PROGRESS REPORT

\mathbf{ON}

TWELVE INCH FLAT PLATE TESTS

BY

S. T. CARPENTER, W. P. ROOP, N. BARR, E. KASTEN and A. ZELL

Swarthmore College Under Bureau of Ships Contract NObs-45521

COMMITTEE ON SHIP CONSTRUCTION

DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

NATIONAL RESEARCH COUNCIL

ADVISORY TO

SHIP STRUCTURE COMMITTEE

UNDER

Bureau of Ships, Navy Department Contract NObs-34231

> SERIAL NO. SSC-21 COPY NO. . . . **1.6**. . DATE: APRIL 15, 1949

NATIONAL RESEARCH COUNCIL Washington 25, D. C.

April 15, 1949

Chief, Bureau of Ships Navy Department Washington 25, D. C.

Dear Sir:

Attached is Report Serial No. SSC-21 entitled "12 Inch Flat Plate Tests." This report has been submitted by the contractor as a Progress Report of the work done on Research Project SR-98 under Contract NObs-45521 between the Bureau of Ships, Navy Department and Swarthmore College.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Construction, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Navy Department and the National Academy of Sciences.

Very truly yours,

So Caleton & Soleman

C. Richard Soderberg, Chairman Division of Engineering and J Industrial Research

CRS:mh Enclosure · Preface

The Navy Department through the Bureau of Ships is distributing this report to those agencies and individuals who were actively associated with the research work. This report represents a part of the research work contracted for under the section of the Navy's directive "to investigate the design and construction of welded steel merchant vessels."

The distribution of this report is as follows:

Сору	No.	1 - Chief, Bureau of Ships, Navy Department
Сору	No.	2 - Dr. D. W. Bronk, Chairman, National Research Council
		Committee on Ship Construction
Сору	No.	3 - V. H. Schnee, Chairman
Copy	No.	4 - J. L. Bates
Сору	No.	5 - H. C. Boardman

Copy No. 6 - Paul Ffield Copy No. 7 - M. A. Grossman Copy No. 8 - C. H. Herty, Jr. Copy No. 9 - A. B. Kinzel Copy No. 10 - J. M. Lessells Copy No. 11 - G. S. Mikhalapov Copy No. 12 - J. Ormondroyd Copy No. 13 - H. W. Pierce Copy No. 14 - E. C. Smith Copy No. 15 - T. T. Watson Copy No. 16 - Finn Jonassen, Research Coordinator

Members of Project Advisory Committees SR-25, SR-87, SR-92, SR-96, SR-97, SR-98, SR-99, SR-100 and SR-101

Сору Сору	No. No.	16 17	-	Fin R.	nn J H.	onassen, Aborn	Chair	man							
Copy Copy	No. No.	18 5	-	L. H.	C.	Bibber Boardman	1. A.								
Copy	No.	19	-	T.	J.	Dolan		÷			,				
Copy	No,	6	¥.	Pa	ul I	field			2 ⁻			•			• •
Copy	No.	7	-	Μ.	Α.	Grossman									
Copy	No.	8	-	С,	H.	Herty, J:	r.				1		÷.,		
Copy	No.	20	-	C.	E.	Jackson	1	-	•					÷	
Copy	No.	21	-	<u>_</u>	Η.	Jennings			· ·					· · .	
Copy	No.	10	-	J.	M .	Lessells			• .						
Copy	No.	22	-	Μ.	W ,	Lightner					· · · •				-
Copy	No.	11	-	G.	ຽ.	Mikhalap	٥v	2							
Copy	No	12	-	٦.	Un	nondroyd			·			•			
Copy	No.	23	-	K.	E.	Peterson						÷			
Copy	No.	13	7	H.	_₩. •	Pierce		• '							
Copy	- 13O⊕ '	24		R.	<u>د با</u>	Rickett			• •		• •			÷.,	
Copy	i\O.∎ N.=	14	100	E.	U.s. m	Smith					•	4 -		•	
Copy	NO.	12		1.	.⊥+ Č	Pigoll	Burge		e Sh-	Ind	Liai	eon			
Copy	NO.	20	-	Ma	u. tho	DISSCII,	Amer	icen	Bure	ະບອງ ຈອງນັດ	f S	ាំលកាំ	ng.]	Liais	on
Corr	NO.	27	_	To	0110- 100-0	Matatosh	TI S		hast	Guar	d T	iais	ion i		
Сору	No.	28	-	E.	Res	ssman, Bu	reau c	of Sl	nips,	Lia	ison				

Copy No.	29 - Comdr. R. D. Schmidtman, U. S. Coast Guard, Liaison
Copy No.	30 - T. L. Soo-Hoo, Bureau of Ships, Liaison
Copy No.	31 - Wm. Spraragen, Welding Research Council, Liaison
Copy No.	32 - R. E. Wiley, Bureau of Ships, Liaison
Copy No.	33 - J. L. Wilson, American Bureau of Shipping, Liaison

Ship Structure Committee

Copy No. 34 - Rear Admiral Ellis Reed-Hill, USCG - Chairman Copy No. 35 - Rear Admiral Charles D. Wheelock, USN, Bureau of Ships Copy No. 36 - Brigadier General Paul F. Yount, War Department Copy No. 37 - Captain Jos. L. McGuigan, U. S. Maritime Commission Copy No. 38 - D. P. Brown, American Bureau of Shipping Copy No. 3 - V. H. Schnee, Committee on Ship Construction - Liaison

Ship Structure Subcommittee

Copy No. 39 - Captain C. M. Tooke, USN, Bureau of Ships - Chairman Copy No., 40 - Captain R. A. Hinners, USN, David Taylor Model Basin Copy No. 41 - Comdr. R. H. Lambert, USN, Bureau of Ships Copy No. 29 - Comdr. R. D. Schmidtman, USCG, U. S. Coast Guard Headquarters Copy No. 42 - W. G. Frederick, U. S. Maritime Commission Copy No. 43 - Hubert Kempel, Office, Chief of Transportation, War Department Copy No. 26 - Mathew Letich, American Bureau of Shipping Copy No. 27 - James McIntosh, U. S. Coast Guard Headquarters Copy No. 44 - R. M. Robertson, Office of Naval Research, U. S. Navy Copy No. 45 - V. L. Russo, U. S. Maritime Commission Copy No. 32 - R. E. Wiley, Bureau of Ships, U. S. Navy Copy No. 33 - J. L. Wilson, American Bureau of Shipping Copy No. 16 - Finn Jonassen, Liaison Representative, NRC Copy No. 46 - E. H. Davidson, Liaison Representative, AISI Copy No. 47 - W. Paul Gerhart, Liaison Representative, AISI Copy No. 31 - Wm. Spraragen, Liaison Representative, WRC

Navy Department

Copy No. 48 - Comdr. R. S. Mandelkorn, USN, Armed Forces Special Weapons Project Cory No. 25 - A. G. Bissell, Bureau of Ships Copy No. 49 - A. Amirikian, Bureau of Yards and Docks, U. S. Navy Copy No. 50 - J. W. Jenkins, Bureau of Ships Copy No. 51 - Noah Kahn, New York Naval Shipyard Copy No. 52 - E. M. MacCutcheon, Jr., David Taylor Model Basin Copy No. 53 - W. R. Osgood, David Taylor Model Basin Copy No. 54 - N. E. Promisel, Bureau of Aeronautics Copy No. 55 - John Vasta, Bureau of Ships Copy No. 56 - K, D. Williams, Bureau of Ships Copies 57 and 58 - U. S. Naval Engineering Experiment Station Copy No. 59 - New York Naval Shipyard, Material Laboratory Copy No. 60 - Industrial Testing Laboratory, Philadelphia Naval Shipyard Copy No. 61 - Philadelphia Naval Shipyard (3300 Copy No. 62 - San Francisco Naval Shipyard Copies 63 and 64 - Publications Board, Navy Department via Bureau of Ships, Code Copies 65 and 66 - Technical Library, Bureau of Ships, Code 337-L

Copy No. 67 - Captain R. B. Lank, Jr., USCG Copy No. 68 - Captain G. A. Tyler, USCG Copy No. 69 - Testing and Development Division Copy No. 70 - U. S. Coast Guard Academy, New London U. S. Maritime Commission Copy No. 71 - E. E. Martinsky Representatives of American Iron and Steel Institute Committee on Manufacturing Problems Copy No. 72 - C. M. Parker, Secretary, General Technical Committee, American Iron and Steel Institute Copy No. 18 - L. C. Bibber, Carnegie-Illinois Steel Corporation Copy No. 8 - C. H. Herty, Jr., Bethlehem Steel Company Copy No. 14 - E. C. Smith, Republic Steel Company Welding Research Council Copy No. 75 - LaMotte Grover Copy No. 73 - C. A. Adams Copy No. 31 - Wm. Spraragen Copy No. 74 - Everett Chapman Committee on Ship Steel Copy No. 76 - R. F. Mehl, Chairman Copy No. 8 - C. H. Herty, Jr., Vice-Chairman Copy No. 77 - Wm. M. Baldwin, Jr. Copy No. 78 - C. S. Barrett Copy No. 79 - R. M. Brick Copy No. 80 - S. L. Hoyt Copy No. 81 - I. R. Kramer Copy No. 22 - M. W. Lightner Copy No. 82 - T. S. Washburn Copy No. 16 - Finn Jonassen, Technical Director Copy No. 83 - R. H. Raring, Technical Secretary Copy No. 84 - C. R. Soderberg, Chairman, Div. Engr. & Industrial Research, NRC Copy No. 3 - V. H. Schnee, Chairman, Committee on Ship Construction Copy No., 16 - Finn Jonassen, Research Coordinator, Committee on Ship Construction Copy No. 85 - Samuel T. Carpenter, Investigator, Research Project SR-98 Copy No. 86 - W. P. Roop, Investigator, Research Project SR-98 Copy No. 87- Norris Barr, Investigator, Research Project SR-98 ~ Copy No. 88 - Ewald Kasten, Investigator, Research Project SR-98 Copy No. 89 - Adolph Zell, Investigator, Research Project SR-98 Copy No. 90 - L. J. Ebert, Investigator, Research Project SR-99

Copy No. 10 - J. M. Lessells, Investigator, Research Project SR-101 Copy No. 91 - C. W. MacGregor, Investigator, Research Project SR-102

Copy No. 92 - C. B. Voldrich, Investigator, Research Project SR-100 Copy No. 93 - Clarence Altenburger, Great Lakes Steel Company Copy No. 94 - A. B. Bagsar, Sun Oil Company Copy No. 95 - E. L. Cochrane, Massachusetts Institute of Technology Copy No. 96 - George Ellinger, National Bureau of Standards ..., Copy No. 97 - M. Gensamer, Carnegie-Illinois Steel Corporation Copy No. 98 - M. F. Hawkes, Carnegie Institute of Technology Copy No. 99 - O. J. Horger, Timken Roller Bearing Company Copy No. 100 - Bruce Johnston, Fritz Laboratory, Lehigh University Copy No. 101 - P. E. Kyle, Cornell University Copy No. 102 - J. R. Low, Jr., General Electric Company Copy No. 103 - N. M. Newmark, University of Illinois Copy No. 104 - W. A. Reich, General Electric Company Copy No. 105 - L. J. Rohl, Carnegie-Illinois Steel Corporation Copy No. 106 - R. D. Stout, Lehigh University Copy No. 107 - Saylor Snyder, Carnegie-Illinois Steel Corporation Staff) Copy No. 108 - J. F. Wallace, Watertown Arsenal Laboratory Copy No. 109 thru 133 - Sir Charles Wright, British Joint Services Mission(Navy Copy No. 134 - Carl A. Zapffe, Carl A. Zapffe Laboratories Copy No. 135 - International Nickel Co., Inc., Attn. T. N. Armstrong Copy No. 136 - Transportation Corps Board, Brooklyn, New York Copies 137 thru 141 - Library of Congress via Bureau of Ships, Code 330c Copy No. 142 - File Copy, Committee on Ship Steel Copy No. 143 - NACA, Attn. Materials Research Coordination, U. S. Navy Copies 144 thru 148 - Bureau of Ships Copy No. 149 -Copy No. 150 -Copy No. 151 -Copy No. 152 -Copy No. 153 -Copy No. 154 -Copy No. 155 -Copy No. 156 -Copy No. 157 -Copy No. 158 -Copy No. 159 Copy No. 160 -Copy No. 161 -Copy No. 162 -Copy No. 163 -Copy No. 164 -Copy No. 165 -Copy No. 166 -Copy No. 167 -Copy No. 168 -Copy No. 169 -Copy No. 170 -Copy No. 171 -Copy No., 172 -Copy No. 173 -Copy No. 174 -Copy No. 175 -

PROGRESS REPORT

NAVY BUSHIPS CONTRACT NObs-45521

PROJECT SR-98

12 INCH FLAT PLATE TESTS

FROM: SWARTHMORE COLLEGE, SWARTHMORE, PA.

SCOTT B. LILLY, DIRECTOR OF RESEARCH

REPORT PREPARED BY:

SCOTT B. LILLY) SAMUEL T. CARPENTER) WENDELL P. ROOP) NORRIS BARR) EWALD KASTEN) ADOLPH ZELL)

STRUCTURAL LABORATORY SWARTHMORE COLLEGE TABLE OF CONTENTS

λŤ.

	rage No.
Abstract	i
List of Tables	11
List of Figures	iii
Introduction	l
Instrumentation	2
Specimen Identification	4
Testing Procedure	4
Test Results:	· .
"A" Steel	5
"C" Steel	6
"B _N " Steel	7
"B _R " Steel	8
"D _N " Steel	8
"E" Steel	9
General Discussion:	
A. Types of Failure	10
B. Specimen Behavior during Testing	11
C. Transition Temperatures	13
D. Effect of Temperature on Maximum Load	16
E. Comparison of Energy to Maximum Load	17
F. Variations due to Location of Specimen	18
in a 6' x 10' Plate	
G. Tenside: Tests	19
H Future Analysis of the Data	20

TABLE OF CONTENTS (Continued)

. ..

	Page No.
Conclusions	22
Organization	23
Bibliography	25
Appendix I:	
Instrumentation and Preparation of Specimens	55
Appendix II:	
Notes on Load-Elongation Curves	66
Load-Elongation Curves	68-98

a state of the second an the state of the second second

and the second second

· · · · ·

•]

17

ABSTRACT

This report contains an account of the testing of the "A", "C", "Bn", "Br", "Dn" and "E" steels, six of the so-called pedigreed steels that were investigated under OSRD and Navy Department contracts. The tests described are tension tests run at various temperatures on specimens 24" long, 12" wide and 3/4" thick, having a central internal notch one-quarter of the width of the plate with ends of the notch 0.010 inch wide made by a jeweler's hacksaw. The load was applied in the direction of the rolling. This program was undertaken because it was believed that tests made under standardized conditions would furnish additional information regarding the behavior of these steels, and would provide a standard that could be used to judge the efficacy of tests of small sized specimens adapted for use as acceptance tests.

The report contains tables giving the load at first visible crack, at maximum load, and at ultimate load, together with the energies computed to those loads. Load-elongation curves for each specimen tested are included, together with diagrams showing maximum load, plotted with temperatures as abscissas, and diagrams showing energy to maximum load plotted with temperatures as abscissas.

The transition temperature zones of these steels based upon the 12" wide plate tests are reported based on energy considerations and on the mode of the fracture.

i

LIST OF TABLES

Table No.	<u>Title</u>	<u>Page No.</u>
1	"A" Steel - Tests of Specimens 12" wide, 3/4" Thick with Standard Notch	27
2	"A" Steel - Tests of Specimens 12" Wide, Made at University of California	28
3	"C" Steel - Tests of Specimens 12" Wide, 3/4" Thick with Standard Notch	31
4	"C" Steel - Tests of Specimens 12" Wide, Made at University of California	32
5	"Bn" Steel - Tests of Specimens 12" Wide, 3/4" Thick with Standard Notch	35
6	"Bn" Steel - Tests of Specimens 12" Wide, Made at University of California	36
7	"Br" Steel - Tests of Specimens 12" Wide, 3/4" Thick with Standard Notch	40
ខ	"Br" Steel - Tests of Specimens 12" Wide, Made at University of California	41
9	"Dn" Steel - Tests of Specimens 12" Wide, 3/4" Thick with Standard Notch	44
10	"Dn" Steel - Tests of Specimens 12" Wide, Made at University of Illinois	45
11	"E" Steel - Tests of Specimens 12" Wide, 3/4" Thick with Standard Notch	49
12	"E" Steel - Tests of Specimens 12" Wide, Made at University of Illincis	50
13	Summary of Transition Temperatures	16
14	Comparison of Maximum Loads	17
15	Comparison of Average Energies for Ductile and Cleavage Modes of Failure	17
		,

i

 $\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} \frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} + \frac{\partial \mathcal{L}}{\partial t} \frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} + \frac{\partial \mathcal{L}$

LIST OF FIGURES

a to a set a set a set to a s

Figure No.	Title	Page No.
1	"A" Steel - Photograph of Fracture Surfaces	26
2	"A" Steel - Maximum Load vs. Temperature	29
3	"A" Steel - Energy to Maximum Load vs. Temperature	29 a
4	"A" Steel - Per Cent Shear Failure vs. Temperature	29b
5	"C" Steel - Photograph of Fracture Surfaces	3 0 ·
6	"C" Steel - Maximum Load vs. Temperature	33
7	"C" Steel - Energy to Maximum Load vs. Temperature	33a
8	"C" Steel - Per Cent Shear Failure vs. Temperature	33b
9	"B _N " Steel - Photograph of Fracture Surfaces	34
10	"B" Steel - Maximum Load vs. Temperature	37
11	"B _N " Steel - Energy to Maximum Load vs. Temperature	37a
12	"B _N " Steel - Per Cent Shear Failure vs. Temperature	37 b
13 .	"B _R " Steel - Photograph of Fracture Surfaces	38
Ц.	Specimen "B _R "-22-12 - Showing Striations Along Fracture Surface	39
15	"BR" Steel - Maximum Load vs. Temperature	42
16	"B _R " Steel - Energy to Maximum Load vs. Temperature	42a;
17	"B _R " Steel - Per Cent Shear Failure vs. Temperature	42b
18	"D _N " Steel - Photograph of Fracture Surfaces	43
19	"D _N " Steel - Maximum Load vs. Temperature	46

.....

- -

LIST OF FIGURES (Continued)

Figure No.	<u>Title</u>	Page No.
20	" D_N " Steel - Energy to Maximum Load vs. Temperature	46ª
21	"D _N " Steel - Per Cent Shear Failure vs. Temperature	46b
22	"E" Steel - Photograph of Fracture Surfaces	47
• 23	Specimen "E"-36-2 - Showing Thumbnails Which Developed During Complete Fracture	48
24	"E" Steel - Maximum Load vs. Temperature	51
25	"E" Steel - Energy to Maximum Load vs. Temperature	5 1a
26	"E" Steel - Per Cent Shear Failure vs. Temperature	51b
27	Specimen "A"-18-13 - Lowest Energy Absorption to Maximum Load of all Specimens Tested	52
28	Specimen "D _N "-33-20 - Highest Energy Absorption to Maximum Load of all Specimens Tested	53
29	Specimen "C"-24-8 - Example of Brittle - Shear - Brittle Mode of Fracture	54

Appendix I

I1	Notch Layout	59
I-2, I-3	Jig Saw Assembly	60-61
I-4	Gages in Calibrator	62
1-5	Gage Assembly	63
1-6, 1- 7	Plexiglas Chamber	64
I-8	Cooling Mechanism	65

LIST OF FIGURES (Continued)

.

ł

101.02 APPENDIX Page No. Title Figure No. 1.00 68-74 Steel A - Load vs. Elongation Fig. 1A to 27A inc. 75-79 Steel Bn - Load vs. Elongation Fig. 1B to 19B 80-84 Steel Br - Load vs. Elongation Fig. 20B to 35B 85-89 Steel C - Load vs. Elongation Fig. 10 to 200 Steel Dn - Load vs. Elongation 90-94 Fig. 1D to 19D Steel E - Load vs. Elongation 95-98 Fig. 1E to 16E

1

PROGRESS REPORT

NAVY BUSHIPS CONTRACT NObs-45521 PROJECT SR-98 12 INCH FLAT PLATE TESTS FROM: SWARTHMORE COLLEGE, SWARTHMORE, PA. SCOTT B. LILLY, DIRECTOR OF RESEARCH

REPORT PREPARED BY:

SCOTT B. LILLY SAMUEL T. CARPENTER WENDELL, P. ROOP NORRIS BARR EWALD KASTEN ADOLPH ZEIL

STRUCTURAL LABORATORY SWARTHMORE COLLEGE

INTRODUCTION

The object of the tests related in this report was to investigate the physical behavior at various temperatures of a large number of 12" wide, full thickness specimens of steel plate. The specimen contains a centrally located internal notch 3" wide terminating with a jeweler's hack saw cut 1/8" long and 0.010" wide (See Figure I-1, Appendix I). All tests were made with tension loading applied in the direction of rolling.

The physical behavior of the steels with respect to maximum loads, strain energy, and mode of fracture was investigated with the principal purpose of establishing transition temperatures based upon 12" wide, 3/4" thick specimens.

The steel tested has been studied by several laboratories and has been designated as "A", "C", "Br", (B as rolled), "Bn" (B normalized), "Dn" (D normalized), "E" and "Q". These were 6' x 10' plates, all 3/4" thick except "Q" steel which was 5/8" thick. All but "Q" have been tested.

The chemical analyses of the steels tested, as previously given on page 35 of the Pennsylvania State College Report^{3*}, are as follows: $\overline{3^*.Numerals}$ refer to references in Bibliography

CHEMICAL ANALYSES

								i e e e	N - 12				
<u>Steel</u>	<u>C</u> %	<u>Mn%</u>	<u>P%</u>	_ <u>S%</u>	<u>Si%</u>	<u>A1%</u>	<u>N1%</u>	<u>Cu%</u>	<u>Cr%</u>	<u>M0%</u>	<u>Sn%</u>	N2%	
A	, 26	• 50	e012	•0 39	.03	. 012	,02	.03	03	•006	.003	004	
Br	,18	•75	.008	.030	.07	.015	•05	•07	.03	•006	.012	.005	
Bn	.18	•73	,011	•030	04	.013	.06	,08	•03	•006	015	•006	
С	,24	•48	.012	. 026	a₀05 _	,016	,02	.03	•03	.005	.003	,009	
Dr	.22	•55	.013	.024	.21	.020	.16	.22	.12	.022	.023	, 00 6	
Dn	.19	•54	.011	•024	.19	•019	.15	,22	.12	.021	.025	•006	
Е	•20	•33	.013	, 020	•01	.009	. 15	,18	. ,09	.018	.024	.005	- ,

The fullest use has been made of reports from the University of California¹, the University of Illinois², and Pennsylvania State College³ as an aid to instrumentation and as an aid in the preliminary determination of the transition temperature.

INSTRUMENTATION

Elongation Measurement: To determine strain energy it was necessary to measure the elongation of the test specimens. The gage length was established as three-quarters of the width of the plate, or 9", with the ends of the gage length $4\frac{1}{2}$ " above and below the notch. The instrument developed permitted a "etermination of the elongations of the plate in both the elastic and plastic range. Bakelite SR-4 gages are used in these instruments. The elongations were measured over twelve separate gage lines. Five of the gage lines were on each of the 12" faces of the plate and two of the gage lines were on the edges. The five gage lines on the face of the plate were located as follows: one at the longitudinal centerline of plate, two $1\frac{1}{2}$ " either side of the centerline, and two 3 3/4" either side of the centerline. The elongation for each gage line was determined separately. The instruments used and the details of mounting them are fully described in Appendix I.

<u>Preparation of Notch:</u> Careful attention was given to the preparation of the notch. The accepted procedure at all laboratories where wide full-thickness plate tests had been made was to use a jeweler's hack saw to establish the acuity of the notch. To provide uniform acuity, the width of the last 1/8 of an inch of the notch on both sides of the internal notch was specified to be 0.010 inch. See layout of notch in Appendix I. A jig-saw was utilized to make the jeweler's hack saw cut. This machine is described in detail in Appendix I.

<u>Temperature Control Chamber</u>: The temperature control chamber was made of Plexiglas, so that the specimen and instruments would be visible at all stages of the test. Strip heaters were installed to give temperatures above that of the laboratory. Two fans at the top of the box insured the circulation of the heated air. Cooling was obtained by blowing air over dry ice and conducting this cool air to the Plexiglas box by insulated ducts. This installation is described and illustrated in Appendix I.

<u>Measurement of Temperature:</u> The temperature was determined by the use of thermocouples. Three thermocouples are mounted on each specimen, one in the 3/4" drill hole in the center of the plate, one $5\frac{1}{2}$ " above the notch in the center of the plate, and the third one located 1/8" from the end of the notch immediately above the junction of the standard and jeweler's hack saw cuts. A fourth thermocouple determined the ambient temperature within the box. A complete description of the instrumentation with photographs of the various pieces of apparatus is contained in Appendix I.

The temperature at the 3/4" drill hole has been used in interpreting all tests.

SPECIMEN IDENTIFICATION

e de la para

The locations of the specimens in the $6^{1} \times 10^{1}$ plate are shown in the upper left-hand corner of the Figures giving load and energy data for each steel. Upon the arrival of the $6^{1} \times 10^{1}$ plates, they were placed in a rack, each slot of which was numbered. Therefore, the number A-18-8 means that it is the 12" wide, 24" long specimen from the plate of "A" steel racked in slot 18, and its position within the $6^{1} \times 10^{1}$ plate was No. 8. This method of cut= ting the plate gives eight specimens from the outside edges of the plate, four specimens in the central area of the plate, and eight specimens for the intermediate positions in the plate for a full size $6^{1} \times 10^{1}$ plate.

TESTING PROCEDURE

The general method of testing was to load the specimen to 10,000 lbs, and determine the initial readings of the Elongation Gages. The load was then increased to 190,000 lbs. and the gages read. The load was then reduced to 10,000 lbs, and the initial readings were checked. The test was then started by increasing the load to 190,000 lbs. and proceeding from this load by load increments which produced approximately equal steps of deformation as measured by the edge gages. The total load and the elongation on all gage lines was then determined. During every series of elongation readings the pump of the testing machine was cut off. If the load on the specimen fell off due to plastic deformation, high and low load readings were made. In plotting loadelongation curves the high load has been used.

Load-elongation curves for each specimen are given in Appendix II.

" - Z -

"A" STEEL

Figure 1 shows the fracture of all 27 specimens of the "A" steel. It is noteworthy that fractures of the "A" steel were usually either 100% shear or 100% cleavage failures. Attention should also be called to the symmetry of the fractures. The mode of fracture, cleavage or shear, was very similar on both sides of the notch except for six specimens where a shear failure in a single plane occurred on one side and a double plane shear failure occurred on the other side of notch. Shear failures progressed outward from each end of the notch at the same rate.

Table 1 gives the load and the energy in inch-1bs. to the first visible crack, to maximum load, and to failure. It also gives the temperature and the type of failure in terms of the per cent of shear failure within the 9" net width. Table 2 shows in tabular form the data on energy to maximum load obtained at the University of California¹ on 12" wide plates.

Figure 2 shows the maximum loads plotted as ordinates with temperatures as abscissas. In Figure 3, energies to maximum load are plotted as ordinates with temperatures as abscissas. The data obtained at the University of California¹ on plates 12" wide are superimposed on the Swarthmore data. Figure 4 is a plot of the percentage of shear failure in the various specimens of "A" steel.

The decision to include data on load and energy to the first visible crack deserves some explanation. It was visually observed that the first sign of fracture generally occurred at the mid-thickness of the plate. The load to produce the visible crack varied only slightly with the specimen for a given type of steel and seemed to be independent of the type of fracture which occurred later.

"C" STEEL

<u>Type of Fracture:</u> The behavior of the "C" steel was very erratic. The fractures of many of the "C" steel specimens are shown in Figure 5. There are instances of cleavage fracture followed by shear fracture, cases of shear fracture followed by cleavage fracture, and other cases where cleavage is followed by shear which is followed in turn by cleavage fractures. These mixed types of fracture occur over wide ranges of temperature. The fractures in almost every specimen were symmetrical about the centerline and had the characteristic "thumbnail".

Table 3 gives the load and the energy in inch-lbs. to the first visible crack, to maximum load and to failure. It also gives the temperature and the type of failure in terms of the per cent of shear failure. Table 4 shows the data on energy to maximum load obtained at the University of California¹ on 12" wide plates.

Figure 6 shows the maximum loads as ordinates and Figure 7 shows the energies to maximum load as ordinates, with temperatures as abscissas in each case. Again, the data obtained at the University of California¹ on plates 12" wide are superimposed. Figure 8 represents a plot of the per cent of shear failure observed in each specimen. The abscissas in these curves are temperatures and the ordinates are percentages of shear failure computed on the basis of the net width of 9".

It is of great interest to note that there are often two load maxima in the load elongation curves. Attention is called to Figures 4C, 5C and 9C in Appendix II illustrating this phenomenon. The first maximum is the load at which a cleavage fracture occurs, extending over only a part of the crosssection. When this type of fracture occurs the load drops, and if the load is

· •

increased again there is a second maximum. This may be at a load higher or lower than the first. The specimen may then fail by cleavage or continue to yield.

"Bn" STEEL

Nineteen specimens of "Bn" steel were tested, their fracture surfaces being shown in Figure 9. All these fractures started with an initial shear zone, although in the case of specimens 1 and 7 the zone was small. Examples of the initial shear zone may be seen on the right halves of specimens 4 and 11 where the small dark patches at the end of the notch indicate the presence of a shear area.

Table 5 gives the data for the "Bn" steel.

Figure 10 gives the maximum loads as ordinates, Figure 11 the energies to maximum load as ordinates, and Figure 12 the per cent shear, with temperatures as abscissas in each case. Data taken at the University of California¹ are given in Table 6 and the values are plotted in Figure 11.

The "Bn" shear specimens exhibited along their fracture surface striations composed of many small "terraces" mainly to be found around the mid-thickness of the specimen. These "terraces" interrupt the shear surface as flat areas parallel to the specimen surface and are of the order of 1/64" wide. It can be noted at this time that the "Br" steel when fractured exhibited definite striation bands with a middle zone appearing coarser in texture. The "terraces" mentioned for "Bn" steel are undoubtedly associated with these characteristics found in "Br" steel.

"Br" STEEL

The fracture surfaces of the 16 specimens of this steel as shown in Figure 13 are characterized by cleavage fracture of a very coarse appearance, which has not been observed in the other project steels tested at Swarthmore. The shear mode of failure is also unique in that it almost always exhibited a double striation along the fracture, as is shown for example, in Figure 14. The word striation has been used here in an attempt to avoid misleading the reader as to the nature of this effect, which has been variously called lamination, banding, fissuring, etc. by visitors to the Swarthmore laboratory. In Figure 14, three zones of approximately equal thickness may be seen, giving the fracture the appearance of a sandwich. Near the notch localized separation characteristics of laminations may be noted.

Table 7 gives the data for Br steel. The maximum loads are plotted as ordinates in Figure 15, energies to maximum load as ordinates in Figure 16, and per cent shear as ordinates in Figure 17, with temperatures as abscissas in each case. The energy plot also includes the data taken at the University of California¹, and shown in Table 8.

"Dn" STEEL

Figure 18 presents the fracture surfaces of the nineteen "Dn" specimens, six of which are all shear, nine all cleavage (except for an initial shear zone), and four specimens (Nos. 2, 8, 12, 17) have mixed fractures changing from an initial shear to a cleavage failure. In the case of specimen No. 17, one side remained shear while the other altered from shear to cleavage. Specimens No. 2 and No. 8 were very similar in their performance, each start-

- 8.-

ing to fracture with a single shear surface on one side of notch and a double shear surface on the other side of notch. These two specimens fractured in the cleavage mode after the maximum load was reached. Table No. 9 gives the Swarthmore data for "Dn" steel. University of Illinois ² data for energy to maximum load are shown in Table 10.

Figure 19 shows the maximum loads plotted as ordinates, Figure 20 the energies to maximum load as ordinates, and Figure 20 the per cent shear as ordinates with temperatures as abscissas in each case. University of Illinois² data are superimposed on the Swarthmore data in Figure 20

"E" STEEL

The behavior of the 16 specimens of "E" steel is quite erratic, although not to the degree found in "C" steel. It is interesting to note that only these two steels were characterized by "thumbnails" adjacent to the notch. These "thumbnails" are quite evident in Figure 22 which shows the fracture surfaces of "E" steel. The formation of the "thumbnails" was accompanied by a sharp snap clearly audible to the test crew, together with an abrupt drop in Load of 20,000 to 50,000 lbs.

Specimen E-36-2, shown in Figure 23, is of interest. To the test crew it seemed that the cleavage fracture occurred "instantaneously" over the entire cross-section. Subsequent examination of the fracture surface showed the familiar "thumbnails" which may indicate that the crack front paused for a very small increment of time and then proceeded to complete failure.

Table No. 11 gives the Swarthmore data for "E" steel. University of Illinois² data for energy to maximum load are shown in Table 12. Figure 24 gives the maximum loads plotted as ordinates, Figure 25 the energies to

- 9 -

maximum load as ordinates with University of Illinois data superimposed, and Figure 26 the per cent shear as ordinates with temperatures as the abscissas in each figure. By a comparison of the latter two figures with Figures 7 and 8 for "C" steel, it appears that the "C" steel is somewhat more erratic than "E" steel in both its energy-absorbing and per cent shear characteristics.

GENERAL DISCUSSION

• • • •

general entering and a second

A. Types of Failure:

Generally specimen fracture occurred in two extreme modes cleavage and shear; however, the following sequences of fracture as fracture progressed from the notch were also observed in individual specimens: cleavage to shear, shear to cleavage, cleavage to cleavage, cleavage chear - cleavage, and shear - cleavage - shear. The shear failures were of two types, one of which had a single surface and the other a double surface. Cleavage fractures exhibited a sparkling granulated surface while the shear fractures appeared dull.

Photographs of the grids of the specimens having the lowest and highest energy absorption tested at Swarthmore are shown in Figures 27 and 28 respectively. Figure 29 depicts a cleavage - shear - cleavage fracture as exemplified by specimen C-24-8.

The appearance of the fracture as based upon the per cent shear was estimated as follows: the sum of the lengths of shear tears on both sides of the notch was divided by the total length of fracture surface. It must be noted that the latter length is not always the 9" of net cross section since some ductile tears do not proceed straight across the specimen but make an angle to the transverse axis such as shown for specimen D_n -33-20 in Figure 28.

"B. Specimen Behavior During Testing:

A number of interesting observations were made of specimen behavior during the program. The first to be spoken of is the vibrational response of the steels, which was first noticed in the following manner. The electrical instrumentation for measuring elongation was composed of the conventional setup of SR-4 Bridge Balance Unit and Strain Indicator, and it was the latter which was used in setting points on the load-elongation curve, the load being taken as the dependent variable and the elongation as the independent variable. While loading a ductile specimen the needle of the Strain Indicator would rotate uniformly over the meter face. After a number of experiments had been run, it was definitely established that cleavage fracture of a specimen was almost always preceded by one of two different motions of the needle.

The first type consists of a "stepping" or jerking motion of the indicator needle, always in the same direction. In the second type, the needle progressed with an oscillatory motion of three or four cycles per second superimposed on the steady movement of the needle during increasing load. Such oscillation was intermittent in the early stages preceding cleavage fracture, but became continuous as the break was approached. The amplitude of this vibration is estimated to be of the order of .0005" over the 9-inch gage length.

In some specimens these motions stopped suddenly and such specimens ultimately failed by shear. It is considered very probable that the inertia of the moving parts of the galvanometer was sufficiently large to mask higher frequency components coming from the gage. The SR-4 gages were of the static type and hence the gages could also mask the response.

- 11 -

The characteristic behavior described above was not found in those cleavage failures which occurred after a ductile maximum load had been passed.

The possibility was considered that the vibration might be magnetically induced in the gages by changes in the specimen. To check this, a coil of 1000 turns was mounted around the specimen, its leads being fed into an oscilloscope. No observable effects were indicated by this method even though the input condenser of the oscilloscope for some tests was shorted out to be certain that very low frequency voltage changes were not being blocked. The conclusion of this approach was that the magnetic effects, if any, have such a low time rate of change that the voltage induced by them was too minute to investigate in such a manner.

The second observation of specimen behavior is what might be called delayed fracture. It is convenient to discuss this in terms of testing procedure, as follows. When the elongation readings at one load were completed, an additional load was applied until the next increment of elongation was reached, at which point the pump of the testing machine was cut off and the elongation and thermocouple readings taken. The whole cycle of pumping and reading usually required about two minutes with half a minute needed for reading the 12 elongations. With this in mind, it is interesting to note that 13 specimens (slightly over 10% of the total tested) failed by cleavage after the pump was cut off, at which time the load would be slowly falling. These specimens fractured shortly after the maximum load had been reached and at a load lower than the maximum by five to ten thousand pounds.

The third observation concerning specimen behavior may well be closely related to the above. This concerns those specimens which

- 12 -

failed by cleavage while reloading the specimen after completing a set of readings, fracture taking place before the previous maximum load had been reached. The five specimens in this group were C-24-19, Bn-21-8, Bn-21-14, Br-22-9, and Dn-33-16. (See Figures 5,9,13, 18, and loadelongation curves, Appendix II.)

The last consideration of specimen behavior is the "double maxima" observed for certain specimens of "C" and "E" steels. This effect can produce considerable discrepancies in the energy to maximum load. For example, specimen E-36-10, Figure 6E, Appendix II, has a difference of only 300 lbs. in the two peak loads; yet the energy to the second maximum load was almost $2\frac{1}{2}$ times the energy to the first maximum load. Although it is possible to make the energy yersus temperature plots take on a more desirable appearance by using one or the other value, the points in the energy-temperature plots have been plotted strictly in accordance with the numerically greater load.

C. <u>Transition Temperatures:</u>

Criteria for transition temperature are varied and depend largely upon the person making the interpretation. Many experimentors believe in drawing the best curve through the energy (to maximum load) temperature data and using certain points on this curve to define the transition temperature. In this report we have avoided drawing energy-temperature curves, since the scatter and weighting of data will rule the type of curve.

At this time it appears that decisions relative to transition temperature can be realistically discussed only by considering the data for each steel separately. The transition temperatures are stated as a zone of temperature.

- 13 -

<u>"A" Steel</u> - Fractures with a low energy absorption occurred at a temperature as high as $58^{\circ}F$. High energy levels were observed for temperatures down to $42^{\circ}F$. The transition temperature for "A" steel on the basis of these data has been judged to be in a zone between $42^{\circ}F$ and $58^{\circ}F$. (Sec Figure 3).

- 14 -

The transition temperature zone based on appearance of the fracture as evaluated in terms of the per cent of shear also lies between 42° F and 58° F. (See Figure 4).

<u>"C" Steel</u> - Fractures with a low energy absorption occurred at a temperature as high as $90^{\circ}F$ and a high level of energy absorption prevailed for temperatures down to $98^{\circ}F$ if test No. 8 is omitted. Hence these data would place the transition temperature of "C" steel in a zone from $90^{\circ}F$ to $98^{\circ}F$. (See Figure 7).

The transition temperature zone based on appearance of the fracture as evaluated in terms of the per cent of shear lies between $90^{\circ}F$ and $116^{\circ}F$. (See Figure 8).

<u>"Bn" Steel</u> - Neglecting specimens No. 3 and 6 because No. 3 is overweighted by specimens 4, 10, 11 and 15 and No. 6 is overweighted by specimens 2, 9, 14, and 18, the transition temperature appears to be in a zone between 25° to 30° F. (See Figure 11).

The transition temperature zone based on appearance of the fracture as evaluated in terms of the per cent of shear also lies between 25° and 30° F. (See Figure 12).

The transition temperature zone based on appearance of the fracture as evaluated interms of the per cent of shear also lies between 10° F and 15° F. (See Figure 17).

<u>"Dn" Steel</u> - From the energy data, high energy absorption occurs for a temperature as low as 10° F, and low energy absorption occurs for a temperature as high as 16° F. Hence the transition temperature zone has been interpreted as being between 10° and 16° F. (See Figure 20).

The transition temperature zone based on appearance of the fracture as evaluated in terms of the per cent of shear lies between 15° and 25° F. (See Figure 21).

<u>"E" Steel</u> - On the basis of energy data, the high level of energy is judged to have a lower temperature limit at $92^{\circ}F$. $92^{\circ}F$ also marks the upper temperature limit at which low energy absorption occurred. The lower limit of the transition zone has been deemed to be at about $70^{\circ}F$. Hence the transition temperature has been estimated to lie in a zone between $70^{\circ}F$ and $92^{\circ}F$. (See Figure 25).

The transition temperature zone based on appearance of the fracture as evaluated in terms of the per cent of shear appears to lie between 70° and 100° F. (See Figure 26).

The above findings with reference to transition temperature are summarized in the following table.

- 15 -

TABLE 13

3	Summary of Transition Temperature Zones
Stcel	Based on Energy Absorption Based on to maximum load Percentage of Shear
A	42° to $58^{\circ}F$ 42° to $58^{\circ}F$
C and a	90° to 98° F 90° to 116° F
Bn	25° to 30° F 25° to 30° F
Br	10° to 15° F 10° to 15° F
Dn	10° to 16° F 15° to 25° F
E	70° to 92° F 70° to 100° F

The mechanism by which steel either fails in the cleavage or shear mode is not clearly understood. If identical homogeneous steel specimens were subjected to carefully controlled tests it might be expected that the transition from shear to cleavage fracture would occur at a single temperature rather than in a temperature zone. Physical discontinuities are usually accompanied by sharp breaks in performance characteristics. The "Br" steel illustrates the point in question, test specimens 5, 10, and 12 exhibiting shear failure, while specimens 2 and 7 indicate cleavage failure, when all of these specimens were tested at approximately the same temperature.

D. Effect of Temperature on Maximum Load:

In making a comparison of maximum loads it must be realized that for a cleavage failure the fracture load is usually the maximum load, while the maximum load for a ductile specimen is not the fracture load. In general the average maximum load is approximately 50,000 pounds lower in the cleavage mode than in the shear mode. A summary of average maximum loads for those specimens failing in the completely shear or completely cleavage modes for the various steels is shown in the following table.

· ,

Steel	<u>Column 1</u> Average Max. Load in lbs. Specimens failing in 100% Shear	<u>Column 2</u> Average Max. Load in lbs., Specimens failing in 0% Shear	Ratio of Column 1 to Column 2
A	317,000	268,000	1,18
C	348,000	294,000	1.18
Bn ·	319,000	286,000	1.11
Br	333,000	288,000	1.16
Dn	346,000	311,000	1.11
E .	318,000	264,000	1,20

TABLE 14

E. Comparison of Energy to Maximum Load:

de la serie de

The average energies to maximum load for the various steels for specimeus which broke by shear and by cleavage are:

TABLE 15

Steel	Column 1 Average Energy to Max. Load for Specimens failing in 100% Shear.In. 1bs.	Column 2 Average Energy to Max. Load for Specimens failing in 0% Shear. In. 1bs.	Ratio of Column 1 to Column 2
A	95,700	25,500	3.75
С	105,000	38,400	2.74
Bn	122,000	47,800	2,56
Br	131,000	34,300	3.80
Dn	128,000	49,200	2,60
E	99,800	32,000	3.12

It can be noted by comparing the ratios of "shear" to "cleavage" energy in Table 15 with the ratio of "shear" to "cleavage" loads in Table 14, that the ratios of load are more consistent.

The high ratio of energy in the shear mode to energy in the cleavage mode for steels "A" and "Br" may possibly be explained by the presence of laminations in the "A" steel and the striations in the "Br" steel.

An additional complication in comparing energy arises from the occurrence of two peak loads while straining the specimen, of which the first or the second load may be the greater. This is common for steels "C" and "E" and is shown for example in Figures 10C, 11C, 6E and 8E.

F. Variations Due to Location of Specimen in a 6' x JO! Plate:

The tests were planned so that differences due to location of specimens within a 6' \times 10' plate could be studied. It was desired to compare the specimens taken from the outer longitudinal zones of a rolled plate with specimens from the center zones of the plate, as well as comparing specimens taken from the same longitudinal zone in the direction of rolling.

The results do not enable any general statements to be made relative to the effect of longitudinal or transverse position of the specimen within the plate. It appears, however, that local variations or inhomogeneities in a plate are likely to have more effect than normal metallurgical and rolling variations within the plate.

As an example of differences in energy absorption, see Figure 16 and note that specimens 9, 11 and 17 of the "Br" steel were all tested at approximately 2°F. A comparison of specimen 9 from the center zone and Specimen 17 from the outside zone shows less energy variation between these specimens than shown by Specimens 9 and 11 taken from the center zone.

- 18 -

On the same figure also note the great differences between specimens 5 and 7 which were taken from the same longitudinal strip. When a small number of specimens exist, a comparison of outside and center specimens is meaningless unless specimens lying in the same longitudinal zone behave consistently alike at a given temperature. Cases of agreement may be noted by comparing specimens 19 and 20, and 10 and 12 on Figure 16. A careful study of all steels shows no consistent performance.

G. Tensile Tests:

The yield point and tensile strength of the various steels were determined by using one 6" wide, 48" long, and 3/4" thick unnotched specimen of each steel. The results are tabulated below.

<u>Steel</u>	Yield Point	Tensile Strength
A	31400	59500
C	37400	67800
Bn	32100	59300
Br	32200	57700
Dn	34300	61300
E	33200	59200

The above values, when compared with transition temperatures, show no relationship between strength and transition temperatures. The average maximum loads tabulated in Table 14 bear a closer relationship to the tensile strength but even here a strict correlation is not achieved.

The comparison of average energy for ductile behavior with tensile strength shows that "Br" steel, having the highest average energy absorption, has the lowest tensile strength.

H. Future Analysis of the Data:

The recorded data may be analyzed and interpreted in various ways. Since the same facts may be seen from different points of view, consequences stemming from a given point of view are left for consideration separately from the facts themselves, and will be the subject of further analysis.

A - 11

As an <u>index of ductility</u> use has been made of the energy absorbed by the specimen, taken up to the point of the maximum load on the loadelongation curve. In ductile specimens this point is not well-defined, since the curve there is quite flat. Such a curve is given in the report for each specimen and the limit to which the energy value is taken may be chosen by a reader in <u>any way</u> desired. The limits used in the analysis of this report are indicated on the curves.

This choice for the index of ductility was made partly because it has been used in earlier work, but also partly because it is less subject to doubt as to its exact value than the other index which might be used, namely, the energy to fracture. It is recognized that in some design problems energy to fracture may be the significant quantity.

As an index, a value of energy may be preferred to deformation, or to an estimate based on appearance of fracture, because energy is itself pertinent in design and not simply an indicator whose validity must be established by some process of correlation.⁴

The threshold of brittleness also may be chosen in different ways. At a sufficiently high temperature no risk of brittleness exists, but as temperature is reduced, a temperature is reached at which this is no longer true. At lower and lower temperatures the chance of brittle action becomes greater and greater. No need is folt to follow this development

, 20 -

to the point where the chance approaches certainty of brittleness, since material certain to act in a brittle mode is useless for structural applications.

However a limit must be set for what is acceptable. For convenience in the work of several laboratories the threshold has been put at the temperature at which the index of ductility has fallen to half its value at the upper level. This does not at all mean that a 50-50 chance of brittle fracture is acceptable in service structures; it leaves the whole question of the prediction of the threshold in service from laboratory tests on a relative basis. The ground for this choice is that the halflevel threshold is easier to determine than the more indefinite limit at which the sloping line of transition levels off at the fully ductile value of the index.

Wherever possible, it is preferred to place the threshold at the beginning of transition, the temperature below which ductile behavior is no longer assured.

The reason for this choice is as follows: placing the threshold at half-value of the index overestimates the security in the case of a material whose transition zone covers a wide range of temperatures, or whose transition line slopes moderately and not steeply.

In addition, however, another margin of security must also be provided even if the criterion places the threshold at the point of departure from the upper level, since this point is in itself uncertain. The question is how far above the threshold must we stay to be <u>sure</u> of not going below it.

- 21 -

An analysis by which a line may be fitted to transitional data, and at the same time the tolerance of the threshold measured, has been described in Reference⁵. An analysis of the data in the present report will be made according to the scheme there described and will be separately reported.

CONCLUSIONS

1. The tentative transition temperature zones as found for the various steels is reported as follows, as based on two criteria:

Steel	Based on Energy Absorption	Based on Percentage of Shear	
A	42° to 58° F	42° to $58^{\circ}F$	
e	90° to 98°F	90° to 116°F	
Bn	25° to 30° F	25° to $30^{\circ}F$	
Br	10° to 15° F	10° to 15° F	
Dn	10° to 16°F	15° to 25° F	
E	70° to 92° F	70° to 100° F	

Summary of Transition Temperature Zones

- 2. The ratio of the average maximum loads for specimens failing in 100% shear to the maximum loads for specimens failing in 0% shear was found to be practically constant for all steels tested.
- 3. The ratio of the average energy for specimens failing in 100% shear to the average energy for specimens failing in 0% shear is variable for the separate steels. A comparison between "Bn" and "Br" indicates a higher ratio for "Hn". This may be due to normalizing.
- 4. The tensile tests of unnotched specimens indicate no correlation between tensile strength and the transition temperature, energy absorbed, or maximum loads for the notched specimens.
- 5. The vibrational phenomenon observed in measuring strains for specimens that were later to prove brittle is worthy of further experimental investigation. This may lead to a clue regarding the physical changes prior to cleavage failure.

ORGANIZATION

The investigations were conducted at Swarthmore College in the Structural Engineering Laboratory. The late Scott B. Lilly, Chairman of the Division of Engineering, was the Technical Representative for the Project, and the work was performed under his general direction.

Samuel T. Carpenter, Professor of Civil Engineering, and Norris Barr, Research Associate in Engineering, have been in charge of the technical phases of the investigation. Captain W. P. Roop, USN (ret.), has acted as a technical consultant and has given invaluable assistance.

To a large degree, the success of the instrumentation of this project has been due to the efforts of Ewald Kasten, Mechanician. In addition, Mr. Kasten has directed the shop work, which has been done by the following staff: Theodore Bartholomew, Lawrence Robbins, Arnold Bleiman, Walter Cosinuke, Richard M. Turner, and Robert Vernon.

Adolph Zell has served as a general technician on this project and has assisted in taking all data. John O. Briggs has made the drawings. Frances Shero and Ruth Sommer have assisted greatly in the preparation of the manuscript. Clifford Renshaw, Jr. and Steve Mucha have acted as photographers. Dr. Finn Jonassen, of the National Research Council, has been a constant adviser.

Martin Schuler, Schuler, Schuler, Martin Schuler,

•

$\tau_{1} \neq -\tau_{1}$

BIBLIOGRAPHY

- Final Report on Causes of Cleavage Fracture in Ship Plate, University of California, Research Project SR-92, Contract NObs-31222, Serial No. SSC-8, January 17, 1947, by Harmer E. Davis, G. E. Troxell, Earl R. Parker, A. Boodberg, and M. P. O'Brien.
- 2. Final Report on Cleavage Fracture of Ship Plates as Influenced by Size Effect, University of Illinois, Research Project SR-93, Contract NObs-31224, Serial No. SSC-10, June 12, 1947, by W. M. Wilson, R. A. Hechtman, and W. H. Bruckner.
- 3. Progress Report on Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests, Pennsylvania State College, Research Project SR-96, Contract NObs-31217, Serial No. SSC-9, March 19, 1947 by M. Gensamer, E. P. Klier, T. A. Prater, F. C. Wagner, J. O. Mack, and J. L. Fisher.
- 4. "Tests of Ductility in Ship Structure" by Wendell P. Roop, Symposium of the American Society for Testing Materials, at Detroit, Michigan, June, 1948.
- 5. "Temperature Transitions in Ductility of Steel" by Wendell P. Roop, Welding Research Supplement to the Welding Journal, p. 748s to 752s, December, 1947.

Fig. 1 "A" STEEL PHOTOGRAPH OF FRACTURE SURFACES

"A" Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack saw)

		Visibl	e Crack		Max.	Load		Fai	lure		
	Temperature	Energy	Load		Energy	Load		Energy	Load	Type of Fa	ailure
Spec. No.	oF	in-1bs.	lbs.		in-1bs.	<u>lbs</u> .		in-1bs.	lbs.	💋 🖇 Shea:	<u>r</u>
		4 500			10 000	are kno		13 800	2/8:500	0	
A-18-13	31	6,500	247,500		13,000	240,500	7	1), 000	283.000	ں م	
A-19-11	38	1,100	230,000		29,300	283,000		29,500	265,000	0	
A-19-2	38	5,800	240,500		22,800	265,400		22,000	205,400	10	
A-19-3	38	6,400	245 , 000		61,600	312,500		61,600	312,500	10	
A-18-5	40	4,200	241,000		21,900	270,300		21,900	270,300	100	
A-19-9	42	4,000	230,000		95,900	321,600	•	234,500	60,000	100	
A-19-1	42	2,800	230,000		22,400	265,500		22,400	265,500	0	
A-19-4	46	1,100.	230,000		24,400	256,000		24,400	256,000	0	
A-19-12	46	1,200	230,000	-	117,300	328,000		249,200	131,000	100	
A-18-17	48	10,300	235,500		43,100	283,000	10 J. U.	43,100	283,000	0	-1
A-18-15	5 0	11,200	248,000	-	100,900	319,500	· ·	240,900	80,000	100	27
A-18-6	51	7,800	241,500		91,500	322,000	7	236,300	67,000	100	al a
A-18-14	52	4,000	234,500		20,700	265,000	200 T 1	20,700	265,000	0	
A-18-2 0	58	8,500	240,000		31,000	274,000		31,200	274,000	0	
A-18-7	58	14,100	250,000		92,400	319,500	1993 B. B.	233,900	68,000*	100	
A-18-16	58	8,300	235,000	-	100,500	319,000	}∕a, 9	250,600	72,000*	100	
A-18-8	59	11,700	243,700		91,100	318,000	22	232,100	52,000*	100	
A-18-11	66	18,700	253,000	-	104,600	315,000	~ ~	229,400	58,000	100	
A-18-3	- 66	12,800	243,000		92,800	314,300		234,000	50,000	100	
A-18-12	71	17,100	250,000		86,400	314,400		247,100	95,000	100	
A-18-18	71	16,600	250,000	-	104,300	317,000		263,700	15.000	100	
A-18-4	71	10,100	243,000		84,700	312,500		232.700	76,500	100	
A -18- 19	82	10,900	237,600		99,700	314,000		274.000	90,000	100	
A-18-1	88	12,600	238,000		82,400	312,200		237,900	50,000	100	
A-18-9	88	11,300	240,000		98,100	314,500		255,600	50,000	100	
A-18-10	97	15,300	248,500		93,000	314,000		230,200	50,000	100	
A-18-2	97	12,400	238,000	•	92,500	311,500	$\sum_{i=1}^{n} (i_i X_i)$	263,700	50,000	100	

* Indicates that this was not the load at fracture, but is given as the last load immediately preceding fracture.

S

"A" Steel

TESTS OF SPECIMENS 12" WIDE MADE AT UNIVERSITY OF CALIFORNIA

NObs - 31222

1 28 28

	Spec, No.*	Temp. ^O F	Energy to Max. In-1bs,	Load	Type of Failure <u>% Shear</u>
* • • · · · · · · · · · · · · · · · · ·	A-5	(-9)-(-8)	14,400		0
	A-41x	7-8	19,000		0
	A-4	11	16,300		0
	A-42x	19	15,000		0
العرب المح	A-2	31-33	104,000		26
	A-3	50	96,000		100
·	A-1	86	98,000	-	77
				·	• •

* These are the designations of plates assigned by the University of

<u>-</u>

California as described in their final report.¹

29Ъ

PHOTOGRAPH OF FRACTURE SURFACES

"C" Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack saw)

		<u>Visible Crack</u>		Max.	Load	Fail	Failure		
	Temperature	Energy	Load	Energy	Load	Energy	Load	Type of Fail	ure
Spec. No.	o <u>F</u>	in-1bs.	<u>lbs.</u>	in-lbs.	<u>lbs</u> .	in-lbs.	<u>lbs.</u>	% Shear	
C-24-7	63	1,700	256,300	18,600	287,500	18,600	287,500	0	
C-24-19	63	15,100	273,000	32,600	281,000	32,600	252,000	0	
C-24-14	73	15,100	275,000	. 29,200	316,000	29,200	316,000	0	
C-24-17	73	40,400	286,000	40,400	286,000	140,100	72,500	65	
C-24-5	74	2,000	227,700	42,000	291,700	151,400	60,000	59	
C-24-13	78	12,100	267,500	40,500	295,000	40,500	295,000	0	
C-24-8	81	4,300	261,500	97,600	308,300	114,600	298,000	15	
- G-24-2 0	82	15,700	276,000	42,800	291,200	57,100	236,800	0	1
C-24-6	88	4,500	255,500	55,200	310,700	137,100	147,000	40	
0-24-15	88	15,900	275,500	49 ,7 00	293,000	49,700	293,000	Q	сц
C-24-18	89	33,400	292,000	33,400	292,000	45,200	278,700	0	1
C-24-10	96	22,500	28 7, 500	69,700	311 , 500	147,300	54,000	58	
C-24-2	97	1,900	248,500	87,300	308,500	205,300	17,000	71	
C-24-9	107	15 , 500	271,000	91,200	321,500	278 ,8 00	7 5,000	89	
C-24-1	108	3,900	249,000	128,900	370,000	268,900	216,400	63	
C-24- 3	116	5,8 00	254,500	130,600	360,000	238,300	50,000	100	
C-24-11	116 -	30,100 .	-300,000	117,000	371,500	- 329,200	60,000	100	
C-24-4	124	10,100	262,500	104,200	369,0 00	299,400	80,000	100	
C-24-12	124	8,500	250,000	95,300	344,100	236,700	59,000	92	
C-24-16	130	14,200	275,000	91,300	374,000	291,200	100,000	100	

3

"C" Steel

TESTS OF SPECIMENS 12" WIDE MADE AT UNIVERSITY OF CALIFORNIA

NObs - 31222

	Spec. No.* Temp. ^O F	Energy to Max. Load in-1bs.	Type of Failure <u>% Shear</u>	
	c-1 32-33	13,400	0	
	C-2 84	20,300	3	·.
	C-52x 90	72,000	10	
	C-3 101	85,000	51	
	C-51x 120-123	93,000	100	
	C-11x 132-136	83,000	93	
	C-5 141-145	78,000	91	٠.
•_•				

* These are the designations of plates assigned by the University of

.

. . . .

.

California as described in their final report.

· · ·

کی در در میرد روسه ۲۰۰ میرد مرابع ۲۰۰ میرد روسه در در میرد روسه در در

.

.

-

<u>.</u> -

1 32

1.

£

į.

33b

Fig. 9 "Bn" STEEL

PHOTOGRAPH OF FRACTURE SURFACES

" B_N " Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack sa

		Visible Crack		<u>First Maximum</u>		Second Max.		Failure		Type of
	Temp.	Energy	Load	Energy	Load	Energy	Load	Energy	Load	Failure
Spec. No.	°F	in-1bs.	<u>lbs.</u>	in-1bs.	<u>lbs</u> .	<u>in-1bs.</u>	lbs.	in-1bs.	lbs.	% Shear
B _N -21-7	-8.9	4,700	,238,000	41,500	272,000	-		41,500	272,000	0
BN-21-1	-1.2	7,700	240,000	32,900	270,800		· · ·	32,900	270,80 0	0
BN-21-8	1,2	6,300	242,000	41,300	283,400	44,500	279,400	44,500	279,400	l
BN-21-2	9.1	6,400	238,700	59,700	295,700	-	-	59,700	290,000	3
BN-21-9	9.2	7,700	240,500	53,900	289,300	-	-	53,900	289,300	3
By-21-18	9.9	4,900	243,400	30,000	274,000	-	-	30,000	274,000	0
BN-21-6	10.0	4.000	240,000	137,000	326,300	-	-	309,100	50,000	100
BN-21-14	10,0	4,600	245,400	49,200	292,500	51,000	288,000	57,000	288,000	2
B _M -21-10	18,9	5,200	236,300	70,200	309,000	-	_	70,200	309,000	3
BN-21-3	19.8	6,500	234,800	125,600	321,800	-	-	266,700	199,000	66
BN-21-4	23.8	3,300	227,500	56,100	299,400		-	56,100	299,400	3
BN-21-11	24.5	6.400	234,800	60,600	294.700	-	-	60,600	294,700	3
By-21-15	25.3	5,900	233,800	29,800	263,500		÷	29,800	263,500	1
BM-21-12	29.4	6.400	234,500	121,500	318,900	-	-	293,500	25,000	100
BN-21-17	29.8	5.700	234,900	120,000	317,700	_	-	290,400	50,000	100
B _M -21-16	29.9	4.700	237,600	118,200	320,400	-	_	295,600	22,000	100
BN-21-20	30.2	4,900	235,500	119,000	324.800	-	_	294,000	40,000	100
B _N -21-19	41.3	3.400	229,800	123,500	316,000	-	-	287,200	30,000	100
B _N -21-5	73.8	3,800	222,500	115,000	310,000	-	-	292,500	41,000	100

" B_N " Steel

TESTS OF SPECIMENS 12" WIDE MADE AT UNIVERSITY OF CALIFORNIA

· . · .	•	NObs - 31222	•.
Spec. No.*	Temp. F	Energy to Max. Load	Type of Failure <u>% Shear</u>
B-8	(-12)-(-10)	22,000	0
B-21x	10	53,000	0
B-10	10-15	116,000	87
B-2	32-36	134,000	78
B-5	50-51	121,000	100
B-4	89	133,000	94
			•

. . . .

1 8 £.

* These are the designations of plates assigned by the University of

e e se mere

1 . . . ¹

California as described in their final report.

 $\Sigma^{*} \to \pi^{-1},$ ÷.,

·

 \mathbf{v}

Fig. 13 "Br" STEEL

PHOTOGRAPH OF FRACTURE SURFACES

"B_R" Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack saw)

		Visible Crack		Max.	Load	Fail			
	Tempgrature	Energy	Load	Energy	Load	Energy	Lcad	Type of Fail	ure
Spec. No.	F	in-lbs.	<u>lbs.</u>	<u>in-lbs.</u>	lbs.	in-lbs.	lbs.	<u>% Shear</u>	
B _p -22-18	-12.7	3,900	234,200	36,700	293,000	36,700	293,000	l	
B-22-8	-10.3	6,700	249,300	31,500	283,500	31,500	280,000	0	
B _R -22-9	1.9	9,900	245,000	46,700	296,300	46,800	295,000	2	
B ₉ -22-11	2.0	4,800	240,800	92,600	332,500	92,600	328,000	- 6	
Bn-22-17	2.8	1,600	224,800	36, 000	290,000	36,000	290,000	1	
B_{R}^{-22-10}	11.6	10,100	240,500	140,300	340,100	335,100	74,500	100	
B7-22-5	11.9	7,800	243,300	138,600	346,500	286,800	210,000	59	
Bn-22-2	12.1	10,500	239,500	34,300	279,500	34,300	279,500	0	
B _R -22-12	13.0	5,200	232,200	134,000	329,700	310,900	32,000	100	
B _P -22-7	13.6	6,300	237,300	30,000	280,500	30,000	280,500	1	ð
B _B -22-20	19.3	3,400	230,000	120,000	325,600	295,100	78,000	100	5
$B_{\rm P} - 22 - 19$	19.6	3,500	230,000	120,000	329,300	306,500	40,000	100	
BR-22-4	20.3	2,700	230,000	120,700	329,500	315,500	45,000	100	
B _R -22-3	30.0	1,000	224,500	129,200	329,500	316,300	35,000	100	
BR-22-1	41.5	7,400	230,700	132,900	337,300	330,400	25,000	100	
B _R -22-6	68.8	6,500	228,500	140,200	327,000	350,800	30,000	100	

· · ·

Ł

$"B_{\!R}" \; \texttt{Steel}$

TESTS OF SPECIMENS 12" WIDE MADE AT UNIVERSITY OF CALIFORNIA

NObs - 31222

- · · ·

41

	Spec. No.*	Temp. ^O F	Energy to Max. Load	<i>1.</i>	Type of Failure	
	B-7	(-35)-(-34)	21,000		0	
•	B-9	(-7)-(-6)	36,000		0	
•	B ⊶1	32	112,000		83	
	B-6	50-51	114,000		100	
	B-3	70-73	115,000		94	

. ,÷

* These are the designations of plates assigned by the University

of California as described in their final report.¹

.

· • *

÷.

:: . A

· ·

··· *

and the second second

42b

Fig. 18 "Dn" STEEL

FHOTOGRAPH OF FRACTURE SURFACES

" \mathbb{D}_N " Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack saw*)

		Visible Crack		Max.	Load	Fail	ure	
	Tempe rature	Energy	Load	Ene rgy	Load	Energy	Load	Type of Failure
Spec. No.	<u> </u>	in-lbs.	<u>lbs</u> .	in-lbs.	lbs.	in-lbs.	lbs.	% Shear
D ₁₁ -33-5	-16.5	4,900	255,500	27,700	285,400	27,700	285,400	0
D ₁ √-33-9	-2.9	4,800	248,200	31,500	291,000	31,500	291,000	0
D _N -33-1	-2.0	6,400	260,400	36,900	306,000	36,900	306,000	0
Dy-33-19	4,8	4,500	249,000	35,700	294,000	35,700	294,000	0
D _N -33-4	4.9	3,400	238,000	54,700	324,000	54,700	324,000	l
DN-33-10	9.6	6,100	250,300	66,400	323,000	66,400	323,000	3
D _N -33-8	9.9	3,600	245,000	130,700	349,200	214,100	313,000	34
DN-33-2	10.1	4,700	245,200	125,300	358,900	280,700	242,000	52
D _N -33-18	15.0	4,500	245,700	44,200	321,000	44,200	321,000	1
D _N -33-16	16.0	3,700	-243,600	59,500	316,200	59,500	316,200	2
D _N -33-3	19.6	4,500	245,700	127,400	348,800	310,800	30,000	100
D _N -33-11	19.8	4,700	242,600	86,000	338,000	86,000	338,000	4
D _N -33-17	24.8	6,500	259,500	135,400	345,700	311,800	78,000	87
D _N -33-20	24.9	2,600	244,100	140,400	355,000	346,700	60,000	100
D _N -33-13	29.8	3,900	249,000	129,700	344.400	324,600	90,000	100
D _N -33-12	29.9	6,000	247,300	125,000	343,200	300,600	125,000	77
D _N -33-7	41.0	4,400	241,500	117,500	340,500	. 314,900	40.000	100
DN-33-14	55•4	7 ,50 0	243,500	127,900	336,900	314,900	48,000	100
D _N -33-6	78.4	2,900	230,000	119,900	332,500	316,400	60,000	100

- 44 -

	·			lure		. *							
TABLE 10 "Dn" Steel TESTS OF SPECIMENS 12" HIDE MADE AT UNIVERSITY OF ILLINOIS*			Type of Fai % Shcar	87	80	46	0						
	NIMENS 12" VIDE MADE AT	CINDE LE TILE NAME AL	UNIVERSITY OF ILLINOIS* MObs - 31224 Energy to Max. Load in-lbs.	Energy to Max. Load in-lbs.	100,000	109,000	000*66	35,300		• •		•	
	~ •	TESTS OF SPECULIVERS		Temp. ^C F	41	30	16	- - -	2 of reference No. 2	•			•
				Spec. No.*	15-5A	9-2	15-6B	10A-4	* See page L				
			 			2					•	·	

- 45 -

46b

Fig. 22 "E" STEEL"

PHOTOGRAPH OF FRACTURE SURFACES

Fig. 23 Specimen E-36-2 showing THUMBNAILS WHICH DEVELOPED DURING COMPLETE FRACTURE
TABLE 11

"E" Steel

TESTS OF SPECIMENS 12" WIDE, 3/4" THICK WITH STANDARD NOTCH

(The notch is 3" wide and has at its extremities a cut 1/8" long and 0.010" wide made with a jeweler's hack saw)

		Visible Crack		First Maximum		Second Max.		Failure		Type of	
	Temp.	Energy	Load	Energy	Load /	Energy	Load	Energy	Load	Failure	
Spec. No.	o _F	in-1bs.	lbs.	in-1bs.	lbs.	in-lbs.	<u>lbs</u>	in-1bs.	<u>lbs</u> .	% Shear	
					6.88						
E-36-7	61.3	3,900	229,800	21,400	262,500	-	-	21,400	262,500	1	
E-36-2	61.9	2,300	226,500	27,600	256,700			27,600	256,700	0	
E-36-19	70.2	4,000	225,300	27,000	254,400	39,700	242,000	39,700	242,000	2	
E-36-8	70.5	6,100	229,000	60,600	261,000 6.8	-	-	84,900	102,000	38	
E-36-1	82.2	6,200	229,000	39,000	271,500	78,800	257,000	181,800	45,000	73	
E-36-10	83.3	5,000	227,500	34,500	265,70 0 16	84,000	266,000	182,400	15,000	76	
E-36-11	91.6	11,800	233,600	38,900	271,000 ?	83,500	264,300	176,200	58,000	77	
E-36-9	91.6	5,700	230,000	104,900	320,500	-		246,900	45,000	100	
E-36- 20	99.8	3,500	220,500	34,400	264,500 ^{7.3^v}	83,400	284,800	196,200	60,000	90 [:]	
E-36-3	99,8	4,900	224,500	32,800	264,500	86,800	283,000	195,300	30,000	85	
E-36-17	106.6	4,500	219,000	101,500	319,900 KB			248,400	60,000	100	
E-36-12	111.6	6,900	225,500	87,100	314,000 9.9	-	-	239,200	25,000	100	
E-36-6	115.0	9,000	224,000	103,800	316,500 10.1	· 🕳	-	242.200	30,000	100	
E-36-18	115.6	2,700	221,500	100,800	320,000 1013	-	-	251.000	50,000	100	
E-36-4	126.0		220,600	106,3 00	313,700 9.35		· 🕳	238,200	60,000	100	
E-36-5	149.1	5,000	222,500	93,400	322,803 10.4	<u> </u>	••••••••••••••••••••••••••••••••••••••	237,500	25,000	100	

49

TABLE 12

"E" Steel

TESTS OF SPECIMENS 12" WIDE MADE AT UNIVERSITY OF ILLINOIS*

NCbs - 31224

iax. Load Type of Fai	94	0 81	0	0	0		•		
Temp. F Energy to 1 in-1b	128 66,0	1 09 (0)	74 40,00	40 17,00	-73 10,00	eference No. 2			
ec. No.*	18-9A	23-3B	13A-5B	134-54	20-2A	* See page 12 of r	·		-

•

. .

- 50 -

Ц

51ь

Fig. 27	- Specimen A-18-13
Lowest	Energy Absorption
<u>to</u>	Maximum Load
of all	Specimens Tested

Fig. 28 - Specimen Dn-33-20 Hignest Energy Absorption to Maximum Load of all Specimens Tested

Fig. 29 - Specimen C-24-8 Example of Cleavage - Shear - Cleavage

Mode of Fracture

APPENDIX I

,

, ,

APPENDIX I

• 55 •

INSTRUMENTATION AND PREPARATION OF SPECIMENS

(1) <u>Notching of Plates:</u> The notch was located in the middle of the plate, and a jeweler's hack saw, 0.010" thick, was used for the last 1/8" of the notch so that the acuity obtained would be comparable with that used by other laboratories that had tested these steels. Figure I-1 shows the detail of the notch and layout of the specimen. The edges of the plates were machined. A jig saw was mounted on a base as shown in Figures I-2 and I-3 so that the saw could be moved at right angles to the axis of the piece. The depth of the saw cut could be easily controlled. Either a standard hack saw or a jeweler's hack saw can be used in the jig saw. Using this machine, notches were obtained that are similar and at right angles to the axis of the piece.

(2) <u>Measuring Elongations Through the Elastic and Plastic Range:</u> The problem was to design a gage which would permit the accurate measurement of elongations through the elastic and plastic range up to the point of failure. The requirement for the mounting was that the gage should not in any way be damaged by a cleavage failure. These conditions were met by mounting SR-4 gages on both sides of a flat spring, $10\frac{1}{2}$ " long, mounted in ball bearing supports at the 9" gage lines. See Figs. I-4, I-5. The first SR-4 gages were affected by moisture; therefore, bakelite SR-4 gages are now used. These in-

(a) Gage mountings: The mountings are centered by drilling holes 1/16" in diameter and 1/16" deep on the 9" gage line at the proper distances from the edge of the plate. The hardened steel pins which are inserted in these holes are a part of the base piece which is 5/8" in diameter. This wide support insures stability. Since the width of the test specimens narrows and a given transverse plane of plate may rotate, a ball bearing is provided to permit the rotation of the mounting about the 1/16" center. The slot in which the end pivots of the gage are inserted will then remain perpendicular to the axis of the piece throughout the test. The pins on each end of the flat spring permit the flat spring to rotate freely at the ends.

(b) The second part is the flat spring with the bakelite SR-4 gages baked on.

(c) The third part is a frame for retaining the end gage mountings in position. The frame surrounds the test piece and is held in position by firm but unrestrained attachments to the specimen outside of the gage length.

(d) The fourth part consists of a coil spring which is sprung between the retention frame and the gage mounting. These springs hold the mountings in close contact with the member but are flexible so that any differential change in length between the points where the gages are mounted and the points on the specimen to which the retention frame is attached will be accommodated by the movement of the spring.

These gages have proved entirely satisfactory in service and even with cleavage fracture the gages often remain in position after the break.

(3) <u>Temperature Control Chamber</u>: The tests necessitated raising the temperature above room temperature and lowering it to points well below room temperature. A double walled temperature control chamber of Plexiglas was built to permit visual observation. The half-tones, Figs. I-6, and I-7, show clearly the method of supporting the chamber on the test specimen. The chamber is composed of two separate boxes held against the test piece by adjustable clips. The edges of the boxes are equipped with sponge rubber which rests against a wooden member the thickness of the test plate, so that the chamber so formed can be adapted to the testing of specimens of any thickness.

- 56 -

In the photograph, the heating elements are shown together with fans for circulating the air.

(4) <u>Description of Cooling System</u>: The cooling system may be considered under three subheadings:

1.1

(a) Source of low temperature

- (b) Measurement of temperature
- (c) Control of temperature

The source of low temperature was dry ice placed in a double-walled box insulated with fibre glass and marked "A" in Figure 1-8. It is supported on cantilever brackets projecting from the movable platform and has a capacity of 250 pounds of dry ice. The air passes from Box A into a mixing chamber from which two separate flexible insulated ducts marked "B" carry the cooled air, one to each half of the temperature control chamber made of Plexiglas and marked "C".

In the bottom of either half of the control chamber is a diffuser "D", having many small holes. After passing through the control chamber, the air is conducted through insulated ducts marked "E", similar to the ducts marked "B", to an insulated box containing a centrifugal blower marked "F", driven by the motor shown in Figure <u>I-8</u>. Between the fan chamber and the dry ice box the slide valve "G" is inserted. This valve is operated manually by raising or lowering the slide.

To determine the temperature of the specimen, thermocouples are located at three points on the specimen: (1) in the 3/4" drill hole; (2) at a point just above the 0.010" notch in the specimen; (3) $5\frac{1}{2}$ " above the center of the notch. The fourth thermocouple measures the temperature of the air. The potentiometer for these measurements is shown at "J" and the galvanometer at "K" in Figure I-8. The ends of the test specimen are covered with sheets of cellular rubber as at "H", and insulating shims are placed between the grips and the spacers of the upper and lower crossheads. The ducts carrying the cold air to the Plexiglas chamber are insulated by wrapping fibre glass around the tubes and covering them with muslin. This muslin has been coated with asphalt paint to prevent the moisture from entering the insulation.

This method has proved satisfactory; the temperature differential between the gage at the 0.010" notch and that $5\frac{1}{2}$ " above the center of the notch was $1_{2}5^{\circ}$ for specimen tested at 17°. For specimen tested at $62^{\circ}F$ the differential between these points was $0.1^{\circ}F$.

(5) Accessories are Mounted on Elevator: The elevator attached to the columns supplies sufficient area so that all of the electrical apparatus used in connection with the gage assembly and also the cooling box with the necessary blowers, can be mounted near the specimen.

entry in the program in

...

±.58 -

SWARTHMORE COLLEGE

Fig. I-3 JIG SAW ASSEMBLY

Fig. 1-3 JIG SAW ASSEMBLY

Fig. I-4 GAGES IN CALIBRATOR

PLEXICLAS CHANBER

Fig. I-8 COOLING MECHANISM

APPENDIX II

,

APPENDIX II

Same garage

- 66 -

Notes on Load-Elongation Curves

It may be noted that some temperatures shown on the load-elongation curves are indicated to one degree F and others to one-tenth of a degree F. This is due to the fact that more precise temperature-measuring equipment was available for the latter tests. For tests run with this instrumentation the average temperature at the 3/4" drill-hole is given together with its variation during the test.

An observation concerning the shape of the lond-elongation curve may also be made. In the first tests run it was considered sufficient to take readings and plat values of elongation of the order of .05 inch over a gage length of nine inches. While this doos not alter the energy values significantly, it does tend to obscure some of the finer details of specimen behavior. In view of this, the testing procedure was altered to record and plot more points along the lond-elongation curve. As a result a rather characteristic shape of the surve curve preceding cleavage fracture has been noticed; i.e., a rapidly increasing slope as the material begins to behave in a brittle fashion. Examples of this are to be seen for the following tests:

Figure 2A - A-19-11 Figure 7A - A-19-1 Figure 13A- A-18-14 Figure 10C- C-24-15

However, this type of response is not exclusively associated with cleavage fracture since it also is evident in ductile specimens such as

Figure 9A - A-19-12 Figure 16C - C-24-3 It is also brought to the reader's attention that a dashed portion near the end of the load-olongation curve indicates either an estimated fracture load or estimated fracture elongation, or both. In a few tests one-half of the specimen failed before the other. When this occurred the load-elongation curve was terminated at the last load at which both sides were still intact.

 $\left\{ \left| e_{i} \right| = \left\{ \left| e_{i} \right| \right\} + \left| e_{i} \right| = \left\{ \left| e_{i} \right| \right\} + \left\{ \left| e_{i} \right$

t .

- 90-

- 71 -

-72 -

- 73-

- 87 ·

- 87-

. 92-

- 95-

. 96-

. 97.

- 98-