulse arbitrarily located along her longitu-
dinal axis.
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Once such a response is known, the work can be extended to yield the
response to any vertical transient excitation. It is believed that further
extension of the analysis to the case of horizontally directed transients
should await the successful solution to the vertical case.

1.5 Philosophy of Solution

The analysis of shock, in contrast to that of vibr”at’ion, i-s a problem
in propagation as against one of stationarity, of transient fluctua-
tions as against steady state response. It follows that the techniques
for solution to be applied in the analysis of shock are likely to, and

.< indeed do, differ from those employed in the analysis of steady state
vibration. Since this point is not always apparent, some brief remarks
are made relative to the distinction.

Following Crandall (1956), physical problems are divisible into prob-
lems of equilibrium, of characteristic values (normal modes) and of
propagation. The first, are problems of steady state, an example of
which, relevant to the present study, is that of determining the stress
intensities and deflections when the hull structure is in static balance
under the action of weight and buoyancy. These problems are time
invariant, i. em, time does not enter as a variable in the problem and the
problem is stated by a set of one or more ordinary differential equations
which are to be solved subject to certain boundary conditions. The
second are problems of steady regime, an example of which would be
the forced response of the hull to a steady alternating excitation by the
p~opeller. The statement of the problem is, for a discrete or lumped
system, by a set of one or more ordinary differential equations in which
time is the independent variable or, for distributed systems, by a set of
one or more partial differential equations in space and time. But time
does not enter into the problem as a parameter, i. e. , initial conditions
are not specified, these being irrelevant and a solution is sought satis-
fying only a set of boundary conditions. The third are initial value prob-
lems, an example of which is the transient or unsteady response of a hull
to hydrodynamic impact. Here time does enter as an essential para-
meter in describing the time- characteristics of the transient excitation.
The statement of the problem is as for the previous case, but now a so-
lution is to be sought which satisfies the initial conditions in addition:
to the boundary conditions.

1.6 Procedure

The first step toward the solution is to set down the differential
equations governing the motion of the system. This step is car-
ried out in Appendix B. The equations are set up on the as sump *
tion that the material obeys Hookels law and that the hollow built-
up hull of the ship, behaves very much like a homogeneous beam
and on the further consideration that shear deflection and rotary in-
ertia may be important. Additional as surnptions are made relative
to the geometry of the ship and to the distribution of her dynamic prop-
erties. As to the first, the hull is slender with respect to length and
symmetric with respect to the longitudinal centerplane. As to the sec-
ond, the dynamic properties vary gradually over the length.

.

..- —.—.— .— ,.. -.”——
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.
The equations of motion are a set of two simultaneous partial differen-
tial equations, the independent coordinates of which are the longitudinal
distance along the ship and time, while the dependent coordinates are
the vertical displacement and the rotation of the cross-section. The
last pair are the generalized coordinates of the system.

Since the coefficients entering into the equations are of arbitrary dis-
tribution along the ship, resort must be had to numerical methods of
integration. From a practical standpoint, three general methods are
available to solve the system of equations in hand:

a) Method of trial solutions with undetermined parameters
b) Method of finite differences
c) Mixed technique (based on the Runge-Kutta method).

Since each method has advantages and disadvantages, it becomes first
of all necessary to examine them within the context of the problem to be
solved.

The method of trial solutions with undetermined parameters (see, e. g. ,
Faedo, 1947/49) consists in replacing the continuous propagation pro-
cess by one described approximately by a limited family of suitably cho-
sen functions. In essence, by so doing, the problem of continuous pro-
pagation (infinite number of degrees of freedom) is reduced to one of
propagation in a system having a finite number of degrees of freedom.
The success of the method rests critically on the selection of the fami -
ly of functions to be employed. A good choice can be made if the solu-
tion is known for a simpler, comparable system (e. g. , uniform beam).
Unfortunately, this appears to be wanting, and without guidance in this
regard, the method fails to give good promise.

The method of finite differences consists in writing the differential
equations and the initial and boundary conditions as finite difference
equations and finite difference ratios and then, starting with the in-
itial conditions, marching the solution thru in such manner that the
boundary conditions are always satisfied. In this process, time is
held fixed at a generic instant while the profile of the solution is de-
veloped along the axis of distance. When the whole profile has been
obtained, the time is incremented. This method is simple to apply.

~ When setting up the finite difference analog for obtaining the solution
I to ~notion of the system, two choices are possible: the analog may be
I written either in explicit or in implicit form.

I In the explicit analog, the recurrence formula is an explicit expres-
sion for the value of the dependent variables corresponding to an in-
cremented instant of time based on the values o!f these variables for
previous times. Each step in the solution yields the dependent variables
at one point in space and time.

—
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In the implicit analog, the recurrence formula is a system of 2N
algebraic equations in 2N unknowns , where N is the number of seg-
ments into which the ship is subdivided. Their solution yields the de -
pendent variables at the incremented instant of time for all the sta-
tions.

The method of finite difference (both explicit and implicit forms) is
developed in Appendix C.

The foregoing comparison does not reveal any evident computational
superiority of one analog over the other. However, the explicit analog
is stable only for a time increment which must be determined and which
may be zero. To express it differently, the explicit analog may not have
a numerically stable solution, or, at best, it may not be possible to deter-
mine the time increment for a stable solution. As against this, the im -
plicit analog is always stable.

The numerical stability of the solutions for both the expl:
it forms of the finite difference equations is examined in

Whether an explicit or implicit analog is to be preferred

cit and implic -
Appendix D.

depends, in
part, also on external factors such a; the duration of the impulse”, the
extent over which applied and the number of segments in which the ship
is to be subdivided to provide a reasonable step representation of the
ship’s dynamic properties.

The mixed technique consists in replacing the partial differential equa-
tions describing the motion of the system by a set of ordinary differen-
tial equations in time by introducing finite spatial differences. The or-
dinary differential equations (two to each spatial point) are then solved
by a fourth order Runge-Kutta Method. Such a technique is more stable
than the explicit finite difference method and has a smaller truncation

. ,.
error than either the explicit or implicit finite difference analogs. The
mixed technique analog and numerical stability of the method are an-
alyzed in Appendix E.

Of the coefficients entering into the equations of motion, three need
elaboration. These are: the coefficient of hydrodynamic inertia, the
coefficient damping and the shear factor. T-he rernainin~ coefficient.
that of restoration-is immediately derivable from the ge~metry of th~
hull.

When calculating the response of the hull to impact, allowance must
be made for the inertial effect of the surrounding water. A direct so-
lution of the problem of the hydrodynamic inertia of a buoyant hull of
arbitrary form is not in hand and in practice an estimate is obtained
by integrating the effect of partial solutions to the problem. The cal-
culation is in three steps:
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a) Determination of the hydrodynamic inertia distribution over the
length of the hull on the basis that the flow over a vertical cross
section is two-dimensional (cross -flow hypothesis)

b) Correction for aspect ratio
c) Correction for free surface.

The hydrodynamic mass obtained on the assumption of two-dimensiona-
1 flow must be corrected for aspect ratio, i. e. , for deviations from
the cross -flow hypothesis because of the presence of three-dimensional
flow . This correction can be strong. Methods for making this correc “-
tion have been developed for a hull in continuous, sinusoidal, steady-
state deformation over its whole length. However, for the problem in
hand, the deformation pattern is not this and cannot be determined in
advance. Pending the derivation of a method to cope with this aspect,
no correction has been introduced.

The hydrodynamic inertia must also be modified because of the presence
of the free surface. A method for analyzing the influence of the free
surface on the hydrodynamic inertia of a heaving cylinder is due to Ur -
sell (1949). It is readily apparent that for the durations of impulse con-
sidered herein, the free surface has no effect.

.

The problem of determining the hydrodynamic inertia is discussed in
Appendix F. The shear factor is discussed in Appendix G.

The computer program with explanatory notes is contained in Appendix
I. The program has been written in Fortran IV language for a Control
Data Corporation 3600 computer. .

Both the explicit and implicit techniques have been programmed. The
mixed technique, although investigated and found to be promising, has
not been programmed.

The reason for developing two programs is to provide freedom in selec-
ting the time increment. The explicit and implicit programs are com-
plementary. As brought out above, and developed in Appendix D, the
explicit analog is subject to certain limitations: if the numerical solu-
tion is to be valid, the time increment to be used must not exceed a cer-

:

tain critical value. On the other hand, the implicit analog is always nu-
merically stable. Of course, this stability is bought at the price of
greater complexity. Thus, the explicit solution is to be preferred if a

.:

sufficiently small time increment can be used or is called for by exter-
nal reasons, otherwise, the implicit analog must be used.

The program for calculations reported herein has been set up so that
the time increment is selected a priori. A test is first made whether
the criterion of stability is met. If it is, the explicit program is se-
lected, if the criterion of stability is not met, the implicit program is
automatically selected.
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2. RESULTS

Several numerical runs have been made on a Control Data Corporation
3600 computer. For these runs, the following inputs have been used:

,-
Axial increment, Ax ~.96 ft.
Time increment, At O. 0001 to O. 02 sec.
Impulse duration T 0.001, 0.01, 0.1, 1 sec.\-
Irnpulse location 25 percent of the shiprs length from the bow

.-.
Also, th; ee sets of values of flexural and shear rigidities have been
introduced, namely, normal, 75 percent of normal, and 50 percent of
normal. The normal sqt of values ,corresponds to the ship as built.

The runs have. been carried out for a sufficiently long duration to in-
sure that the bending moment wave has reached the stern and has been
reflected to amidships. Typical results are shown in Appendix)J.
From these, the summary Figs 1 and 2 have been derived.

Observations based on the results obtained from the limited number of
computer runs made are as follows:

a)

b)

c)

d)

e)

f)

3.

The bending moment at a generic station does not, in general,
attain its maximum value during the first cycle of response but
rather during the second or a later cycle.

The highest bending moments occur in the region of the bow for-
ward of the quarter point where the impulse is applied.

High bending moments occur at the station where the impulse is
applied.

High bending moments also occur in the region of the after quar-
ter point and closer to the stern.

The bending moment amidships is not the critical one.

An increase in hull flexibility tends to reduce the bending moment
at a generic station.

.

CONCLUSION

The specifications for the task called for the development of a com-
puter program which would make it possible to determine the influ-
ence of ship flexibility on her response to an external loading impuls-
ively applied.

-- . .
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Two complementary programs have been developed: an explicit one,
advantageous for short durations of impulse, and an implicit one, pref-
erable for longer durations: the choice between the two is made auto-
matically on the basis of a criterion of stability. In addition, a third
possible program, based on a mixed technique, has been explored.
Although this technique appears tobe superior to the explicit tech-
nique, the corresponding program has not been written.
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Preliminary results indicate that the influence of structural flexibility
is to reduce the maximum bending moment in the hull structure. It fol-
lows that if this flexibility is attained thru application of higher
strength steels, the fraction of yield strength taken up by impulsive
loading will be comparatively less than for medium steel and the fac-
tor of safety will experience a beneficial increase.

4. RECOMMENDATIONS -

The following recommendations are made with the view of improving
the program and obtaining an adequate amount of realistic data:

a) Extend the program to take into account the aspect of dynamic “
shear lag in the decks.

b) Extend the program to take into account the local behavior of
the bottom structure in way of the loading.

c) Make production runs for hydrodynamic loadings having real-
istic characteristics. A sufficient quantity of experiment data
appear to be in hand so that runs can be designed to yield mean-
ingful results.

d) Extend the program to include damping, at least in a simplified
form, to verify its influence on hull response.
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APPENDIX A

. REMARKS ON ENERGY DISSIPATION OR DAMPING

T The dissipation of energy is of two types: structural and hydrodynamic.
Structural damping is made up of material damping and slip dampi-
ng. Hydrodynamic damping consists of radial wave dissipation and
of viscous damping. Some remarks are presented on the inclusion
of damping in the equations of motion.

The components of energy dissipation are variously expressed, but
for inclusion in the equations of motion, it becomes necessary to
relate them to a variable of the motion itself (displacement, velocity,
acceleration).

,,

a) Material Dissipation
The specific material dissipation (per unit volume per cycle) is ex-
pressed in terms of the amplitude of the stress int~nsitv~ A conven -
i
lent empirical expression is

where:

d ❑

cm(am), n(om) ❑

.

specific dissipation

experimentally der’ived coefficients related to
the material and to the amplitude of stress in-
tensity. Below a critical stress these coefficients
are constants and can be written simply as
c and n .

‘ One is faced with the problem of converting this expression to one
written in terms of a dependent variable. The dependent variables
being all functions of time, it is convenient to replace the given
empirical expression for specific damping by one that is time depen-
dent. Accordingly, write

din(t) = Cm(U, t) “ ~
n(o, t.)
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where c~(o, t) is so chosen that overa cycle

T
A

1
T

J
din(t) dt = d

m
o

If n does not change appreciably over the stress intensity range
from zero to o

m’

As a consequence, the damping at any instant
is given by

11
din(t) - dy d~

dm

at the generic section

where ~ is the vertical ordinate measured above the keel and
where the integration extends over the cross sectional area of the ,
longitudinally continuous structure. At the generic section x, the
stress intensity at any point and instant is

where:
M z flexural moment

z .— section modulus

so z height of neutral axis above keel

.

A(x, ~) = time-independent constant.
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If this expression
for instantaneous
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for ~tress intensit~ is introduced in the expression
specific damping and the latter is integrated over

the cross sectional area, the expression is derived for the instantan-
eous sectional dampi~g in terms of bending moment. Since this bending
moment is related to the curvature

a (x, t)
M(x, t) = EI(x) ~ ‘ax

the relation between instantaneous sectional damping and instantaneous
curvature is established. A parallel expression can be derived relat-
ing instantaneous sectional darnping to tie instantaneous shear value.

b) Slip Damping
Slip damping varies with the type of construction (whether riveted
or welded) and approximately with the third power of the load, hence
bending moment, hence deflection. The same logic applies as in the
preceding case, but the bending moment is now raised to a power
which is empirically derived.

c) Radial Wave 13is sipation
This component of hydrodynamic damping varies with (the first power
of) the transverse velocity. Itts value at any station is

an experssion which is readily incorporated into the calculations. The
coefficient bw(x) is calculable by the method given by St. Denis (1951)
among others.

d) Viscous Damping
This component of hydrodynamic damping varies with the square of
the transverse velocity and is given by

b$x)i“~t’t)l’
where the damping coefficient

bv~x) s C
v

“ +pL(x)



-16-

and l,(x) is the girth of the underwater hull at station x and Cv is
an empirical coefficient of viscosity. As for the previous case,
this component of damping is easily introduced into the equations of
motion.

The overall conclusion regarding damping is that hydrodynamic
and structural darnping can be incorporated in the analysis without
particular difficulty.
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APPENDIX B

~- DIFFERENTIAL EQUATIONS OF MOTION

7 Introduction
The free vibrations of a free-free slender non-uniform beam with
shear deformation and rotary inertia considered has been extensive- .,
ly discussed in the literature on dynamics, see e. g. Timoshenko,
(1928). The behavior of such abeam when supported by buoyancy
and loaded impulsively was first developed by Ormondroyd et al
(1948). Their work was followed by that of Polachek (1961),
~McGoldrick (1961), Leibowitz (1962), Leibowitz and Kennard (1963),
Andrews (1963), Leibowitz (1963), Leibowitz and Kennard (1964),
‘~eibowitz and Greenspon (1964), Cuthill and Henderson (1965).
The foregoing references, which deal with the overall problem of
elastic response, are accompanied by complementary studies on
specific aspects of the problem which will be “mentioned when con-
sidering these latter aspects.

The equations of motion are set up by equating the excitation to
the sum of the inertial and restoring reactions, their calculation
being made on the basis that the ship is at rest prior to application
of the exciting impulse. The boundary conditions at the ends are
those of a free-free beam. Certain assumptions are made relative
to the ship’s geometry, namely, that she is slender with respect to
length, that her dynamic properties (forW, distribution of mass and
of structural elements) do not vary rapidly along the length, and
that she is symmetric with respect to the longitudinal centerplane.
An additional assumption is made relative to the shipls material,
namely, that it obeys Hookel s law of proportionality of stress and
st.raina.

To derive the equations of motion, introduce a right-handed car-
tesian coordinate system, the origin of which is at the center of
gravity of the ship, the x-axis being horizontal and longitudinally
directed, its positive direction being sternward; the y-axis being
vertically directed and positive upwards, see Fig. B-1.

,.-.
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Y
b

‘x

Fig. B-1 Coordinate System.

Dynamical Equations in Terms of Generalized Displacements
The dynamical equations are written in a convenient form in
terms of a system of generalized coordinates y(x, t) and y(x, t)
as follows:

a) Force Equation

-.

-.

-t PgB(x) - y(x, t) = p(x, t)
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b) Moment Equation

r;(x) “ rev(x) - 32Y(X, t)

[
- ~ EI(x) “

ay(x, t)

atz ax ‘3X 1
[

- k(x) “ A(x) J G ay~~t)

1

- y(x, t) = o

In these equations:

r
v

m
v

Y

t

EI

E

I

kA G

k

A

G

‘Y

~ radius of gyration of the virtual mass about the
lateral axis thru the dynamic center (ft)

: virtual mass per unit length (lb sec 2 ft-2)

angle of rotation of cross section measured
positive when counter-clockwise (rad)
time (see)

flexural rigidity (lb ft2)

Young’ s modulus of the material (lb ft-z)

second central moment of the cross sectional
area of longitudinal structure (ft4)

shearing rigidity (lb)
.

shear factor, see Appendix G
-1

cross sectional area of longitudinal structure (ft~)

modulus of rigidity of the material (lb ft-~)

total vertical deflection (rigid Plus elastic) of
hull (ft)

-L

[

ay(x, t)

1

- y (x, t) = effective angle of shear deformation (rad)
ax

P
-4~ mass density of water (lb sec2ft )

g
-2~ acceleration of gravity (ft sec )

B(x) s local beam (ft)

p(x, t) = excitation (lb ft-l)
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The following relations hold:

r2(x) “ m(x) + r;(x) “ mh( X)
r:(x) ❑

mx+rn(x
h

where:
r q. radius of gyration of basic mass about the lateral

axis thru the center of gravity of the section (ft)

‘h z
radius of gyration of the hydrodynamic mass about
the lateral axis thru the centroid of the section (ft)

n-l= basic mass per unit length (lb sec2ft-2)
2 -2

‘h ‘
hydrodynamic mass per unit length (lb sec ft )

The excitation acting on the system is a vertically-directed rectangular
pulse of duration T -tl - tO , which is considered as a parameter. The

basic, assumption of linearity permits taking the total impulse as unity
without loss of gene rality. The impulse is applied in the longitudinal
centerplane in the interval so to ~1 , which is also considered as a

parameter. It is defined as

I (?., ?l, to, tl) = 1 (lb see)

The amplitude of the pulse is., consequently,

1

L?l - SO] “ [tl -to]
(lb ft-l)

for

zero otherwise
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The differential equations of motion can be solved in closed form
and in terms of ordinary functions only if the coefficients entering
into the equations are constants. If the coefficients are simply-de-
fined, well-behaved variables of x alone, closed form solutions can
be hoped for, but not in terms of ordinary functions, or, alternately,
series solutions are feasible. If the coefficients are well-behaved
variables of x, but of arbitrary distribution, resort must be had to

. numerical integration. If the coefficients are ill-behaved variables
of x, no reliable solution can be expected.

The solution to these equations is sought on the assumption that the
coefficients are arbitrary and well-behaved. To this end, the differential
equations must be transformed into difference equations. This trans-
formation is made in the next Appendix.

The assumption of well-behavior does permit obtaining a solution,
but the validity of such assumption bears examination. Of the elastic
and dynamic properties of the hull (k(x), A(x), m(x), r2(x) “ m(x)

mh(x), r;(x) “ mh(x) ) all tend to vary gradually except m(x) and,

consequently, r2(x) ● m(x) . In the lightship condition, sudden var-
iations in mass occur at the ends of the machinery compartment and
at the ends of No. 3 hold where the fixed ballast is located. Depending
upon how the ship is loaded, additional steps in the distribution of mass
occur at the ends of holds, see Fig. H-3 .

That the only discontinuities occur in the distribution of mass is
fortunate, for in such case the effect is on the inertial reaction, hence
second time derivative of the displacement. Because of the double
integration, the displacement and its line derivatives ( slope, curvature)
result as reasonably well-behaved.
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APPENDIX C

DIFFERENCE EQUATIONS OF MOTION

Transformation of Differential to Difference Equations
The conversion of a differential equation into a difference equation
is made by introducing finite increments in the position (Ax) and
time (AT) of the dependent variables, y(x, t), y(x, t). The derivative
terms of y(x, t), y(x, t) and of the dynamical properties obtaining
at discrete points of the independent variables.

In a marching problem, the method of solution consists in finding
the values of the independent variables for the next increment in
time given a knowledge of the variables for positions and times up
to the generic ones.

As a first step in the logic of conversion, it would appear necessary
to establish the values of Ax atid At. It is preferable, however, to
delay discussion on this problem until after the difference equations
have been set up and solved.

Boundary “and Initial Conditions
The boundary conditions of the free-free beam are (for all times)

‘ljh = ‘N, h = 0

‘l, h = *N, h = 0

Consider the conditions at the end x = -L/2 i. e., n = 1. The con-
dition of zero moment is written

.

~[y2, h - ‘CJ,h] ‘ 0

where the point O, h is fictitious, and that of zero shear is

‘l, h “ ‘l, h [
“ G y2,h-yo,h-

1
2(&+f~,h = 0

. .
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At the end x= L/2, n = N the condition of zero moment is

EIN

‘d 1
Ax yN+l, h ‘y N.l, h = 0

“. Where the point N+ 1 is fictitious, while the condition of zero
shear gives -

‘N “ ‘N [“ ‘1 ‘N+l, h “N-l, h 1
‘2(~x)yN, h = 0

The Impulsive Load
Upon taking Ax sufficiently small and writing

where i and j are integers, the unit impulse load amounts to

1

j.@”T

An arbitrary loading is represented by the array

‘n h9

where n denotes the station and h the instant
.

Computational Form of Equations in Terms of Generalized Coordinates
In this section finite difference expressions will be developed for
the dynamical equations expressed in terms of generalized coordinates.
However, in lieu of single order approximations to the derivatives,
second order ones will be used.

,,
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If the deflection and rotation of a section at the point n . AX and in-
stant h . At be expanded in a Taylor series, the result is

+ @[(Ax) 51

~ynh (4X)2a2yn,h (&3a3Yn,h (,fh)4~4yn,h
‘n-ljh = Yn, h-(Ax)~+ ~

3XL
-T~+x 3X4 -

B[(6X)5]

Upon subtracting the two equations and dividing th; result by 2(4x)
one obtains

3‘n, h ‘n+l, h
ax ‘

- ‘n-l’h -t 6[(4x)~
2( Ax)

‘n-tl, h “n-l, h ~~
2( AX)

.

Upon summing the two equations and dividing the result by (4x)2
one has

,

~2Yn, h ‘n+l, h - 2yn, h+ ‘n-l, h
= + ~[(4x)~

ax2 (Ax) 2

‘n+l, h - ‘yn, h+ ‘n-l, h&=

(Ax) 2
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Frorn the two foregoing equations,

33yn, h ,- - 3yn h+ 3yn-l, h - yn-2, h‘n+”l, h ,—

ax3 (Ax) 3
.

..
Upon introducing this expression in the first pair, subtracting and

solving for byn h/3x, the following second order approximation

for the first de r’ivative is obtained

~yn h -
ax’ [ 1= ~ 2yn+l, h+ 3yn, h - 6yn-l, h+ ‘n-2, h4

4
which has a residue of 8[(Ax) ]. This second order expression
should allow for a more refined treatment of the boundary con-
ditions. Of course, the time derivatives are similarly treated
and result in parallel expressions.

It is possible-to set up two finite difference analogs to the dynam-
‘ “ical equations: an explicit one and an implicit one. In the first,

the recurrence formula is an explicit expression for yn h+l and
?

yn h+l in terms of y
n, h-1’ ‘nth’ ‘n, ~-l’ Yn, h”

The implicit
9

analog is constructed by applying the Taylor series approximation
to yn h. The expansion yields

9

I

1
Yn, h =

[~ ‘n, h+l + “n,h+ ‘n, h-l ]+ @t)2] ~

The first term on the right is the time averaged value

:1
~n, h

[~ ‘n, h+ 1 + 2Yn, h + ‘n, h-1
J

which is approximately yn, h and will be substituted for it. This

expansion is applied to every-term in the system with the exception
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of such terms t-hat involve time derivatives. The res~t is a s~stem
of linear algebraic equations for yn h+l and y which rest

Y n,h+l
upon the knowledge of the terms for the discrete instants h-1 and
h. There will be 2N equations for the same number of unknowns.
This system of equations can be set up in a form for which the ma-
trix of the coefficients will be of the block diagonal type. The two
analogs are now specifically considered.

Explicit Analog
Application of the e’xpres sions for the derivatives given above yield
the following finite difference analog to the dynamical equations in
terms of generalized coordinates -

●

a)

b)

Force equation

(mv)n

[ ‘n, h+ 1 - ‘yn, h + ‘n, h-1
(At) 2 1

knAnG

[

‘n+l, h - 2Yn h+ yn-l, h 1‘n+l, h - ‘n-l, h
-,- A’x 2

[ 1[‘n+l, h - ‘n-l, h
- ‘* kn+~”. An+~ “kn-~,” An-l “ 2( Ax) - Yn, h

. 1
+ ~gBnm yn, h = pn, h

Moment equation

~
(r~)n “ (mv)n - A

[
- 2Yn h+ ‘fn, h-l~

( At)
2 Yn, h+l ,

EI
n

[

1 E

[ 1
- Zyn, h ‘-yn-l, h~- 4(A~)‘—2yn+l, h 21n+l -in-l “ ‘fn+l, h- Yn.l, h

(Ax)
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1

[

‘n+l, h - ‘n-l, h
- knAnG

,2(Ax) - )’n, h

The terms in the unknowns yn, h+ ~ and yn, ~+ ~ are separated

from these equations with the following result:

a) Force equation

‘n, h+ 1 = 2yn, h-yn, h-l’

‘n+l, h -2Yn h+ yn-l, h yn+l, h - ‘n-l, h
(A;) -~

(At)z k A“ -~ A .

Ax [ n+ 1 n+ 1 n-1 n-1 1.‘**

r -Zyn h+ yn-l, h -‘n-l, h+l , ‘n+l, h - ‘n-l, h.
2 1

J

‘n, h + ‘n, h

Ax

pE@n
‘~(At)2.

b) Moment equation

Yn, h+ 1 = Zyn, h - Yn,h-l

.

.+ (At)2●
E

{
Yn+l, h - 2Yn, h+ yn-l, h

(Ax)2 (r; - mv)n
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“+i’n+l-’n-,l”[yn+lh-y~-lhl}
knAn G

[

9

+ “ (&)? ‘n+~’;;xyn-l’ h

(r: . mv)n 1“n,h ,

Boundarv Conditions for Exdicit Analog
It is now’ necessary to express the boun%ary conditions in terms
discrete values of y and y. As discussed above, the boundarv

of

condition at the point x = -L/2 is given by the second order approx-
imations.

a) Condition of zero moment

~z,h-yo,h = 0

b) Condition of zero shear

- @)yl,h = 0y2, h-yO, h

However, a better approximation to the boundary condition is given
by using the fourth order approximation. This results in

1

[
Yl, h = ~-3 Y2, h+6y3, h-y4, h1

1

[ 1‘-3y#6y3,h-‘~, h‘~, h = 2 ‘3(~x)” y~,h

The”parallel approximation holds at the end x’= L/2.

Implicit Analog
.

If the Taylor series expansion for yn h is introduced in the dy-
9

narnical equations and made to apply to all the terms except those
involving time derivatives and the excitation, the following equations
result:
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a) Force equa;ion

(mv)n . ~
[

‘n, h+ 1 - 2yn, h + yn, h-1
‘ (At) 1

knA nG

{{

T

-~ ‘& ‘n+l, h+l - 2yn, h+ 1 + ‘n-l, h+l

+ 21yn+l, h - 2yn, h+ yn-l, h 1

+ ‘n+l, h-l - 2yn, h_l + yn.l, h-l }

1-—
2 {

Yn+l, h+l - yn-l, h.+l ‘2[Yn+~; h - Yn-l, h]

+ yn+l, h-1 - ‘l’n-~,h-l )]

-&[kn+l An+l - kn_~ An-l 1

{ {’ +2[yn+l,h‘yn-l,l-
1.

2Z ‘n+ 1, h+}l - ‘n-l, h+l 1

+ ‘n+l, h-l - ‘n-l, h-l }[ + 2yn h+ yn, h-1“ ‘n, h+l , 1
1

+#B Yn h+~n[ + 2yn, h + ‘n, h-1? ]’pnh s
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b) Moment equation

EI
n

{ ‘n+l, h+l - ‘yn, h+~ + yn-l, h+l
4( Ax) 2

‘Zynh+yn-ljfi 1+ 21 Yn+l, h ?

+ ‘n+l, h-l - 2yn, h.1 + Yn-l, h-l }

E
[ I -Inl 1

16” (~X)2
n+l -

+ 2[yn+l, h - yn-l, h
.

{ ‘I’n+l, h+l - ‘n-l, h+l 1

+ ‘n+l, h-l - ‘n-l, h-l }

{’{-‘nA.G & ‘n-tl, h+l - ‘n+l, h+l [+ 2 ‘n+l, h - 2yn+l, h 1

+ ‘n+l, h-l - ‘n-lj h-l }

1
[‘— ‘n, h+l + 2Yn, h + ‘n, h-14 - 1] =0
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These equations form a system of 2N linear algebraic equations
for the same number of unknowns. Note that these equations are of
the form

an Y + bnyn, h+ln-l, h+l + Cnyn+l h+l9

+ ‘nyn-l, h+l +e =U+ ‘n yn-~ 1, hi-l ‘nn “n, h+ 1

where:

n= 1,2, . ..N

To arrange this system of equations in a form such that the matrix

of the coefficients will have its non-zero elements on a diagonal,

alternate the equations and the unknowns in the fashion that follows

and, to this end, let:

Yn, h+l = ‘2n-l, h+l

yn, h+l = ‘2n, h+l

Denote the coefficients of the first dynamical equation of the
system by

a
n = ‘2~-1, bn ❑ ‘2n-1, “ “ “ gn = G2n.1

and those of the second dynamical equation by

a G A2n, b =B2n, . ..gn=G2n
n n

T“hen

Ax Ur ~+ Dr Ur_l + Brur+ Er ur+l +Cr Ur+2+ Fr ur+3 = Gr
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for r odd

Arur ~+ D= U.2+ Brur_l + Er ur+ CrUr+l+ Fr ur+2 = Gr

for r even

where r=l,2, . ..2N

The matrix of coefficients for this system of equations will have
the form

‘1 % c1 ‘1 o

‘2 ‘2 C2 ‘2 o

‘3 ‘3 ‘3 ‘3 C3 ‘3 o

‘4 ‘4 ‘4 ‘4 C4’ ‘4 o
1

00
‘5 ‘5 ‘5 ‘5 C5 ‘5 o

0 0A6D6B6E
6 C6 ‘6 o

.

00

00’

A2N_l D
2N-1 ‘2 N-1 ‘2 N-1

A
2n ‘2N ‘2n ‘2N

1

$

The matrix of the coefficients is a seven band diagonal matrix.
The system of dynamical equations represented by the preceding
expression is solvable by standard techniques for each time step
h.

Boundary Conditions for Implicit Analog
The boundary conditions in the implicit analog are the same as for
the explicit one with the exception that they must be averaged with
respect to time in the same fashion as done for the ex;plicit analog,
This leads to the following:
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a) Condition of zero rnonl(; rit at x = -L/2

+2~y2 h-ye, h‘2, h+l “ ‘O, h+l \9

+y
- ‘o; h-l =0. 2, h-1

b)” ~ondition of zero Shear at ~ = _L/2

- Yo ~+~+ 2{y2,h- yo,~}+Yz,h-1- ‘O,h-]~z,h+l ,

- 2(@){ yl, h+l+ 2yl,h+ ~1, h-1 } =0

and similarly for the station at. x = L/2 .



-34-

APPENDIX D

NUMERICAL STABILITY

General Case
The condition that the equations are computationally stable is
satisfied if any of the dependent variables entering into the equations
are subjected to a small disturbance, at any instant of time t,
and this disturbance does not increase with each successive incre -
ment of time. The condition of stability

I

6F(x,, t + At)
6F(x, t~.1

where

is g“iven by the relation

<1

6F(X, t) ~ perturbation (or variation) in a generic
dependent variable of x and t, at
instant t

6F(x, t + At) = perturbation of same at instant t + At

The equations of motion are weakly nonlinear in the dynamic
buoyancy and hydrodynamic mass terms, However, the oscillations
of the ship resulting from the application of the impulse are suf-
ficiently small as to justify the assumption that both the restoration
coefficient and the hydrodynamic rnass distribution are independent
of the motion. Furthermore, it is assumed that the dynamic prop-
erties of the ship (flexural and shear rigidities, vir~ual mass and
moment of inertia, and restoration) vary slowly along the ship. Both
of these assumptions lead us to consider the system of dynamical
equations to be a linear one with constant coefficients, such consid-
eration holding only for the analysis of numerical stabiiity.

It may be observed that the validity of such an assumption can be
tested by carrying out numerical computations employing either
the explicit or the implicity method of solution and equating the
time incrern ent to the upper limit given from the solution for nume-
rical stability if such a limit exists.
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Explicit Analog
The finite difference explicit analog to the dynamical equations in

.,

terms of generalized coordinates and for constant coefficients is

(r~)n .

[
‘mv)n” “ ~~ Yn, h+l - 2Yn, h + ‘n, h-1

1

“El
n

[
- — Yn+l, h 1-2yn,h+yn-l, h

(A x)2

[

‘n+l, h - ‘n-l, h
-knAnG

2(4x) 1‘Yn,h=0

(mv)n

[

- 2Yn h+ yn, h-l“ ‘n, h+l ,
( At) 2 1

k - AnG

[

2yn h+ ‘n-l, h -n ‘n+l, h - Yn+l, h - ‘n-l, h
( Ax) Ax’ 2 1

+pg Bn”ynh=pnh
3 5

Consider, as previously, a solution for the homogeneous part of
these dynamical equations in the form

~n, h ~ C~h. exp(in~)

‘n, h
- DXh O exp(in~)
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where exp(i n cp) is a fundamental mode for certain general bound-
ary conditions. Upon introducing these expressions into the homo-
geneous part of the dynamical equations, it results that

-i{*sind’D=O

.{

2“ G

(AX)2 [
1

1
- Cose$ + pgB -t 2+

To obtain a non-trivial solution to this system of homogeneous
equations in C and D, the determinant of the coefficients rhust
vanish. Therefore,

{f$b=’sd+-~ j
2

[1,_k’ G
Ax

sin2q = O

D

where
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This equation is a simple quadratic one and can be written

{

1[1 - Costp] kA G kAG - (Ax)2
$ + 2~o ‘.

~+ Em+’
2Er2m

Vv v Vv

-t
0gB(Ax)2

2 Em
v }

(
“1“41kA G[l - cosq]2 +

2rkAG]2 [1 - COSr0~~X)2 +
E

,

+ 2ogBI [1 - cosr@#2 +
kAGPgB(dx)4

E
\/

where

is a nondimensional form for th’e square of the velocity of propagation
of uniaxial elastic stress waves.

The equation defining u can be rewritten in the form
..

‘2-2[1-+1’+ 1=0



To inquire into the stability of the
definitions of yn, ~ and yn h . It

3
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cornputations,
is evident that

consider the
an error intro-

duced at one line of the computation will not grow as the comput-
ation proceeds provided that

—

II1<1

‘If this condition is fulfilled, the equations are stable. From the
condition that the dete rminant of the system of equations in C and
D should vanish, it can be verified that p is real and it follows
from the equation in I that

‘1’+”
i. e. ,

But since the coefficients of the quadratic equation in ~ are all
positive, it follows that the condition

p<o

is fulfilled and it only remains to fulfil the condition

Examination of the quadratic equation for p indicates that the
smallest values of p are obtained when ~ = n. In this case

(At)2
[

4kA G

1

-I-DgB .~1 .-=

(b) 2
.

v
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.,,

_ (At)z

[

4E 1
P2=2

1

+ kGA
rrn (Ax) 2

Vv

The final statements of the stability conditions are

Ax

[m

kAG +
2 1/2

pgB (Ax)
4rn

v v 1

4x.

[

EI + kAG(Ax)
2

rm 4r~m
Vv v ‘11’2

The smaller of the two At’s is the time increment for which the
explicit analog is stable.

Implicit Analog
The finite difference implicit analog to the dynamical equations
in terms of generalized coordinates and for constant coefficients
is

(rv - mv)n - ~ ‘yn h+l -

[
2yn h + ‘n, h-1

(At) ‘ > 1
EI

n (

i
‘n+l, h+l - “n, h+ 1 + ‘n-l, h+l

4(4x)2

[+ 2 ‘n+l, h - ‘Yn, h+ Yn-l, h
1
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+ Yn+l, h-1 - ‘yn, h.l + Yn-l, h-1

1

‘,

{{‘knAnG &) ‘n+l, h+l - ‘n+l, h+l [- “n+l, h
1

‘Zyn+l, h

+ ‘n+l, h-l - ‘n-l, h-l
}

1

[ II
+ 2Yn @’n,h_l ‘ o‘~ yn, h+l ,

(mv)n ● 12
[
‘n, h+ 1 - 2yn, h + yn, h-l

(At)
1

knAnG

{{

1 a

‘~ ~ ‘n+l, h+l - 2yn, h+l+ ‘n-l, h+l

[
2 ‘n+l, h - 2yn, h+ yn-l, h

1

- 2yn h_l% yn-l, h-l+ Yn+l, h-l ‘
}

1

{
yn+l, h+l - ‘n-l, h+l

.[
+ 2 yn+l, h ‘Yn-l, h

.—
2

1

+ ‘n+l, h-l - ‘n-l, h-l }/

+~B

[

yn h+l+ 2yn, h+ ‘n, h-ln,
1

= Pn, h
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If the expressions for yn h and y are introduced intb the
n, h

homogenized form of thes’e equations, the result is

-i
{\

kA G

Ax
sinq

}
D — o

+i.

{

kA G
Ax

sinq
}

C=, o

where p is now

Again, to obtain a non-trivial solution to this system of homogeneous .
-. equations, the determinant of the coefficients must vanish. Upon

pursuing the same logic as for the explicit analog, the equation de-
fining U becomes
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The condition

Hy<l

will be satisfied if, and OnlY if,

II4+U <1
4-U

Since p is real and negative, it follows that this condition holds
for all At!s. and Lx’s. In other words, the implicit analog is
unconditionally stable.

The limitations on the choice of both time and spatial increments
imposed by truncation and round-off errors and inherent in both the ~
explicit and implicit analogs remain to be considered.
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APPENDIX E

MIXED TECHNIO UE

Analog
To apply to mixed technique, only the derivatives with respect to the
variable x are expressed in tern-is of finite differences, while those
with respect to the time variable are retained in their original form.
Thus:
a) Force Equation

dz yn(t) knA nG
(mv)n . !

Yn+ ~(t) - Zynit) Yn+l(~) - Yn_l(t)”

dt2’ (Ax) ‘ , (Ax) - 2, }

,

G

{ }{

yn++~~-Yn_Jt)
- 2(E)-- ‘n+l A -kn ~An_ln+l . z(~x) - Yn(t)

/

+ pgBn “ yn(t) = pn(t)

b) Moment Equation

:..

d2yn(t)
(r~)n . (mv)n .

dt2

EI

-+

n
2 Yn+l(t) - Zyn(t) + yn_l(t)

(Ax) }-~{’n+l ‘ln-~}-
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{
“ yn+l(~) - f Yn++tl- YnJt)

h-l(t)} - knAnG
t

, 2( Ax)
1

- yn(t) = o

Introduce

dy (t)
Zn(t) = ~:

This leads to the equation being expressed as follows:
a) Force Equation

dz (t)

{

knAnG yn+ ~(t) - Zyn(t) + yn_l(t) yn+l(t) - yn_l(t)
(rnv)n” :t

-~ (Ax) 2
}

?.

G

{ }{

Yn+l(t) - Yn_l(t)
- ~ kn+lAn+@n.JAnJ“ 2( AX) - yn(t)

I

-t pgB
n

“ yn(t) = pn(t)

b) Morn ent Eauation

d ~ (t)
(r~)n “ (mv)n . d;

EI

-+

E
n

yn+ ~ (~) -
}

i
2Yn@) + Yn@)}- --@{In+l - In-l “~Yn+ l(t)

( dx)
-Yti-l(t)}
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‘kn’nG{W “.(t)}= 0

Thus, the system now consists of four ordinary, first order differential
equations for each discrete point (n). For the total of N discrete
points there are 4N equations. This system of equations is integrated
by the standard fourth order Runge-Kutta technique. This technique is
outlined in Abramowitz and Stegun (1965) p. 897.

Stability Analysis for the Mixed Technique
If the assumption is made that the coefficients in the equations of motion.
are slowly varying and if finite difference: are introduced for the deri -
vatives with respect

d2y
n

m. =
,V

dt2

to x, one obtains

{{

kGA 1 1

}<
— Yn+l -%n+ Yn.l -

( Ax) (Ax) z ‘~+l-yn-l }
-pgByn

.

2 d~y ‘EI
n

{
‘{

‘n+ 1- ‘n-1rrn
\

- 2yn+Yn+l + kGA=
Vv Yn+ 1

dt2 (Ax)2
- Yn

2( AX) }
..

Introducing a general mode shape for the variation with respect to n
in the form of exp(i nm) , one can write n

Yn =

Yn ‘

,,

Upon substitution of y n and yn

following set is obtained.

dzg(tjl

{{

2k GA
m. =-

y 1-
dt 2 (Ax)2 .

f(t) “ exp (i n rfi)

g(t) “ exp (i n P4)

into the equations of motion, the

\

~~

- kGA
COST - pgB g(t) - i— sinq - f(t)

( Ax)

2 d2f(t)
rm.

Vv
dt 2

= -{~{l-cos~}-kG~f(t) +i~sin~ *g(t)
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Reduce the order of the derivatives in these equations by introducing

h(t)

j(t)

with t-he result that

dj(tl = 1

1+

2kGA ~

dt mv (4x)2
,-

= df(t)
dt

dg(t).—
dt

Cosql}1 kGA
- pgB g(t) - i sinrn “ f(t)

~v” (Ax)

Thus, one has a sysfem of four first order ordinary differential equations .
in four unknown functions. The stability analysis for a fourth-order
Runge-Kutta numerical scheme related to these equations will follow
that of Abdel Karim (1966).

s

To this end, consider a system of ordinary ~ifferential equations of
the form

dyn(t)

dt
= fn(t, ym) where n=l,2, . ..N

m=l,2, .C, N

Solve for the characteristic value problem. The characteristic equa-
tion of the system is

af

‘1
“&m - X bmn =

o
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. . .

.. .

I
o for m=n

6=
rnn

1 for m=n

Let xn be the solutions of the characteristic equation. For a fourth

order, Runge-Kutta process the numerical technique will be stable
only if the criterion is satisfied that

For th

4

E

(At . Xn)r

r! I
<1 forn=l,2, . ..N

r=o

In’s which are pure imaginaries, this equation yields the
condition

H
O<At

<
An <22

The characteristic equation of the svstem of the four ordinarv
differential equations- is

1

{

2EI

I

k GA
2

~ (Ax)
2 {1 - COST +kGA\

rv m ‘, 2
rvmv. (k)

-i kGA

--l
1 + 1- co’~}+ P@

mv* (&) m% (Ax) 1

,

1 0

0 1

10

o-i
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Expansion of the determinant yields

+ 2‘ 2 [(~{1-co.T~kGA]~-fl-.osT}+Pg~]-[~~.i.’.=o .
r.m

v v

This equatiofi is of the form

x4+~a+.bt k2+{ab-c21= O

Where

a>O, b>O, ab-c2 >0

Solving the foregoing equation for X2 results in

From the statement of inequalities, 1% follows that

Hence

12<0
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The smallest value for ~2 is, therefore

12= -4 “’l-+J{ ’”’t+”
r

One can also se~ that for ~ = m, I ~21’will have a maximum value.

Hence,

The characteristic values are pure imaginaries, therefore, one can

apply the criterion which gives

At<fi
(Ax)

[m

kAG ; ~g

1

B ● (~x)z 1’2
4m

v v
L -1

(Ax)
At+

[

EI

1

+ kAG . (&)2 1/2
T
rm 4r~ m

Vv v

The smallest of the two time increments (At) will be the one for which
the system is stable. Note that the time increment for the mixed tech-
nique is greater than that for the explicit finite difference method by a
factor of ~

.,. , .
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APPENDIX F

HYDRODYNAMIC INERTIA

Introduction
The direct determination of the hydrodynamic inertia of a floating
hull of arbitrary form is mathematically untractable with the conse-
quence that the hydrodynamic inertia is commonly determined on the
basis of several assumptions.

The first assumption is that the cross flow hypothesis is valid ac-
cording to which the flow over the hull can be considered to be two-
dimensional. Thus, the hyd~odynamic inertia of the hull is obtained.
by integrating along the length the hydrodynamic inertias of cylinders
of varying cross section. One has, consequently,

\

I

‘h z
mh (x) dx

L

where the integration is over the length of the hull.

The second assumption is that the three dimensional flow that takes
place, particularly at the ends, can be taken into account by an as-
pect ratio correction based on that obtaining for an ellipsoid of same
mass and equal ratios of principal dimensions.

The third assumption is that the hydrodynamic mass of a body at the
surface is, as an initial approximation, equal to one half that of the
fully submerged body consisting of the original body and its reflected
image above the waterline.

The fourth assumption is that the presence of the free surface can be
taken into account by a correction based on the results obtained for a
circular cylinder of diameter equal to the local breadth of the section.

The fifth assumption is that of sectional equivalence, i. e. , a section
of arbitrary shape has the same hydrodynamic mass as that corres-
ponding to a mathematically tractable section having the same cross
sectional area, breadth and draft.
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Asnect Ratio Correction
Th~ aspect ratio corrections made by applying Taylor’s (1929)
longitudinal inertia coefficient. But such a correction applies to
the hydrodynamic inertia obtained for the whole body and what is
required in the present application is a correction at each section.
Proportioning of the correction to each section is made by the
heuristic method that follows:

The aspect ratio correction in k ave is approximated by the follow-
ing formula of Pabst (see Blagoveshchensky, 1962).

Jz =
r

~~ [

1-0.425 r
I+r l+rz 1

where r is the ratio of ship length to beam, L/B.

Consider an ellipsoid of semi-axes a, b and c where these axes
are related to the ship’s hull by

The distribution of cross-sectional area is along the major (x)
axis is

A(x) = nbc

[1

l-~
2 a;

Introduce a distribution of aspect ratio correction of the form
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Upon weighting the aspect ratio correction at a point by the cross-
sectional area at the same point, integrating over the longitudinal
axis and normalizing by dividing by the volume, the overall aspect
ratio correction is obtained, namely,

a

J
jz(x) “ A(x) “ dx

o
=J

-a z

J A(x) “ dx

o

The cross-sectional area of the ellipsoid being given by

A(x)
nb C

2
1 -H

2
x
a

one has

“ abc
7

x.

The integration yields

Jz(n) = 1 - 3

A plot of Jz(n) against n is given ‘in Fig. F-1. From this plot, the

value of n is derived corresponding to a given Jz and from it the
distribution jz(x).

.
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Fig. F-1 Aspect Ratio Correction Coefficient.

The hydrodynamic mass distribution is r,ow taken to be

jz(x) “ rn~ (x)

where m’ (x) is the hydrodynamic mass distribution based on two-
h

dimensional flow. The hydrodynamic mass of the hull is by inte -
gration

L
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Fig. F-2 Free Su?faee Correction To Hydrodynamic Mass In Heave
(After th’SQ_iL)”

Free Surface Correction
An adjustment for the iniluence of the free surface on the hydrodynamic
mass has been determined by Ursell (1949). The parameter on which
the c~rrection depends contains as a factor the frequency of oscillation
(u)) and is

2
MB
2ng

see Fig. F-2.

Such a correction can be readily applied if the motion of the hull can

be expressed in terms of normal modes, but since the solution pre-
sented herein is not based on normal modes, Ursell’s correction can
be used only as a basis for a qualitative argument.
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It is noted in this connection that the natural frequency of the two-
noded vertical vibration of the hull calculated by Schlickls formula

(Seward, 1944) lies between 7.7 and 8.9 rad sec -1 depending upon
the loadinq (the former corresponding to full load, the latter to light
load). These frequent ies give values of the frequency parameter of
21 and 28 respectively, and Ursell’s correction factor for these values
is close to unit~. Therefore, since in the lowest possible vibratory
mode no correction for the influence of the free surface need be made,
it follows, a fortiori, that no such correction need by made f~r the
transient response when slamming occurs.

Sectional Equivalence
The sectional hydrodynamic inertia is obtained by application of
the results of Landweber and de Macagno (1957) for Lewis (1929)
type sections. The hydrodynamic mass per unit length of a section
oscillating vertically is

IT4 (X) = ~ CZ(X) - J32(x)

.
where:

P
~ mass density of water (lb sec 2 ft-4)

Cz(x) = sectional inertia

B(x) - local beam (ft)

The sectional inertia coefficient is

coefficient for vertical motion

obtained from Figs. F-3. This
coefficient is a function of the sectional coefficient -

A(x)
CE(X) = ~ x

) “ H(x)

and of the beam draft ratio, where

A= sectional area (ft2)

H= draft (ft)
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APPENDIX G

SHEAR FACTOR

Consider a beam, not necessarily uniform, which is symmetric
with reference to the plane xy, where x is measured longitudinally~
and y vertically, and which is symmetrically loaded. The mean
vertical displacement of the beam is

;=+ fJ ydA

A

where A is the cross-sectional area and the mean rotation about
a transverse is obtained from

where u is the longitudinal displacement of the section.
cases, the integration is over the cross .sectional area.

The second relation can also be written.

In both

T=+’ 11 uyd A

A

where I is the second central moment of area. This is the form
given by Cowper (1966).
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Upon introducing’ the strain-displacement relations

and differentiating with respect to k the second expression for

mean angle of rotation, the slope gradient is obtained, namely;

or

which is the well-known expression for bending moment.

Consider the shear stress equation

where Cl is the shear and S is the first central moment of area.
The mean angle of shear deformation of the cross section is

The assumption that the shear strain energy is conserved results in
the shear strain energy ,relation
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The”refore,

or

where the shear factolr k is given by

..

-.
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APPENDIX H

BASIC INPUTS

The basic inputs for evaluating the physical parameters of t-he ship are:
:

a) The body plan

b) The transverse structural sections

c) The weight and load distributions

The. ship chosen for the study is the WOLVERINE STATE of the States
Marine Lines.

The particulars of the ship are listed in Table H-1. .The items of
weight are given in Table H-2.

The body plan of this ship is shown in Fig. H-1. The midship section
of the ship, as designed, is shown in Fig. H-2. The weight and load
distributions are given in Fig. H-3. The hydrodynamic mass distribution
is plotted in Fig. H-4.

The shear factor has been determined to be O. 91 in the midship region.
Because of its small variation with change of shape forward and aft
and of the relatively small influence of the shear component to the
overall flexibility, the value of O. 9 I was kept constant for the full length
of the ship.
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TABLE H-1

WOLVERINE STATE - PARTICULARS

Type

Length, overall (ft)J

Length, between perpendiculars (ft)

Beam, molded (ft)

Depth, molded (ft)

Condition

Draft, molded (ft)

Displacement (tons)

Block Coefficient

Longitudinal Coefficient

Waterplane Coefficient

Machinery - Two State Turbine

Design power (hp)

Normal propeller speed (rpm)

Normal operating speed (knots)

.!24z2
30.0

20, 000

0.654

0.664

0.752

9, 000

80 tO 85

16t017

C4-S-B5
(machinery aft dry cargo
vessel)

520

496

71.5

43.5

.

Light Operating -

18.0

11,130

0.610 w

O. 628

0.685

. Builder: Sun Shipbuilding & Dry Dock Co. , Chester, Pennsylvania

Owner: States Marine Lines
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Hull

l<n <29

Z9<n <69

69<n <100

TABLE H-2

WOLVERINE STATE - WEIGHT CURVE

Machinery

71<n <84

Fuel Oil + Reserve Feed

71<n <84

Deep Tanks

26<n <36

Cargo

#l Hold

2 Hold

3 Hold

4 Hold

5 Hold

6 Hold

7 Hold

Weight Per 5 Ft. Interval (lb)

85,400 + 1930 n

141, 100

141,100 - 605 n - 69

123, 200

‘448, 000

i34, 400

159, 000

389, 800

304, 600

492, 800

457, 000

441, 300

147, 900

Note: The index n indicates the station. These are spaced 5 ft apart.

n= 1 is at the foreperpendicular
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‘-9”

Fig. H-1 Volvem%e State Body Plan.
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APPENDIX I

PROGRAM

Program Components

DRIVER Main routine to handle general flow, namely, calls

all pertinent subroutines, determines, which finite

difference scheme to use (implicit or explicit), and

determines at which times output is desired.

INPUT

PA RA M

STABLE

CONST

INITL

FORCE

Subroutine to handle ship input and initial input “

Actual FORTRAN input statement may change in

accordance with the format of the usert s data.

Subroutine to compute coefficients in the pertinent

differential equations. The statements in this pro-

gram may change in accordance

made in subroutine INPUT.

Subroutine to check the stability

with the changes

criterion and

compute the proper time stepsize if necessary.

Subroutine to initialize all constants used in program.

Subroutine to set up initial conditions (zero deflection

and zero angle).

Subroutine to compute the impulsive load, p(x, t)
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GENER

BNDRY

COMPUT

SOLN

Subroutine to generate the matrix coefficients in ~

the implicit technique.

Subroutine to set up boundary conditions (has two

entry points, one for each different technique).

Subroutine to compute y and y for the explicit

technique.

Subroutine to perform a Gaussian elimination to

arrive at a solution for y and y for the implicit

technique.

FICTP Subroutine compute y and y at the fictitious points

in the implicit technique.

OUTE Subroutine to handle all output for both difference

schemes (two entry points).

.-

XIMPULSE Subroutine to handle all load inputs.
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SUBROUTINE INPUT

Card No. Quantity

1 Information card
2 M Control card

4

M(1)

M(2)

M(3)

M(4)

M(5)

M(6)

M(7)

M(8)

M(9)

M( 10)

DT

DX

Sc -

Format

9A8
1015

o’

.

0 - Normal boundary conditions
1 - Refined Boundary conditions

rl - Print every n . At

Unspecified

Logic control for computing K

Logic control for computing EI Zero

Logic control for computing m
v

pre~ently

Logic control for computing r~m,
v

n- use for last run as number of
cross sections in input

O - there are XNN stations
1 - there are M(9) stations

At

Ax

y + y > SC Stop program

5E 14.6

FINIS - Time to stop

XNN - Total number of stations including
fictitious ones; maximum number
= 20’4

RSTL - Mass density of steel p = 15.2
(lb secz ft”4)

RSEA - Mass density of sea water

o = 2.0 (lb sec2 ft-4)

GC - Shear modulus GC = 1.66 x 109 (lb ft-z)

GE - Elastic modulus
GE = 4.32 X 109 (lb ft-2)

TAU -Time duration of impulsive load profile

5E 14.6
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5 CK - Shear coefficient

6 RI - Radius of gyration

The following data input cards depend
M(9) which are declared on Card 2

7 CB - Half beam b(x)

5E 14.6

5E 14.6

on the number of stations

7E1O.5

8 CHZ - Hydrodynamic inertia coefficient in heave

9 CI - Second central moment of cross sectional area, I .

10 CA - Shear area, A

11 CK - Shear factor K

12 SM
-1

- “weight curve, (tons ft )

The number of ship weight stations depends on M(10) declared in Card 2.
If M(10) = O there are XNN stations
If M(10) = 1 there are M(9) stations

SUBROUTI~ XIMPULSE

All loading inputs are read in this subroutine. This routine is

called at TIME = O and” thereafter for each time duration TA U.

Card No. Puantity Format

13 NP - Number of points in NPS(I) 115

14 NPS - Actual number of points where load 1015

is applied maximum of 200

15 P(X) - Force 5 E 14.6

16 TAUC - Start of force application 5E 14.6

17 XTAU - Duration of load application 5 E 14.6

18 CF - Circular frequency of load - set to 5 E 14.6

zero if load is impulsive
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PKO:RAM S-IIP

2 u+ii(~~ . ‘kuli RAY SF (1P - MAIN ROUTINE T(Z HA!I[]LF Gki NtRAL ;L@!i

U1M5NSION tl(lO), uAYGA(204), cAYB(2f14 ),v M(204), E1(204)#Rl(Z04) ,

1S1(204), S2(204), S3(?04), s4(204), S5(204), S6(2U4), S7( ?04), SP( 204),

ls9(204), sIu(z04), ti(41j8, 3) ,A(408), L*(40u), C(4UB), LI(408 ), E(4fjfI), F(4n

18), 2t40t3), P(Z04), V(204), NPS(200 ), CEf204), CM Z(?U4), SM(2f14), CK(2F4)

l, CI(z04), $A(204), #k ADER(9)

GUM*ON ti, CB, CHZ, Sk, GK, CI, CA, TIt4E, I!T,1C ,N, h;l, N2, N3, N4, N5, N6, N7,

~NN, sc, MS, YMM$, FfNIS, UX,0X2, JC, CA YG$, CA Y3, VP, E[, R[, F] RFU, D2x, L13x,

luX24, f12T, TAU, Tf)X, STP, S1, S2, S3, S4, S5, S6, $7, S8, S9#Sl U#Uo A,kl, C,O, k,

iF, G, TI., T2,73, T4, v,ks TL, RsEA ,GC, C5, hpS, Ur2

UO’i M2N /A/ T4UC, pX, kTAU, XTn X,NP

l) IqEVSION XT AU(Z04), TAUC(204), P). (Z04 ), XTn X( Z04)

1111 CALL !Np Ul

TAJi)=TAU

CAL; XI HP JLSE

CALL PA2A4

CAL: ST AbLE

CAL- COIST

1; (M(l)) 10,10,11

2 ExPLIc IT SCHEME

10 CALL !NITL

50 CALI_ BNIIRY

TIM; = T]4E+o T

lF(Tl ME~TAUU )J60,370,37U

J70 TAUO=TAu D+TAu

: DESIGNATE A N:k LOAII PhOF”l LF

J(YO

95

CALL X] ’+PJLSt

co Nrl NuE

Ic 2 Ic+l

DO >1 1:1, N

U(I,.l.)=U(I ,2)

cAL~ CO LIFJT

DO 52 J:3, N2,2

Al= AEl S(U(l, S))* A3S(b([+l,3))

IF (A1-SC) >2,53,53

CALL EHDR

CUNTINUE

lF(Ic-MMM.$.1) 55,56,56

MMMS= M+4M3+M3

CALL ?NDHV

CALL OUTE

JF (T IM?-F]NIS) 50,1111,111t

IMP&]c IT jcHEME

CALL INITL

CONTINUE

DO 5u1 IEI, N

IJ(], I): U([ ,2)
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CALL 9NDRVI

TIME* TIYE*DT

lF(TIME. TAULI)3600, 37 f)0,370fI

s700 TAUD=TAUD+’TAU

: DEs~GVATE A NEW LOAD ~ROFILF

CALL xIHPJLSE

3601J CQN1!NUE

602 CALL FoRCE

JC=IC+l

CALL SOLN

CALL TIi TP
IF (~ C* Mfl M3Wl) 504,505,505

5ti5 MM M3?HMMJ*MJ

CALL’ DUT1

504 IF (T IME*FINIs) 500,1111,1111

END

SUBROUTINE INPUT

: THIS ROJTINE ?EADS ALL SHIP I)ATA

DIM ENS1ON NxP(lOO), PUT IN(l10t7)

DIMENSION M(lO), cAYGA(204), cAYB(204) ,VH(204) #E I(204~f Rl(~h4),

1S1(204), S2(204), S3(204), S4(204), S5(204), S6(204), S7 (204), S8(?04),

1S9(204), S10(204), IJ(4O8,3) ,A(408),13 f408), C(40f5), Df4D8) ,E(408), F(4n

18), G(408), Pf204), V(?04), NPS(200 ), C!Ef204), CtJZ(204), SM(204), CK(2114)

1, CI(204), CA(204),14EADER(9)

COMYON W, CB, C~Z, Sti, CK, flI, CA, TIME, Dl, lC~N, N!, N2, N3, N4, N5JN6, N7,

lNN, Sc, M3, HMh J, FIN IS, DX, DX2, .IC, CA YGA, CA YB, VM, EI, RI, P, RF D, U? X, D3X,

lDX24, n2T, TAU, TuX, ST P,$l, s2 ,s3, S4, S5, S6, S7, S8, S9, S10 ,U, A,? ’,C, D,E,

lFt G, Tl, T2, T3, T4, V#RSTL, RSEA, C?C, CE, NPS#OT2, Mh

CO YMON /4/ TAUC, pX, XT AIJ, XTrIx#Np

:OHMON /b/ XNPS

1

3

2

4

5

DI~ENSION X? AU(204), TAUC(2114), PX(2C4 ), XTn X(204)

DIYENS]OV XNp S(204)

HE AD(5,1) (tiEAD5R( 1),1=1,9)

FOR*AT (9 AtJ)

IF (HE ADk2(l) )2,3,2

CALL EXIT

REAO(5,4) (M I1),1=1,1O)

FGR’4AT (1415)

FOR~AT (5 E16 ,6)

F(EAo(5,5) OT, RX, SC, FIN IS, XNN, RSTL, RSEA, GC, CE,1AU

NNzx NN

MM=UN.1

M9=4(9)



-73-



.

-74-

22 FQR4AT(//tOH lJE~TA T =lE15,7/’10H DELTA x s~E15,7/6H TAU ~JE1517/
l19t4 NO, !2F INTERVALS ❑1F15,7/18H STABILITY BOUND *tE15@7/q4H TIME

PHIUT 230
230 FOH~AT{l#* HALF BRtAllTH AREA HEAVE COEF, SHIP WT,/FT,

.

.
u

SuH~OUTINE PARA~
ROUTINE TO COMPUTE cOEFFICIENTS IN 131FFLi EQNs,
DIMENSION M(lO.lICAYGA( 204)#CA~B(2f14 )tvM(204) rEI\2f14)IRI,t204 18

Is1(204), S2(204)JS3(204 ),s4(&04), S5(204)tSA(204 )tS7(204)JS8(@04),
lS9(Z04), SiO(204)lU(408g n] ,A(408), B(408)J C140H),D(408 )lE(4q8)qF(40
18), 9(406 ),P(204),V(204 ),NP$(200!,J”I?Q(204)~CHz( 204), sM(204),CK[2114)

.....-.. .

l, CI(204), CA(204)rHEAIl~R 49).
COMqON M,cB~cHZ, SM, CK”;”CI, CA’,T1”ME,DT41C, N#NllN24N3JN4;Ny”~N6aN7#

lNN?SG, M31~PIM31FINl S,DX, 13x2,JC#GAYGA, CAY~~VM0EI ,R!JP~l?FQPQ2XPU3Xfi
lDK24@n2T~ TAu~TDx,sTP~ SA, S2, SJ~S4, S5~S6#s7~S81 s9gS10~UJAo0tiCJll,E~
lFJG~T14T2~T3sT4~vsRsTL~ RSEAlqCp CEJNpS#DT2#Mfl

C04MON /4) TAUC, PX4XTAU@XTDX,NP
D1~ENsIOv xTAU(204) ~TAUC(204)s PX(2f14 )“XTnx(204)

MV=VNml
Do I !=2~~M .
CAY3(I] =2,*CB(I)*RSEA*32 ,2
IF (M(7)) 3J2#3

2 C~NTIAIUE
cAN lNsERT
MULT~PLY SM BY 2240/ G FQfi”+;MAss/FIs,

3 VM(I)= SM(l)/3212*2240r *1,570794327*RSEA+CHZ ~I)*CB(I!**2
IF (M115)) 4#5J4

.

5 EI(I)=cE*CI(!I
CAN ~VsERT

4 IF (Mf5)) 6~7#6 . ..
cAN ~MsERT

6 C~NTINUE
7 JF(~(8)) 8a948

CAN INSERT
9 CaNTINUE”

— ,

8 CAY2A(~) =CK(l?*CA(l)yGC
RI(I)*RI (I)+ SM(l)*2240,/3i;2”’””
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1 c13NT~~u~
EI(l)=EI (?)
cAY3At$)=cAyGA(2)
EI(vN)=EitM~l
CAY2A(NN )=ChYGA(M~)
RETJRN
END

.

SUH?OUTINE CLINST

.

..lv THIS ROLITINE SETS UP CONSTANTS ANII INITIALIZES LOGIC CONTR(ILS
? USED THRUJGHOUT PROGRAM

DIM5NS1ON X~205)
DIMENSION M(lo)z CAYGA(2f141sCAYB( 2f14)~vM (2f14)#E!(?04)IR~ (~n4i~

lSl(204), S?(204)~S3(204 ),s4(204), S!3(204)#S6(204 l#S7(2041, SP(?04),
1s9(204), s1o(2O4),LJ(4O8, 3) ,A(408), B(4tJ8),C(408)~D (408), E(408),F(4fI
181 PS[40B), P(2041~V(204] ,NPS(200) ~CB(204),CHZ(204 1, SM(204!, CK(2R4)
l@ C] (204), :A(2L14)~tiEADER (9)
COM40N M~zBtcHZI sM, GK, cIIcA~TIME,DTIIcO N~NlJN2~N3,N4#N5JM6jN7,

lNN, SC, M314MM3ZF1N1S,DX, DX2,Jc/CAYGApcAY~~vMIE ItRItPJRFDP~?XIU~Xl
lDX24, D2T,TAU,TDX,STp SS~,S2$S3JS48S5pS6~S7 ,SBls98S10#UbAgd,C,QI E,
lF~GnTl,T2,T3#T4#V#RSTL, RSEA, GCJCE,NpS#DT2,fIM
cDMqQhl X, JUTPLCJT, OSCALE,VScA~E, RMSCALE,%SCALE
CO+lMQN /4/ TAUC, PX,XTAUJXTDXJNP

fiQMMON /B/ XVPS
DI~ENSION xNPS(204)

DIM:NSION (3UTPLUT(4011)
DI~EMsIoN XTAU(204) 17AUC(204),PX( Z04),XTnX(204)

CALL PLOTS [OLIT~LOT, 400J20,111)
N=2*NN
N1=N-1
N2=vlm4
N3SN20JL
N4=’44R1
N5=V4WL
N6=N5W1
N7=N6w1
KFDSM(2)
D2x=t,*Di
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D3X83L; DX.“..—.—.— ..-.,------- -,,..--.~,..-.. -.-—
DX24F4,*DX2

,..-—.—,..—.—-

-.-wT.E?LmL----- ,. -,.
DT2PD7*IJT

-— ——-———-+—--——- .. ... . - ----- --- —--.. . . ..-+- . -----

100

~cma .“..—-- -d. __ —-—--- . . .. -.-— .-, -—— ---——- .--. -—— “

TIM.5?0,0
rn?~!!.31%Jc . .. . .. .. .———z—..—— - -.— --- ——- .,,...
MMM38k13
s TPy o ~.o______, ,,.... .... _..-._......_––--–––-–- -----
Xtl)=o, o

..——— ——— --.......... .-

Ilo 10!.. !.E?l M~.__.. .-.,,, ._.. ,. --- . ... ... ...... . ....-.
I*BIil
lMi*lwi
X~I)*K(IM~)~Dx- ~~ --- ._, .

-.”

P(l)rnOID ..-----------. ..-
Rl=EJ(I l”)*EIflfll)”-
R2=EAYGA( Iil=c AYGA(l,Mi)~i(1j@mtRin4,4Er{ *),,(16, *tix2T__ ..........

$2(I)Sa(L5*EIfI!/0X2*CAYGA,4 11/4Jy!?I~’Ij/DT2~
S31ijiaSl[Il*,5*El(l)/DX2
s4f I:?q-pAw9*,(.14.tL61*Qx) ●.

.

$5[~]moR2/lB;*~xj ““ ““”““-”--’”““
s6(I)~.RtR2~4~.lcAYg.A(i))/( 16.,.?D.X.!?:
s7(I)E, 5*iAYGA(I)lDx2*vH( l]\QT2
SO(I]ZWS$[I)~tS*CAyGA{l]/DX2
S9(I)mRi/t161kRi21
slo(I)-R21(~I*ox)
XScALE R 8tt X(MH)
lJSCALE n i01~*7.
tJS2ALED5*DSGALk

VsCALE = ~f~~!
BHsgALE si2,/)t(tiM)*61 ‘“ ‘“-””
RETdRN
END

. ..

. .-. . .. .“....,—...-”...

- -..”.”.., .,-.— — --- —.... . . . . . ---—-

. . . ... -.—... “,,,— — ----.——
. . .

“.
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sUBqQLITINE S~AB~E
*u THIS RoUTINE COMPUTES THE PRQPER TIME HESHSIZE

DIMENSION M($O)ICAYGA (204),CAYB( 2041~vM~204~~EI(204)~R I(2a4!#
lsl(204) ~s2(204)tS3(204 ),S4(204) ~S5(204)~SA(204 I,s7(2041~S8(2041~
ls9(~04), slg(204)ju(408, 3] ,A(408) #B[408)~C(408)#D (408)~E(40B)sF(4n
1811 :(408 ),P(204),V(204 ),NPs{200), cEI[204),CHZ(204 II SM(2041,CK(2114)
l#Ci(204), CA(2D4)IHEADER (9)
CQMMGN ‘4~CB#CHZI SM, CK, C~,CACTIME;DTJIC~ N, Yl, N2, N3,N4~N5#”N6jN7~

lNM, SG$M3J~MM31 FlNIS!DX, DX2~JG~CAYGA, CAYB,VMOE IpRItF4RFDP02gjD3X~
lDx~4#D2T, TAu~TQx~sTp# S1~s2,S3as4g558S61S7 lS8~s94s10#ugA~a#G~u# El
lF#G#T1,T2,T~,T4~V,RSTLa RSEA, GC,CEDNpS#DT2#MM

CCI~MON /A/ TAUCt PX,XTAUSXTDXINP
DIqENSICIN XTAU(?04), TAUC(2U~l~Px( 2041~xTnX~204~
Dx2=13x*DX

2tI TEMztooO!
DD ~ lz2~’lM
Ql=DX/5Q~T((CAYGA(Il*CAYEi (!)+DX2/4, /VM(l)~

IQ2=DX/SQHT((E!(!)*CAYGA (~)*DX2/4,)/R !1))
IF (Ul_~2) 2a~~3

2 SAV=Q~
GO TO 4

3 SAV=Q2
4 IF fSAVmTEM) 5algl
5 TEM=SAV
1 CQNTINUE

JE=l
8 IF (I)TwTEY) 6~6~7
7 JKZ=JC*2

1F(JKC)9~~O~10
9 DT = DT/2,

JC= 2*JC
GO TO 8

10 M(l)=i
GO TO 21

6 M(l)xo
21 WRITE (6a25) M(l)tDT~TEM
25 FORqA7 (’///lBH COPE FOR SCHEME SIl~3J10Xr4HDT GU1E16, 811DX,11MCRIT

lERI~N #ilEl~,H)
RETJi?Y
END

< StiB~QUTINE !NITL
*u THIS Qt)UTINE SETS UP THE INI~!AL cONDITIONS

DIMENSION M(lO)~CAYGA (204),CAYB(204 ),VM(204) iEI(204),RI (204 )1
lSl(204) ls2{204)aS3(204 ]JS4(204), S5(204]4S6(204 ),S7(204),S8(204);
lS9(204) pSlo(204)aU(408@ 3] ,A{408] ~8(408)1c(408)1 D(408)a E(4f18),F14fl
16), 2(40B), P(2d4)ZV(204) ,NPs(200), CB(204),CHZ(204j , sil(204),CK(2f14)
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l~c”I(2~41, tiAf204)uHEADER (9) ‘“”— .,..—- ...
cOMqON MICBICHZ, SM~CK#”CI~CA171ME;DTlICI N, NlPN2!’N”r;’1T4#N51N6,N7,

-._. _,.,...______

lNNPSG, M3~YMM31FlNlS,DXlDX2# JG4CAYGAI CAYB,VM~”EI#RI@ PRRFD1Q2XAP3X,. .. .. .......+...-——— ________ -.. .._.____________ _-m_,__ ,,.-.
lDH2~ifi2~a”~Avn7D~~$7Pfi ~~8S2+S~a”~4~S5,S~&S7m sh#S9#~10#uJA~a.C,U8Et
lF#G*T18T2s T3, T48V~RS~LaR~EAJ GC,CEjNPS#DT2-,.-.,”-..-— —— .— ...”....——J —————————- .. .._. . ., _,_____._.___._-_r..... .

CQ’4M6N /A/ rAUCJPXI XTAUsXTDX?NP
DJwEYsIQN XTAUt204) JTAUCf2D41fPX( 204)”XTDX(204)

Do 1 j“al;~ ““-” ““””
—..—— .— .-..-.,-..—-...-,..-—,-,.,—... —,_.

Ll(J,3)=oqoL - ,-.. . . . –“-
u(i;ii,=a,o

1 cCINT~NuE
RETdRN

.- ...---- .. . ..—..—.—....

END . .-..,., .,, .

. .

SUBaOUTINE FORCE
J THE FORCE IS DETERMINED W!TH RESPECT TO TIME HERE

DIMEN!iIDN M(lO1a CAYGA(2~4) 8CAyB~204 ),vM~204) tEI(2C14)~RI(2D4 )?
lsi(204) ls?(204)~S3(204 ],s4(20~j ~S5(204)~SA(204 )~S7(204) ~S8(!2C14j, ~
ls9(204), slo(204),u(408, ~) ,A(408) lB(408)aC(4Q8]~Df 408)~E(4CIfl)zF(40
18), 3(40B], P(204),V(204 )aNP5(200) SCB(204)ICHZ( 204)s SM(204),CK(2f14)

.,------------

14 CJ(2B4) lcA(204)a~EADER (9)
CCIMLION LiJCB,CH-Z, SM; CK, fiI~CA;71ME, DT01Cc N~”hl~N2J N3t N”4JN5Fhl~;N7”8

lNN, sG, M3,MMM3,FINIsaDx, DX2,.JG+.C.AY.QA!C!.Y!P\lM#EI#R.l~P#HFII~!~x~u?x~.----
lDx24” D2?~?Au# TDxIsTp~sl, s2, sq#S4~S5, Sb,S7,S8~ 59/slO#u#AaO,C,i)DE,
lF#G~Tl, T2s T:!14!iz H5TLzF$gALGC#CE# Nps~D~2sflM. .. .. ,, ... . .-.”,---.-

COqMON /A1 TAUC~pXJ XTAU~xTi3X~NP

.
u ROUTINE TOCOMPUTE_:MALL.P

PIE=3,1416 ‘“
DO I Ix2q4M
1F(5F{I )19014901;”5 ‘ ““

901 CUNT~NUE ,.,
IF(7!ME*TAUC (l119,-4~4 ‘ .

.,.!.

4 Jr (T IME~xTAU( l):TA!J( I!) 5~.9.t9 ‘ ......... _ ,... . ,, ..... _ “—-—.-,. ..-.—— --.—..
9 P(l)zo,o ““”

Go T~ i... _. .. . . ....... . . .. - ., - ,-----
5 P(I)=XTDX(l)

IF(GF(i)!$#$lX -... ,.-...-..,,
J A PERIODIC FURCE 1S CALCULATED .HERE

““ .-. . ... . .. . . .

6 A~G= 2,t..YP..JE*C!fI)?TM.E.,..,......_. ‘ ,, ----
P(I)?P(I)*SIN(ARG)

1 CONTINUE ...-----. ....-.—. ..-.
20 FORYAT(4E13131

.,,,”.....-- .——...—---- .

R~TURN —.... ,. .END .. .... ,-._,....... -–-.– ------

-., ..,”
--” . . .
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SuB7QUTINE BNDRY
*
u THIS RQUTINF SETS UP THE BOIJNDARY cC!ND~TInNS

IIIMENSION MflO)~CAYGA (2n4),CAYB( 204), vM[204)IEI(2U4)~R 1(2n4),
lSl(204), S2(2i14)~S3(204 ],S4(204), S5(204)~S6( 204) ~s7(204),SR(204),
lS~(204), S10(204)pU(408, 3] ,A(408), B(408),C(408)lDt 408)~E(40R),F(4n”. .
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18)~*G{ 4QB), P(20411V(204] ,NPs1200) JCB(204),CHZ(204 )4 SM(204!”,cK(2n41
ltc!(204) ICA(294)IHEADER( 9)—-. — ,----,.— ....-”.- .-
GOM~~hi ilCb-;”j~z/ $M,CK~C[~CA/TIME,DTI]C~N, N~~N21N~~N4~N5~N6,N7,

,.... -— .-—...--- .,..+___.,..

lNN, SC, M3,4MM3~F lNIS#~X[DX~l_~C,CAyGA# CbyF8VM~!I.~.!?~FT!!DJD!xi ‘?xJ.
. —

lDX248b2”T; 74@~TUX;”5”TPn SiaS2~SJ.aS4tS5nS6s$7t50t $9BSlo4UnA~~;caL)aE,
lF4G#Tl, T2a TJI.T4# vdRsrL~R3EALGca CE?.NFS!DT2. “. . .......

CfIYMON /h/ TAUC;FX, XTAU,XTnX,NP
DIMENSIQN X7AU(204), TAuC(204),PXt zc14),xT13xt204)

EXp~~cIT” SCHEME’
. -...—..—.—-.--.—.... .- .. . .-

11 ~F “(R$Q) lp2#1
NQRMAL ANiLo~uE

. ,. ”.”....

2 lJ(~l,3)*ll(N5,3)
u~N,J)~u~N4,J}+D2X*U(Nd; 3)-” ““

.

IJ(1S3)=U[543)
u{2,3)=u(6,3~mg2x*u(3~3!- ‘“
GO TO 50
REFINED COND~T]ON$- ----

.*

i u(Nl#3) =,5*( 6#+u(N513):u( N7t3~?.5t.5,u!.!.?f.:J~
U(N,3)W, $*(6t*U(N4,3)-Ut N6~3}_3, *U{M2Z3))+D3X*U’( N3”,3)

.-..—.-”—. .

u(l;3)m, 5*(6t*u(5J3)?uf74 3jms;!u.!2A.?!)
u(2~3)=, 5*(6; *U(6t3’”)Ru(8? 31=3f*u( 4,3) )*i13xJu(3~3~

“ GO TO 50
IMpLiclT ScHEM& “-”’ -

--. ...

ENTqY BND3Y] ——Q .. —-.—.-,-..
C(l)=C(l)+A(lI

.- .—.

C(2)=C(2)~A(2) .
F(l)?F(i)+D(~)

.“ . .-..-.. ..

F(2)SF(2)+D(21 . ..
B{l)=Bt l)iD2x*Dfl’)

..... .

B(2)* 9(2)ED2X*D(2)—-....”... .. . ...... ..
G(l) =Q(l)mA (i)*(2,*(U(5, 2)-u(it 2) )+U(511)mti(l#i) )~D(l)~iz, *tU(6:2)

imU(a,2) )+U(6~l) ~u12,$lmDEX* (2, *U{312]*Uf3ql~l).,-------.-.— ,-----
G(21aG( i”jm4(~’)x(i”,i~’U(5,2)-U(1, 2) )*U(.5,1]~u(111) )~D(”2)”*(2,+(u(b;2)

..,.

1wU(2,2] )*J(6,1)-U(2,1) uB2Xy(2,*Uf3,2 ]*U(3Jl!) !....”.. . ..-
A(N4)=A(ii4jiC(N41

. .

A(N5]mA(N5)*G(N5)
.

-
D~N4)ZD(N4jkp~N4) ----- ,.,.
LI{N51=D(N5)*F(N5)
kl(N41=B (N4”l*D2x*F(N41 ‘“”’
B(N5)=E (N5)*I12X*F(N5)
t2(N4)=G( N4)+C~~4) *(2,*iU{Nl; 2j=U(N5”;2~)*UfNi~i)_U(N~t !l))~F(N4)*(”2,

i*(u(N, 2)nd(N412))*U(NIl] ●U(N4sl) ~D2X*(21*lJ(N3~2) •U(N~J~j,~!
G(N5) =Gi”V5~~CtV5)*(2,*(U(Nl;2j =utN5;2))*u[Ni~l}~u(N51 1))*F(N$)*(2

l,*(’d( N,2)mU( N4,2)!+U(N,l )~ufN4p $)wD2X*(2,*U(N3,2 )*U(N3JI)))
50 RETdRN

----

END

.



SUB~OLITINE CQHPUT
: TH~S ROUTINE COMPUTES THETA ANO OMEGA FROM THE Ex~~~GIT Difference

K.412

Tt=(utJ+292)~u(J:2i2))/D2x”” ‘“””““”
T3so(I+2, 2)~U(~~2,2)
T2=T4/D2x

-.”

T4=T1wU(J,2)
- u(],3)=21*U (”I~2)~U(i~l )*QT2*{ (E? (K)*(u(i+~?2j ‘21*u(1;2)+U (I=2~2))*
l,25*(E1(K+ll ~E1(Kwl!)*T3 )/Dx~*CAYGA.(K~*T4)/RI(K)
U(J,3)S2, *U(J12)WU(J~l) iijT2*(P(K ~-CAYB(K)+U(J~ 21*CAYGA(K)*

$( (u(J+2~2) w2,*u(JJ2)+U( J~2,2))/DX~15*?3)/nX+(cAy~~ {~Il)~CAYGA(K~l~
l)*T4/D2X)tVM{Kl

1 CoNTINUE
RETJRN
END

sUBqI)uTIN~ SQLN

2 THIs ROIJTINE EVALUATES GENERATING SEQUENCES AND GOMPUTES
mw SoLUTION VECTOR

DIMENsION M(lO)~CAYGA (2ti4),CAYB(204 )~vM(204) ~EI(204);RI (204 ~~
1S1(204), S2(20411S3(204 )~S4(204),S5 (20~)tS6( 204) 1S7(204)~5R(204),
ls9(204), ~10(204),u(408, 3) ,A(40a), B[408),C1408)~ D(408), E(40R),Ff4fl
18), Q(408], P(204),V(204 ),NPS(200) JCB(204)~CI-IZ (2041j SM(204),CK(2fi4)
l#C1(204) #CA(204);HEADER (9)
CoM’40N M~cB#cHZ, SM, CK, C1JCA~T]ME107,1C~ N, Nl~N2, N3,N4!N51N6,N7J

.: INN, SC, M3,’4MM31FINIS, DX~IlX2, JC;CAYGAJCAY13. VMZEI#RTiP#RFDIQ2x,D3X,
lDX24g B21, TAUflTDX~STP8S18s?t S$&S4a S58S6,S7gS0iS9~ s10,~14~d,C,DlE,
4F, G, TI, T2,T3,T41V,RSTL, RSEA, GC,CE,NPS,DT2

.u FIRST Fof?d 5*BAND DIAGONAL MATR].~,.F.8DM 75BAN! ,yA!?[.x, .
DO j. Im5~V2~2
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.

FM= A(I$)/i(I’ijj ‘
B(Il)_B (il)~FM*E(12i

-..——,— ,....,—. . .. . ,..,,-—-,..—...”

G(Ill=c (Il)=FM*C(~2) -——- ______________ ,____.._...... _______ .-,.-,.......
D(ri)=j”iiij~FFiD(Ii)
E~Ill:E_(.I119FM*E( 12).——— .-—--..-“...-..+-..----*——.. .-,——— —-,.- ...-–.—._.++.-_--_,_.-.,____.-,.
F(Jll*F (iil~FM*Ft 12)

-.. . .. .. ..r -

. . .....

2 EVALUATE SEUUENC.E.S . . --.__.__–_-..
El~)YE(l]/B(l]

,...

cacti
G~l)=G(l)\B”(l)
E(2)=E( 2J*E(11*B(2)
C(2)=C( 2)mC(l)*B(2]
G(2)=G[ 21*G.(1)*B(2?. .....”.
B(2)?0.O

.L-
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,.,

SUBROUTINE FICTP “
2 THIS ROIJTINE COMPUTES VALUES FOR THE D~sPLACEMEN1’S AT ‘PHE F“5UR
-* FICT]T]OUS POINTS

●

SUBROUTINE UUTE
-u THIS RoUTINE HANDLES OUTPuT FOR ExpLIGIT ScHEME

flIt4ENSION X(2051
DIMENS1ON M(lo)~CAYGA ~204)~CAYQ( 204),vM(204~cEl(204~/R I(2f14)~

~Sl{204) lS2(204]pS3(204 ),s4(204) 8SS(204)#S6( 204)#S7(204)t~~(2Q41s
lS~(?04), S10(204)PU(408, 3] ,A(408) #B(406)~C(408)S D[40B)z E(4(181iF(4fi
181, S(40fl), P(204)~V(204 ),NPsr200), CH(204),CHz (204)s SM(20~),CK(204)
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SHO(J)=CAYGA (K]*i(U(~*2,2) mu(Lw2/21)/D2XSU(],~))....—— ,..,, — ,-._,L
wti(Jji-{Ui~;l)uu(~l l))4D27

———---- -—.-,. . “—-” ...!-.—-----—...

THv(4!*iU(1~3)mU(I,i))/D2T
~oN T r~~~--”“---”----‘-“ ‘- ‘“”

.-.——.. ---“.__+--.——-— .. .- . , .“_.,..______ _“

CoNT~NuE .———— -.-—-.-—._—- ——.-—- _ -._..-. ___ ___ _,_
wR’~TE -’~-b;~y”-Ti5”-””””” _
FoR~AT (7H1TIME u~iF9,41/9X,lHX,13X#lHY~ 8X,5HGAMMA, 8Xs4HH0MENT1 7X;. ,-.

15HSHE~’R~ tiX,bHY~-O-0”?;6Xi@~G~ti-MAi”b~)
—— --.,--—----.. ..,—,— . -

3 FDR~AT t7E~3 4] -–-––1 ––- -– .. ,.-––.-+_L–––-.-.__–-.-.-...
WHI”7E”-(6~31 (K(I) lWO(I)tTHOf II,XtiO( l]ts~otl)~kvfi);THVfl~, I~l#J)

- -- ---...—_.,.

pMAMRDM!NSVMAX8VH1N=BMAX?BM I!!?!~_.....-----------.
ho 2$””191,J

-.+._.-~.,.,..,,.,,,.,.

XX(I)*X(~)*XSCA~E ------...- ,., .,-... .... .. _,, -,,___ -,+,.+,,,.,
DilAK = MAXl$i CiMAXtWO(!)i
DMIv*MIMIF(OMINtWO{!l). . . ., .. . .. . .. ... .
VMAX@MAX~r(vtiAX~S~O(j!)
VMIN=MI NIF(vMINtS~O(I~) _
BMAX*MAXIF(BMAXt %MO(l))

25 BMIv=MINIF (BMIN!XHO( !)]
iF((DMAX+OMIN~ tkT,O,l DMAX”P DMIN ‘“
1F((VMAX*Vf11N~tLTt4~!.. vMAX z Vt41N
IF{ (BMAX+3MlNliLTt 0,) BMAiI= EMIN--

... ..,,,.

CALL SYMBDL(3,5t~i25~,14P 9HX]N FEET Io#191
CALL NUtigER (7;5im125~t14t X(J) ~Ot~4HF5iO~

... ..

CALL PLOT(8~SOq~3~
CALL 9yMBOL~61t O$ijh7~3;Ol, -2)

-CALL SYMB3L(4tSOltt07~3JOqf =2!
CALLI sYMHoL(2~10;~,07~3~o,, _2)
CALLPLDT(O~J(ll#2)
CALL SYMBOL ~U1i7tl,;114#5~0, ~wi)
CALL SyMBOL(~, Jt1125, ,14,17H9 SHEAR IN pClUNDS#90$4171
CALL NUM,BER( ~,11415, ,14;VMAXJ 90tt5HE10,2)

cALL. SYYBOL( 0,,6, 1,,14,49HSH1P STRUCTuRE REsPo,Ns6 TO !,rnP~LSF~OAD. .
*U TIME s--to;,~~~--- - .
CALLNUMBER(5t9 J6tlsii4tT !O~(l..a4ll~5t3~
CALL 9yMBOL( 6i5#6;lb114JbHi D~w #Cllt6]
CALL NuMBER~71216~laLl~J~T#~ tL!,H!61?!. ., ..,,
CALL PLO~i8S;0”i;~i”””
CALL PLOTt@Ii61t21
CALL PLO~”iOit6tZ2)

.,..—- —

CALL SYHBOL( 01t4.151107434 !1gW?! _ . . ... . . ....... ........ . ..
CALLI SyMB$~~O;~3vU”;”m07t3aO@ 8=2)
cAL&’sYMB9L( o141q!j!.07?3! !3K?2!.-..-L ,_..._ . .. . . ,,,----- . ...—..-. . .
cA~L”@LoT(o I#o,J2)
CALL SYHBOLt mt6?.~&.ib~if~.0.#Oif..m.l.> ,..._,,.:.,
CALL SYMBOLr~i611S25j#14J22Hm, MOKFNT iN POUND-ffFE~;90~~22)
CALL NUMHER( *,6#4,5, 114,,BMAXP?!,S.!2Hg~fl!.?~ .,. .,. . .___,....”.-..—.
,CALL sLO~(*i5#6~t3)
CALL S.YMBOL~~#5#415#.~07J3dO~ #w??. .--.,+ ..... ..

-..
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CO~MQN /3/ CF
III~ENSIOU XTAU(204), TAUCt2041,PX( 204), xTi3X(2a4)#CF (204)



20 ‘FURMAT(5E1314)
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sTART

The following pages are the logic flow charts. Please note the
..- followingi

LIUHATIUN

a) Page 00.07.00 is identical to Page 00.08.00.

: b) Page 00.16.00 is intentionally missing.
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Y
PROGRM
SHIP

STAT

TAUE = TAU

I

8-J
CALLCONST

(+)
SEE PAGE

M(l) 1 00.04.00

(-) OR (0)

oSTAT.10

cALL IN7TL

oSTAT . SO

CALL BNDRY

TIKS - TIME ? TAUE

TIME + DT

TAUC = TAUC
+ TAU

v 1
lC=IC+l d

62
SEE PAGE
00.02.00

PAGE 00.0
. .

uz

dSET INDEX

1=1

2=
FTN

Do

U(I, l) = U(I,2)

0
STAT.51

U(I,2) =JJ(I, I)

DADD1 TO

12mEX X

4
( IS INDEX

l>N

IoSET INDEX

1=3

@’--
GAl = nBS(U(I,3)) + AB$(U(I+l, ~))

63
SEE PAGE

00.03.00

.,
PAGE 00.02.00
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[-)

(0) OR (+)

STAT.

CONTINUE 4

9ADD 2

TO INDEX

@

(+) ii (o)
STA1) 56

MMM3 =

MMM3 + M3

8

CALL FiNDRY

CALL OUTE

65 SEE PAGE

[)(1.[)4 [)[)

I

F
STAT. 5[10

CONTINUE 9

SET IEDrX
11

h
4

U[l, l) = U(I .2)

SrAL 1 >01

U(1,2) =,U(1,3)

1

ADD 1 Tn
INDEX 1

1

(

7mEx T
>N

bCllLLGFNFR

66 SEE PACZ
,3,1.,)5,(1[,

k,.wE‘1).,:.,1
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6
6

CALL BNDRY I

4

TIME= TIMS TIME > T.WD

+ DT
4 3700

TAUD < TAUC

+ TAU

4

IC=lC+l

I I
1

8

CALL SOLN

CALL FICTP

E
(0.) (1C -

MMM3-1)

(20)
STAT 505

MMM3 = MnM3
+ M3

wCNJL OUT1

STAT 504

(TIME - (<01
9

SEE PAGE

IN’IS) 00.04,00

AEND

PAGE 09.05

+’--
@“~SEAD (5,5)

}

6 RXAO sTATEHEmS

Q’-FTN
Do

Q
STAT. 440

XNPS (l) ~ DX
+NPS(I)

oADD L TO
INDEX1

e1S IRTJEX No
>

YES

‘Qm=xtm
m . NN-1

6 SEE PA5E

12 00.07.00

.-.

PAGE 00.06.00
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5
12

M9 = M(9)

REAC

}
7 RED STATE

(>0)

STAT.

STAT. 41

SrTAT 42

CONTINUE 4

SET INDEX
1=1

?-

rTN 15
nn

L-
LM = NXP (l)

CR[T,M) = PIIT IN(l, l)

CMZ(LM) = PUT IN(T ,2)

CI(T2M) = puT IN(I ,3)

CA(LM) = PUT IN(L ,4)

.Ar,E 11[1.1,J. P,,
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Y
14

STAT 44

SM(LM) =
P[~ IN(I,5)

CONTINUE 4

~

mD 1.‘m

XNWEX 1

SEE PAGE

00.08.00

sM91=M9-1

SET Z~EX
1.1

9’-FTN
DO

16

I,M1 = ~P(Z+l) – 1
l,M= !.KP(I~ + 1
FAT = I,M1 – LM + 2

XJ1=LM-1
ll=LM1+l
12- LM-1

oSET TNDEX
.T. I.M

PAGE 00.09.0[

4

XJ=J

WOW = (XJ - XJ1) /FAT
CB(J) = (CB(ll) - CB(12)) I

*WOW + CB(T2)
I

STAT. 59

(0<)
● CHZ (J) = (CHZ(I1) – CIIZ(12))●WOW

+ C13Z[12)

(>0)

STAT. + 51

SM [J) - (SM (111 - SM(12))+ WOW
+ SM(12) I

I

C1 (J) = (C1(XI) – CT(12)) *WOW

+ CI (12) I

=

CA(J) = (CA(ll) = CA(12)). WOW

oSTAT 31

CONTTNWE

0ADD LMITO
INDEX J

( 1SINDEX
Lr>LM

ADD 1 TO

INDEX 1

p.,,;~ ,),, , 1(,.(’!



Y
18

SEE PAGE

00.09.00

0FTNDO

+

CK(I) =

CK(I-1)

‘9
STAT.517

RI(I) =

R1 (l-1)

rIS INWEX
I> Mill

NO

YES

WRITE

}

6 WRITE

STATEMENTS

bRETURN
I
I

8

SUSR.
PAW

m . m-l

QSETINDEX
1=2

“&
FTN

DO 20

CAYBII) = 2.+CB(l)
‘RSEA+32 .2

&M(7) (<0 OR >’

(=0]

STAT 2

CONTINUE

x
I SV(l) = SM(T]/32.2+224V. + 1.570796327

*RSEh + CHZ(l]*CB(ll **2 I

8

STAT. 5

E1 (l) =
CE*C1 (1)

cOMMENT

oSEE PAGE
19 00.13.00

RAGE 00.12 .tioPAGE 00.11.00



4
19

STAT d

M(5)

o(<0 OR >0]

Commm

Q
STAT. 6

CONTINUS

+

8

.0

COMMENT

S’rm 9

C0~1 NUE

STAT. e

1r C?+YGA[l) = CK(l)*CA(l)*CG
RX(1) = RT(T)+SM (T)*2240./32,2 I

8

STAT. 1

CONTINUE

AOD 1 TO
INDEX 1

b SEE PAGE
21 00.14.00

PAGE 00.13.00

?

21

QET(1) = E1 (2)

CAYGA(I) = CAYGA(2)

ET (NIT) = EI (MM)

CAYGA (NN) . CAYGA (MM)

.

0RETURN
I

AEND

vSUBR,

EROR I TNPUT

(1) PARAMETER

+

WRITE

(6,1)1

PAGE 00.14.09
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?

SUBR,

CONST

N = 2*NN
N1 = N-l
N2 = N1-1
N3 = N2–1
N4 . N3-1

N5 = N4–1

N6 != N5-1

N7 = S6– 1

RFD = M(2)
D2X = 2.+DX

D3X = 3.*DX
DX24 = 4.‘DX2

D2T = 2.*DT
DT2 = DT*DT

lC=O
TIME = 0.0

M3 = M(3)+JC
MMM3 = M3 I

PAGE 00.]5,

w

SET INDEX

r=2

w

11 = 1+1

IM1 = I-1
X(I) = X( IMl)+Dx
P(I) = O.O
RI = EI(Il)-EI ITIll)
R2 = CAYGA(I1) -cAyAGA(IMl)

sl (I) = -( R1-4. *EI(I))/(16, *bx2)
S2 (1) = -(.5* EI(I)/DX2+CAYGA (I)/4. -

+RI (1)/DT2)

S3(r) = -Sl(I)+.5*EI (I)/DX2

S4 (I) = –CAYGA(I)/(B. *DX)

$5 (1) = -R2/(B. *Dx)
S6 (1) = - (R2-4. *cAYGA(T) )/L6. *Dx2)

S7 (1) = .5+CAYGA(l] /DX2+RA(I)/DTZ

SS (1) = -S6(I)+.5*CAYGA (I)/DXZ

S9 (1) = RL/(16,.Dx2)

I

ASTAT.100

Slo (1) =

R2/9 .‘DX)

,,

u SEE PAGE
27 00.lQ.00

PAGE no.17. oo
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-

ADD 1 TO

INDEX I

+

X5 CA2JE = 8 ./X (MM)

DSCALE = 10. **7

DSC.WE = 3*DSCALE

VSCALE = 3 ./2.

BMSCALE = 6 ./X (MM)

●

I

I

AEND

PAGE 00.18. c

4SUBR
STABLE

c1DX2 = DX*DX

zSTAT. . 20

TEM = 1000.

SET INDEX

+-

FTN 29
Do

1
+

I
QL - DX/SQRT [[CAYGA(l)

+cAm (I1*Dx2/4. )/vM(I) )

Q2 = DX/SQRT ((El(I)
+C8YGA(1) *DX2/4 .)/R1 (T))

I

I
1

STAT . 2

‘ SAV = Q1
b

SATI= 02

(20)

STAT . 5

TEM = SAV

STAT. w 1

CONTINUE

PAGE 00,19.00
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+

STAT .

JKC = JC- 2

(20 )

9
STAT. 9

DT = DT/2,

.

JC = 2*JC

*

+

STAT. 10

M(l) = 1

STAT . 6

e

PAGE 00.20.00

:

SUER.

INTTL

SET INDEX

1=1

w

U(I,3) = 0.0

U(I,2) = 0.0

STAT v 1

cONTINUE

v

ADD 1 TO

INDEX 1

0RETURN
I

I

AEND

PAGE 00.21.00
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;

SUBR

FORCE

PIE = 3.1416

0SETINDEX
1=2

CF (l) >0
1

CF(I)>O

“Q
6

ARG = 2XP1E

XCF[l)XTIMJ

?

Am 1 To
INDEX T

PAGE 00.22.00
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L
SUBR

GENE R

SET INDEX

1=3

+

I

J = 1+1

K = J/2

11 = 1-1

12 = 1-2

14 = 1+2

r5 = J+2

13 = J–2

A(12) ‘= S1 (K)
A(I1) = -54(K)

B(12] = S2 (K)

B(II) - S5 (K)

C(12) = 53(K)

C(ll) = -A(I1)

Df12) = S4 (K)

D(I1) = S6(K)

E(12) = 0.0
E(I1) = -( S7(K)+.25*CAYB (K))

F(12) = A(I1)

F(I1) = SE(K)

632

PAGE 00.23.00
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G(12) = RI(K) *(u(I, l)-2. *U(I,2))/DT2- .25* EI (K)

*(2. *(U(14,2) -2. *U(IJ2)+U(12r 2) )+11(14,1)
-2. *u(Irl)+U(12,1 ))/DX2-S9 (K)’*(2.*( U(14,2)
-u(12,2) )+u(14, 1)-u(12,1)+S4 (K)* (2.*(u(15,2)

-U(13,2) )+U(15,1)-U(13, 1))+. 25* CAYGA(K)

*(2. *U(I,2)+U(I,1)) .

T1 = (u(15,2)-U (13,2 ))/DX
G(I, l) = -P(K) +.25* CA~(K)* (2.*U(J,2)+U(J,1))

+ KA(K)*(u(J, l)-2. *u(J,2) )/DT2+s4(Kl*

((2. *( U(15)2)-2. *U(J,2)+U(13J 2))+ U(15,1)
-2. *”(J, I)+u(13,1) *2. /DX- (2.* (u(14.2)

-U(12,2) )+U(T4,1) -U(12,1))-SIO (K)

+(2. *Tl+(u(15, 1)-tI(13,1) )/DX-(2. *U(IF2)

+U(I,l)))

STAT. 1 1

CONTINUE

w
AOD 2 TO

INDEX I

4

( IS INDEX
1>N2

l~e___W

PAGE 00.24.00
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.

.

(=0)

STAT . w 2

I

ll(Nl,3) = U(N5,3)
JJ(N,3) = u(N4,3)+DX2*U (N3,3)

P

SEE PAGE

J-I(1,3) = U(5J3) 33 00.26.00

m(2,3) = u(6,3)-D2x*u(3,3)

STAT . 1

ll(Nl,3) = .5*(6 .*u(N5,3) -u(N7,3) -3. *U(N3.3)

u(N,3) = .5*(6 .*u(N4, 3)-u(N6, 3)-3. *u(N2, 3))

●
+D3X*U(N3,3)

JJ(I,3) = .5*(6 .*u(5,3) -U(7,3)-3. *U(3, 3))

J3(2,3) = .5*(6 .*u(6,3) -u(9,3)-3. *u(4, 3))

+D3X*U(3, 3)

PAGE 00.25. Jo
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n

ENTRY

BNDRY

C(1) = C(l)+A(l)
C(2) = c(2)+A(2)
F(1) = F(l)+D (l)
F(2) = F(2)+D (2)
B(l) = B(l) -D2X*D (1)
B(2) = B(2) -D2X*D(2)
G(1) = G(l) -I.(1)* (2.*( U(5,2)-U(1,2)

+u(5,1) -U(L,l) )-D(1) *(2. *U(6, 2)
-u(2,7.) )+u(6,1) -U(2,1)-D2X*
(2.*U(3,2)+U(3,11)

G(2) = G(2) -A(2) *(2. *W(5,2) :U(1,2))+U(5,1)
-U(I,l) )LD(2)* (2.*( U(6,2)-U(2,2) )
+U(6,1)-U(2,1 )-D2X*(2. *U(3,2)+U(3, 1))

A(N4) = ARC

A(N5) = ARC

D(N4) = D(N4)+F(N4)

D(N5) = D(N5)+F(N5)

B(N4) = B(N4)+D2WF (N4)

B(N5) = B(N5)+D2NF (N5)

G(N4) = G(N4)+C (N4)*(2, *(U(NI,2)UU(N5, 2))

+U(N1, I)-U(N5, 1))+ F(N4) *(2.* (U(N,2)-

U(N4,2) )+U(N, L)-U(N4,1)-D2X* (2.*U(N3,2)

+U(N3,1)))

G(N,5) = G(N,5)+C (N5)*(2. *( U(N1,2) -U(N5,2))+U(N1,1)

-u(N5,1) )+F(N5)+(2. *( U(N,2) -u(N4,2))

+U(N, l)-17(N4J 1)-D2X* (2*U(N3,2)+U(N3,1)))

PAGE 00.26.00
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,7 = 1+1
K = Y/2

T1 = (u(J+2, 2)-u(J-2,2))/D2X

T3 = U(1+2,2)-U(I-2,2)

T2 = T3/D2X

T4 = T1-U(I,2)

“U(I,3) = 2.* U(I,2)-U(I,1)+DT2*

((EI(K)*(U(I+2,2) -2.*

J.(I,2) +U(I-2,2) )+.25*

(EI (K+l)-EI (K-1) )*T3)/

DX2+CAYGA(K) *T4)@ (K)

LI(J,3) = 2.*tI(J,2)-U(J, l)+ DT2* [P(K)-

CAYB (K)*U (J,2)+CAYGA(K) *

((u(J+2,2) -2. *u(J,2)+u(J-2,2))/

DX-. 5*T3) /Dx+ (CAYGA(K+l) -

CAYGA(K-1) )*T4/D2X)/RA (K)

7
STAT. 1

CONTINUE

6-----2A
PAGE 00.27..00
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w
SET INDEX

1=5

w

11 - 1-1

12 = 1-2

13 = I-3

14 = 1-4

FM = ALA

B(T1) - B(Il)-17M*B (12)

C(II) = C(II)-FM*C(12)

D(T1) = D(Il)-FM*D (12)

E(T1) = E(I1)-FM*E (12)

F(.T1) = F(I1)-FM*F (12)

G(Il) = G(I1)-FM*6(T2)

FM = F(14)/F (13)

B (14) = B(L4)-FM*B (13)

, C(14) = C(14)-FM*C (13)

D(14) = D(14)-PM*D(13)
E(14) = E(14)-FM*E (13)
G(14) = G(14)-FM*G(13)

1

+

STAT. 1

CONTINUE

34 :y2~

PAGE 00.28. OC

:(1) = F(l)/B (l)
c(1) = c(l )/B(l)
G(1) = G(l)/B (l)
E(2) = E(2) -E(l.)*a(2)

c(?) = C(2) –C(l) *B(2)

G(2) = G(2) -C(1) *B(2)
B(2) = 0.0

ClSET INDEX
K=l

Y
I

1

K1 = K+l

K2 = K+2

K3 = K+3

E(K1) = E(KI)-E(K)+B (K].)

c(xl) = (c(Kl)-c (K)*D(Kl))/E (K].)

F(K1) = FEE

G(KI) = (G(Kl)-G(K) *B(Kl))/E(Kl)

D(K2) = D(K2)-E(K)*A(K2)

B(K2) = B(K2)-C (K)*A(K2)-C(K1)*D(K2)

G(K2) = (G(K2)-G (K)*A(K2)-G(K1) *D(K2))/i3(K2)
E(K2) = (E(.K2)-F(K1)*D (K,?))/B(F7)

C(K2) = C(K2)/B(IC2)

B(K3) = B(K3)-C (K1)*D(l<.3)
E(K3) = E(K3)–F(KI)*13(K3)

bSEE PAGE
35 (10.30.(10
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.

-,

..

I

STAT.

G(K3) = G(K3)-G(K1)*D(K3)

oADD 2 TO

INDEX K

I

E(N4) = E(N4)-E(N5)*B(N4)

G(N4) = (G(N4)-G (N5)*B(N4))/E(N4)

V(N2) = G(N4)

v(N3) = G(N5)–E(N5)*V(N2)

+

SET INDEX”

1=4

?-

FTN “36
DO

J = N4-1+4
v(J) = G(J-2)-F (J-2) *v(J-2]

-c(J–2)*V(J+1)

V(J-1) = G(J-3)-c (J-3) *v(J+1)

-E(J-3) *V(J)

I

&SEE PAGE

37 00.31.00

PAGE 00.30.00
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S2’AT.

CONTINUE

(<0)

9ADD 2 TO
INDEX I

, I
(

+ SEE PAGE
1S INDEX 00.30.00
“I > N4

A

END

PAGE 00.31.01

vSUBR

FICTP

.

‘“””’+SET INDEx

1=3

“Q=-FTN

DO

0
STAT. 1

U(T,3) = V(II

“’Q‘IID ITo

INDEX I

-vIS INDEx
I>N2

NO

YES

4

~(1,3) ‘Al(5,3)+2 .*( U(5,2)-U(l,2))
+U(5,1)-U(l, l)

~(2,3) = U(6,3)+2. *( U(6,2)-U(2,2))
+J.3(6,1)- u(2,1)-Dz N(u(3 ,2)

+2. * U(3,2)+U(3,1))
~(N~,3) = U(N5,3) -(2. *( U(N1,2)-U(N5, Z))

+u(Nl, l)-u(N5,1))
Jl(N,3) =J.I(N4, 3)-(2 .*(u(N,2)-u(N4, ~) )+

JJ(N, l)-U(N4, 1)* b2x*(U(N3,3)

+2. *JJ(N3,2)+c(N 3,1))

.

--

0RETURN
I

... I

Amm

pAGE 00.32.00
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“J
SUER

DUTE

TIO . TIME-DT

J=O

oSET INOEX
1=3

4
L = 1+1

J = J+l

K = L/2
WO(J) = U(L, 2)

THO(J) = U(I,2)

XMO(J) = EI(K)*(W(I+2, 2)-U(I-2,2))/D2X

SHO(J) = CAYGA(K) *(U(L+2,2)-U (L-2,2))/

D2X-U(1,2))

wv(J) = (u(L,3) -u(L, l))/n2T

THV(J) = (u(I,3)-u(I,l) )/D2T

““:’
STAT. “1

CONTINUE

AOD 1 TO

INDEX I

PAGE 00.22.00
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738

+

WRITE

(6,2)

PWRITE
(6,3)

DMM=DMIN=VMAX=
VMIN = BMPX = BMIN =

o

2 FTN
no

~(~) = X(I)*xscA~E

DMPX = MAXIF(DMF&, WO(I) )

DMIN = MINIF (DMzN, wo (I))

VNAX = MAXIF(VMAX, SHO(I))

WN = MINIF (VMIN, SPIO(I))
BMAX = MAxzF(BMAx, xMO(I) )

F===

~

ADW 1 TO

INOEX I

PAGE 00.34.00
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(<0) b DMAX = DMIN

VMAX = VMIN
4

[<0) v

.

(<o) E BMAX = BMIN

CALL 40 $UBRO~INES

SET TN21EX

1=2

YY=W O(T)*
DSCALE+ 3.

4-(*O)
SEE PAGE

(r/’IO)*lo 40 00.36.00

-I )

$’CALL

SYMBOL

41 SEE PAGE
00.36.00

PAGE 00.35.00
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.,
D

STAT

CONTINUE 4

c1ADD 1 TO

INDEX I

Y
I

+
IuIT. = XMO(J)*

BM5CALE+ 3.

R
CALL

SYMBOL

SET INDEX

1=2

I

,.,

IK = J-1+1
w = XMO(J) *BMSCA.LE

+3 .

4?+3

h

PAGE 00.36.00
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..

,-,

23
43

l-i’. SHO*
VSCALE+ 3.

@

CALL

SYNSOL

QSET INDEX

r=2

%

FTN

DO

YY = SHO(I)

*VSCALE+ 3.

EIADD 1 TO

INDEX I

T
NO Is INDEX

I>J

YES

4d SEE PAGE

00.30.00

PAGE 00.37. o

v

“...

+

ENTRY

OUTI

TIO = Tilt-DT

J~O

QSETINDEX
1=3

+’--FTN 47
DO

PAGE 00.38.00

L = 1+1

J = J’+1

K = L/2

11 = 1+2

12 = T-z

13 = L+2

14 = L–2

WO(J) = (u(L,3) +2. *U(L,2)+U(L, l] )/a.

THO (J) = (U(~. ~)+2. *U(l.2)+U(1Jl) )/4.

XMO(JI = EI(K)+[U (11, 3)- U(12.3) +2. *

(u(11,2) -u(12,2))+U(11.1)

-u(12,1))/(4. *D2X)
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v

SHO(J) = CAYGA(K) *I(U(13, B)-U(14, 31+2.*

(u(13,2)-u(14,2 ))+u(13,1)-u[14,1) )/

D2x-(u(I, 3)+2. *U(I,2)+U(I, l)) )/4.

WV(J) = (u(L,3)-U(L, l))/D2T

THv(J) = (u(I,3)-u(I, l))/D2T

STAT . v 5

CONTINUE

I

SEE PAGE

00.33.00

I
I
I

I
I

I

/4END

PAGE 00,39.00
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APPENDIX J

RESULTS

The distribution of vertical shear, bending moment and vertical de-
flection for the specific case of a hull rigidity corresponding to 75 per-
cent of normal and of a unit impulse having a duration of O. 1 sec and ap-
plied at the forward quarter point are plotted Figs. J-1 thru J-44 for
consecutive instants of time. The values shown on the ordinate scale
are the maxima for the instant shown,

To inquire into maximum bending moments experienced regardless of
time at which occurring, profiles of the envelopes of such maximum
values were derived. The envelopes for the case corresponding to the
figures to which reference has already been made are shown in Fig. 1
of the text.

To bring out the influence of hull rigidity cross plots of maximum val-
ues of bending moment at four important locations are presented in Fig.
2 of the text. The conclusion to be drawn from this figure is that an
increase in hull flexibility tends to reduce bending moment. At the bow
and amidships the reduction in maximum bending moment is close to
the square root of the ratio of hull rigidities, but at the quarter points
this reduction is considerably less.
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