PROGRESS REPORT

1

1. 1. 1.

Jilo

ON

CORRELATION OF LABORATORY TESTS WITH FULL SCALE SHIP PLATE FRACTURE TESTS

BY

C. WAGNER AND E. P. KLIER

Pennsylvania State College Under Bureau of Ships Contract NObs-31217

COMMITTEE ON SHIP CONSTRUCTION

DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

NATIONAL RESEARCH COUNCIL

MTRB LIBRARY

ADVISORY TO

SHIP STRUCTURE COMMITTEE

UNDER

Bureau of Ships, Navy Department Contract NObs-34231

SERIAL NO. SSC-22

COPY NO.

DATE: OCTOBER 20, 1948

NATIONAL RESEARCH COUNCIL Washington 25, D. C.

October 20, 1948

Chief, Bureau of Ships Navy Department Washington 25, D. C.

Dear Sir:

Attached is Report Serial No. SSC-22 entitled "Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests." This report has been submitted by the contractor as a progress report of the work done on Research Project SR-96 under contract NObs-31217 between the Bureau of Ships, Navy Department and the Pennsylvania State College.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Construction, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Navy Department and the National Academy of Sciences.

Very truly yours,

Checkard Joderberg

C. Richard Soderberg, Chairmán Division of Engineering and Industrial Research

Enclosure

Preface

The Navy Department through the Bureau of Ships is distributing this report to those agencies and individuals who were actively associated with the research work. This report represents a part of the research work contracted for under the section of the Navy's directive "to investigate the design and construction of welded steel merchant vessels."

The distribution of this report is as follows:

Copy No. 1 - Chief, Bureau of Ships, Navy Department Copy No. 2 - Dr. D. J. Bronk, Chairman, National Research Council

Committee on Ship Construction

Сору	No.	- 3		V. H. Schnee, Chairman	
Copy	No.	4		J. L. Bates	•
Сору	No.	5	-	H. C. Boardman	
Сору	No.	6	-	Paul Ffield	
Copy	No.	- 7	-	M. A. Grossman	
Сору	No.	8		C. H. Herty, Jr.	,
Copy	No.	9	-	A. B. Kinzel	
Copy	No.	10	-	J. M. Lessells	• •
Copy	No.	11	-	G. S. Mikhalapov	· ·
Сору	No.	12	-	J. Ormondroyd	
Copy	No.	13	-	H. W. Pierce	×
Copy	No.	.14		E. C. Smith	· · · · · · · · · · · · · · · · · · ·
Copy	No.	15	-	T. T. Watson	 A second s
Copy	No.	16	-	Finn Jonassen, Research Coordinator	
2 -				-	7 · · · · ·

Members of Project Advisory Committees SR-25, SR-87, SR-92, SR-96, SR-97, SR-98, SR-99, SR-100 and SR-101

Copy No. 16 - Finn Jonassen, Chairman Copy No. 17 - R. H. Aborn Copy No. 18 - L. C. Sibber Copy No. 5 - H. C. Boardman Copy No. 19 - T. J. Dolan Copy No. 6 - Paul Ffield Copy No. 7 - M. A. Grossman Copy No. 8 - C. H. Herty, Jr. Copy No. 20 - C. E. Jackson Copy No. 21 - C. H. Jennings Copy No. 10 - J. M. Lessells Copy No. 22 - M. W. Lightner Copy No. 11 - G. S. Mikhalapov Copy No. 12 - J. Ormondroyd Copy No. 23 - R. E. Peterson Copy No. 13 - H. W. Pierce Copy No. 24 - R. L. Rickett Copy No. 14 - E. C. Smith Copy No. 15 - T. T. Watson Copy No. 25 - A. G. Bissell, Bureau of Ships, Liaison Copy No. 26 - Mathew Letich, American Bureau of Shipping, Liaison

Copy	No.	27	- James McIntosh, U. S. Coast Guard, Liaison
Copy	No.	28	- E. Rassman, Bureau of Ships, Liaison
Copy	No.	29	- Comdr. R. D. Schmidtman, U. S. Coast Guard, Liaison
Copy	No.	30	- T. L. Soo-Hoo, Bureau of Ships, Liaison
Copy	No.	31	- Mm. Spraragen, Welding Research Council, Liaison
Copy	No.	32	- R. E. Miley, Bureau of Ships, Liaison
Copy	No.	33	- J. L. Wilson, American Bureau of Shipping, Liaison

Ship Structure Committee

Copy No. 34 - Rear Admiral Ellis Reed-Hill, USCG, Chairman Copy No. 35 - Rear Admiral Charles D. Wheelock, USN, Bureau of Ships Copy No. 36 - Brigadier General Paul F. Yount, War Department Copy No. 4 - J. L. Bates, U. S. Maritime Commission Copy No. 37 - D. P. Brown, American Bureau of Shipping Copy No. 3 - V. H. Schnee, Committee on Ship Construction - Liaison

Ship Structure Subcommittee

Copy No. 38 - Captain L. V. Honsinger, USN, Bureau of Ships, Chairman Copy No. 39 - Captain R. A. Hinners, USN, David Taylor Model Basin Copy No. 40 - Comdr. R. H. Lambert, USN, Bureau of Ships Copy No. 29 - Comdr. R. D. Schmidtman, USCG, U. S. Coast Guard Headquarters Copy No. 41 - Hubert Kempel, Office, Chief of Transportation, War Department Copy No. 26 - Mathew Letich, American Bureau of Shipping Copy No. 42 - R. M. Robertson, Office of Naval Research, U. S. Navy Dept. Copy No. 43 - I. J. Wanless, U. S. Maritime Commission Copy No. 32 - R. E. Wiley, Bureau of Ships, U. S. Navy Copy No. 33 - J. L. Milson, American Bureau of Shipping Copy No. 16 - Finn Jonassen, Liaison Representative, NRC Copy No. 45 - Paul Gerhart, Liaison Representative, AISI Copy No. 31 - Wm. Spraragen, Liaison Representative, WRC

Navy Department

Copy No. 46 - Comdr. R. S. Mandelkorn, USN, Naval Administrative Unit Copy No. 25 - A. G. Bissell, Bureau of Ships Copy No. 47 - Lt. E. T. Diberto, Bureau of Yards and Docks, U. S. Navy Copy No. 48 - J. W. Jankins, Bureau of Ships Makayama, Japan - 4/53 Copy No. 49 - Noah Kahn, New York Naval Shipvard Copy No. 50 - I. R. Kramer, Office of Naval Research Copy No. 51 - E. M. MacCutcheon, Jr., David Taylor Model Basin Copy No. 52 - W. R. Osgood, David Taylor Model Basin Copy No. 53 - N. E. Promisel, Bureau of Aeronautics Copy No. 54 - John Vasta, Bureau of Ships Copy No. 55 - K. D. Williams, Bureau of Ships Copies 56 and 57 - U. S. Naval Engineering Experiment Station . Copy No. 58 - New York Naval Shipyard, Material Laboratory Copy No. 59 - Industrial Testing Laboratory, Philadelphia Naval. Shipyard Copy No. 60 - Philadelphia Naval Shipyard Copy No. 61 - San Francisco Naval Shipyard Copies 62 and 63 - Publications Board, Navy Dept. via Bureau of Ships, Code 330c Copies 64 and 65 - Technical Library, Bureau of Ships, Code 337-L

Copy No. 66 - Captain R. B. Lank, Jr., USCG Copy No. 67 - Captain G: A. Tyler, USCG Copy No. 68 - Testing and Development Division Copy No. 69 - U. S. Coast Guard Academy, New London U. S. Maritime Commission Copy No. 70 - E. E. Martinsky Representatives of American Iron and Steel Institute Committee on Manufacturing Problems Copy No. 71 - C. M. Parker, Secretary, General Technical Committee, American Iron and Steel Institute Copy No. 18 - L. C. Bibber, Carnegie-Illinois Steel Corp. Copy No. 8 - C. H. Herty, Jr., Bethlehem Steel Company Copy No. 14 - E. C. Smith, Republic Steel Company Welding Research Council Copy No. 72 - C. A. Adams Copy No. 74 - LaMotte Grover Copy No. 73 - Everett Chapman Copy No. 31 - m. Spraragen Committee on Ship Steel Copy No. 75 - R. F. Mehl, Chairman Copy No. 8 - C. H. Herty, Jr., Vice--Chairman Copy No. 76 - Wm. M. Baldwin, Jr. Copy No. 77 - Chas. S. Barrett Copy No. 78 - John E. Dorn Copy No. 79 - S. L. Hoyt Copy No. 22 - M. W. Lightner Copy No. 80 - T. S. Washburn Copy No. 16 - Finn Jonassen, Technical Director

Copy No. 81 - C. R. Soderberg, Chairman, Div. Engineering & Industrial Research, Copy No. 3 - V. H. Schnee, Chairman, Committee on Ship Construction Copy No. 16 - Finn Jonassen, Research Coordinator, Committee on Ship Construction Copy No. 82 - C. Magner, Investigator, Research Project SR-96 Copy No. 83 - E. P. Klier, Investigator, Research Project SR-96 Copy No. 84 - A. Boodberg, Investigator, Research Project SR-92 Copy No. 85 - S. Carpenter, Investigator, Research Project SR-98 Copy No. 86 - L. J. Ebert, Investigator, Research Project SR-98 Copy No. 86 - L. J. Ebert, Investigator, Research Project SR-99 Copy No. 87 - C. H. Lorig, Investigator, Research Project SR-97 Copy No. 88 - J. R. Low, Jr., Investigator, Research Project SR-96 Copy No. 88 - J. R. Low, Jr., Investigator, Research Project SR-96 Copy No. 89 - C. W. MacGregor, Investigator, Research Project SR-96 Copy No. 90 - Albert Muller, Investigator, Research Project SR-96 Copy No. 90 - Albert Muller, Investigator, Research Project SR-96 Copy No. 91 - E. R. Parker, Investigator, Research Project SR-92

NRC

Copy No. 92 - C. E. Sims, Investigator, Research Project SE-87 Copy No. 93 - C. S. Voldrich, Investigator, desearch Project SR-100 Copy No. 94 - Clarence Altenburger, Great Lakes Steel Company Copy No. 95 - A. B. Bagsar, Sun Oil Company Copy No. 96 - E. L. Cochrane, Massachusetts Institute of Technology Copy No. 97 - George Ellinger, National Sureau of Standards Copy No. 98 - M. Gensamer, Carnegie-Illinois Steel Corp. Copy No. 99 - O. J. Horger, Timken Holler Bearing Company Copy No. 100 - Bruce Johnston, Fritz Laboratory, Lehigh University Copy No. 101 - N. M. Newmark, University of Illinois Copy No. 102 - L. J. Rohl, Carnegie-Illinois Steel Corp. Copy No. 103 - W. P. Roop, Swarthmore College Copy No. 104 - Saylor Snyder, Carnegie-Illinois Steel Corp. Copies 105 thru 129 - Charles Wright, British Joint Services Mission (Navy Staff) Copy No. 130 - Carl A. Zapffe, Carl A. Zapffe Laboratories Copy No. 131 - International Nickel Co., Inc., Attn. T. N. Armstrong Copy No. 132 - Transportation Corps Board, Brooklyn, N. Y. Copies 133 thru 137 - Library of Congress via Bureau of Ships, Code 330c Copy No. 138 - File Copy, Committee on ship Steel Copy No. 139 - NACA, Atta. Naterials Research Coordination, USN Copies 140 thru 144 - Burcau of Ships, Code 343 143-9.6. men must - 3/130 Copy No. 145 - Comdu. Franke S. Springer, Code 519. Buships (Par lets, "20/18-45-Copy No. 145 - Comdu. Franke S. Springer, Code 519. Buships (Par lets, "20/18-45-Copy No. 146 - R.H. Raning Sect. Sev Oss 728/49 Copy No. 147 - C. Robert Licenie, Course, moling Slice Storteg Copy No. 147 - C. Robert Licenie, Course, moling Slice Storteg Copy No. 148 - cauler. Frank & Springer, Win - Buthips Code 517 - 9/12/50 Copy No. 149 - Dr. a. mellen 3/5/07 Copy No. 150 - H. Thomason - Canadian Inestinghouse Co. 44. 5/8/5/ Copy No. 151 -Copy No. 152 -Copy No. 153 -Copy No. 154 -Copy No. 155 -Copy No. 156 -Copy No. 156 -Copy No. 157 -Copy No. 158 -Copy No. 159 -Copy No. 160 -Copy No. 161 -Copy No. 162 -Copy No. 163 -Copy No. 164 -Copy No. 165 -Copy No. 166 -Copy No. 167 -Copy No. 168 -Copy No. 169 -Copy No. 170 -Copy No. 171 -Copy No. 172 -Copy No. 173 -Copy No. 174 -121 Copy No. 175 -

('fotal No. copies - 175) Ma S- MRC- (Library) 8/10/56 / Corry Ma. M.C. mackie, Solary, nova Scatia, 1 com. 9/25/56

PROGRESS REPORT

Navy Department, Bureau of Ships, Contract NObs-31217, Project SR-96

CORRELATION OF LABORATORY TESTS WITH FULL SCALE SHIP PLATE FRACTURE TESTS

By: C. Wagner E. P. Klier

. .

MINERAL INDUSTRIES EXPERIMENT STATION SCHOOL OF MINERAL INDUSTRIES THE PENNSYLVANIA STATE COLLEGE STATE COLLEGE, PENNSYLVANIA

x

TABLE OF CONTENTS

i ii 1 2 2 • • 3 3 4 4 5 6 Discussion of Results 7 Conclusions • 8 9 10 - 17. . . . la

Page

ABSTRACT

The present report summarizes the work done on a series of edge-notched tensile bars prepared from the project steels.

Evidence is presented to show that for the test specimen used, reasonable agreement exists between the transition temperatures obtained on the basis of per cent fibrous fracture and the transition temperatures for the large plate tension tests.

It is further shown that there is lack of agreement between transition temperatures based on fracture appearance and transition temperatures based on energy absorption for this test.

Lateral contraction measurements and total elongation measurements are given and show general conformity with energy absorption measurements, although much scatter of the data precludes a strict comparison.

i

LIST	OF	FI	GUF	ΈS
sense and an end of the set of the sense and the	second in the second state			

<u>No</u> .	Title	Page No.
1	Line Drawing of Specimen	10
2	Photograph of Test Specimens	11
3	Testing Assembly, Coolant Container Lowered	12
4	Testing Assembly in Position for Testing	12
5-13	Fibrous Fracture vs. Temperature	13
14-22	Energy Absorption vs. Temperature	13
23 -3 1	Lateral Contraction vs. Temperature	14
32-40	Elongation vs. Temperature	14
4 1- 49	Yield Load vs. Temperature	15
50-58	Maximum Load vs. Temperature	15
59	Steel C, Temperature 113 ⁰ F	16
60	Steel Bn, Temperature 77°F	16
61	Steel Dr, Temperature 79 ⁰ F	16
62	Steel C, Temperature 140°F	16
63	Elongation - Inches	17

INTRODUCTION

Among the various tension tests developed at the University of California for the study of brittle fracture in ship plate steels¹, one employing a 3-inch wide edge-notched flat plate bar appeared to offer definite promise of correlation with the 72-inch wide plate internally notched tension test. This test bar while quite small, was still relatively large for laboratory use and actually was too large to be broken in a testing machine with 60,000 pound capacity. It appeared advisable to investigate this type of test using smaller test section sizes.

In the original tests¹ the method of determining transition temperature was based solely on fracture appearance. In the present testing program, it appeared advisable to obtain load-elongation curves in addition, for from the data of Tipper² change in length values remain nearly constant for the different testing temperatures for specimens of this type. This would indicate that the energy absorption is little affected on passing through the transition temperature for this test bar, since the load does not decrease.

The following have constituted the staff contributing to the completion of the work:

J.	R. Low, Jr.	Technical Representative
M .	Gensamer	Technical Advisor
F.	C. Wagner	Supervisor
L.	E. Colteryahn	Investigator
Ε.	P. Klier	Investigator
D.	L. Nulk	Investigator
Μ.	A. Bishop	Research Assistant
Ε.	Marks	Research Assistant
Ε.	Tevlin	Drafting
D.	W. Pease	Technical Labor
H.	Colyer	Technical Labor
Ρ.	A. Vonada	Technical Labor

1,2 - See Bibliography

Steels:

The project steels studied have been listed and described in an earlier report³. All steels with the exception of F, G, and H have been studied in this investigation. The notation Bn (2) in figures 7, 16, 25, 34, 43, 52 and Appendix A is used because the plate of steel from which the specimens described herein were taken had a higher transition temperature in the slow bend test than those from the plate of Bn steel which was first tested. The steel from this latter plate may then be designated as Bn (1).

Testing Program:

Preliminary tests were conducted to determine the optimum specimen geometry with respect to adaptation of the test to a 60,000 pound capacity tensile machine. Figures 1 and 2 show the specimen finally adopted. Preliminary tests of 3/4" thick plate specimens having 1/2", 5/8", and 3/4" wide cross sections indicates that the 5/8" was the maximum width which could be tested without exceeding the capacity of the available testing machine.

The effect of notch radius was not exhaustively studied, but a few specimens having a 5/64" diameter round notch and also several with 0.01" radius V-notches were tested. The 5/8" width was maintained for all of these tests. The experimental results in terms of fracture type were essentially the same as those obtained for a 1/32" wide sawcut notch. Specimens with the sawcut notch were subsequently used exclusively because of the convenience with which this notch could be machined.

Tests at various temperatures were performed on the steels mentioned above for the sawcut notch and the transition range was determined according to energy absorption, fracture appearance, elongation, and maximum lateral contraction.

- 2 -

Specimen Preparation:

As described above, the specimen type used for the majority of these tests was a symmetrically notched flat tensile specimen with a cross section of 5/8" x the plate thickness (3/4"). The specimens were first shaped to the outer dimensions of <u>6</u>" x 2-3/4" and were then laid out to allow the drilling of the 1" diameter holes and the sawing of the notches. The holes were reamed to size after drilling to produce a slide fit on the hardened steel supporting pins.

Two 1/4" diameter holes with center to center distance of 1 inch were drilled in one edge of the specimen, (see Fig. 1). These were used for the attachment of a wedge extensometer to the specimen. Figure 2 is a photograph of a specimen showing an edge and a side view of an unbroken specimen and also a side view of a broken specimen illustrating the appreciable elongation of the pin holes due to deformation around the pins.

After machining, a two inch gage length was marked off on the center line of the flat side of the specimen for final elongation measurements.

u tru tî ji

Testing Equipment:

The equipment used for testing consisted of pin and clevis connections for holding the specimen, an adaptor for attaching the wedge extensioneter to the edge of the specimen, and a container for the coolant which could be lowered to allow removal or insertion of the specimen.

This equipment is illustrated in Figures 3 and 4, which show the testing assembly with the coolant container lowered for specimen change and in position for testing, respectively.

Martin Jackson
 Jackson
 British Constraints

-3-

Testing Procedure:

The pins were inserted in the holes in the specimen while the coolant container was lowered as shown in Figure 3. At the same time the extensometer attachment was clamped to the edge of the specimen and the extensometer wedge was connected to the drum-type recorder. The ∞ olant container was then raised to surround the specimen and filled with either water or an acetone and dry ice mixture, depending on the temperature of testing. After a period of ten minutes at the testing temperature, the specimen was broken using a cross-head movement of one inch per minute. During the test, the load vs. elongation curve was autographically recorded on the drum type recorder.

After the specimen was broken, the coolant medium was drained from the container, and the container was lowered to permit removal of the specimen. The measurements of lateral contraction in plate thickness at the fracture, elongation over two inches, and percent fibrous fracture were then made.

Representation of Data:

From the autographic load vs. elongation curves as illustrated in Figure 63, values of yield load (defined here as the first departure from the initial straight line portion of the curve), maximum load, and total energy absorption as determined from the area under the curve, were obtained. These values were plotted as a function of temperature, as were values of <u>maximum</u> change in plate thickness at the fracture surface, final elongation over a two inch gage length along the center line of the specimen, and percent fibrous fracture.

Curves were drawn only for the percent fibrous fracture data because of the pronounced scatter existing in the other sets of data described above. These curves were superimposed on the plots of data for the lateral contraction

- 4 -

measurements, the energy absorption measurements, and the elongation measurements.

- 5 -

A transition temperature for each steel was selected from the percent fibrous fracture versus temperature curves as that temperature which corresponded to 50% fibrous fracture. These transition temperatures are listed in Table I in comparison with transition temperatures for the 72" wide flat plate tests as selected at 50% of maximum energy absorption.

A tabulation of all data is included in the appendix at the end of the report.

Results:

Transition curves (Figures 5-13) attained by visual estimate of the percent fibrous fracture are only in fair agreement with those obtained in the large plate tests, all of the steels tending to have a higher transition temperature in the present test with the exception of the results for Steel Br and Steel E. It can be noted here that the transition temperature for Steel Br is exceedingly low, which is in agreement with slow bend tests on this plate of steel⁴.

It is evident from an examination of Figures 14 to 22, that the energy absorption vs. temperature data do not, for most of the steels, show transitions in the same temperature regions as the per cent fibrous fracture vs. temperature curves.

For the energy absorption values obtained, only steel Br shows a transition temperature coinciding with that based on fracture appearance, while the other data indicate energy transitions at temperatures considerably below the fracture appearance transition.

As mentioned previously, no specific values for energy transition temperatures were selected because of scattered data.

The discrepancies between the two modes of transition temperature representation are made evident by an examination of the data for Steels Dr and Dn. For the fracture-appearance data the transition temperature is above 440° F for both steels. From the energy absorption data the transition temperature appearance appears to be about -40° F.

The plotted data from lateral contraction measurements (Figures 23 to 31) and elongation measurements (Figures 32 to 40) are for the most part in agreement with each other. Certain discrepancies do exist, however, as is evident from an examination of the elongation curves for Steels C and Dn. Because of the nature of the fractures and the difficulty experienced in matching the broken specimens for elongation measurements it is believed that the data for the elongation measurements must be subject to much scatter.

Graphs showing yield point versus temperature and maximum load versus temperature are presented in Figures 41 to 49 and Figures 50 to 58 respectively. In both cases, the load value shows a tendency to increase as the temperature decreases. There was no instance of a sharp decrease in load on yielding at any temperature with this type of test.

Typical examples of mixed fracture surfaces are shown schematically in the drawings of Figures 59 to 62. The sequence illustrates the general pattern of change of fibrous fracture surface as it increases on a percentage basis from a "thumbnail" pattern at the edges of the specimen as shown in Figure 59, through successive "hourglass" patterns as in Figures 60 and 61, to a nearly completely fibrous fracture as in Figure 62.

Discussion of Results:

One aspect of the above results is of particular interest. This is the lack of agreement between the energy absorption and lateral contraction results and the fracture type results. In general it is accepted that a granular appearing

- 6 -

fracture is not associated with appreciable toughness. But the above data indicate the exact contrary. This is particularly true for those steels which indicate appreciable energy absorption at the lower temperatures of testing, namely Steels H, Dr and Dn. It is evident that a basic inconsistency exists in these test data unless a factor not considered is operative in these tests. Such a factor may be the effect of strain on the transition temperature. It has been shown that prestrain markedly elevates the energy transition temperature in the standard Charpy keyhole test³. It has been shown further that this pretreatment is not essentially a strain aging process. That is, the alteration of the metal in the process of straining is such as to lead to an appreciable elevation of the transition temperature with little or no elapsed time between straining and testing. It is believed that this effect is operative in the present test.

Thus the possibility of three different test results exists, depending on the temperature range. First at high temperatures, ductile behavior (with attendant high energy absorption) and fibrous fracture are obtained. Second, in an intermediate temperature range, ductile behavior is still obtained, but the plastic strain during the course of the test elevates the transition temperature for cleavage failure, so that when fracture finally occurs it is of the cleavage type. The third case occurs when a temperature is reached which is low enough for cleavage fracture without prior strain. At this temperature, brittle behavior with low energy absorption, and cleavage fracture are obtained. Conclusions:

1. For the edge-notched bar tension tests two transition ranges are observed - one associated with change in fracture type, the other with dropoff in energy absorption. The transition temperature determined from fracture appearance is in approximate agreement with the 72-inch wide plate test results,

-7-

while that determined from energy absorption is not.

2. The discrepancies between the transition temperatures given by energy absorption and fracture appearance data have been indicated as being due to a displacement of the fracture appearance transition to higher temperatures through prestrain arising during the course of initial loading of the test bar.

3. The transition temperature obtained for Steel Br is consistent with that obtained for the slow bend test.

BIBLIOGRAPHY

- Davis, H. E., Troxell, G. E., Parker, E. R., Boodberg, A., and O'Brien, M. P., "Causes of Cleavage Fracture in Ship Plate, Flat Plate Tests, and Additional Tests on Large Tubes", U. S. Navy NObs-31222, Serial No. SSC-8, January 1947.
- Barr, and Tipper, C. F., "Brittle Fracture in Mild Steel Plates", J.I.S.I., <u>157</u>, (October 1947) pp. 223-238.
- 3. Gensamer, M., Klier, E. P., Prater, T. A., Wagner, F. C., Mack, J.O., and Fisher, J. L., "Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests", U. S. Navy, NObs-31217, Serial No. SSC-9, March 19, 1947.
- Wagner, F. C., and Klier, E. P., Progress Report "Correlation of Laboratory Tests with Full Scale Ship Plate Fracture Tests", U. S. Navy, NObs-31217, Serial No. SSC-18, May 1948.
- 5. Wilson, W. M., Hechtman, R. A., and Bruckner, W. H., "Cleavage Fracture of Ship Plates as Influenced by Size Effect", NObs-31224, Serial No. SSC-10, July 1947.

	Specimen	Transition Temperature				Transi	tion Ter S	peratu tecl	re – ^o F			
Type of Test	Orientation	Criterion	E	<u> </u>	<u>A</u>	Dr	Dn (Bn	Br	Q	<u> </u>	N
1. 72" Wide Tens	ion	50% of max. energy ab- sorption Ref. 1 & 5	100	90	35	30	28	31	32	- 	20	-45
2. Edge-Notched Tension	Longitudinal	50% fibrous fracture	100	125	95	75	40	95	-30	45	75	-
difference (21.)			0	/ 35	≁ 60	/ 45	/ 12	/ 64	-62		/ 55	-
3. 12" Wide Tens (Swarthmore D	ion " ata)	Lowest Temp. for 100% Fibrous Fract	106	116	58		20	25	14			-
4. Edge-Notched Tension	12	11	110	130	110	80	40	100	- 20	80	100	
difference (43.)			4	14	52		20	75	-34			-

- 9

I.

Comparison of Estimated Transition Temperatures of Edge-Notched Tension Tests and 72" Wide Internally Notched Tension Tests

.8

د

.

.

Photograph of Test Specimens

Fig. 2

Testing Assembly in position for Testing

Fig. 4

Testing Assembly, Coolant Container Lowered

Fig. 3

FIGURES 5-13 - FIBROUS FRACTURE VS TEMPERATURE

- 13 -

- 14 -

- 16 -

FIGURE 59

STEEL Bn TEMPERATURE 77°F FIGURE 60

STEEL C TEMPERATURE 140°F FIGURE 62

	<i>.</i> ,	•	•		APPENDIX A		5. 5		
	5 e 11 -		·						
	•				JUMMARY OF DATA				
	· .	- -			•		1.14		
	71 - ⁷ -		31		6 · · · · T 12 - D				
	Temp.	ELONE.	Max,	Ileid		5 Fibrous	Lnergy	Spec.	
	<u></u>	2"0.1.	Load	LOSO	Stool h	Fracture	Absorption	NO	
	131	18	35 600	18 500		100	117	A . E	
	192	-10 -18	36,050	18,500	•エ24 200	100	447 510	A2 ···	
	120	16	36,100	23,500	169	100	303 	A-42-	
	111	.20	36.250	22,000	.173	100	526	A-k	
	.77	115	37.050	23,200	.130	35	366	A-4	
	-32	108	38,550	26,500	.099	10	221	4	
	-32	12	38,450	27,500	.109	10	37%	4-7	
	14	.07	38,800	26,000	.088	2	203	Δ_2	
	124	13	39,250	28,000	.120	20	14.9		
	-40	.06	39,975	39,800	.054	0	66	H-9	
	- 40	.11	40,500	29,000	.066	0	390	4-11 ·	
	. *		ŕ		Steel Br				
	81	.19	34,000	24,500	.181	100	391	Br-3	2 -
	50	.21	35,000	24,600	-194	100	575	Br-11	
	14	.20	34,000	16,000			478	Br-1	
	14	.20	37,600	21,000	.206	100	549	Br-4	
	-4	.20	37,650	29,000	.198	100	568	Br-10	
	-22	.20	36,350	23,500	.199	100	638	B r-1 2	
	-40	•	36,400	27,500	.120	10	292	Br-2	
	-40	.16	39,700	25,000	•140	25	719	Br-15	
	~58 	•±7	37,050	30,000	.119	5	258	5 r-1 3	
	-70	• 1 4	40,900	32,500	.098	0	501	Br-16	
	137	51	2/ 200		$\operatorname{Bn}(2)$	100	-	·,	
	エノ4 10次	•21 20	34,100	24,500	•218	100	519	Bn-1	
	77 77	•20 17	36 7 00	20,800	•214	100 CO	527	Bn-6	
	73	• <u>+</u> /	36,000	20,500	•±24 152	25 05	563	Bn-5	
	50	1	35 200		• 10r	25	510	Bn-3	
	32	17	33 350	20,000	•+•) (342	Bn-7	
	2≈ 17	11.	37 750	22,200	+14) 12r	±5 1 r	440	Bn-2	
2	-40	-14	1050	29 000	י עב∙ ייייםרו	±2 10 -	<u>う(</u> び 1701 - 11	5n-4	
	-40	.14	71 950	22,000	086	τ. τ.	124	Dr. 10	
	-70	.11	42.750	37.500	.095	2 5	ן נט מפר	Dn-L2 Dn 10	
			-+~ • • • • • • •	000	0 V / J)	~)(D11-13	

· · · · ·

Temp.	Elong.	Nax.	Yield	Lateral	%Fibrous	Energy	Spec.	
OF	<u>2#G.L.</u>	Load	Load	Contraction	Fracture	Absorption	No.	
158	• 22	37 650	21.000	<u>steel C</u>	100	417	C-17	
	15	38 750	25,000	. 748	85	326	C-18	
140	• • • •	20,700		172	100	<u> </u>	C-7	
	•±0	20,750	25 000	•1/2	15	351	C-15	
5113	· <u>· · ·</u> ·	37,120 27,000	25,000	·	ע ב. ז'ג			
1:13	.13	37,900	20,500	· • + + + >	10	209	 	
: 79	• •15	40 , 300	30,800		±5	40.5	0-11	
75	.12	41,200	25,500	•075	10	376	6-0	
- 50	.13	41,400	27,500	.082	5	400	6-13	
32	.05	41,950		•067	0	142	0-6	
- 32	•.09	42,500	29,000	•093	20	287	.C-14	
32	.07	41,950	40,000	.050	- 2	49	.C-19	
-40	.09	39,900	28,500	.051	0	307	C21	
-90	08	40.450	40.350	• 026	0	183	C-22	
	• *			Steel Dr		~	•	
137	18	70.900	24.000	- 190	100	122	Dr-15	
	.19	1,2,100	19,500	211	100	649	Dr-14	
70	•±/ .15	42,100	30,500	-166	100	461	Dr-1	
12	•エノ うち	13 100	13,000	152	50	40± 135	Dr-8	
(7	(J)	45,100	25,000	-127	25	422		
-777	• < 1	42,500	29,000	12/				
<u>ن</u> و	•15	44,200	24,500	•1.74	40	440	Dr-9	
32	<u>عد</u>	42,950	24,500	• 144		304	Dr-6	
14	.18	44,600	26,500	•125	42	593	Dr-2	
-4	.10	45,600	27,000	.108	10	310	Dr-7	
-40	•09	47,600	30,500	• 104	5	308	. Dr-3	
-58	• 0 6	47,200	42,000	•062	Ø	58	Dr-11	
-70	.08	47,800	47,800	.074	0	401	Dr-13	
ואר		20.000	01 500	Steel.Dn	00.5	100		
±04	· .20	00,00	~4 , 500	•+77	100	4/~	Du-LO	
74	•18	37,250	26,000	·1.74	TOO	498	Un-ro	
50	•T5	39,400	22,500	.123	10	530	Dn-5	
37	.18	40;100	28,000	•195	100	472	Dn-2	
32	.17	40 ,9 50	26,200	.198	100	531	Dn-11	
14	.17	41,100	25,000	.121	15	511	Dn-1	
-37	.17	45,400	24,500	.105	5	538	Dn-7	
-58	.08	43.750	31.000	.092	2	254	Dn-4	
-60	.10	43,900	29,500	•093	Ö	560	Dn-12	
-60	.12	46,600	34,000	.092	5	676	n = 1	
-70	_09	40,000	31 500	001 1	10	670 620	Dv~15 Trt ~ TH	
r~	•~;	000 e ; +i	∪∪ر وند ار	● ∪7⊥	τv	020	Dt1-70	

Temp.	Elon _é .	Max.	Yield	Lateral	% Fibrous	Energy	Spec.
<u> </u>	<u>2"G.I</u> .	Load	Load	Contraction	Fracture	Absorption	No.
				<u>Steel _</u>			- <u></u>
138	.22	26,600	17,500	•225	100	527	E-3
122	.18	34,350	19,500	.210	100	537	E-16
110	.21	35,050	20,500	.221	1.00	555	E-12
97	.12	35,100	19,500	.104	10	464	E-10
82	.15	35,650	23,500	.103	5	405	E-2
77	•14	36,250	18,500	.117	5	396	E-13
50	.12	36,700	27,600	.135	5	328	E-11
34	.13	38,000	19,500	•114	5	363	Σ-4
32	.16	35,250	25,000	.150	15	355	E-15
14	•09	37,500	23,500	.097	2	219	E-5
4	. 16	38,600	30,000	•034	10	375	E-14
		-		Steel H			
212	.21	36,550	20,500	.247	100	487	H15
104	.22	39,300	22,500	.224	100	560	H-10
77	.18	39,950	21,700	.167	40	643	H-13
77	.18	40,450	20,000	.175	40	743	H-14
50	.19	40,500	19,500	.169	50	508	H-12
37	.19	41,550	24,000	.155	20	585	H-5
14	.16	42,450	27,000	.160	15	510	H-1
-4	.19	41,750	25,000	.151	10	577	H4
-22	.15	43,000	26,000	.157	15	429	H-2
 40	.14	42,900	28,000	.137	15	442	н-6
-58	.16	43,500	28,000	.126	5	510	H - 3
-76	.13	45,200	29,000	.079	0	609	H-13
				steel Q			
82	.16	48,300	31,000 -	.198	100	594	Q-5
47	.15	47,500	34,000	.146	50		Q - 6
14	.13	49,900	37,500	.119	33	51 6	Q-1
-4	.11	49,750	27,500	.109	25	403	Q-2
 40	.09	49,900	49,400	.100	8		Q-3
40	.11	51,850	38,500	.106	10	79	Q-10
-40	.08	52,600	42,000	•077	0	455	Q-13
40	.09	53,650	43,500	•063	0	728	Q-14
-70	•09	54,200	44,500	.070	0	400	Q-11
-70	.11	57,300	44,500	.076	10	523	Q-12
-76	•09	54,800	41,500	.071	3	244	Q-4

ಹಿ