SSC-263

[SL-7-7]

STATIC STRUCTURAL CALIBRATION OF SHIP RESPONSE INSTRUMENTATION SYSTEM ABOARD THE SEA-LAND MCLEAN

This document has been approved for public release and sale; its distribution is unlimited.

SHIP STRUCTURE COMMITTEE 1976

SHIP STRUCTURE COMMITTEE

AN INTERAGENCY ADVISORY COMMITTEE DEDICATED TO IMPROVING THE STRUCTURE OF SHIPS

MEMBER AGENCIES: United States Coast Guard Navni Sea Systems Command Militory Sealift Command Maritime Administration American Bureau of Shipping ADDRESS CORRESPONDENCE TO Secretary Ship Structure Committee U.S. Coast Guard Headquarters Washington, D.C. 20590 SR-211.

This report is one of a group of Ship Structure Committee Reports which describes the SL-7 Instrumentation Program. This program, a jointly funded undertaking of Sea-Land Service, Inc., the American Bureau of Shipping and the Ship Structure Committee, represents an excellent example of cooperation between private industry, regulatory authority and government. The goal of the program is to advance understanding of the performance of ships' hull structures and the effectiveness of the analytical and experimental methods used in their design. While the experiments and analyses of the program are keyed to the SL-7 Containership and a considerable body of data will be developed relating specifically to that ship, the conclusions of the program will be completely general, and thus applicable to any surface ship structure.

The program includes measurement of hull stresses, accelerations and environmental and operating data on the S.S. Sea-Land McLean, development and installation of a microwave radar wavemeter for measuring the seaway encountered by the vessel, a wave tank model study and a theoretical hydrodynamic analysis which relate to the wave induced loads, a structural model study and a finite element structural analysis which relate to the structural response, and installation of long term stress recorders on each of the eight vessels of the class. In addition, work is underway to develop the initial correlations of the results of the several program elements.

Results of each of the program elements will be published as Ship Structure Committee Reports and each of the reports relating to this program will be identified by an SL- designation along with the usual SSC- number. A list of all of the SL- reports published to date is included on the back cover of this report.

This report contains the results and a discussion of the calibration of the full-scale instrumentation and compares the results with calculated predictions.

W. M. Benkert

Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee SSC-263

(SL-7-7)

Technical Report

on

Project SR-211, "SL-7 Data Collection"

STATIC STRUCTURAL CALIBRATION OF SHIP RESPONSE INSTRUMENTATION SYSTEM ABOARD THE SEA-LAND MCLEAN

by

R. R. Boentgen and J. W. Wheaton Teledyne Materials Research

under

Department of the Navy Naval Ship Engineering Center Contract No. N00024-75-C-4354

This document has been approved for public release and sale; its distribution is unlimited.

> U. S. Coast Guard Headquarters Washington, D.C. 1976

> >

- -----

ABSTRACT

This document reports the results of the calibration of the strain gage portion of the ship response instrumentation installed on the SEA-LAND McLEAN SL-7 class containership. The calibration consisted of a succession of loading conditions achieved by selectively removing container cargo, and was performed on April 9-10, 1973 in Rotterdam. The measured stress changes are compared with calculated predictions, and the results are discussed. In general, the measurements and calculations agree substantially within tolerances assignable to physical conditions.

TABLE OF CONTENTS

.

_

. . . .

--- --- -- -- --

····

Page

I.	INTRODUCTION	1
II.	OBJECTIVE	l
III.	CONCLUSIONS	1
IV.	INSTRUMENTATION	2
	General System	2
	Scratch Gages	2
	Additional Gages	3
	Gage Locations	3
۷.	THE CALIBRATION EXPERIMENT	3
VI.	RESULTS	4
VII.	DISCUSSION	4
	Rectangular Rosette Gages	5
	Additional Gages	- 5
	Transverse Girder	5
	Forward Longitudinal Strain	6
	Calculated Data	6
	Longitudinal Vertical Bending	7
	Scratch Gages	8
	Torsional Shear Midship	8
	Forward and Aft Sideshell Shear	9
VIII.	GENERAL CONSIDERATIONS	9
IX.	REFERENCES	10
	TABLES I – X	11 - 47
	FIGURES 1 - 16	48 - 67

-iii-

.....

LIST OF TABLES

-

		PAGE
Ι.	SENSOR LIST 72/73 SEASON AND CALIBRATION	11
II.	SENSOR AND SIGNAL NOMENCLATURE	16
III.	SIGNAL DESCRIPTION AND RATIONALE	18
IV.	ENVIRONMENTAL CONDITIONS AT CALIBRATION	22
۷.	OBSERVED DRAFTS	22
VI.	CALIBRATION UNLOADING PLAN	23
VII.	SUMMARY OF REDUCED STRAIN DATA	38
VIII.	HATCH MEASUREMENT'S	45
IX.	CALCULATED BENDING MOMENTS, SHEAR FORCES, AND NORMAL STRESSES	46
Χ.	ABS TORSIONAL MOMENTS FOR EACH HATCH AT EACH LOAD CONDITION	47
	LIST OF FIGURES	
1.	INSTRUMENTATION FLOW DIAGRAM	48
2.	GENERAL SENSOR LAYOUT	49
3.	DETAILS OF STRAIN GAGE LAYOUT	50
4a-4d.	CONTAINER LOADINGS, CONDITIONS 3, 4, 5, 6	51
5a-5f.	CALCULATED LOADS VS. STATION, CONDITIONS 1, 3, 4, 5, 6, 7	55-56
6.	STRESS VS. LOAD CONDITION, ROSETTES AR1 AND AR2	57
7.	STRESS VS. LOAD CONDITION, ROSETTES R1 AND R2	58
8.	REPRESENTATION OF STRAIN GAGE DATA, MIDSHIP TRANSVERSE GIRDER	59
9.	LONGITUDINAL VERTICAL BENDING MIDSHIP (LVB) CHANGE IN MEASURED AND CALCULATED STRESS VS. LOAD CONDITION	AND 60
10.	LONGITUDINAL VERTICAL BENDING MIDSHIP (LVB) MEASURED STRESS VS. CALCULATED STRESS	61
11.	LONGITUDINAL STRESSES (MIDSHIP) CALCULATED AND MEASURED DATA VS. LOAD CONDITION	62
12.	COMPARISON OF DATA FROM SCRATCH GAGES AND LST GAGES	63
13.	MEASURED TORSIONAL SHEAR MIDSHIP (TSM) AND LONGITUDINAL HORIZO	NTAL
	CONDITION	64

-iv-

- -- --

LIST OF FIGURES (Concluded)

PAGE

14.	STARBOARD BOXGIRDER SHEAR (MIDSHIP) CALCULATED AND MEASURED DATA VS. LOAD CONDITION	65
15.	FORWARD SHEAR STRESS (SFP AND SFS) CALCULATED AND MEASURED DATA VS. LOAD CONDITION	66
16.	AFT SHEAR STRESS (SAP AND SAS) CALCULATED AND MEASURED DATA VS. LOAD CONDITION	67

-v-

....

÷.

.

SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships by an extension of knowledge pertaining to design, materials and methods of fabrication.

RADM W. M. Benkert, USCG Chief, Office of Merchant Marine Safety U.S. Coast Guard Headquarters

Mr. P. M. Palermo Asst. for Structures Naval Ship Engineering Center Naval Ship Systems Command

Mr. K. Morland Vice President American Bureau of Shipping Mr. M. Pitkin Asst. Administrator for Commercial Development Maritime Administration

Mr. C. J. Whitestone Maintenance & Repair Officer Military Sealift Command

ç

- ----

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for the determination of goals and objectives of the program, and by evaluating and interpreting the results in terms of ship structural design, construction and operation.

NAVAL SEA SYSTEMS COMMAND	AMERICAN BUREAU OF SHIPPING
Mr. C. Pohler - Member Mr. J. B. O'Brien - Contract Administrator Mr. G. Sorkin - Member	Mr. S. G. Stiansen – Chairman Mr. I. L. Stern – Member Dr. H. Y. Jan – Member
U.S. COAST GUARD LCDR E. A. Chazal - Secretary	SOCIETY OF NAVAL ARCHITECTS & MARINE ENGINEERS
CAPT C. B. Glass - Member LCDR S. H. Davis - Member	Mr. A. B. Stavovy - Liaison
LCDR J. N. Naegle - Member	WELDING RESEARCH COUNCIL
MARITIME ADMINISTRATION	Mr. K. H. Koopman - Liaison
Mr. N. Hammer - Member Mr. F. Dashnaw - Member	INTERNATIONAL SHIP STRUCTURES CONGRESS
Mr. F. Seibold - Member Mr. R. K. Kiss - Member	Prof. J. H. Evans - Liaison
MTI TTARY SEALLET COMMAND	U.S. COAST GUARD ACADEMY
Mr. D. Stein - Member	CAPT W. C. Nolan - Liaison
Mr. T. W. Chapman - Member Mr. A. B. Stavovy - Member	STATE UNIV. OF N.Y. MARITIME COLLEGE
CDR J. L. Simmons - Member	Dr. W. R. Porter - Liaison
NATIONAL ACADEMY OF SCIENCES	AMERICAN IRON & STEEL INSTITUTE
	Mr. R. H. Sterne ~ Liaison
Mr. R. W. Rumke - Liaison Prof. J. E. Goldberg - Liaison	U.S. NAVAL ACADEMY
	Dr. R. Bhattacharyya - Liaison

I. INTRODUCTION

The SEA-LAND McLEAN is the first in a class of eight high-speed (33 knot) containerships. Each carries 200 forty-foot and 896 thirty-five-foot containers. In order to insure a rapid turnaround, the ships were designed with virtually unobstructed hatches running over 80% of the ship's length for loading of below-decks cargo. Such an arrangement, however, greatly reduces torsional stiffness and necessitates a revised structural layout.

Instrumentation of the vessel and collection of seaway response data by Teledyne Materials Research is part of a larger SL-7 program of model testing, structural analysis and data correlation between various tasks. Calibration of the strain gage sensors forms an integral part of the data collection and correlation tasks.

II. OBJECTIVE

The calibration event supplies two important factors necessary to the evaluation of seaway data.

- 1. Checkout of the Instrumentation System. The calibration was the first opportunity to check out the sense and magnitude of the installed gaging system against a deterministically varying load. Due to the complexity of the structure it is not always possible to make successful a priori decisions regarding gage locations. Unusual load paths, stress concentrations, interactions of applied loads, thermal environments, service conditions, modeling approximations, construction techniques, and other unpredictable conditions all may act to invalidate or reduce the desired effectiveness of applied instrumentation. Calibration, therefore, makes possible an overall check of the data system under a rational applied load.
- 2. Determination of Constants. The second and perhaps more important aspect of the calibration is that it provides data for the development of proportionality constants or influence coefficients between the applied load and the measured response. These factors can then be used to generate applied loads from the recorded seaway stresses.

Ideally, a calibration procedure seeks to apply sequentially a series of pure (single-component) loads while the specimen is at a uniform and constant temperature and free from other influencing factors or loads. These conditions were not fulfilled in the present calibration experiment due to various practical limitations. The limitations will be noted and the deviations from ideal conditions described in the appropriate succeeding sections.

III. CONCLUSIONS

The following general conclusions can be drawn based on the data gathered during the calibration experiment:

1. Measured changes in midship vertical longitudinal bending stress were consistently 80 percent of the calculated changes. Because of possible differences between the as-constructed and the theoretical (minimum-

.....

scantling) section modulus upon which the calculations were based, this correlation is reasonable and indicates further that the load/response characteristic is linear and that data acquisition and reduction techniques do not contain any significant systematic errors.

- 2. Data have been reported relating response to applied loads, making possible the development of proportionality constants.
- 3. Stress levels achieved during the calibration are in most cases small relative to maximum measured seaway stress variations, and thermal conditions were not constant over the duration of the experiment. Extrapolations of loads by proportionality, therefore, should be undertaken with caution.
- 4. The maximum observed stress change for the calibrations loadings (10,200 psi, Sensor SY_A, during the torsion loading, Condition 4 to Condition 6) occurred at the starboard aft corner of Hatch No. 9, just forward of the Aft House. Other hatch corners at stations where hatch width changes are encountered exhibited high shear stresses near the stress relief cutouts. The hatch corners, therefore, are probably the most highly stressed parts of the structure.

IV. INSTRUMENTATION

<u>General System</u>. The sensors used in the calibration experiment were the identical ones used in the Fall/Winter 1972-73 seaway data collection program. A total of 105 discrete instrumentation channels are installed and were available for monitoring. Of these, 97 were strain gage sensors (including some multiple active element bridges designed to be sensitive to only specific types of loading), six were ship's motion (four linear acceleration and two rotational displacements), one was a multiplexed combination of ship operating parameters and one was assigned to a wave height radar. Only the strain gage sensors saw useful input levels during the calibration experiment. Table I contains a listing of all instrumentation sensors. It should be noted that the vertical bending stress is repeated on both recorders for matching purposes. For record keeping convenience, however, each of the five repeated monitorings (on Recorder No. 1 and on Recorder No. 2 in Modes A, B, C, and D) is assigned a separate sensor number. Table II lists abbreviations used for sensor nomenclature.

Figure 1 presents the overall instrumentation layout and signal flow as installed on the SEA-LAND McLEAN. All strain gages and ship motion sensors are first terminated in Intermediate Junction Boxes (IJB) positioned near the sensor location. All instrumentation is then routed to Junction Boxes (JB) installed by the ship's electrical contractors. Cabling for the data collection system is designated "612" throughout the ship. The majority of strain gage signals are fed directly from IJB's to JB's. Sensors Nos. 43 through 84 and 86 through 105 additionally pass through the Rosette Selection Box (RSB) and Girder Selection Box (GSB), respectively, where signals are selected and patched for recording. During the calibration, all available signals were patched and recorded for each loading condition. (For a more detailed definition of these gages and selection arrangement see Reference 1.)

<u>Scratch Gages</u>. All ships in the SL-7 series have a "scratch gage" mechanism installed in the starboard tunnel at midships for long-term monitoring. These self-contained gages are intended to record the maximum strain in the tunnel side

- ----

stringer on which they are mounted. In the McLEAN (only) two instruments are installed, one each port and starboard midships. Both instruments were manually advanced and recorded the strain at these locations for each calibration condition.

<u>Additional Gages</u>. Three additional gages, not available for analog monitoring during seaway runs, were installed for future reference. Located at the Aft House/Hatch 9 starboard cutout, these gages were read manually using a strain indicator during the calibration for Conditions 3 to 7.

<u>Gage Locations</u>. A short reference description of the location of all sensors is included in Table I. An expanded description and brief rationale for each sensor are presented in Tables II and III. Reflected in the gage layout is the realization that longitudinal vertical bending is the single most important operating parameter. Due to the unusually high speed of the ship, extensive ship motion sensors are incorporated to gather data on rigid-body motions. The majority of the remaining gages are located to ascertain the magnitude and effect of the torsional loading and distributions which are major considerations in the structural design. Such loadings tend to induce a fixed-end-bending type of deformation in the transverse girders and develop stress concentrations at hatch corners.

Figure 2 presents an overall plan of gage locations. Figure 3 presents installation details of the strain gage instrumentation.

V. THE CALIBRATION EXPERIMENT

The dockside calibration experiment was conducted on 9-10 April 1973 in Rotterdam, Holland. Originally the plan was to begin from a fully-loaded ship and selectively remove container cargo so as first to produce three increments of change in longitudinal vertical bending moment and then two torsional (twisting about a longitudinal axis) moment distribution increments. The initial (dockside) condition was designated No. 1, the five unloading increments described are Conditions Nos. 2 through 6, and the final (empty) condition is No. 7. Due to schedule constraints Condition No. 2 was deleted. For similar reasons a full set of zero readings at dockside (Condition No. 1) using all patching options was not possible. For this reason a previous condition, coming up the Maas River at slow speed, was defined as Condition Zero. All other measurements reported are referred to it unless otherwise noted. (Any other condition from all readings at the other conditions.)

Environmental conditions during the calibration are presented in Table IV, and the observed drafts are in Table V. Figures 4a-4d illustrate the changes in container loadings which are presented in Table VI. Figures 5a-5f present the calculated vertical bending moment, vertical shear force, and torsional moment distributions for each condition. Container unloading proceeded as described below:

Condition 1

Dockside initial readings were taken, no unloading, all channels and patch options were read by meter, tape recordings made on all modes but options not patched. (Note: Cargo holds beneath Hatch 3 and 10 were empty throughout the calibration.)

Condition 3 (Figure 4a)

Deck containers removed from Hatches 1 through 4 and 12 through 15. All op-

.

.

- 3 -

tions were read from meter and recorded on tape for this and subsequent conditions. This condition is the maximum decrease in hogging (vertical bending) moment.

Condition 4 (Figure 4b)

Remaining deck containers on Hatches 5 through 11 removed. This midship cargo removal results in an increase in hogging moment toward arrival level.

Condition 5 (Figure 4c)

Containers were removed from starboard side of Hatches 1 through 7, and the port side of Hatches 8 through 15, generating a torsional moment. After approximately one-half of the unloading was complete, Condition 5 was recorded. Hatch covers were placed asymmetrically to contribute to the torsional moment.

Condition 6 (Figure 4d)

Completion of unloading described in Condition 5. This is the maximum torsional load. It should be noted that this also changes the hogging moment component.

Condition 7

Nominally empty ship except for one propeller (47 long tons) loaded into Hatch 3 and one propeller in Hatch 4, all hatch covers on.

VI. RESULTS

As previously noted only strain gage sensors produced useful outputs during the calibration. A summary of all strain gage outputs, referenced to Condition Zero, is presented in Table VII. Single gage strains have been converted to stress by multiplying by Young's Modulus (E). In the case of three-arm rosette gages, calculated principal maximum (σ_1) and principal minimum (σ_1) stresses are also given along with the angular orientation to the principal axis as measured from the "A" or longitudinal gage. Changes in Hatch 7 dimensions were measured during the torsional part of the calibration, and are presented in Table VIII.

VII. DISCUSSION

The results of the calibration experiment fall into two classes depending upon whether or not the data can be predicted by theoretical calculations. Calculations of vertical bending moment, vertical shear force, and torsional moment were prepared by the American Bureau of Shipping from the loading information, but only a relatively small number of the sensors were designed to measure the effects of these basic loadings. The remainder of the strain gages were placed in areas of interest where calculations are difficult, and there are no specific predicted values available for comparison. The response of these gages to the applied loadings is, therefore, of great interest, and these results will be considered first. Figures have been prepared as noted to illustrate this discussion.

- 4 -

Rectangular Rosette Gages (Mounted Underdeck)

There is a great similarity in recorded strain (converted to stress) between geometrically comparable rosette elements located at Frames 226 and 258; R5 and R10; R6 and R11; R7 and R12; R8 and R13; R9 and R14. Although the gages at the more forward location show approximately 25 percent lower stress, the general changes with load are similar. This would be expected from the similar sections as the load decreases forward. Another decrease in stress is exhibited at the next forward location (Frame 290), but the response is modified due to the influence of the Forward House, especially in reducing the diagonal stresses. In this connection, the longitudinal stresses predominate in the tunnel at Frames 258 and 290, whereas the diagonal stresses predominate in the transverse girder near the hatch corners.

Figure 6 shows the output of each element of AR1 and AR2. These are located symmetrically on the port and starboard sides, respectively, at Frame 143 near the Hatch 9 corners just forward of the After House (see Figure 3). The opposite action of the torsional loading can be seen clearly here; the longitudinal and transverse elements exhibit nearly equal stress changes but in opposite directions. Similar behavior could not be expected in the case of the diagonal elements since these are tangent to the hatch corner cutout on the port side, but radial to the cutout on the starboard side. Note the relatively large tensile stress on the port (tangential side) diagonal indicating a stress concentration around this detail.

Figure 7 presents a similar representation for the Rl and R2 gages located port and starboard just aft of the Forward House, near the Hatch 1 corners. Since all the cargo used to apply the vertical bending and torsional moments was aft of this section, one might expect negligible stress changes. Relatively significant longitudinal stress changes are exhibited, however. These are associated more with the restraint of warping stresses than with the bending moment changes. Apparently, both the Forward and Aft Houses restrain the free action of the open cell torsional deflections, thus giving rise to significant (in comparison with those induced by vertical bending) longitudinal stress components. These components are especially important at hatch corners near the house structures because the house structure geometries further increase their magnitudes.

Additional Gages

Three additional gages (SY) were located circumferentially about the hatch corner reinforcement on the starboard side just forward of the Aft House (Hatch 9). The first of these gages, SYA, displayed the highest recorded strain change of any gage during the calibration. This gage was located 22 1/2 degrees from the longitudinal direction around the cutout ring. These gages were installed especially for the calibration, and were read with a strain indicator.

Transverse Girder (Normal Stresses)

Gages TGFS, TGMS, and TGAS were located in forward (Frames 242-244), mid (Frames 194-196), and aft (Frames 78-80) transverse girders, respectively. Each exhibited similar general responses which may be characterized as a change in bend-

ing stress distribution from vertical to horizontal as the loading conditions were varied from Conditions 1 to 6. The mid girder was the most heavily instrumented, with three normal stress gages in each side (one each at the corners and midpoint), one each at the top and bottom midpoint, and one shear installation at each side quarter point. Forward and aft transverse girders were instrumented only with normal strain gages near each side corner. (No readings were obtained from the aft transverse girder forward bottom corner gage, TGAS2, due to excessive zero offset.) Each gage set was mounted in a vertical plane about four feet inboard from the starboard tunnel--transverse girder interface. The change from the slow, steady ahead river condition (Condition Zero) to dockside (Condition 1) shows as a significant increase in vertical bending. In all cases, the change in stress distribution from Condition 1 to Condition 6 is characterized by a change from vertical to horizontal bending in the gage arrays, as shown in Figure 8. This is assumed to result from first the decrease in vertical bending and then the torsional warping of the hull cross sections. The former will result in upper fiber tension and lower fiber compression, since the reference condition is loaded, and unloading is the same as application of an upward load. The latter will result in tension in the aft fibers and compression in the forward fibers. Some of the distortion in the stress plots is probably due to the influence of the bulkhead on the aft side of each transverse girder section.

Shear stresses recorded at the upper section remain fairly constant while those at the lower quarter points tend to become increasingly negative, especially on the bulkhead side where a change in shearing stress of -6450 psi was recorded.

Forward Longitudinal Strain

Four single-element gages were located 12 inches below each longitudinal tunnel (port and starboard) and 12 inches above each tank top at Frame 290. Three of these gages exhibited fairly low stress (1,000 psi or less) with little response to bending loads and limited but definite torsional response. The fourth gage in the group (top, port) showed a large, linear increase in tensile strain between Conditions Zero and 3. Since there was no static load change between Conditions Zero and 1, there should have been no significant induced strain. Similarly, the load change between Conditions 1 and 3 should not cause the amount of tensile change indicated at this location. Additionally, the strain remains high through Condition 7. It must be assumed, therefore, that there was a warm-to-cool (coming up river/dockside shadow) thermal restraint stress induced at this location. The general response after Condition 4 is consistent with the loading conditions assuming an initial zero offset.

Calculated Data

The longitudinal vertical bending moments and the vertical shear forces were obtained from the ABS "Static Longitudinal Strength Calculation for SL-7 Sea-Land Containership Study" dated February 8, 1974 for the appropriate frame (see Figures 5a through 5f). The vertical bending moments were divided by the appropriate section modulus (top or bottom) taken from the Sea-Land Service, Inc. Containership Construction Center Drawing No. 10-097, "Section Moduli, Bending Moment (Cond. 7) and Bend. Stresses Curves", dated May 5, 1972. Using these data the normal stresses were calculated by the relationship

$$S_b = \frac{M_b}{Z}$$

where S_b and M_b are the bending stress and bending moment, and Z is the section modulus at the section of interest. The results of the calculations are shown in Table IX.

The torsional moments at each hatch for each load condition were obtained from ABS calculations titled "SEA-LAND McLEAN Calibration Tests, Torsional Moments (Ton-Feet)", and are also plotted in Figures 5a through 5f. Summing these torsional moment contributions per hatch for each load condition along the ship length aft to forward, using the appropriate sign convention, produces an accumulative torsional moment per hatch for each load condition. These torsional moments are tabulated in Table X.

Longitudinal Vertical Bending

A comparison of measured and calculated values is presented in Figures 9 and 10. The tracking of the two sets of data against Condition is good in Figure 9, even though the absolute magnitudes are relatively low. Figure 10 demonstrates this relationship more clearly by plotting the measured values against the calculated ones. All of the points lie on a straight line having a slope of 0.8.

Figure 11 presents the longitudinal stresses measured top and bottom, port and starboard, at midship with the measured and calculated vertical bending stresses and the calculated torsional moments. These plots show the ship bending as the unloading proceeds from the slight hogging sense at Condition 1 to the greatest hogging sense at the unloaded Condition 7. In proceeding from Condition 1 to Condition 3, it is evident that the ship changes from a hogging sense toward a sagging sense. This result is reasonable, as in going from Condition 1 to Condition 3 containers are removed from the deck over Hatches 1-4 and 12-15, which tends to produce a more concentrated load at midship. Proceeding to Condition 4 shows a moment change back to a hogging sense. The hogging continues to increase to the unloaded Condition 7. This increase in hogging can be attributed to the fact that as the ship is unloaded the buoyant forces forward and aft decrease at a faster rate than at midship.

Detailed analysis of Figure 11 and the data in Table VII reveals some unexpected results, however, especially from the starboard neutral axis and bottom gages. Although the extreme fiber (top and bottom) gages respond in the expected sense for the two vertical bending conditions, the magnitude of change for the port and starboard gages, which should be approximately equal, in fact is considerably different. This indicates a nonuniformity of the bending moment across the section which is presently unexplained. Further, the relatively high stress changes indicated at the starboard neutral axis (not plotted) is also unexplained. This gage is located on the neutral axis approximately 24-3/4 feet above the base line, which, for the calibration, equals the draft shortly after Condition 4. In other words, this gage is at water temperature under one condition, and at approximately air temperature during the succeeding condition. Due to the inherent self-temperature compensation of the strain gages used, thermally-induced strains will not be indicated. However, restraints of thermal strains are actual stresses and are indicated by the gage. Three types of thermallyinduced stresses are possible for the calibration conditions: gross horizontal bending, gross vertical bending, and local stress changes across thermal interfaces (i.e., the waterline). Gross horizontal and vertical bending due to restraint of thermally-induced strains result in compressive stresses in the starboard side and deck, respectively, for the calibration condition of cool water and warm air/sun on the starboard side and deck. The large stress exhibited by the starboard neutral axis gage cannot be explained by these considerations. It is also interesting to note that this stress is largely maintained at Condition 7 (unloaded). As a result of this unexplained behavior, a physical check was performed on the installation. All circuits were found to be operating correctly and were correctly identified.

Scratch Gages

A scratch gage (a timer-advanced, peak-strain-reading, mechanical recording strain gage) has been installed in both longitudinal tunnels, midship, at the half-height side shell longitudinal stringer. (Other vessels in the SL-7 class have been fitted with one such gage each, in the starboard tunnel at a similar location.) Both recording charts were advanced manually at each calibration condition for recording peak strain. For the calibration experiment induced strains produced stylus deflections on the order of 0.020 inch, a quantity which is difficult to scale precisely. The plot of these stresses in Figure 12 also presents the corresponding outputs from the tunnel top stress gages near the same locations. Agreement between the two types of instrumentation is generally good, especially for the low stresses involved.

Torsional Shear Midship

In the absence of detailed sectional information suitable for calculating shear stresses using the calculated torsional moments, the moments themselves have been plotted in Figure 13 along with the measured shear data. The comparison is generally good. Virtually no output is indicated until the start of the torsional loading condition. Although there is no change in the horizontal bending sensor output for Conditions 1 through 4, an increasing output is indicated for Conditions 5 and 6. This corresponds to the torsional stress distribution (restraint of torsional warping resulting in symmetrically opposite normal stresses about the centerline and torsional neutral axis). It is also possible that some of this is due to thermally-induced horizontal bending which is restrained by the constant-temperature ship bottom.

Low outputs are exhibited by the two boxgirder (longitudinal tunnel) gages located on the tunnel top (deck) and bottom (see Figure 14). However, the indication is larger for the shear conditions and of opposite sign on top and bottom as would be expected due to the shear flow around the closed box section. The top gage on the starboard boxgirder appears to track fairly well with the calculated torsional moment. The bottom gage appears to be responding to shear associated with horizontal bending, which tends to reduce its response to the torsional moment. However, it is very difficult to relate calculated and measured data when the measured stresses are of such low magnitude.

Forward and Aft Sideshell Shear

One vertical shear sensor was installed on each sideshell neutral axis at Frames 289-290 and Frames 87-88 with each monitored separately. The forward pair (Figure 15) are located at the neutral axis and exhibited similar shear stresses, indicating that their response was associated principally with vertical bending loads. At the aft location (Figure 16) the gages were located above the neutral axis and exhibited similar but opposite behavior. A check of seaway data in head seas revealed that the Shear Aft Port transducer consistently produced data opposite in polarity from the Starboard data, indicating a polarity error in the bridge circuit. However, if horizontal bending and/or torsional loads were present, their effects could not be separated from vertical shear with transducers of this configuration. The shear stresses measured were very low in absolute magnitude.

VIII. GENERAL CONSIDERATIONS

Various factors present in the calibration experiment militate against more completely explainable results. Some of these are:

1. A clear, bright-sun day. Due to the ambient temperatures, the fact that the sun shone directly on the starboard side, and the almost 24-hour period required for the calibration, thermal effects from port to starboard, deck to waterline, and between day and night loading conditions resulted in appreciable strains. A determination of the magnitude of these strains is difficult for several reasons. First, the actual distribution of temperatures through material thicknesses and along various length and width dimensions is not known. From the temperature measurements made during the calibration (Table IV) a probable distribution may be assumed, but this may not be adequate. Second, the induced apparent strain depends on the degree of restraint of thermal expansion. (As mentioned previously, no response due to unrestrained thermal expansion is indicated by the gages employed. Evaluation of this problem requires a model analysis, and the exercise would become circular.

2. Schedule and other operational limitations. The original offloading plan called for an intermediate vertical bending condition (No. 2) which would have added another data point to indicate the linearity and correctness of the measured strains. Due to schedule considerations, this point was deleted. Further, due to the excessive time and labor which would have been required, a reverse torsional loading condition was not included in the original plan. This would have been useful in aiding the elimination of biased or nonsymmetrical loading behavior.

3. Low load level. Due to various logistical and other factors the ship arrived for the calibration experiment with less than a full cargo load. Most of the missing containers had been located fore and aft, resulting in a decreased change in hogging bending moment during the calibration. This situation contributed to the relatively low strain levels recorded. These low strain levels are, in many cases, of a magnitude similar to the thermal restraint stresses, built-in fabrication stresses, non-linear stresses due to structural nonuniformities and irregularities and/or zero offsets and drifts in the instrumentation. In many cases the load-induced stress levels are insufficient to rise above these types of noise. However, the linearity of the vertical bending results provides considerable confidence in this important area.

4. Simultaneous variation in applied load. Ideally, during a calibration the various loads are varied individually so that the effect of each may be ascertained easily. During this calibration experiment it was not possible to achieve this ideal, primarily because the loading changes which induced a torsional response also caused changes in vertical bending moment. Such a situation makes it difficult to separate the cause (load) and effect (strain) relationship.

IX. <u>REFERENCES</u>

- 1. Fain, R. A. "Design and Installation of a Ship Response Instrumentation System Aboard the SL-7 Class Containership S.S. SEA-LAND McLEAN," Ship Structure Committee Report SSC-238 1973.
- 2. Fain, R. A., Boentgen, R. R., and Wheaton, J. W. "First Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S.S. SEA-LAND McLEAN in North Atlantic Service," Ship Structure Committee Report SSC-264.

`

<u>TANLE T</u> SENSOR LIST 72/73 Season and Calibration

Sencor Sec	Sersor Nem.	Frame	Location (2) Position	Config.	Orient	Sensitive to	Recorder	Channe 1	Mode	Tull Cal	Untes	Citerit No.
1 (3)	TVB	186 <u>1</u>	Tunnel Tops	Dyadic	Long.	V. Bend.	1	1	ı	8714	184	-4
5	XSI .	186 1	Side N/A	Shear	Vert.	H.T. Shear		2	,	1667	ISA	m
ۍن ا	Kave Ht.	300	Fwd Deckhouse (Stbd)	Ridar	Angled	Range (3)	1	ri	,	3.6	Velt	1
~1	Roll	178	26" Fwd 31' ATT	Pend.	Trans.	Roll		4	1	20	Deg.	I
10	Pitch	178	26" Fvd 31' ATT	Perd.	Long.	Pitch	н	Ś	,	2.1	Deg.	1
	VAL	178	23" P.M 31' ATT	Mass	Vert.	V. Accel.	н	ę	ı	-1	6 %.	1
	TAIT	178	23" Fwd 31' ATT	Mass	Trans.	T. Accel.	щ	~	1		e.0	1
<i>∞</i>	FAV	290	14" Pvd 59' ATT	Mass	Vert.	V. Accel.	T	8	1		8	1
~	FAT	250	14" F.4 59' ATT	Mass	Trans.	T. Accel.	ы	o,		н	40	1
10	05 Para.	ı	RPM, Rud, Wind S&D	Multiplex	1	Transmitters	1	10	•	3.6	Volt	1
11	LHB	156 1	Side NA	Dyadic	Long.	H. ɓend		11	,	8214	ISd	2
11	SFP	2.65	P Side 32' ATT	Shear	Vert.	Shear	-1	12	I	5000	ISI	-J
1	STS	265	S Side 32' ATT	Shear	Vert.	Shear		13	•	5:000	ISI	- ग
14 (1)	LVD				-		2	·1	¥			
15	LSTS	186	S Tunnel Top	Dyadic	Long.	N. Stress	5	5	÷	8240	ISd	'n
16	TSMS	186	S Side N.A.	Dyailc	Long.	N. Stress	5	m	Ą	8240	1S4	5
17	LSBS	186	S Side Bottom	Dyadic	Long.	N. Stress	2	-1	-4'	8240	₽S [↑]	én.
13	LSTP	186	P Tunnel Top	Dyadic	Long.	N. Stress	2	ŝ	¥.	8240	ISI	Ś
15	87.5T	186	P Side NA	Dyadic	Long.	N. Strees	61	÷	¥	8240	154	'n
8	LET.	185	P Side Zottom	Dyadic	Long.	N. Stress	2	4	V	8240	ISI	ŝ
-, ,	SAP	87	P Side 26' ATT	Shear	Vert.	Shear	2	2	¥	5000	ISI	*
ç;	SAS	87	S Side 26' ATT	Shear	Vert.	Shrac	<u>د</u> ا	ō	4	56.00	ISd	7

-11-

Circuit	No.	I	,	:	1	4	4-		e	9	÷	y	¢	чD	ç	Ģ	9	Q	e,	Ģ
	Units	ഖ	ഖ	20	20	PSI	ISd		14/14	п/п ^л	a/u ^t i	"/"#	n/n/t	n/nt	"/"ť	"/"u	"/"u	"/"	u''/''	"/"u
Full	Cal	(7) (7)	Ŧ	Ŧ	- 7	5000	5000		334.6	334.6	334.6	334.6	334.6	334.6	334.6	334.6	334.6	334.6	334,6	334,6
-	Mode	¥	Å	Ą	Ą	¥	4	ŝ	μ	29	ц	IJ	B	4	a	a	6	5	R	£۵
Ę	Crannel	10	11	10 (a)	11 (a)	12	13	н	61	ę	- ~1	5	6	7	ø	¢,	10	11	12	13
F	Recorder	7	6	2	61	7	2	2	2	5	ы	2	2	2	64	2	6	۰۲ ۱	5	21
Scnsitive		V. Accel.	T. Accel.	L. Accel.	T. Accel.	Shear	Shear		N. Strain	N. Strain	N, Strain	N. Strain	N. Strain	N. Strain	N. Strain	N. Strain	N. Strain	N. Strain	N. Strain	N. Strain
100 100	THENT	Vert,	Trans.	Long.	Trans	Long.	Long.		Long.	Diag.	Trans.	Long.	Dlag.	Trans.	Long.	Diag.	Trans.	Long.	Diag.	Trans.
Confie	-971000	Mass	Mass	Mass	Mass	Shear	Shear		Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single
Jocation (2)	1077101	Level U4 CL	Level 04 CL	Level 05 1" P	Level 05 1" P	S Tunnel Top.	S Tunnel Bot		(Port Side Girder	<pre>% Kear Deck Cutout</pre>	(Under Deck	Cstbd Side Gird.	<pre> Year Deck Cutout </pre>	L Under Deck	Stbd Tunnel	In Board	L Under Deck	rstbd Tunnet	{ Out Board	L Under Deck
1 energy		105	307	130	130	$186\frac{1}{6}$	$185\frac{1}{4}$		T43	143	143	143	143	143	143	143-	143	143	143	.143
Sensor		1264	FD.IT	15CA	TPUA	BCCT	BGSB	L13	AR-LA	A%-13	AR~1C	AR-2A	AR-2B	AR-2C	A?-3A	AR-3B	A7-30	AR-4A	37-3F	AR-4C
Sersor		ç,	24	5	25	53	87	29 (1)	2	Ε,	2	Ê	30	35	36	37	сл г`,	39	¢,	41

÷

TABLE I(Continued)

SENSOR LIST 72/73 Season and Calibration -12-

2.

---- ---

TABLE I (Continued)

.

SENSOR LIST 72/73 Season and Calibration

							r=		I			
Sensor	Sensor	<u></u> L	ocation (2)	Confda	Orient	Sensitive	Recorder	Chaunel	Mode	Full Cal	Units	Circuit No.
Xa.	Son.	Frame	Fosition	Coniig.			- decorder					
42 (1)	LVB	· j					2	1	С			6
43	R3. A	291	Port Side Gird	Single	Long.	N. Strain	2	(2-13	C	334.6	Pata -	6
44	P1 B	291	Near Deck Cutout	Single	Díag.	N. Strain	2	AIV {	C	334.6	ייןייי	6
45	F1C	291	L Under Deck	Single	Trans.	N. Strain	2	(RSB	С	334.6	ייןייע	6
46	R2 Å	291	Stbd Side Gird	Single	Long.	N. Strair	2	(2-13	с	334.6	₽"/"	6
47	R2.B	291	Near Deck Cutout	Single	Diag.	N. Strain	2	{ VIA	C	334.6	հա\տ	6
48	R3C	291	Under Deck	Single	Trans.	N. Strain	2	(RSB	С	334.6	ייןייע	6
4.9	R3A	291	r Stbd Tonnel	Single	Long.	N, Scrain	2	(2-13	С	334,6	ייןייע	б
50	R38	291	In Board	Single	Diag.	N. Strain	2	} VTA	С	334.6	Pala -	6
51	R3C	291	(Under Deck	Single	Trans.	N. Strain	2	(RSB	С	334.6	P"/"	б
52	R4A	291	(Stbd Tunnel	Single	Long.	N. Strain	2	€ 2-13	с	334.6	ייץייע	6
53	R4B	291	Out Board	Single	Diag.	N. Strain	2	₹ VIA	C	3.34.6	μ"/"	6
54	R4C	291	Lunder Deck	Single	Trans.	N. Strain	2	C RSB	С	334.6	<u>р</u> иун	6
55	RSA	_258	r Stbd Side Gird	Single	Long.	N. Strain	2	²⁻¹³	C	334,6	1 ¹¹ /14	6
56	R5B	258	In Corn. Hat 2	Single	Diag	N. Straia	2	AIV \$	С	334.6	un∕n	6
57	R5C	258	Under Deck	Single	Trans.	N. Strain	2	L _{RSB}	с	334.6	µn/a	6
58	R6A	258	Stbd Side Gird	Single	Long.	N. Strain	2	۲ ²⁻¹³	С	334.6	11. h.	6
59	R6B	258	Yout Corn. Hat 2	Single	Diag.	N. Strain	2	VIA VIA	c	334.6	pege	6
60	RSC	258	LUnder Deck	Single	Trans.	N, Strain	2	L _{RSB}	c	334.6	u n / m	6
61	R7A	258	rStbd Side Gird	Single	Long.	N. Strain	2	ر 2-13	с	334.6	µ"/"	6
62	R7B	258	Near Deck Cutout	Single	Diag.	N. Strain	2	VIA	с	334.6	ייקייע	6
63	P.7C	258	Under Deck	Single	Trans.	N, Strain	2	ί _{R>B}	с	334.6	9 "/"	6
54	RBA	258	(Stbd Tunnel	Single	Long.	N. Strain	2	r 2-13	с	334.6	ייןייע 🗌	6
64	000	259	St	Sincle	Dian	N Strala	, I		, I	334 6		6
55 K6	500 990	200	/ In Board	aingre	nrag.	a. Strain) ""			μ.γ.	
یس دید. س		/	(Concer neux	Sincle	Tians.	N. Strain	2	L Beut	l C	114 3	Г µ"7"	6

,

TABLE I (Gontinued)

SENSOR LIST 72/73 Season and Calibration

Sensor No.	Sensor Nom.	Li Frame	ocation (2) Position	Config.	Orient	Sensitive to	Recorder	Channel	Mode	Full Cal	Units	Circuit No.
67	R9A	258	(Stbd Tunnel	Single	Long.	N. Strain	2	(2-13	С	334,6	יי <i>ר</i> ייע 1	б
68	R9B	258	Out Board	Single	Diag.	N. Strain	2	<pre>A VIA</pre>	с	334.6	ע"/"	6
<u>6</u> 9	R9C	258	(Under Deck	Single	Trans.	N. Strain	2	(RSB	с	334.6	ν"/"	6
70	RIQA	225	Stbd Side Gird	Single	Long.	N. Strain	2	(2-13	с	334.6	"/"	6
7£	R105	226	In Corn. Hat 4	Single	Diag.	N. Strain	2	VIA	C	334.6	יי/"ע	6
72	P10C	226	(Under Deck	Single	Trans.	N. Strain	2	(RSB	c	334.6	μ"/"	6
73	RIIA	226	(Stbd Side Gird	Single	Long.	N. Strain	2	(2-13	с	334.6	יי/יי	6
74	R11B	226	Out Corn Hat 4	Single	Diag.	N. Strain	2	AIV	с	334.6	"∕"u	6
75	R11C	226	Underdeck	Single	Trans.	N. Strain	2	(RSB	c	334.6	μ"/"	6
76	R12A	226	Stbd Side Gird	Single	Long.	N. Strain	2	(2-13	с	334.6	ע"/"	6
77	R128	226	Near Deck Cutout	Single	Dlag.	N. Strain	2	VIA	с	334.6	µ"/"	6
78	R12C	226	Underdeck	Single	Trans.	N. Strain	2	(RSB	c	334.6	µ ⁿ ∄n	6
79	R13A	226	Stbd Tunnel	Single	Long.	N. Strain	2	(2-13	c	334.6	µº7º	6
80	R138	226	In Board	Single	Diag.	N. Strain	2	VIA	с	334.6	יי/ייע 👘	6
81	R13C	226	(Under Deck	Single	Trans.	N. Strain	2	RSB	c	334.6	µ"/"	6
82	R14A	226	Stbd Tunnel	Single	Long.	N. Strain	2	(2-13	с	334.6	"/"	6
83	R14B	226	Cut Board	Single	Diag.	N. Strain	2	VIA	C	334.6	µ"/"	6
84	R14C	226	Under Deck	Single	Trans.	N. Strain	2	(RSB	c	334.6	µ"7"	6
85 (1)	LVB	1					2	1	D			Í
8ó	TGFS1	244	Fwd Top	Single	Trans.	N. Stress	2	2	D	10038	PSI	6
		1	,		1		1				3	

J

.

1

TABLE I (Continued)

SENSOR LIST

~

72/73 Season and Calibration

											·····	
No.	Non.	Frane	Position	Config.	Orient	to	Recorder	Channel	Mode	Cal	Units	Se.
87	HLSST	289	S Side l' BT	Single	Long.	N. Streps	2	2 (a)	D	10038	PSI	6
83	TGFS2	244	Fwd Bot.	Single	Trans.	N. Stress	2	3	D	10038	PSI	6
89	HLSSB	289	S Side 1' ATT	Single	Long.	N. Stress	2	3 (a)	Ð	10038	₁'SI	6
€€	TGES3	242	Aft Bot	Single	Traps,	N. Stress	2	4	a	10038	PS1	6
91	HLSPT	289	P Side 1' BT	Single	Long.	N. Stress	2	4 (a)	D	10038	₽SI	6
92	TCFS4	242	Aft Top	Single	Traus.	N. Stress	2	5	บ	10038	PSI	6
93	HLSSB	289	P Side 1'ATT	Single	l.ong.	N. Stress	2	5 (à)	Ð	10938	PSI	5
94	TGMS1	196	Fwd Cird. Top	Single	Trans,	N. Stress	2	6	ฉ	10638	PSI	6
95	том32	196	Fwd Gird Bot.	Single	Trans.	N. Stress	2	7	υ	10038	rst	6
96	TGMS3	194	Aft Gird Bot.	Single	Trans.	N. Stress	2	8	ŋ	10038	₽\$1	6
97	TGMS4	194	Aft Gird Top	Single	Trans,	N. Stress	2	9	D	10038	PSI	6
98	TGMS1X	194	Fwd Gird Mid	Single	Trans.	N. Stress	2	6 (a)	D	10038	PSI	ð.
99	TG'IS2X	195	Bot Gird Mid	Single	Trans.	N. Stress	2	7 (a)	D	10038	PSI	6
163	760:S3X	194	Aft Gird Mid	Single	Trans.	N. Stress	2	8 (a)	ם	17038	ųş7	-
191	TG'/S4X	195	Top Gird Mid	Single	Trans,	N. Stress	2	9 (a)	ס	30000	45 L	ŧ .
102	TOSSIX	196	Fwd Gir Q Top	Shear	Trans.	Shear	2	6 (a)	D	5000	PSI	4
303	TGSS2X	196	Fwd Gir Q Bot	Shear	Trans.	Shear	2	7 (a)	Ð	5000	PSI	4
104	TGSS3X	194	Aft Gir Q Bot	Shear	Trans.	Shear	2	8 (a)	D	5000	PSI	4
105	TGSS4X	194	Aft Gir Q Top	Shear	Trans,	Shear	2	9 (a)	D	5000	PSI	4
105	TGAS1	80	Fwd Top	Single	Trans.	N. Stress	2	1.0	D	10038	FSI	6
157	TGAS2	80	Fwd Bot	Single	Trans.	N. Stress	2	11	Б	10038	PSI	6
108	TGASE	78	Aft Bot	Single	Trans.	N. Stress	2	12	D	10038	PSI	6
109	TGAS4	78	Aft Top	Single	Trans,	N. Stress	2	13	D	10038	PSI	6
		1	F	1 1			1	1		1	1	1

.

TABLE II

SENSOR AND SIGNAL NOMENCLATURE

ADHL	After Deck House Longitudinal (Acceleration)
ADHT	After Deck House Transverse (Acceleration)
AR ₁₋₄ (Ξ)	Aft Rosettes, (Z) denotes gage element:
	A is longitudinal orientation
	B is diagonal (45°) orientation
	C is transverse (athwart) to longitudinal
BGSB	Box Girder Shear Bottom
BGST	Box Girder Shear Top
FAV	Forward Acceleration Vertical (Hull)
FAT	Forward Acceleration Transverse (Hull)
FDHT	Forward Deck House Transverse (Acceleration)
FDHV	Forward Deck House Vertical (Acceleration)
HLSPB	Hull Longitudinal Strain Port Bottom
HLSPT	Hull Longitudinal Strain Port Top
HLSSB	Hull Longitudinal Strain Starboard Bottom
HLSST	Hull Longitudinal Strain Starboard Top
LHB	Longitudinal Horizontal Bending (combination of LHBP and LHBS)
LHBP	Longitudinal Horizontal Bending Port (Stress)
LHBS	Longitudinal Horizontal Bending Starboard (Stress)
LSBP	Longitudinal Stress Bottom Port
LSBS	Longitudinal Stress Bottom Starboard
LSMP	Longitudinal Stress Mid Port
LSMS	Longitudinal Stress Mid Starboard
LSTP	Longitudinal Stress Top Port
LSTS	Longitudinal Stress Top Starboard

· ·· · -

_

-

...

.

- -

.

....

- -

----- ..

TABLE II (Continued)

SENSOR AND SIGNAL NOMENCLATURE

LVB	Longitudinal Vertical Bending (combination of LVBP and LVBS)
lvbp	Longitudinal Vertical Bending Port (Stress)
LVBS	Longitudinal Vertical Bending Starboard (Stress)
MAT	Midship Acceleration Transverse (Hull)
MAV	Midship Acceleration Vertical (Hull)
R ₁₋₁₄ (Z)	Rosettes (Forward), (Z) denotes gage element:
	A is longitudinal orientation B is diagonal (45°) orientation C is transverse (athwart) to longitudinal
SAP	Shear Aft Port
SAS	Shear Aft Starboard
SFP	Shear Forward Port
SFS	Shear Forward Starboard
TGAS1-4	Transverse Girder Aft Starboard (Strain)
TGFS1-4	Transverse Girder Forward Starboard (Strain)
TGMS ₁₋₄	Transverse Girder Midship Starboard (Strain)
TGMS _{1X-4X}	Transverse Girder Midship Starboard (Strain, midpoints)
TGSS _{1X-4X}	Transverse Girder Shear Starboard (Midships, vertical quarterpoints)
TSM	Torsional Shear Midship (combination of TSMP and TSMS)
TSMP	Torsional Shear Midship Port
TSMS	Torsional Shear Midship Starboard

.. .

.....

.

TABLE III

SIGNAL DESCRIPTION AND RATIONALE

RECORDER NO. 1

Channel(s)

- Vertical Bending: Longitudinal stress gages, P&S, under deck, near midship (Frame 186 1/4), in box girder wired to eliminate longitudinal horizontal bending; prdmary reference stress; provides data comparable to SSC Project SR-153 and ABS 5-Vessel program. This signal serves as a common reference with each group of gages.
- 2 <u>Midship Torsional Shear</u>: Shear rosettes amidship (Frame 186 1/4) P&S, on sideshell at neutral axis wired into single bridge to eliminate shear associated with vertical bending. Will show shear associated with torsion and horizontal bending. Primary value is in comparison with similar SS BOSTON data.
- 3 Wave Height: Reserved for output of a wave height sensor.
- 4,5 <u>Roll and Pitch</u>: Pendulums, roll and pitch angle transducers located close to vertical and longitudinal vessel CG (Frame 178). Rigid body motions. Similar to BOSTON data; useful in container load evaluation.
- 6,7 <u>Hull Accelerations:</u> Vertical and transverse accelerometers located at vessel CG (Frame 178), similar to array used on BOSTON. Vertical unit required for heave acceleration.
- 8,9 <u>Hull Accelerations</u>: Vertical and transverse accelerometers located forward (Frame 290). Rigid body as well as whipping motions. Useful for comparison with WOLVERINE STATE and BOSTON data, and probably indicative of most severe accelerations on vessel.
- 10 <u>Multiplexed Ship Parameters</u>: RPM, rudder angle, wind speed and direction.
- 11 <u>Horizontal Bending</u>: Longitudinal stress gages, P&S, near midship (Frame 186 1/4), at neutral axis; wired to provide a longitudinal horizontal bending signal.
- 12,13 <u>Shear-Forward</u>: Shear rosettes near forward quarter point (Frame 265-266), P&S, on sideshell, at neutral axis. P&S recorded separately since shear associated with vertical bending may be of major interest here; signals can be recombined on playback to produce shear component associated with vertical bending or torsion.

TABLE III (Continued)

RECORDER NO. 2, MODE A

Channel(s)

1 Vertical Bending: Reference signal

- 2,3,4,5,6,7 Longitudinal Stress Gages: Six stress gages at deck, neutral axis, and bottom (lower sideshell), P&S, amidship (Frame 186 1/4). Recorded separately, but data can be combined to provide signals proportional to longitudinal vertical bending, longitudinal horizontal bending, and warping longitudinal stresses. Neutral axis gages added to simplify direct evaluation of transverse stresses and subsequent separation of vertical and warping stresses. First time this array has been used.
 - 8,9 Shear-Aft: Shear rosettes near after quarter point (Frame 87-88) P&S, on sideshell, 18.2' at above neutral axis P&S recorded separately. Torsional shear was initial concern, but present interest is in shear associated with vertical bending as well. Separate recording permits recombination of signals to produce shear component associated with vertical bending or torsion.
 - 10,11 <u>Deckhouse Accelerations</u>: Vertical and transverse accelerometers mounted high near centerline in the forward house, and transverse and longitudinal accelerometers in the after house. Any two of the four signals may be recorded at one time. Primary interest is in possible springing or higher frequency vibratory effects.
 - 12,13 <u>Box Girder Shear</u>: Shear rosettes located on overhead and deck of starboard box girder. Each recorded independently; a torsional shear in the box girder can be reduced from these signals.

RECORDER NO. 2, MODE B

Channel(s)

- 1 Vertical Bending: Reference signal.
- 2 thru 13 After Hatch Corner: Four, three-arm strain gage rosettes will be placed in an athwartship array under the deck between Frame 143-144, just forward of the after house. Of interest here is the transfer of longitudinal stress (from all sources--torsion, vertical bending, etc.) from the box beam ligament structure in way of the holds to the relatively complete and rigid hull at the house. The gross hatch corner stress concentration will also be

TABLE III (Continued)

Channel(s)

evaluated port and starboard. Original suggestion of ABS, but this and following locations shown to be of concern in California model work and British, German, and Japanese model and full-scale tests.

RECORDER NO. 2, MODE C

This gage group is the same as Gage Group 3, except that the rosettes are located at one of the following positions:

5 Rosettes at Frame 226-227 (hatch transition)
5 Rosettes at Frame 258-260 (hatch transition) and
4 Rosettes at Frame 290-291 (aft of Fwd Deckhouse)

Since Gage Group 4 consists of 14 rosettes with 3 elements per rosette for a total of 42 separate signals; some means was required to allow for a selection of inputs into the 12 recorder channels available.

A patching unit designated the "Rosette Selection Box" (RSB) has been installed in the starboard box girder at approximately Frame 272. This unit takes the 14 rosette signals as inputs and by means of patching cable allows the operator to select any 4 rosettes as input to the recorder. The only restriction is that all elements, i.e., the A, B, and C arms of any rosette must be recorded together.

RECORDER NO. 2, MODE D

Channel(s)

1 Vertical Bending: Reference signal.

- 2,3,4,5 <u>Gages in Transverse Deck Girder</u>: Four single gages mounted at the corners of a transverse deck girder, Frames 242-244. Double-S bending in girder used as measure of torsional hull deflection at that frame. Similar to BOSTON arrays. Or, by PSU selection, four single strain gages around the hull section at Frame 240 (2 top, 2 bottom) to measure strain distribution at this location.
- 6,7,8,9 <u>Gages in Transverse Deck Girder</u>: Same as above at Frames 194-196.

In addition to the four corner gages, four additional single element gages have been placed at the midpoint of each dimension of the girder. Four 2-element shear gages have been installed at the quarter points of the two side walls.

· __ · · -

TABLE III (Concluded)

In a manner similar to the rosette selection technique it was again necessary to select four of twelve signals available for recording. This time a similar Girder Selection Box (GSB) was installed in the starboard box girder at Frame 194.

The selection was limited to three possible combinations due to wiring and bridge requirements. The three possible patches are:

- (1) 4 corner gages
- (2) 4 midpoint gages
- (3) 4 shear gages (quarter points)

It is possible to mix signals but additional changes are required at the signal conditioning equipment.

10,11,12,13 <u>Gages in Transverse Deck Girder</u>: Same as above at Frame 78-80.

	WInd Manual Con		60° Port	60° Port	110° Port	90° Port		60° Port	90° Port	Headling 083 ice			1/2"			
				Ñ				H	A	th Refer	Aft		2917	2819	27' 0	
	Sun, degrees Azimuth**		50 Stbd	100 Stbđ	Aft	ı		1	I	Direction v Shi	PIW	1	27' 11"	26' 9"	25' 1"	12 170
BRATION	Location of d Elevation		45 (Overcast)	60 (Clear)	30 (Clear)	ı		ı	ı	sun	Fvd	 1	28' 11"	271 2"	25' 5"	10 150
CONDITION AT CALI	Stþd Tunnel*		52	64	63	52		 9ţ	95	The second secon	<u>Aft</u>	31' 1"	29' II 1/2"	16, 18	27' 1"	11 ¹¹
ENVIRONMENTAL (•F Port Tunnel*		51	49	49	45		43	40	OBSERV 1	Mid	31, 0"	 I			
	Water		43	43	43	43		43	42				 E,			
	Tempe Air Wet		43	50.5	44	36		35	,	ackside —	Fwd	30, 1:	28' L	27' 2'	251 57	231 01
	ALF, DEV		49.5	58	49	38		36.5	40	hull plating b ship	Condition	F4	n	4	'n	Q
	Tî mê	9 Apr'73	0060	1309	1725	2130	10 Apr'73	6105	0830	elative to				<u> </u>	. <u></u>	
	- Cend.			 m		 יי			~	20 20 20 20 20 20 20 20 20 20 20 20 20 2						

<u>TABLE IV</u> IRONMENTAL CONDITION AT CALIBRAT -22-

													VI	[-]		
	18.0	£0.2		136.5	214	161AL NT		31.2	76 ~ 5	ۍ فې	20.5	36.4	39.2	T.24	373.0	TOTAL INT
246E -JD 202	<u>ABLE VI</u> V UNLOADING PLAN				/ed for Cond. 3 1	4										
3 FASTER 04/03/73	T/ CALIBRATIO	0509 7.6 SI.S 50939 BHV-F.E.L	0503 23-4 SLS 95626 ELZ-20113	0508 23.5 SLS 95733 ELZ-ROTIN	54.5 Remov	DIFF DIR 11.4 STBD	for Cond. 6		٩ ٩		ų ų	1				0.1FF 018
SLRVICE I -	0110 18-0 SLS 718)0 BRV-F+L	0109 20.0 950113 El 2-rottn		6103 20.5 950112 Elz-Rottn	50.6	5180 113.1	Removed	6167 13.2 301016 ELZ-ROT RG	0106 1346 0306 21. 501703 5LS 6893. ELZ-RCT ELZ-467	0105 15.2 0305 21. 201733 20120 LLZ-R01 ELL-R01	0104 15_6 0304 24. 515 60391 34147 34141 544-F14 34-7407	0103 15.1 SL3 35943 ELZ-F.L	5102 19-4 513 5-639 -22-201	0101 20.8 515 69073 212-861	116-1 67-8	5 TAQ
S É A - L A P. D Voyage Olza Destination R		0209 22.1 SLS 63887 BIIV-FEL		02C8 22.0 3LS 60429 6HV-Fêl	44.1	CCNTER LINE		57 8.5 5 70739 2-9.2 8	C6 15.9 0206 11.5 S 70267 SI S 37498 C07 BAL-R07 S	00 13.5 0205 14.5 901117 5L5 40026 2-FEL 5AL-A01	04 23,3 0204 16.2 5 65785 5LS 6/701 Z-FeL rAi-R01	0201 10.3 515 44250 ELZ-ROF	5202 19.8 525291 5AL-FIL	0201 21.9 5LS 39120 6AL-LHA	67-2 102-2	CENTER LINE
LLJT RAFCH NO 01 St Pelean Epariule Orv Plan		0469 1045 SLS 33479 BH74-FEL	0613 2315 845 95731 842-40778	06C8 23.6 SLF 95952 ELZ-ROTIN	57+ è	7.101 7.01		0647 9.00 511 57221 541 512 8421 4 411	0005 10.2 CM 5L2 59059 511 5L2 467 N 0.4	24 	1 2 3 3 2 8 5 0				7.91	PCAT
E X TOH V ESSET POAT (* F18AL																

_ .. .__

2

-

. -----

	5 ° 4	106+7	201.5 Total WY	07 - 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	97-6	103.4	72.0	32.5	36. 4	VI-2	4 6. 4	TCTAL WT 747+9
۶۹۵۴ ۹.۵ مه Cont'd)		Removed for Cond. 3			for							
aster ate 94/02/73 TABLE VI ((0109 1735 SLS 37785 BHT-R0T	0708 7.8 SLS 51293 BAL-201 5	25.3 FF 01° 3.3 5780	14.8 53469 L.G	17.3 Removed 70080 Cond. 5	17.0 69516 LEG		r		-	Cond. 6 49.1	FF BIR 2.2 STAD
2 2 4 0 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.7 0309 20.1 186 SLS 95598 ELZ-007718 U303 20.5 14245-15945	**0 0308 20*8 M7 515 95593 6 3/X-FELTR	51.4 51.4 DI 51.4 DI 12.4 DI 22.4 DI 2	-77 0507 242 542	1.2 0306 14.4 0506 74 SLS 61812 SLS BAL-ROT NRF-	15 (3C5 14.7 0505 157 515 56.29 5LS EL2-R0T 6 NRF-	7.5 0304 16.2 33 5LS 69950 51.2-601 G	.9 0363 21.7 55 SLG 17526 ELZ-ROT	15 0302 23.0 278 515 17520 ELZ-ROT	14.0	Removed for	574 . 3 274 . 3
LAND SER E 0124 Rot Nation Rot	209 17.1 0109 17 LS 69621 SLS 73 RA-RUT 6RA-RUT 209 20.8 LS 95933 LS 55933	208 2048 0108 6 12 95910 SLS 520 AX-FELT? ELL-ROT	56.7 25.1 . LINE .0	1207 16.0 0107 17 115 5669 515 57 115-VAL CHS-VAL	1206 18.5 0106 11 12 65575 515 494 187-44P NAP-NAP	205 1845 0105 14 115 64956 SLS 704 145-142 5849-142	1204 18.7 0104 11 115 66090 SLS 391 18F-NAP 18.F-VAL	1203 20.1 0103 19 1203 20.1 0103 19 14-445 ELZ-VAL	202 20.8 0102 20 115 37217 515 612 14X-CDZ 3AL-VAL	201 20.9 0101 20 12 17353 515 46	133.5 135.2	. LINE
5 6 7 20742 06571	3061303	10071	CËNTER	1443 1443 1122 666 112	17.1 0405 12.1 0 59663 SLS 61566 5 50 BAL+LHA	17.4 0555 17.3 (56964 SLS 74351 2 86 824-FEL	04.04 17.5 (SLS 50687 5 JXX+CCZ	0403 26.6 515 37034 5 8AL-ROT	0402 22.1 0 SLS 40915 1 ELZ-307		8.6 89.8	CENTER
ICH LIST KATCH NO 02 SSEL SL MCLEAN Rt derarure Bhy Nal flan	0869 22-4 SLS 69779- GRA-001	0863 6.0 SiS 45694 ELZ-801	30.4 PURT 89.1	16:01 20:5 11 A C	06.05 S1S X95-L						*	908T 272.1

-24-

--

-

L

Ş

4

MASTER

DATE 04/08/73

SEA-LAND SERVICE INC VOYAGE 0124

DESTINATION ROT

.

HATCH LIST HATCH NO 03

VESSEL SL ACLEAN PORT DEPARTURE BHV

FINAL PLAN

.

5

1

ł

1

-25

PAGE NO 004

. .

	, , ,	92.3	1 1, 3186.3	278• 6	TOTAL WT	1	1.02	60 <u>-</u> 3	74.8	1 "06	106.9	111.2	81_8	568.3	I-4 14 17101
PAGE NO COS	VI (Cont'd)	0909 11.7. SLS 20376 805-FELX	0908 21.7 St5 29871 Removed ELZ-FELX for Cond	39 . 4	- - -	4		• • •							
PASTER DATE 04/08/73	TABLE	· · · ·	0508 21.0 3708 19.9 SLS 26371 SLS 26254 ELZ-FELX LBC-R0TX	21.0 19.9	016F DIR 3+2 ST4D	ed for Cond. 6		7.4 2010 2100 7.4 2010 7.4 2010 7.4 2010 7.4 2010 7.4 2010 2010 2010	ELZ-FEL	0504 7.5 CT04 8.5 SLS 47336 SLS 65180 ELZ-R0T BAL-LHA S	0503 8.8 0703 9.0 SLS 34555 SLS 55676 84L-LHA 5 ELZ-ROT	0502 20.6 950099 5LZ-KOTIN		36.9 28.0	DIFF DIR - 137.7 FORT
SERVICE INC DT		0109 17.7 SLS 28931 305-PTNX	01.05 20.4 0308 22.5 200249 SLS 20763 CLZ-FELX ELZ-PTNX	38.1 22.5	578D - 140+9	Remov	0107 2.5 5LS 64517 *EMPTY* E	0106 12.4 5LS 55075	3135 12.5 312 69118 312-156	0104 12.8 212 63241 212-LCG	1103 13.5 5LS 67528 5LZ-LEG	1102 13.7 0302 20.4 (112 17033 950020 212-LEG ELZ-ROTTA	101 14.5 0301 23.1 15 60728 515 55062 12-156 612-R07	81.9 43.5	5780 190.3
S E A - L A N D Voya/E 0124 Destination R	: • ,	0409 21.5 0209 17.7 SLS 22648 SLS 28592 . ELZ-FELX 00S-PTNX	0404 19.1 0208 24.5 1 200152 851000 ELZ-RUTX ELZ-ELZX	40.5 42.2	CENIEK LINE		0407 13.9 0207 12.41 SLS 41886 SLS 45236 ELZ-LEG ELZ-LEG	0406 14.6 0206 1247 4 512 65932 5LS 64265 1 ELZ-LEG ELZ-LEG	0-505 17.1 0205 12.9 4 5LS 33761 5LS 63811 3 805-60A ELZ-LEG 8	0404 15.2 0204 13.5 00404 13.5 0204 13.5 0204 13.5 02043 13.5 02043 13.5 02043 13.5 02043 13.5 02043 13.5 02043	C401 17.6 0203 13.8 (0401 17.6 0203 13.8 (5LS 64430 5LS 55197 ELZ-C0A ELL-LEG	0402 17.7 0202 15.2 (0402 17.7 0202 15.2 (51.5 70787 5LS 61931 3 EL2-LEG EL2-LEG	0401 21.5 0201 22.7 1 SLS 71720 SLS 61152 1 BOS-CD2 005-CD2 2	L 103.2	CENTCR LINE • C
HATCH NO 04 L ACLEAN TURE BRV	, , , , , , , , , , , , , , , , , , , ,		0603 1945 SLS 24062 LBC-PTNX	19.5	FUK1 137+7		- 0667 13-9 515 48776 El2-166	00000 1644 815 62270 ELZ-LFG	0305 9.5 05.5 17.1 510 69010 515 72487 8-35-VAL ELZ-VAL	0004 13.7 0504 10.8 SLS 54025 515 26102 EL2-LE0 EL2-107	0503 22.0 0603 22.2 0503 22.0 0603 22.2 805-002 ELZ-FEL	0002 23.5 515 22589 512-FEL		45.2 112.0	PURT 370.0
RATCA LIST Vessal Si Port Depart Final Plan	, ,	1009 17.7 SLS 22036 Bh5-FELX	1008 11.7 545 23920 805-PTXX	· 5-4 ·			r								r

-26-

e

ş

١.,

VESSEL SI PORT DEPART FINAL PLAN	HATCHT LHCLEAN TURE BHV		VÓY DES	AGE 012W TINATION	ROT	1 G E I N	G - MASTER DATE (04/08/73	PAGE NU	-	· · ·
			•	•					TABLE	VI- (Con	<u>t'd</u>)
)010 4.3 SLS 62651 CHS-KOT	0810 4.8 SLS 52744 ELZ-ROT G	0610 6.8 SLS 69659 ELZ-ROT	0410 5.1 SLS 73960 CHS-R0T-	0210 4.9 302069 CHS-R01	0110 4.4 SLS 71077 CHS-ROT	0310 9.1 SLS 60023 CHS-ROT	0510 9.1 SLS 52759 NRF-ROT	0710 5.0 SLS 41615 CH3ROT	0910 5.1 SLS 62873 CHSROT	- ·	- 58.6
1009 10.4 SLS 48726 NRF-ROT	0809 10.7 SLS 63320 ELZ-ROT	0609 21.5 SLS 29184 ELZ-LHAX	0409 10.8 SLS 26832 ELZ-ROTX G	0209 12.2 SLS 29765 NRF-ROTX	0109 12.3 200483 NRF-ROTX	0309 12.1 200596 NRF-ROTX	0509 8.6 200452 NRF-ROTX	0709 21.3 SLS 20874 ELZ-LHAX	0909 10.7 SLS 39307 ELZ-ROF G	-	130.6
1008 16.0 200550 NRF-RUTX	0508 16.2 20066) NRF-ROTX	0608 16.2 200602 NRF-ROIX	0408 16.5 SLS 23141 ELZ-ROTX	0208 13.9 200463 NRF-ROTX	0108 12.5 SLS 23035 ELZ-ROTX	0308 15-1 200082 CHS-ROTX	0508 14.1 SLS 26303 NRF-ROTX	0708 15.3 200490 NRF-ROTX	0908 13.2 200619 NRF-ROTX	Removed for Con	d.4.
30.7	31.7	44.5	32.4	31.0	29.2	36.3	31.8	41-6	29.0		338.2
	POI	RT 170.3	CENT	ER LINE .0		\$78D 167.9	DIFF DI 2.4 PC	R 2R T			TOTAL KT
							Rêmoved	for Cond	, 5	· ·	· -
1007 12.5 SLS 17127 ELZ-80T G	_	0607 14.5 SLS 39353 JAX-ROT	0407 14.8 SLS 32234 JAX-ROT	0207 17.6 SLS 39216 NRF-R0T	0107 17.5 SLS 34582 NRF-ROT	0307 14.6 SLS 30760 NRF-R07	0507 14.4 SLS 33696 CHSROT	_	0907 13.2 SLS 64801 ELZ-ROT C	· ·	119.1
1006 17.9 SLS 59640 NRF-ROI	0806 13.5 SLS 45477 ELZ-ROJ G	0696 18.1 \$L\$ 59695 NRH-ROT	0406 19.6 SLS 44604 CHS-ROT	U2C6 19.6 SLS 47642 CHS-ROT	0106 '19.6 SLS 45206 CHS-R0T	0306 19.6 SLS 45735 CHS-ROT	0506 19.6 SLS 40088 CHS-ROT	0705 14.0 SLS 57398 ELZ-ROT G	0906 17.9 SLS 45652 NRF-ROT		179-4
1005 20.0 SLS 54477 EL2-R01	0805 18.1 SLS 73215 CUS-ROT	0605 20.3 SLS 43926 ELL-ROI	C405 20.8 SLS 39688 R1F-RCT	0205 21.1 SUS 46035 NRF-ROT	0105 20.8 SLS 47949 NRF-&OT	0305 22.6 SLS 53364 NRF-ROI	0505 20.3 SLS 69533 NRF-ROT	0705 18.0 SLS 61267 CHS-ROT	0905 19.6 SLS 42781 CHS-ROT	_	201.6
	0604 20.2 SLS 51308 ELZ-GOT	0504 21.7 SLS 60287 JAX-ROT	0404 22.6 SLS 60819 JAX-ROT	0204 22.3 SLS 34585 CHS-ROT	0104 22.1 SUS 34442 JAX-ROT	0304 20.8 SLS 50109 NRF-ROT	0504 21.7 SLS 38075 JAXROT	0704 20.1 SLS 48254 BAL-ROT		_	 171•5
	0103 21.7 SLS 53040 JAX-ROT	0603 22.6 SLS 56905 CHS-R0T	0403 22.0 SLS 62361 EL2-ROT G	0203 22.6 SLS 39351 JAX-ROT	0103 22.7 SLS 42723 CHS-ROT	0303 21.8 SLS 3/844 NRF-ROT	0503 22.5 SLS 42701 ELZ-ROT	0763 21.7 SLS 52829 ELZ-ROT G	-		177.6
	0802 22.4 SLS 54782 CHS-ROY	0502 22.5 515 49824 CHS-RCT	0402 22.7 SLS 44205 CHS-RD1	0202 22.7 SLS 46946 CHS-ROT	0102 22.6 SLS 52644 ELZ-ROT	0302 22.5 SLS 59963 CHS-ROf	0502 22.6 SLS 55350 JAX-RCT	0702 22.3 SLS 34360 CHS-ROT			180.3
		0601 23.0 SL5 60230 CHS-ROT	0401 23.0 SLS 47926 CHS-ROT	6201 23.0 SLS 39798 CHS-ROT	0101 23.0 SLS 37581 CHS-R01	0301 23.0 SLS 42037 CHS-ROT	0501 23.0 SLS 48142 CHS-ROT		- -		136.0
50.4	95.9	142.7	145.5	148.9	148.3	144.9	- 144+1	96.1	50.7		1167.5
	P06 2	3T 603-4	CENT	ER LINE -	<i>••</i>	STBD 584.1	DIFF DI	R 130			TOTAL NT 1505.7

, ..

.

. .

VESSEL SI FINAL PLAN	L ROLEAN Ture bhv		DES	AGE 012W TINATION	ROT		DATE	04/08/73			
								TABLE VI	(Cont'd)		
1009 15.3 SLS 28273 FLZ-HOTX G	<u>.</u> .	C609 17.7 SLS 27178 ELZ-PT&X	0409 17.3 SLS 26170 ELZ-FELX	0209 19.1 SLS 29399 CHS-FELX	0109 19.5 SLS 26403 ELZ-PTNX	0309 18.5 SLS 29809 JAX-FELX	_		0909 16.2 SLS 26336 ELZ-PTNX	Domoutod	123-6
1003 20.8 515 26740 ELZ-LHAX	0808 21.4 SLS 20499 ELZ-FELX	0608 21.7 SLS 21658 ELZ-FELX	0408 21.5 SLS 26199 ELZ-FELX	0208 23.2 SLS 26834 JAX-ROTX	0108 19.5 SLS 26962 ELZ-LHAX	C308 22.2 SLS 28619 JAX-RGTX	0508 17.5 SLS 21669 ELZ-ROTX	0708 21.2 SLS 26295 ELZ-LHAX	0908 19.9 200580 ELZ-ROTX	for Cond.	. 4 208.9
36.1	21.4	39.4	38.8	42.3	39.0	40.7	17.5	21.2	36.1	4	332.5
	P 0	RT 178-0	CENT	ER LINE _0		STBD 154•5	DIFF D1 23.5 P	R Ort			TOFAL WT
<i>.</i>	· • • · ·	0607 10.2 775158 ELZ-ROT C	0407 12.7 SLS 58038 MRF-1HA	0207 14.9 SLS 60668 NRF-PTN	0107 19.2 SLS 67429 ELZ-PTN	0307 11.9 SLS 47476 ELZ-ROT G	Remo 0507 11-2 SLS 69897 ELZ-ROT G	ved for Co	nd. 6		80.1
		0316 12.8 SUS 53040 CHS-ROT	0403 11.9 SLS 72410 ELZ-LHA	C2C5 16.7 SLS 72972 ELZ-PTN	0106 15.5 SLS 59142 ELZ-PTN	0306 12.4 SLS 54584 ELZ-ROT	0506 12.7 SLS 66511 ELZ-ROT	-	0906 5+9 SLS 15479 ELZLHA		87.9
		0605 15.7 SLS 62827 JAX-ROY	0405 15.7 SLS 52317 JAX-ROT	0205 17.4 SLS 50330 NRF-PTN	0105 13.5 300379 BOS-PTN	0305 15.6 SLS 59107 MRF-ROT	0505 15.7 SLS 58293 Jax-Rot	_	0905 6.4 SLS 27300 ELZ-ROT G		100.0
	0-04 39.8 SLS 70283 BAL-FFL	0604 16.1 SLC 55147 EL7-ROT	0404 17.4 SLS 62057 MRF-ROT	0204 18.3 SLS 15035 ELZ-PTN	0104 17.3 SES 35163 BOS-PIN	0304 15.8 CLS 50003 CLZ-ROT	0504 17.4 SLS 59620 NRF-R07	-	0904 9.7 300438 ELZ-ROT G		133-8 -
	0803 20.1 302330 ELZ-PIN	0603 17.5 SLS 60678 NRF-ROT	0403 17.6 SLS 40793 NRF+R0T	0203 19.9 SES 15810 ELZ-PTN	0103 21.1 SLS 62940 LBC-PTN	0303 17.6 SLS 62971 NRF-ROT	0503 17.6 SLS 54176 NRF-ROT	0703 22.4 301787 ELI-ROT G	0903 16.9 501031 ELZ-ROT G	-	170.7
	0.02 22.3 SLS 9.450 EL2-PININ							0702 22.2 SIS 95854 ELZ-PTNIN		-	
	0802 22.1 SLS 95844 ELZ-PTRTM	- 0602 20.3 SL' 55684 ChS-ROT	6402 22.6 SLS 46388 NRF-144	0202 22.3 SLS 60670 ELZ-PTN .	0102 18-1 SLS 15753 ELZ-PTN	0302 20.8 SLS 35359 CKS-PTN	0502 18.8 SLS 29078 JAX-ROT	0702 22.5 SLS 95862 ELZ-PTNTN	-		212.0
	0401 21.3 SLS 67069 BAL-FEL	0601 23.4 SLS 72254 MAY-ROT	0401 21.8 SLS 64982 ELZ-LHA	0201 22.6 SLS 61994 JAX-PTN	0101 22.5 SLS 56751 JAX-PTN	0301 22.4 SLS 15439 ELZ-PT#	0501 22.5 SLS 70418 ELZ-ROT	0701 22.0 SLS 66619 ELZ-ROT G	-		178.5
									-		

HATCH LIST HATCH NO 06 -SEA - LAND SERVICE I-N C-- PAGE NO 007

1

L

3

1

. .

.

105.6	118.0	119.7	132.1	-127-2	116.5 115	.9 89	.1 38.9	963.0
P02 4	T 75-4	CENTE	R LINE	STBD 407.) DIFF 6 12.	DIR 2 STED		TOTAL HT 1295.5

· · · ·
;	58.0	180.3	194.7	4 433.0	TOTAL WT		138.7	- 162-2	138.8	202.2	225.3 -	229.8	184.5	1331.5	TOTAL AT 1764.5	,
008 (Cont'd)	•			for Cond.	-											
PAGE NO	0910 5.2 SLS 36748 CH5-RUT	0909 17.1 200540 NRF-RUTX	0908 16.9 200623 NRF-ROTX	41.2		2	0907 14.8 SLS 54595 CHS-RGT	0906 15.9 SLS 63159 CHS-RUT	0905 17.3 SLS 52408 NRF-RUT	C904 17.8 SLS 56363 NRF-RDT	0903 22.5 5LS 67614 CHS-RDT	0902 23.0 SLS 63870 CHS-RGT	1	111 . 8		
+/08/73	0710 5.3 5 SLS 66002 5 CHS-ROT	0709 17.8 200131 ELZ-ROTX G	0708 19.4 200647 NRF-ROTX	42.5	60 i	for Cond.	0707 13-6 SLS 48822 ELZ-RGT	0706 15.9 SLS 65017 CHS-ROT	6705 16-9 SLS 52297 CHS-R01	0704 17.7 SLS 69985 NRF-ROT	0703 22.4 SLS 61664 CHS-RUT	0702 22.5 SLS 68415 ELZ-ROT	0701 22.8 301237 CHS-R01	131.6	80	
MASTER DATE	0510 5.5 0 SLS 70757 : CHS-R0T	0509 18.6 (200189 JAX-ROTX	0508 19.7 1 200604 NRF-ROTX	43.9	DIFF DIR 2.6 ST	Removed	0507 11.0 \$L5 61894 LBC-LHA	0506 14.1 SLS 43625 ELZ-LHA	0505 20.7 SLS 46867 NRF-LH3	0504 22.0 SLS 51152 JAX-LHA	0563 22.7 5LS 47108 JAX-LHA	0502 22.7 SLS 43832 JAX-LHA	0501 22.8 304739 JAX-LHA	136-0	DIFF DIR 1.5 ST	
ບ <i>≵</i> ພຸ ບ	0310 5.7 (SLS 55650 (CHS-ROT (0309 18-6 (200556 NRF-ROTX	0308 19.6 (200543 NRF-ROTX 1	6-64	18.0 17.8		0307 14.6 SLS 58649 BOS-FEL	0306 15.7 SLS 73276 CHS-FEL	0305 19.8 302235 ELZ-FEL	0304 22.1 SLS 64603 JAX-FEL	C303 22.5 SLS 51239 JAX-FEL	0302 23*3 SLS 44513 JAX-FEL	0301 23°3 SLS 56539 JAX-FEL	141-3-	.TUD .66 -5	
SERVI	0110 8.9 SLS 56322 ELZ-ROT G	0109 13.6 200547 WRF-ROTX	0108 19-8 200606 NRF-RUTX	46.3	- N N		0107 14.8 301654 605-FEL	0106 19-3 \$LS 54573 ELZ-FEL	0105 22.1 5LS 61503 JAX-FEL	0104 20.8 SLS 41679 JAX-FEL	0103 22-5 51.S 60299 JAX-FEL	0102 22.8 5LS 44712 JAX-FEL	0101 23.3 SLS 69677 JAX-FEL	145.6	<i>N</i> V	
V - L A N D De 012W (Nation Ro	1210 5.7 5LS 62199 CHS-ROT	0209 18.8 1 5LS 29742 5LZ-ROTX 6 1	0208 19.9 200488 VRF-RDTX	. 43.4	R LINE		6207 15.0 SLS 48412 CHS-FEL	0206 19.7 5LS 43343 ELZ-FEL	0205 21.0 5L5 70824	0204 22.1 SLS 55622 JAX-FEL	6203 22.7 515 54146 612-FEL	0202 23.3 SLS 39167 JAX-FEL	0201 23.3 SLS 50965 JAX-FEL	147.1	R LINE	
S E / Voyac	0410 5.6 (1LS 71365 1 1LS-ROT 0	0409 18-8 0 200599 18F-R01X	0408 19-8 0	44.2	CENTE		0407 14.1 5LS 65657 ELZ-LMA	0466 14.7 515 46184 51 Z-LHA	0405 19.7 5LS 34192 3LX+LHA	0404 22.) SLS 56226 JAX-FEL	0403 22.8 515 40002 JAX-FtL	0402 23.3 SLS 47503 JAX-FEL	0451 23.3 SLS 50497 JAX-FEL	136.0	CENTE	
63	610 5.5 0 LS 36181 5 HS-ROT 0	1609 18.0 (LS 21666	1606 19.8 (200544 3	43.3		, ,	0607 14.4 (SLS 69765 (Ch2-R07	0606 15.9 1 360869 1	0605 20.7 015 36978	5604 22.1 515 69231 3AX-LHA	0603 22.7 515 34052 04X-LHA	0602 22.7 515 54230 06X-LHA	0611 23.0 513 57606 34X-LHA	141.5	r 65.0	
HATCH NO KCLEAN Re dhv	410 5.3 0 LS 60235 S HS-ROT C	809 17.5 C LS 21431 S LZ-207X G C	19-9 19-9 0 200608 LZ-ROTX G N	42.7	P0R1 21		11.7 (0505 15-1 (1LS 55087 (44F-80T (2405 15.5 (30010 5	0004 17.7 (115 63954 5 146-307	22-1 : 301426 :	0.02 23.1 (0.15 75523 5 045-R0T	06.01 22.7 4 26.2 7.3132 5 26.5 7.3132 5	128.9	19 19 10 1	
HATCR LIST Vessel sl Port departu Fikal plan	1010 5.2 0 SLS 30505 5 CHS-ROT C	1009 16.5 0 200315 5 NPF-207X E	1008 19.9 C	41-6			1007 14.7 0 SLS 6926 S CH5-607	1006 15.9 C	1305 17.6 (515 13954 136-107 0	1004 17.8 (215 69/31 2 215-101 h	1003 22.4 C	1002 23.1 (505572 5 CHS-ROT		111-5		

----- ·· --- ·· -----

-29-

,

e e

- ,

.

~

_

......

_---

		`						-												
	HATCH LI VESSEL Port dep Final Pi	ST SL ARTU AN	HATCI HCLEAN IRE BHY	4 NO	10		S E Voy Des	A — N Age Tinati	A N 012W ION	D S Rot	E R V	1 C E	1-N C	MASTI DATE	ER 04/0	8/73	PA	GE NO	011	
-	· · · · ·				-		· -								· ···	•				
-								. -									TABL	EVI	(Cont'd)	-
-	-	-																		
-	1009 2 SLS 733 +EHPTY+	-6 89 E		,	· · · · · ·	· · · · ·	-	0209 SLS *EXPI	2.5 70743 Y* E	0109 *EMP	3.1 300779 TY* 1					······································	090 • • • = = = = = = = = =	9 3. 30085 PTY*	3 '- 5 , - 5 , -	
-)008 2 SLS 708 *EMPTY*	.5 03 E	• • • • • • • • • • • • • • • • • • •		 		• • • • • •	0208 SLS *EMP	2.6 74065 ï¥≉ E	0108 SLS *EMP	2.5 70277 TY* (· · · · · · · · · · · · · · · · · · ·			· ·	 - 	6901 SLS *ENI	3 2.4 64039 PTY= 1	Removed for Cond. 4	10.0 -
	5.1		-						5.1		5.8			 	-			5.7		21.7
	-		· I	PORT 10-:	2		CFNT	ER LIN	1E -			STBD 11.5		DIFF	OIR Sted	-			- 	TOTAL WI
	<u> </u>															-		-		-
								•				-					-	· ` ,		•0
,	•	-	-	P08T	D ••	-	CENT	ER LIP .0	ند أنه B	 	·	STBD 0		DIFF	DIR Stud		- 	· · · ·		TOTAL NT 21.7
	-	•				-					 			· ··· · · · · ·				(- Empty All Conditio	ons)
					-								~		-	-				

	· · · ·							;;,			r	,
on t ' d)	20341	21¢	485.8	TOTAL WY	150.2	172.1	190.2	214-4	220+3	2*1*5	TCTAL MT 1433.0	
012 LE VI (C		Removed for Cond. 4										
PAGE NO TABI 1910 5.9	245-807 0909 20.1 200613 486-801X	0908 20.9 315 26684 512-801X	4,6,9	t	, 18-4 SLS 55339 4RF-L26	0705 19.8 5LS 27349 9RF-LEG	0905 20.8 SLS 35915 CHS-LEG	0904 22-3 SLS 71490 CHS-LE6	0903 20.5 SLS 55630 NRF-LFU	101-8		· .
08/73 110 6.1 (5 42815 (45-%07 (09 20.2 (200625 2F-R0TX N	708 21.5 (5 29162 5 4X-R01X E	-47.8	0	707 22.6 (LS 17656 1 AX-CD2	706 17.3 (LS 27368 : RF-LEG	705 15.7 LS 41226 HS-G0A	704 20.5 LS 71576 HS-GUA	705 22+2 LS 54817 RF-60A	98.E	۲	
MASTER DATE 04, 10 6.5 01 5 61465 51	S-ROT CH 09 20.3 0 200108 F-ROTX NI	08 21526 0 5 21524 51 2-ROTX G J.	48.4	DIFF DIA -4 STU	07 9.6 G 5 72190 SI L-60A J	06 15-7 0 S 17561 S X-60A h	05 17-7 0 5 71066 5 F-G0A	04 22.4 0 S 35496 5 S-608 6	03 20.9 0 5 33621 5 F-60A N	96 •3	D1FF D1R 16.4 - P0R	•
E I N C - N	-K0T CH 	B 22.3 05 26375 SL -R0TX EL	50•3 -		7 14.1 05 32360 51 -60A BA	6 15.9 05 73129 5L -60A JA	5 20.0 05 25107 SL	4 21.7 05 52871 SL -60A CH	13 22.7 05 69481 51	94.49		,
Е А V I C 84.3 031 42455 XIS	RDT CHS 2646 030 200644 RDTX NRF	20.8 030 26716 SLS R0TX ELZ	49.7	- 543-	8.1 030 48253 SLS 604 NRF	15.7 030 64802 5LS 60A CHS	17-4 030 36637 5LS	25066 5LS	- 22.3 030 47039 SLS	84.1	57BC	'
A N D S 012H D S 0N ROT 7.6 0110	01 CHS- 20.6 0109 00640 0175- 01X NRF-	21-6 0103 20342 SLS 0TX JAX-		ш	11.0 0107 37876 SLS	15.9 0106 37052 SLS 0A CHS-	18.0 0105 68347 SLS 0A NPF-	21.0 C104 44470 SLS 0A BAL-	22.7 0103 66373 SLS 01	3.6	• 	
S E A - L Voyage Destinatio 6.5 0210	CHS-R CHS-R CO.3 0209 2493 0209 1493 22 X NRF-R	22.6 0208 2185 5LS TX ELZ-R		CENTER LIN	15.0 J207	16-0 0206 5596 SLS A NRF-G	20.1 0205 4579 SLS A NRF-6	22.2 0264 5057 3LS A JAX-6	23.0 0203 2034 SLS A CH3-C		CENTER LIN	
	CHS-R01	.3 0408 2 22 5L5 22 JAX-RD	49	-	5 17 5L5 3 17 5L5 3 NRF-60	28 5LS	94 5L5 5	2-2 0404	1.1 0403 103 5LS 6 103 5LS 6	96		
NO 11 NO 11 9 0610 6 40	CHS-ROT 3 0609 200 1 2006	5 0608 22 8 515 280 · ELZ-ROTX	48.7	0RT 242.7	or Cond. 3 u607 15 5 SLS 378 CH ² -COA	6 0606 17 7 SLS 719 ARF-60A	3 0635 20 0 SLS 465 0 BL-CCA	8 0604 22 9 SLS 250 9AL-60A	5 0603 23 0 5023 23 0 CHS-60A	98.	ORT 481.8	
HATCH CLEAN UNE BHV OGIO 5.0	CHS-R0T 0309 20.5 SLS 2682 NRF-R0TX	0908 21- 515 2903 JAX-RGTX	1.14	ā.	emoved fo 0807 10- 515 6328 NRF-LEG	0506 19- 0505 19- SLS 4670 NRF-LCG	0605 20- SLS 5544 CHS-LEG	0804 20. SLS 6120 CHS-LEG	CB03 21. SLS 4351 CHS-LEG	100-5	e.	r
ATCH LIST CSSEL SL PRY DEPART STNAL FLAM STNAL FLAM OID 5.8	ELZ-ROT 1009 20.1 200611 RF-ROTX	1008 21.2 115 26830 14X-RUTX	- 47.1		R 1007 17.5 315 63056 3F-LEC	1006 10.7 515 40958 AF-LEG	1005 19.9 3LS 52839.	1004 25.7 SLS 53434 CHS-LEG	1003 21.4 5L5 50190 CHS-LEG	98.2	I	

٠

-

-1

-31-

HATCH LIST HATCH NO 08 Vessel St Nglean Port Departure BHV "Final Plan	SEA – LAND SERVICE I-NC- VOYAGE 012N - MASTER DESTINATION ROT DATE 04/08/73	PAGE NO CO9
		TABLE VI (Cont'd)

1010 10.2 103466 BAL-ROT4	0810 10.3 103464 BAL-ROT4	0610 9.4 501579 HAM-HOU4	0410 23.4 101461 GRA-ROT4	0210 23.4 100654 GRA-RDT4	0710 13.4 100010 HAM-NOB4		0510 5.1 101515 ELZ-ROT4	0710 5.7 871340 887-HOU4	0910 5.0 100987 ELZ-ROT4	-	105.9 -
1009 11.8 103458 8AL-ROT4	0809 11.5 872376 ELZ-FEL4	0609 8.4 103603 BAL-FEL4	0409 9.3 424792 BHV-HCU4	0209 9.7 986027 Pak-Hou4	0109 8.1 424179 BHV-HGU4	0309 8.6 420546 BHV~HOU4	0509 7.2 902404 BHV-HOU4	0709 6.9 101353 ELZ-FEL4	0909 8.1 872665 ELZ-FEL4	·	89.6
1008 8.9 101220 ELZ-FEL4	0808 11.4 101302 ELZ-ROT4 N	0608 13.9 101987 ELZ-LHA4	0408 13.3 422515 ELZ-FEL4	0208 9.3 100905 ELZ-FEL4	0109 7.1 101179 ELZ-R0T4	0308 6.6 100080 ELZ-ROT4	0508 8.4 101687 ELZ-FEL4	0708 9.4 100924 ELZ-FEL4	0908 13.3 423368 BIIV-HGU4	Removed for Cond.	4 97.6
30.9	33.2 PO	29.7 RT 182.2	- 46.0 - CENT	42.4 ER LINE .0	26.6	- 15.2 STED - 110.9	20.7 DIFF D1 71.3 P	22.0 R DRT	- 24.4 -		293++ TOTAL ++
	Removed f	For Cond.	5 _							_ <u></u>	
1007 20.6 423496 SLZ-R014	0807 15.1 103473 BAL-R0T4	0607 11.5 604481 BHV-H004	0407 16.5 605042 BHV-HOU4	0207 18.3 101913 ELZ-ROT4RG	0107 18.1 100380 ELZ-RCT4	0307 19.3 101639 ELZ-ROT4 G	0507 21.5 428199 ELZ-ROT4	0707 19.2 103529 ELZ-ROT4	0907` 16.2 100516 ELZ-FEL4	·	176.3
1006 15.0 101350 Eliz-Filia	0806 18.3 872614 ELZ-ROT4 6	0606 13.4 872481 BHVNOU4	0406 17.8 100122 8HV-H9U4	0206 19-1 101131 305-R014	0106 18.1 100287 ELZ-FEL4	0306 20.9 100305 ELZ-ROT4 G	0506 21.0 100949 ELZ-ROTK G	0706 20.7 100008 ELZ-ROT4	0906 21. <i>1</i> 601303 ELZ-FEL4	-	186.0
1005 17.3 100780 ELZ-ROT4	0805 10.9 903825 PHL-ROT4	0605 13.4 601339 BRV-NC04	0405 17.4 790909 HAM-HOU4	0205 18.7 303824 ELZ-ROT4 C	0105 18.3 100.09 ELZ-ROT4	0305 10.4 - 100275 BAL-RGT4	0505 22.1 100150 ELZ-R074	0705 20.5 101005 ELZ-ROT4	0905 21.0 600228 ELZ-RUT4 G		186.0
1004 18.3 100523 ELZ-NOT4 G	0804 20.0 100117 ELZ-RDT4 G	0604 14.2 600227 BH7-HCU4	0404 18.3 707868 HAX-1004	0204 19.4 100713 ELZ-R014 G	0104 19.4 • 100366 ELZ-ROT4 G	0304 19.4 101493 ELZ-ROT4	0504 22.9 100456 ELZ-LHA4Y	0704 22.1 101015 ELZ-R014	0904 19.4 101842 ELZ-PTN4R		193.4
1003 20.1 101647 BAL-ROT4	0803 20.7 101087 6AL-R014	0603 15.0 421638 HAN-HOU4	0403 13.6 901413 HAN-HOU4	6203 19.9 100061 ELZ-R014	0103 19.8 101535 ELZ-FEL4	03C3 21.3 100781 ELZ-ROT4 G	0503 22.1 100679 ELZ-R0T4	0703 22.0 100244 ELZ-R0T4	0903 21.7 427058 ELZ-ROT4 G		19ċ.0
1002 21.1 103322 ELZ-ROT4	0:02 22.0 605030 ELZ-ROT4	0602 15.0 501517 HAN-HOU4	0402 18.5 701466 HAM-HOU4	6202 20.5 100271 ELZ-FEL4	0102 20.1 101163 ELZ-ROT4 G	0302 21.0 601312 BAL-FEL4	0502 22.1 901284 ELZ-LHA4Y	0702 20-4 101415 EL2-R0T4 G	0902 17.0 604249 ELZ-R0T4 6		197.7
1001 22.8 960357 BAL-RDT4	0601 22.3 903750 ELZ-KOT4	0601 14.8 903846 HAM-HOU4	0401 18.5 904345 HAM-HOU4	0203 21.0 101263 ELZ-LHA4	0101 20.7 100283 ELZ-FEL4	0301 23.0 100136 ELZ-ROT4RG	0501 23.7 100701 ELZ-R0T4	0701 20.6 627295 ELZ-ROT4	0901 19.2 100624 ELZ-ROT4		206.6
135.2	137.3	67_2	120-6	136-9	134.5	.43.1	365 A	146 6	126 2		12/2 4
	40. 40	RT 627•3	CENT	ER LINE .0		5T8D 714-7 -	DIFF DI 87_4 S	тыр Гыр	12044		TOTAL WT 1635-1

-32-

المحسب الأراب

4

1

;

1

ł

1

! ;

HATCH LIST VESSEL SI PURE DEPART FINAL PLAN	HATCH I L NCLEAN IURE BHV	NO 69	S E Voy, Des	A - L A N AGE 012W TINATION	D SERV ROT	ICE IN (C - HASTER DATE -	04/08/73	page no	ono VI (Cont	<u>'d)</u>
-1010 5.6 100647 Jax-lha4	0810 7.7 101727 ELZ-ROT4	0610 7.9 872626 ELZ-ROT4	0410 7.3 950429 ELZ-ROT4 G	0210 5.1 904643 BAL-ROT4	0110 8.4 872617 ELZ-ROT4RG	0310 6.9 100120 Etz-R0T4	0510 5.2 101991 JAX-FEL4	0710 3.8 601062 8AL-ROT4	0910 5.9 901909 ELZ-ROT4		63.8-
1009 9.1 100123 NRF-rTN4	0809 4.9 103358 ELZ~ROT4 G	0609 6.3 101362 ELZ-ROT4 G	0409 11.8 303463 BAL-ROT4	0209 16.5)00403 ELZ-ROT4 G	0109 21.4 103346 ELZ-ROT4 G	0309 14.7 100483 EL2-2014 6	0507 16.7 101346 ELZ-R0T4	0709 10.1 102180 ELZ-ROT4 S	0909 9.7 102021 ELZ-ROT4 G		121.2
1003 9.0 101201 JAX-FEL4	0808 12.1 100472 ELZ~PTN4	0608 11.0 101097 NRF-R0T4	0408 10.9 101992 ELZ-LHA4	0206 12.4 100468 ELZ~FEL4	0108 13.9 100139 ELZ-PTN4	0308 [1.8 100002 NRF-FEL4	0508 11.3 900262 NRF-FEL4	0708 13.6 100544 ELZ-LHA4	0908 12.3 100311 ELZ-PTM4	Removed for Cond. 4	118.1
23.7	24.7	25.2	30.0	34.0	43.7	33.4	33.2	27.5	27.7	. 🕴	303.1
-	P0	RT 137.6	CENT	ER LINE	· -	578D - 165.5	DIFF 01 27.9 S	R TBD 	- -		TOTAL WT
' Re	emoved for CCO7 15.4	Cond. 5 0607 13.2	0407 15.9	6207 17.7	0107 21.7	0307 18.1	0507 13.3	0707 16.9	0907 16.8		-
100338 ELZ-R074	101407 ELZ-ROT4	600243 ELZ-R014	101691 ELZ-PTN4	607202 EL2-PTN4	103579 ELZ-R014YG	103618 ELZ-ROT4 G	103617 ELZ-ROT4 G	426521 ELZ-ROT4RG	101808 ELZ-POT4 G	_	160.3
1006 19.6 103443 ELZ-KOT4 G	0006 19.4 103591 ELZ-ROT4 6	0606 19.6 071435 ELZ-FEL4	0406 18.6 103593 ELZ-ROTK G	0206 18.6 103606 ELZ-ROTK	0106 21.4 103679 ELZ-R0T4YG	0306 19.6 426360 ELZ-FEL4	0506 19.9 902247 ELZ-FEL4	0706 19.1 103508 ELZ-ROT4 G	0906 19.9 424716 ELZ-FEL4		195.7
1005 19.5 610142 ELZ-FEL4	0805 19.5 101233 ELZ-ROT4	0605 19.7 605318 ELZ-FEL4	0405 21.3 607209 ELZ-LHA4	C205 21.4 103616 ELZ-ROT4 G	0105 18.7 103602 ELZ-ROTK G	0305 21.5 602398 ELZ-FEL4	0505 19.7 103578 ELZ-20T4	0705 19.4 103366 ELZ-ROT4 G	0905 22.4 100864 ELZ-ROT4 G		203.2
1004 20.3 100551 NRE-POT4	0804 19.0 424232 ELZ-ROT4 G	0604 19-8 607178 612-7514	0404 21.3 909311 ELZ-LHA4	0204 21.6 601376 ELZ-FEL4	0104 21.5 10343) ELZ-ROTK G	0304 21.3 671318 ELZ-LHA4	0504 19.9 871535 ELZ-ROT4 G	0704 19.5 103605 ELZ-R014 G	0904 19.5 101678 ELZ-FEL		203.7
1003 20.7 101936 ELZ-R014 G	0003 20.6 101009 ELZ-RUT4 C	0603 20.1 193576 ELZ-ROT4 G	0403 20.9 426571 ELZ-FEL4	0203 21-6 601457 ELZ-FEL4	0103 22.3 103370 ELZ-LHA4	0303 21.6 103460 ELZ-RUT4	0503 20.1 600503 ELZ-ROT4	0703 22.2 100142 ELZ-LHA4	0903 20.7 100297 ELZ-F2L4	_	210.8 -
1002 22.5 190202 51.2-0014	0602 21.4 101365 ELZ-LHA4	0502 22.2 101089 EL7-1:444	0402 21.1 103325 CHS-FEL4	0262 22.7 103582 ELZ-ROT4 G	0102 21.6 960215 ELZ-FEL4	0302 21.6 904679 ELZ-FEL4	0502 20.4 102058 ELZ-PTN4	0702 22.1 101079 ELZ-LHA4	0902 22.8 100084 ELZ-2014	_	218.4
1001 23.4 101006 ELZ-LHA4	0801 22.2 100995 ELZ-ROTK G	0601 22.1 100490 ELZ-LHA4	040) 21.2 103620 ELZ-ROT4 G	0201 23.3 103604 ELZ-ROT4 G	0101 23.0 103607 ELZ-ROT4 G	0301 23.1 103585 ELZ-ROT4 G	0501 23.1 103590 ELZ-ROT4 G	0701 24.3 100897 ELZ-LIIA4	0901 22.0 101636 Elz~Rot4 G	-	226.5
137.4	137.5	136.7	140.3	145.9	150.2	146.B	- 134.4	143.5	144.9		1418.6
	PO	RT 696.8	- CENT	ER LINE	····	STBD 719-8	DIFF DI -21.0 S	R - TBD -			TOTAL WT 1721.7

end.

.

i i

1

1

1

:

i

. -

HATCH LIST YESSEL _S	HATCH	NG 12	S E Voy	A - L A N AGE 012W	DSERV	I-CEIN	G - HASTER	o. 150 / 70	PAGE NO	013
FINAL PLAN			UES	TISATION .			DATE	04/08/73	TABLE	VI (Cor
	•			-	•			• • •	•	
1010 8.9 100087 Elz-Fel4	0810 12.3 100633 ELZ-FEL4	3 0610 12.1 3 100517 ELZ-PTN4	0410 12.3 101042 ELZ-FEL4	0210 6.5 SLS 47650 ELZ-PTN	0110 8 9 - 101140 ELZ-FEL4	0310 12.7 100718 ELZ-ROT4 N		0710 12.0 101790 ELZ-LHA4	0910 12.3 100688 ELZ-FEL4	
1009 14.9 SLS 23134 ELZ-ROTX	0809 17.0 20023 ELZ-ROTX	0 0609 17.4 6 SLS 23290 ELZ-ROTX	0409 17.7 200046 ELZ-ROTX	0209 24.0 SLS 27387 PAP-LHAV	0109 18.3 SLS 26231 ELZ-ROTX	0309 2.3 SLS 44196 *EHPTY* E	· · ·	0709 17.3 SLS 23176 ELZ-ROTX	0909 15.0 200003 ELZ-PTNX	
1008 10.3 SLS 26635 ELZ-ROTX	0008 18. SIS 2656 JAX-FELX	B 0600 19.5 7 SLS 23041 ELZ-LHAX	0408 21.7 SLS 20456 ELZ-FELX	0208 24.5 SLS 89625 ELZ-ELZX	0108 22.9 SLS 29371 ELZ-FELX	0308 21.9 SLS 28895 SLZ-FELX	- 0500 19.5 SLS 23194 ELZ-LHAX	0708 19.0 SLS 29042 BAL-ROTX	0908 18.3 SLS 26164 ELZ-ROTX	Removed
42.1	48.1	49.0	51.7	55.0	- 50,1	36.9	19.5	49.1	45.6	Cond. 3
_	Pi	DRT 245.9	CENT	ER LINE .0		ST8D 201.2 -	DIFF DI 44.7 P	R DRT		1
Remo	oved for C	ond. 6								
1007 2.5 SUS 59958 #E8PTY# E	0607 2.4 SLS 5127 *EMPTY* 1	5 3837 - 2.9 3 SLS - 39868 E ¥6MPTY* - E	0407 7.0 SLS 51194 BAL-LEG	0207 11.2 SLS 37912 JAX-BCL	0107 8.7 SLS 47810 ELZ-GRA	0307 4.8 SLS 45950 NRF-LEG	0507 2.5 SLS 53080 *Empty* E	0707 2.5 SLS 40865 *Expty* 2	0907 2.5 SLS 39565 *Empty* E	•
1006 2.5 SLS 70879 *6#PTY* E	0806 2. SLS 7347 *ENPTY*	5 0606 2.5 2 SLS 45087 5 \$L*PFY* 8	0406 13.4 SLS 63785 CHS-LEG	0206 11.9 300714 NRF-BCL	0106 13.5 SLS 62733 NRF-VAL	0306 11.6 SLS 46972 NRF-LEG	0506 2.6 300385 *EMPTY* E	0705 2.6 301318 *ENPTY* 5	0906 2.5 SLS 45027 *EMPTY* E	-
1005 2.6 300464 *EXPTY* E	0605 2.4 30078 •EMPTY• 1	5 0605 13.5 9 SLS 72949 E ELZ-LEG	0405 13.6 SLS 42690 NRF-LEG	0205 16.2 SLS 43265 ARF-8CL	0105 14.5 SLS 65219 BAL-VAL	0305 15.9 SLS 70837 NRF-8CL	0505 14.1 SLS 63584 ELZ-LEG	0705 2.5 SLS 37574 *EMPTY4 E	0905 2.5 SLS 52307 *EXPTY* E	•
	0804 15.4 SLS 4497 ELZ-LEG	4 0604 14.1 1 SLS 60994 ELZ-LEG	0404 13.9 SLS 52215 JAX-LES	0204 16.6 SLS 69127 NRF-BCL	0304 15.4 SLS 51663 CHS-VAL	0304 16.2 SLS 31337 ELZ-BCL	0504 13.6 SLS 72092 NRT-LEG	0704 15.7 SLS 53851 ELZ-LEG		-
	0803 15.4	8 0603 17.1 5 SLS 33832	0403 16.8 SLS 47694	0203 17.5 SLS 63772	0103 17.4 SLS 69740 BOS-VAL	0303 17.0 SLS 35511 NRF-BCL	0503 14.0 SLS 52960 NRF-LEG	0703 17.8 SLS 52886 ELZ-VAL		
-	ELZ-VAL	ELZ-LEG	NRF-LEG	101 HAR (
- 7.6	36.8	ELZ-LEG 49.7	64.7	73.4	69.5	65.5	- 46.8	41.1	- 7.5	

· v .

į.

i.

ł.

ì

) 53. 7 182. 0	335.7 TGTAL WT	36.6	64 - 8	95.1	115.2	31.2	392.9 Total HT 726.6
N0 014 -VI-(Cont'd)	Removed for Cond. 3			, ,	, , ,	, , , ,		
page 08/73 <u>TABLE</u>	09 18.2 09 18.2 60-FELX 50-FELX 52.6 1X-FELX	40.8 	707 10.1 S 41691 2.2-801 G	706 13.1 LS 71473 HS-R0T	705 16.4 LS 21461 LZ-ROT	704 22-5 LS 63859 LZ-ROT		62 . 1
C - KASTER KASTER DATE 04/	0507 19.5 07 2 SLS 20507 2 SLS 20507 2 SLS 20507 2 SLS 20503 22.6 07 3 SLS 20848 SL JAX-FELX JA	42.1 DIFF DIR 3.5 POR1	0507 6.6 0 515 70215 51 CHS-FEL E1	0506 13.7 0 5LS 50357 51 B05-FEL CI	0505 18.9 0 515 36837 5 ELZ-FEL E	0504 19.5 0 SLS 47941 S LBC-FEL E	0503 20-7 SLS 61093 ELZ-FELK	79.4 1174 DIR 42.3 POR
N	7.9 0309 20.3 197 SLS 26912 X ELZ-FELX 2.4 0303 22.4 2.4 0303 22.4 2.4 10303 22.4 2.4 0303 22.4 2.4 10303 20.3 2.4 10303 2.4 1	3 42.9 STB0 166.1			5.1	H1.1 121 M M	17-6 3429	8 ST8D 175.3
AND SER 0124 01 Rot	20.3 0109 1 21215 5LS 28 FELX ELZ-FEL 22.1 0108 2 22.1 0108 2 101X KNG-FEL	42.4 40. NE		-	0105 SLS 54 CHS-RG	0104 SLS 64 EEZ-PTI	0103 SLS 7 LBC-FE	
S E A - 1 Voyase destinati	09 21.7 0209 2 21580 SLS S-FFLX ELZ-4 08 22.6 0208 08 22.6 0208 5 28020 SLS 5 26020 SLS 5 26020 SLS	44.3 CENTER LI	1. () ▼ 1	06 13.7 5 35747 1S-FEL	05 18.0 5 54009 Z-FEL	19.4 19.4 19.4 19.4 19.4 19.4	103 20.4 .S 48548 .S-FEL	71.5 CENTER LI
6 5 7	0609 22-3 04 SLS 20623 SL JAX-FFLA 00 JAX-FFLA 00 JAX-FFLA 04 1620 23-2 04 JAX-FFLA 51 SU	45.5 21 169.6	for Cond. 5 0607 9.6 SLS 73345 ELZ-R07	0606 9-8 04 SLS 72935 SI ELZ-807 6 20	0605 19.1 04 SLS 60657 SL BUS-FEL EL	0604 20-2 04 515 47627 51 LBC-FEL EL	0503 22.5 0/ SLS 51253 SL ELZ-FEL LE	61-2 81 917 -
F HATCH NI SL MCLEAN STJRE BHV	0409 13.5 5LS 22595 NKF-FELX 0808 23.9 50914 KLS-ELX	37.4 POR	Removed Removed 0907 10-3 301145 EL2-RUT G	0806 14.5 301730 CHS-R0T	0505 17.6 5LS 56569 NRF-R0T			64-9 PO
ATCH LIST ESSEL S GRT DEPAR INAL PLAN	· · · · ·	· · · · · · · · · · · · · · · · · · ·	•					

-35-

.

•

MATCH LIST HATCH NO - 14 Vessel SL Holean	SEA-LAND SERVI VOYAGE C12W	CEINC - MASTER	-	PAGE NO 015	
POAT DEPARTURE BHV Final plan	DESTINATION ROT	DATE	04/08/73	TABLE VI (Cont'd	D
0610 8.1 102233 ELZ-FEL4	0210 9.9 0110 10.9 100316 101015 ELZ-ROT4 NRF-ROT4	-	0710 7.4 100420 ELZ-R0T4		36.3
0809 2.4 - SLS 60884 *Enpty* e	0209 2.6 0109 2.6 SIS 72504 SLS 73996 *Expty* e *Enpty* e		0709 2.5 SLS 70737 *EMPTY* E		10.1
0808 2.4 SLS 54033 *EMPTY* E	0208 2.4 0108 14.9 SLS 59290 200551 *EMPTY* E NRF-ROTX	0308 17.7 SLS 28711 BHV-FELX	0708 14.7 SLS 28988 NRF-ROTX	Removed for Cond. 3	52.1
12.9	14.9 28.4	17.7	24.6	· · · · · · · ·	98.5
PORT 27+8	CENTER LINE	TBD - DIFF D 70.7 42.9	IR Sted		TOTAL WT
					•0
PORT _0	CENTER LINE - S	TED - DIFF D -0 0	IR Stad	 Empty	TOTAL WT 98.5
				(All-Conditions)	

.

ļ

:

Т

ì.

÷.

HATCH LIST RATCH NO 15 VESSEL SL NCLEAN PORT DEPARTURE BHV FINAL PLAN	S E A L A N 6 Voyage 012W Destination f	D SERVICE INC ROT	MASTER Date 04/03/73	PAGE NO 016 3/73 TABLE VI (Concluded)		
0609 2.4 SLS 53667 >Empty* E	6209 11.7 200068 ELZ-LHAX	0109 18.6 SLS 23695 ELZ-LHAX	0509 2 -4 S£S 56367 ★£₩PT¥¥ E	35-1		
0608 18.0 SLS 23167 ELZ-ROTX	0203 16.5 SLS 23106 ELZ-LHAX	0108 21-9 SLS 20695 ELZ-FELX	0508 22.6 SLS 23948 ELZ-FELX for	Removed \$1.0 Cond ⁷ , 3 ⁻		
20.4	30 .2	40.5	25.0	1 176.1		
PORT - 50.6	CENTER LINE .0	STBD - 65.5	DIFF DIR 14.9 ST3D	TOTAL WT		
Removed for	Cond. 5 0207 2.2 SLS 34065 +SMPTY• E	0107 2.4 SLS 46417 *EMPTY* E		4.6		
	0206 2+2 SLS 36140 *EMPTY* E	0106 2.2 0306 3.3 SLS 33966 SLS 17320 *EKPTY* E *EKPTY* E		7.7		
	0405 7.6 0205 2.4 300037 515 46455 BHV-FEL *EMPTY* E	0105 2.4 0305 2.4 SLS 59595 SLS 16116 *EKPTY* E *EMPTY* E		14.8		
	7.6 6.8	 7.0 5.7		27.1		
20RT 14.4	CENTER LINE .0 -	ST8D 12+7	DIFF DIR 1.7 PORT	TOTAL WT 143+2		

.

-37-

TABLE VII

SUMMARY OF REDUCED STRAIN DATA CALIERATION EXPERIMENT SEA-LAND MCLEAN

Senser	Sensor		Condition (1)									
No.	Noren,	Quantity	1	3	4	5	6	7	Units			
1	LVB	Stress	530	-618	397	1104	1413	2649	pel			
2	TSM	Shear	0	0	183	882	1156	-304	psi			
l 11	iko –	Stress	-530	-530	-574	-1236	-1501	-751	p#1			
12	SFP	Shear	-171	171	-443	-651	-616	-1507	psi			
13	SFS	Shear	-28	527	-56	-695	-945	-1417	i eg			
15	LSTS	Stress	450	-1306	-1036	-45	630	2702	p#1			
16	LSMS	Stress	-78	-1616	38	2746	3319	2518	psi			
17	LSBS	Stress	-229	1556	1419	732	870	-46	ps1			
18	LSTP	Stress	225	-1144	137	1007	1511	2014	psi			
19	LSMP	Streps	0	0	479	287	479	575	. psi			
20	LSBP	Stress	-272	317	181	0	317	-46	pri			
21	SAP	Shear	-284	682	511	568	739	369	psi			
22	SAS	Shear	0	-927	-702	-449	-393	-253	pet			
27	BGST	Shear	. 0	167	167	-2'50	-556	-111	psi			
28	BGSB	Sheer	-28	0	111	56	139	250	pai			
30	ARIA	Stress	703	110	494	1920	2194	-55	pai			
21	AR1B	Stress	418	-232	836	4089	4554	0	. psi			
32	ARIC	Stress	0	0	279	1115	1394	0	psi			
-	ARI	σ ₁ (2)	671	302	896	4141	4670	-8.0	psi			
-	ARI	0,(2)	167	-152	172	71.9	310	-71	pri			
	ARI	9 (2)	10.3	-39.7	38.3	40.3	40.9	67.5	deg.			

1

1

,

TABLE VII (Continued)

1

Condition (1) Sensor Sensor 7 ī 5 6 Units 3 4 No. Nomen. Quantity 335 ps 1 33 781 725 1729 -446 -2063 AR2A Stress 1050 -234 0 759 34 AR2B Stress 58 1109 psi -992 -1.820 -165 -330 -1489 279 psi 35 AR2C Stress 174.5 psi -359 432 766 918 2358 AR2 σ1 --2166 -5029 -199 -1980 425 psi AR2 σ2 -141 -46.2 -26.0 9 -8.4 26.7 -27.0 39.8 deg. AR2 -1540 -855 -2281 570 psi 36 AR3A Stress -342 -1426 -225 621 -733 -1409 508 ps 1 37 226 AR3B Stress -223 38 -223 -781 -112 -558 -781 psi AR3C Stress -1532 645 6.1 -801 1639 -864 psí AR3 _ σ_1 -2718 -166 -794 -2262 340 -1099 pai -AR3 °2 85.5 20.0 -85.1 deg. -AR3 θ 48.3 55.1 -3.3 -54 -654 -2618 -1636 709 491 psi 39 AR4A Stress 168 223 502 psi 223 -390 -167 40 AR4B Stress 279 2119 1673 502 892 pei 1227 41 AR4C Stress 746 1354 1134 1506 1324 1190 psi AR6 -٥1 -2198 -1274 489 563 475 psí -338 AR4 σz --56.7 10.9 deg₁ -88.3 -86.8 ~38.3 9 -88.1 -AR4 -2192 -876 -1644 psí 43 RIA Stress 226 -711 -108 279 233 -232 -557 -96 psi 233 44 R18 Stress -233 0 0 -233 pal 45 167 279 RIC Stress -293 351 247 85.7 -351 567 2 eq Rl -٥1 -1232 R1 262 -847 -544 -1933 -2475 psi °2 0 -72.1 76.9 61.5 deg. R1 6.8 67.5 40.9 -

VII-2

TABLE VII (Continued)

Sensor	Senage	1	t		Cendi	tion (1)			
No.	Nomen.	Quantity	1	3	4	5	6	7	Unite
45	R2A	Stress	390	-335	-1172	780	1 3 38	725	psl
47	R28	Stress	467	~350	-1226	-117	175	-292	psi
49	R2C	Stress	-276	-55	-276	-276	55	-176	- pci
-	8.2	, o	491	-108	-478	853	1513	874.3	psi
-	82	a2	- 332	-434	-1530	-153	320	-249.3	psi
-	R2		25.4	-65.7	-65.8	-17.5	-19,6	22.9	deg.
49	RЭA	Stress	285	-228	-1540	285	62.8	484	psi
50	R38	Stress	-451	-169	-1184	-677	-225	-225	psi
51	RGC	Stress	223	279	0	0	390	0	psi
-	R3	• 1	674	9.8	-657	630	1070	610	pei
-	10	0 2	-278	-247	-1789	-543	33,7	-206	pet
-	R3	•	-38	-75	-77.7	-35.1	-34.9	-22.6	deg.
52	R4A	Stress	815	655	436	-327	-436	362	psi
53	R43	Stress	634	1056	792	-211	-528	e	psi
54	RÁC	Stress	-167	335	502	279	0	-446	pfi
-	R4	°1	904	1142	904	243	-6.0	279	psi
-	R4	σ ₂	0	220	396	-510	-598	-367	psi
-	RA		16.0	37.0	47.9	-74.4	-62.5	2.2	dega
55	RSA	Strees	(243)	768	384	55	0	55	pei
56	R51	Stress	(-176)	140	415	-232	-418	-464	pel
57	15C	Stress	(-614)	-1060	167	-279	-502	-725	pel
-	RS	0 ₁	(78)	546	524	3,4	-113	-145	pei
-	85	d 2	(-590)	-950	243	-316	-583	-784	psi
-	RS	0	(0.7)	8.7	26.6	-17.7	-16.8	-9.1	deg.

ł

1

VII-3

I													
Sensor	Sensor		Condition (1)										
No.	Nomen.	Quantity	1	3	4	5	6	7	Units				
58	R6A	Stress	(1562)	223	112	0	0	223	psi				
59	R6B	Stress	(21)	59	351	~350	-875	-583	pei				
60	RGC	Stress	(-462)	-331	551	-331	-276	-717) psi				
-	R6	σ	(1654)	162	631	-36.6	393	110	p∎i				
-	R6	0 ²	(-129)	-308	290	-422	-776	-794	p∎i				
-	R6	e	(-365)	11.3	-24.0	39.7	-39.7	-17.8	deg.				
61	R7A	Stress	(-365)	-1254	-1026	913	1255	628	· psi				
62	R7B	Stress	(0)	-3102	-1297	1635	2312	846	psi				
63	R7C	Stress	(-433)	-1283	-614	167	390	-502	leq				
- 1	R7	σ	(-318)	-327	-733	1651	2352	841	psi				
-	R7	σ,	(-790)	-3194	-1546	-151	-69	-666	pei				
·-	R7	•	(-41.9)	-44.8	56.6	35.6	36.9	27.1	deg.				
64	RBA	Stress	(-1173)	-2510	-1691	927	1582	982	pei				
65	RSB	Stress	(-812)	-1743	-1162	212	687	0	psi				
66	R\$C	Stress	(-39)	265	317	-158	264	-792	pei				
-	RB .	σ,	(~370)	-373	-89	979	1636	638	ps1				
-	RŜ	a,	(-1313)	-2748	-1824	88	194	-565	pei				
_	3.0	ຈັ	(-80)	-78.0	-77.3	-8.9	-8.8	-3.0	deg.				
67	29A	Stress	(639)	-55	-329;	438	548	1755	psi				
68	K93	Stress	(101)	214	72	72	-116	401	psi				
69	19C	Stress	(-307)	223	390	223	390	-112	psi				
-	119	σ,	(604)	268	325	680	1112	1941	psi				
-	R9	σ	(-141)	- 30	241	241	192	342	pai				
-	R9	จ้	(-3.9)	68.5	-68.5	-33.8	-41.1	-12.1	deg.				

TABLE VII (Continued)

VII-4

-41-

TABLE VII (Continued)

ı.

L

•

Seasor	Sensor	[Condi	tion (1)			
3a,	Nomen .	Quentity	1	3	4	5	6		Units
70	RIGA	Stress	-		-		-		psi
71	RICE	Stress	(-87)	377	143	-499	-965	-1199	psi
72	RIOC	Stress	(-1110)	-441	496	-165	-221	-552	psi
-	RIÖ	°1	-	- 1	- 1	-	-	- 1	psi
-	R10	v 2	- 1	-	-	-	}	-	psi
-	R10	•) -	-	-	-	-	-	deg.
73	R11A	Stress	(286)	171	-57	171	685	1084	psi
74	R11B	Stress	(502)	226)	959	226	0	509	psi
75	RIIC	Stress	(~321)	-502	112	-167	56	-223	psi
-	RII	۳ı	(445)	172.5	767	1940	892	1110	pai
-	R11	σ ₂	(-495)	-635	-692	464	133	81	p s1
-	R11	0	(29.9)	24.6	47.6	-68.6	-24.8	3.4	deg.
76	R12Å	Stress	(77)	0	219	764	764	873	psi
77	R128	Stress	(-1031)	-2536	-106	2588	2853	0	psi
78	R12C	Stress	[-1473	210	1364	1253	-491	psi
-	R12	c ₁	(141)	495	557	2688	2854	1403	pei
- }	R12	σ2	(-1111)	-2541	51	262	-54	-875	psi
-	R12	0	(-29.0)	-33.7	-44.9	50.7	48.8	31.0	deg.
79	R13A	Stress	(-1008)	-2084	-932	1645	2249	2139	psi
80	R138	Strees	(-678)	-1379	-357	665	851	-78	pei
81	R13C	Stress	(182)	550	781	112	-53	-836	pai
-	R13	σι	(-64)	79	599	1845	2445	2200	p s i
-	R1 3	7 2	(-1082)	-2196	-808	601	605	-368	psi .
-	P13	•	(-78.0)	-77.5	~80.9	-7.8	-6.0	-13,1	dea.

VII-5

TABLE VII (Continued)

-

1

¢

Sensor	Sensor	1	1		Condit	:ion (1)	·		
No.	Nomen,	Quantity	1	3	4	5	6	7	Units
82	R14A	Stress	(1143)	-725	111	836	948	2007	psi
83	R14B	Stress	(45)	231	288	346	231	-115	psi
54	R14C	Stress	(44)	819	546	-163	-109	-709	psi
-	R14	σı	(1432)	686	629	856	1021	2120	psi
-	R14	σ ₂	(218)	-552	283	78	145	-316	psi
-	R14	•	(-22.5)	83	-84.7	-0.5	-9.8	-14.7	deg.
86	TCFS1	Stress	(1363)	-713	658	-1536	-2249	-1536	psi
87	HLSST	Stress	-987	713	392	-110	-55	-55	psi
88	TGFS2	Stress	(995)	2092	1441	(-1263)	(-2393)	47	psi
59	HLSSB	Stress	419	279	233	-325	-697	-604	psi
90	TGFS3	Stress	(1171)	1283	279	502	1283	-279	psi
91	HLSPT	Stress	1060	2119	2677	2733	2733	2956	pei
92	TGFS4	Stress	(71060)	-1506	-1673	1115	2 398	-948	psi
93	HLSPB	Stress	-725	-613	-836	-167	223	-446	psi
94	TGMS1	5tress	-759	-292	1692	-350	-1342	1809	psi
95	TCHS2	Stress	772	1765	1158	-2261	-1269	-828	ps1
96	TGMS3	Stress	1483	1711	799	1141	1597	0	psi
97	TGMS4	Stress	-2426	-2030	-1410	1804	2819	-452	pei
98	TOMSIX	Stress	(1012)	2334	1692	-409	-876	1050	psi
99	TGMS2X	Stress	(1422)	2647	993	801	-110	938	psi
100	TOMSEX	Stress	(422)	798	57	-400	57	-571	pei
101	TGMS4X	Stress	(-925)	(-2807)	-677	112	225	169	psi
102	TOSSIX	Shear	(-147)	-95	-236	~165	-95	-448	pet
103	TGSS2X	Shear	(635)	874	172	-1275	-990	-1231	pei

VII-6

TABLE VII ((Concluded)

Sensor	Sensor		Condition (1)									
No.	Nomen.	Quentity	1	3	4	5	6		Unit			
104	TGSS3X	Shear	-1378)	-2027	-3915	~5020	(-6456)	-2441	psi			
105	TCSSdX	Shear	(770)	553	737	783	1520	1106	psi			
105	TCAS1	Stress	-2677	-2454	-4685	-4852	-5354	-3179	p∎i			
147	TGA52	Stress	-	- 1	-	-	-	-	psi			
109	TGAS3	Strens	1171	2621	1115	613	836	-279	pe i			
109	TGAS4	Stress	-669	725	223	1338	1785	1 - 1	ps 1			
fort	Scratch	Stress	690	1380	0	-690	-1380	-2760	pei			
Stol	Scratch	Stress	-650	1300	-650	-650	1300	-2600	pai			
Added	SYA	Stress*	-	-4200	0*	-7050	-10200	-300	pei			
Added	SYB	Stress*	-	-3600	0.*	-6300	-8100	-1600	p ∎i			
Added	SYC	Stress*	- 1	-2100	0*	-1500	-2700	-1350	pe i			

τ

<u>FOTES:</u> (1) All data except * assumes instrumentation zero to be condition 0 (coming up Mass River). All data menually reduced from oscillographs produced from analog magnetic tape except () which is meter reading.

(2) c1 is maximum principal normal stress

.

: 1

÷.

i

σ₂ is minimum principal normal stress 9 is angle from "A" gage to principal axis

TABLE VIII

Condition	Direction	Measurement	Cumulative Change
4	1-1	96' 4 3/4"	0
4	2-2	96' 4 9/16"	0
4	3-3	50' 5"	0
4	4-4	50' 4 1/4"	0
5	1-1	96' 4 5/8"	- 1/8
5	2-2	96' 4 5/8"	+ 1/16
5	3-3	50' 4 3/4"	- 1/4
5	4-4	_*	_*
6	1-1	96' 4 3/8"	- 3/8
6	2-2	96' 4 15/16"	+ 3/8
6	3-3	50' 4 11/16"	- 5/16
6	4-4	*	_*

HATCH MEASUREMENTS

,

--- -

* Reading not taken due to safety considerations.

TABLE IX

SEA-LAND McLEAN CALIBRATION RESULTS CALCULATED BENDING MOMENTS, SHEAR FORCES, AND NORMAL STRESSES

FRAME	COND.	M _b	۵.M _b	F s	۵F	Ζ _T	Z ₃	n.a.	σ _T	Δσ _T	σB	ЪσB
		10 ⁶ IN-LB	10 ⁶ IN-LB	10 ⁵ LB	10 ⁶ LB	10 ⁶ ім	10 ⁶ IN ³	IN	PSI	PSI	PSI	PSI
	1	8668	-344	-3.80	+0.75							<u> </u>
	3	8324	+723	-3.05	0.75	-						
265	4	9047		-3.81	-0.76	1.434	0.070	457				}
	5	9636	+589	-4.37	-0.30		0.976	457			{	
	6	9957	+32	-4.56	-0.19							<u> </u>
<u> </u>	7	11021	+1064	5.37	-0.81							<u> </u>
ļ						 						
	1	10977	-2411	1.16	+2 71	ł	į i		6291	1202	5068	
	3	8566	+2127	3.87	1 01	1.745	2,166	5 342.5	4908	+1220	3955	
186	4	10693	+1631	1.96	-1.91				6128		4937	+ 302
	5	12324	+ 851	2.41	0.21				7062	+ 934	5690	+ 793
	6	13175	19500	2,20	-0.21				7550	<u>+ 488</u>	6083	+1155
	7	15678		2.53	+0.35		[8985	+1435	7238	
						ļ						
1	<u> </u>	5290	-538	3.25	-1 14							
	3	4752	+470	2.11	+0.72							
87	_1	5222	+303	2.83	+0.31	1,495	1.404	423				
	5	5525		3,14	0							
	6	5636	+321	3.14	+0.24							
ļ 🛛	2	5957	+321	3.38					1			

 M_{b} = vertical bending moment

 $\Delta M_{b} = change in M_{b}$

- F_s = vertical shear force
- $\Delta F_s = change in F_s$
- Z_{T} = section modulus, top

<u>Nomenclature</u>

- $Z_{\rm b}$ = section modulus, bottom
- n.a. = neutral axis
 - σ_{T} = vertical bending stress, top
- $\Delta \sigma_{T} = change in \sigma_{T}$
- $\sigma_{\rm B}$ = vertical bending stress, bottom
- $\Delta \sigma_{\rm B}^{-}$ = change in $\sigma_{\rm B}^{-}$

TABLE X

SEA-LAND McLEAN CALIBRATION RESULTS ABS TORSIONAL MOMENTS FOR EACH HATCH AT EACH LOAD CONDITION

H#	15	14	13	12	11	10	\mathbf{X}	9	8	7	6	5	4	3	2	1
1	126 126	666 792	-930 -138	714 576	222 798	27 825	X	1057 1882	614 2496	42 2538	454 2992	37 3029	-2930 99	784 883	531 1414	-364 1050
3	-25 -25	0 -25	-931 -956	-4 -960	222 -738 ·	27 -711		1057 346	614 960	42 1002	454 1456	37 1493	-3316 -1823	0 -1823	17 -1806	-364 -2170
4	-25 -25	0 -25	-931 -956	-4 -960	222 -738	0 -738	X	539 -199	1897 1698	42 1740	944 2684	39 2723	-3316 -593	0 -593	17 -576	-364 -940
5	667 667	-863 -196	4680 4484	-1031 3453	11813 15266	-1027 14239		17234 31473	672 32145	-1418 17964	-82 17882	-11873 6009	24124 1885	-635 1250	-2148 -898	-825 -1723
6	667 667	-863 -196	4680 4484	2787 7271	11813 19084	-1027 18057	X	17234 35291	17233 52524	-14181 38343	29157 29186	-1187 17313	3-6776 10537	-635 9902	-3450 6452	-2291 4161
7	0 0	0 0	0	0 0	0 0	0 0	X	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0

666 \leftarrow TOP NUMBER IS THE TORSIONAL MOMENT (TON-FT) CONTRIBUTION FOR THE HATCH 792 \leftarrow BOTTOM NUMBER IS THE ACCUMULATIVE TORSIONAL MOMENT FOR THE HATCH AS THE

ſ

➡ BOTTOM NUMBER IS THE ACCUMULATIVE TORSIONAL MOMENT FOR THE HATCH AS THE CONTRIBUTIONS ARE SUMMED AFT TO FORWARD

Figure 1 INSTRUMENTATION FLOW DIAGRAM

-- --

-

ι,

Figure 3

DETAILS OF STRAIN GAGE LAYOUT

CONDITION NO. 3 CONTAINER LOADING (Maximum change in hogging moment)

-51-

EEE Container In Place

.

.

Figure 4-b

CONDITION NO. 4 CONTAINER LOADING (All above deck containers removed)

....

,

1

з,

Figure 4-c

CONDITION NO. 5 CONTAINER LOADING (Partial torsion)

E23 Container In Place

.... . ..

- -- - -

-55-

.

-56-

4

ROSETTES R! AND R2

- ----

.......

...

-61-

-63-

- -

- - ---

_.. .

-67-

UNCLASSIFIED

Security Classification			
DOCUMENT CONTROL DATA - R & D			
(Security classification of title, body of abstract and indexing a	nnotation must be e	ntered when the over	all report is classified)
Composite admorp			TETED
Naval Ship Engineering Center		2b. GROUP	
3. REPORT TITLE		·····	
STATIC STRUCTURAL CALIBRATION OF SHIP RESPONSE INSTRUMENTATION SYSTEM ABOARD THE SEA-LAND MCLEAN			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Penort			
5 AUTHOR(S) (First name, middle initial, last name)			
R. R. Boentgen and J. W. Wheaton			
6 REPORT DATE	FPAGES 76.	NO. OF REFS	
1976	67		2
88. CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUMBER	(5)
N00024-75-C-4354 <i>b.</i> project NO. SR-211			
с.	95. OTHER REPO	RT NO(S) (Any other	numbers that may be assigned
	this teport)		
<i>d.</i>	550-203		
This document has been approved for public release and sale; its distribution is unlimited.			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY		
	Naval Sea Systems Command		
This document reports the results of the the ship response instrumentation install containership. The calibration consiste achieved by selectively removing containe 1973 in Rotterdam. The measured stress predictions, and the results are discusse calculations agree substantially within t conditions.	calibration ed on the Si d of a succ r cargo, and changes are d. In gen olerances a	of the strai EA-LAND McLEA ession of loa d was perform compared wit eral, the mea ssignable to	n gage portion of N SL-7 class ding conditions hed on April 9-10, ch calculated surements and physical
DD FORM 1473 (PAGE 1)			
S/N 0101-807-6801		Security Cl	assification
		Security Cla	assification

:

t

SHIP RESEARCH COMMITTEE Maritime Transportation Research Board National Academy of Sciences-National Research Council

The Ship Research Committee has technical cognizance of the interagency Ship Structure Committee's research program:

PROF. J. E. GOLDBERG, Chairman, Professor Emeritus, Furdue University
MR. D. P. COURTSAL, General Manager, Engrg. Works Division, DRAVO Corp.
MR. E. S. DILLON, Consultant, Silver Spring, Md.
DEAN D. C. DRUCKER, College of Engineering, University of Illinois
MR. G. E. KAMPSCHAEFER, Jr., Manager, Technical Services, ARMCO Steel Corp.
PROF. L. LANDWEBER, Inst. of Hydraulic Research, The University of Iowa
MR. O. H. OAKLEY, Consultant, McLean, Virginia
MR. D. P. ROSEMAN, Chief Naval Architect, Hydronautics, Inc.
DEAN R. D. STOUT, Graduate School, Lehigh University
MR. R. W. RUMKE, Executive Secretary, Ship Research Committee

The Ship Design, Response, and Load Criteria Advisory Group prepared the project prospectus and evaluated the proposals for this project:

MR. D. P. ROSEMAN, Chairman, Chief Naval Architect, Hydronautics, Inc.
MR. M. D. BURKHART, Head, Marine Science Affairs, Dept. of Navy
DR. D. D. KANA, Manager, Structural Dynamics & Acoustics, S.W. Res. Inst.
MR. W. J. LANE, Structural Engineer, Bethlehem Steel Corp.
DR. M. K. OCHI, Research Scientist, Naval Ship Research & Dev. Center
PROF. W. D. PILKEY, Department of Mechanics, University of Virginia
PROF. J. C. SAMUELS, Dept. of Electrical Engineering, Howard University
PROF. M. SHINOZUKA, Dept. of Civil Engineering, Columbia University
MR. H. S. TOWNSEND, Consultant, Westport, Conn.
PROF. G. A. WEMPNER, School of Engrg. Science & Mechanics. Georgia Inst. of Technology

The SL-7 Program Advisory Committee provided the liaison technical guidance, and reviewed the project reports with the investigator:

MR. R. C. STRASSER, Chairman, Consultant, Newport News, Va. MR. E. R. ASHEY, Asst. for Advanced Technology, Naval Ship Engrg. Center PROF. J. E. GOLDBERG, Professor Emeritus, Purdue University PROF. E. V. LEWIS, Director of Research, Webb Inst. of Naval Architecture MR. J. H. ROBINSON, Staff Naval Architect, Naval Ship Res. & Dev. Center MR. D. P. ROSEMAN, Chief Naval Architect, Hydronautics, Inc. PROF. R. A. YAGLE, Dept. of Naval Architecture, University of Michigan

SHIP STRUCTURE COMMITTEE PUBLICATIONS

These documents are distributed by the National Technical Information Service, Springfield, Va. 22.51. These documents lave been announced in the Clearinghouse journal U.S. Government Research & Development Peperis (USGRDR) under the indicated AD numbers.

- SSC-257, SL-7 Instrumentation Program Background and Research Plan by W. J. Siekierka, R. A. Johnson, and CDR C. S. Loosmore, USCG. 1976. AD-A021337.
- SSC-258, A Study To Obtain Verification of Liquid Natural Gas (LNG) Tank Loading Criteria by R. L. Bass, J. C. Hokanson, and P. A. Cox. 1976. AD-A025716.
- SSC-259, Verification of the Rigid Vinyl Modeling Technique: The SL-7 Structure by J. L. Rodd. 1976. AD-A025717.
- SSC-260, A Survey of Fastening Techniques for Shipbuilding by N. Yutani and T. L. Reynolds. 1976.
- SSC-261, Preventing Delayed Cracks in Ship Welds Part I by H. W. Mishler. 1976.
- SSC-262, Preventing Delayed Cracks in Ship Welds Part II by H. W. Mishler. 1976.
- SSC-263, Static Structural Calibration of Ship Response Instrumentation System Aboard the Sea-Land McLean by R: R. Boentgen and J. W. Wheaton. 1976.

SL-7 PUBLICATIONS TO DATE

- SL-7-1, (SSC-238) Design and Installation of a Ship Response Instrumentation System Aboard the SL-7 Class Containership S.S. SEA-LAND McLEAN by R. A. Fain. 1974. AD 780090.
- SL-7-2, (SSC-239) Wave Boads in a Model of the SL-7 Containership Running at Oblique Headings in Regular Waves by J. F. Dalzell and M. J. Chiocco. 1974. AD 780065.
- SL-7-3, (SSC-243) Structural Analysis of SL-7 Containership Under Combined Loading of Vertical, Lateral and Torsional Moments Using Finite Element Techniques by A. M. Elbatouti, D. Liu, and H. Y. Jan. 1974. AD-A 002620.
- SL-7-4, (SSC-246) Theoretical Estimates of Wave Loads on the SL-7 Containership in Regular and Irregular Seas by P. Kaplan, T. P. Sargent, and J. Cilmi. 1974. AD-A 004554.
- SL-7-5, (SSC-257) SL-7 Instrumentation Program Background and Research Plan by W. J. Siekierka, R. A. Johnson, and CDR C. S. Loosmore, USCG. 1976. AD-A021337.
- SL-7-6, (SSC-259) Verification of the Rigid Vinyl Modeling Techniques: The SL-7 Structure by J. L. Rodd. 1976. AD-A025717.
- SL-7-7, (SSC-263) Static Etructural Calibration of Ship Response Instrumentation System Aboard the SEA-LAND MeLEAN by R. R. Boentgen and J. W. Wheaton. 1976.