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I. INTRODUCTION

The Ship Structure Committee sponsored this examination of the
technology and practices that constitute the fracture control plans used by
designers, builders, and operators of fixed steel offshore structures. This
report presents the findings of that study as responsive to four identified

tasks:

Task 1: Determine the current status of fracture control prac-
tices through review of pertinent U, S. and foreign
literature and interaction with designers, buildera,
operators, and classification societies in order to
identify the extent of and contributors to the

fracture problem for fized offshore structures.

Task 2: Identify the essential elements and rationale of a
fracture control plan to provide a framework which
could eventually evolve to a fracture control plan for

fizxed offshore structures.

Task 3: Identify areas where existing technology would suggest

cogt-effective improvements in current practices.

Tagsk 4: Identify promising areas of technical research which
would provide a sounder bagis for fracture control of

fixed offshore structures.

Performance of Task 1 was approached in two ways: through discussion
(and formal interviews) with experts in the field and through a review of
standards, specifications, and fracture control studies and surveys available
in the open literature. The authoras contacted members of the Ship Structure
Subcommittee, Coast Guard, Naval Sea Systems Command (NAVSEA), and other
members of the offshore community and requested direction to key publications
and noted industry experts as a beginning point for both the literature survey
and the interview phases of the project. From this point on, the two
approaches became complementary as the literature brought forth names of
people to contact, and the new people suggested (and sometimes supplied)

literature for review.
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Extensive telephome interviews were conducted with eighteen experts in
the offshore o0il industry, most of whom are design engineers or fracture
control "generalists."” The interviews covered five key areas: (1) scope of
the fracture problem, (2) current practices, (3) identification of immediate
cost-effective improvements, (4) identification of areas for further research,
and (5) additional opinions/references. Thus, while the most direet outcome
of the Task 1 survey was the definition of current practices (Section II of
this report), the material gathered during completion of this task formed the

basis for defining future needs as well (Tasks 2, 3, and 4).

Since the interviews averaged over two hours in length, and since they
were not taped, the authors were concerned about possible misunderstandings
and misquotation. The phone notes from these interviews were sent to the
participants for correction. Not only did this ensure that the information
gathered was an accurate representation of each man's opinion, but it often

resulted in the interviewee including additional material and references,

The report necessgarily reflects a U. S. focus, since U. S. participants
are the major concern of the Committee, and since only U. S. design,
construction, and operating companies were contacted during the telephone
survey phase of this contract. Although several of these companies (and
interviewees) have experience with European operating environments and
regulations, this experience has not been researched as extensively or
reported with the same degree of confidence as the information on U. S.
practices. Also please note that the report emphasises the occurrence and
prevention of structural failures. Detailed discussion of the reduction of
their consequences, such as through better evacuation plans or designs to

withstand collision damage, iz outside the scope of this report.

Once completed in draft form, the "Summary"” report (Section II) was
sent out for review. It was reviewed by the Project Advisory Group (composed
of members of the Committee on Marine Structures and the Ship Structure
Subcommittee) in October of 1982 (Sections 1 through 4) and in January of 1983
(Sections 1 through 7), then as a complete draft report in late 1983, It was

also sent to various overseas experts to verify references to European
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practices. This final report has been modified to reflect the questions,

comments, and corrections received from thesge various sources.

In reviewing how the procedures currently used constitute an informal
fracture control plan, holes and weaknesses in the practices were identified
and indications of new directions in research, particularly in materials and
design for frontier arecas came to light. Many of the current and future
trends identified in the "Recommendations” (Section III) stem from the
enthusiastic recommendations (or equally enthusiastic condemnations) voiced by
participants in the telephone survey. Others were gathered from the literature
and from the authors' own experienbee in fracture control. The "Recom-—
mendations" section references the "Summary" heavily, so that there is a clear
correlation made between the recommended practices and the historical and

operating environments from which these have emerged.
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II. A SUMMARY OF CURRENT
PRACTICES AND TRENDS FOR FRACTURE CONTROL OF
FIXED STEEL OFFSHORE STRUCTURES

1.0 INTRODUCTION

1.1 Scope

This is a summary of the current practices and trends that constitute
the fracture control plans for fixed steel offshore structures used by their
designers, builders, and operators. The practices used for structures located
in the U.S. Gulf of Mexico are emphasized; however, American practices outside
of the Gulf of Mexico, as well as abroad, are mentioned when appropriate. A
brief comparison with current practices used in the North Sea (Norwegian and
British sectors) and a discussion of the scope of the fracture problem are
included for completeness.

Information for this summary was gathered from the "API Recommended
Practice for Planning, Designing, and Constructing Fixed Offshore Platforms,"
API RP-2A, Thirteenth Edition, published by the American Petroleum Institute,
Washington, D.C. This document will, hereinafter, be referred to as the API
RP-2A. Other important references are listed at the end of each section,
although no effort has been made to 1ist all the references used. Knowledge
gained through the authors' personal communications with members of the
offshore industry, especially in telephone interviews conducted as part of
this survey, has been incorporated. Attempts were made to contact offshore
operators for detailed service experience; however, what Tittle information
was offered to the authors was only provided confidentially and off-the-
record. Finally, the authors' own experience with fracture control and
offshore structures is included,

1.2 Fracture Control Background

Fracture control is*the rigorous application of those branches of
engineering, management, manufacturing, and operations technology dealing with
the understanding and prevention of crack initiation and propagation leading

4
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to catastrophic failure., - Fracture control plans as such did not exist until
about 1940.  Until then fracture was controlled implicitly by low working
stress levels and evolving design procedures based on trial-and-error experi-
ence. When fracture did occur it often was not catastrophic due to the high
degree of redundancy built into the structures. If a failure were catastro-
phic (often in prototype or early production structures), subsequent designs
would often use Targe factors of safety and thus lower working stresses.,

Fracture control has recently become an important design consideration.,
Modern high strength materials allow the designer to use higher working
stresses, but often at the expense of lower ductility and less "forgiveness"
in the material due to decreases in resistance to aggressive environments
and/or crack-1ike defects. At the same time, better analytic techniques and
understanding of structural behavior (e.g., dynamics) have led to reduced
redundancy and smaller factors of safety. Thus some of the controls implicit
in past design methods have been removed.

In the 1940s, attention was drawn to the fracture problem by the
cracking of a large number of World War II ships, in particular by the brittle
fracture and sinking of Liberty ships. Study of this problem led to design
rules which minimized stress concentratiohs. These rules, along with further
research in the 1950s, led to the use of improved notch- and crack-toughness
materials by some designers.

Thus the engineering application of fracture mechanics was born largely
to prevent brittle fracture in ships. Today fracture mechanics is used to
predict initiation and arrest of brittle (and several types of ductile)
fracture, fatigue and other subcritical crack propagation rates, and critical
crack sizes leading to final fracture in many kinds of structures. For
example, fracture control plans based on the principles of fracture mechanics
are used or proposed for pressure vessels and piping in nuclear power plants,
turbines in power plants and jet engines, steel bridges and ships, military
and commercial aircraft, and the space shuttle.

While it 1is still rare to find formal documentation and procedures
which emphasize integration of the subspecialties of fracture control,
attention to each subspecialty has been increasing and some integration is
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guaranteed by the negotiations and trade-offs needed to satisfy the sub-
specialists. Thus, fracture control plans, whether explicit or implicit,
govern design stress Tlevels, stress concentrations, welding procedures,
welding defects and inspections, and material properties such as fracture
toughness and crack growth resistance. They also provide for redundance or
"fail-safety" to maintain the safety of a structure in the event of the
fracture of a part. The philosophy behind these plans may be simply described
as to:

1. Prevent cracks when possible;
2. Contain or tolerate growth of those cracks not prevented;

3. Contain a fracture within a part or tolerate the loss of
the part if a crack should grow critically.

When implemented, a fracture control plan uses both seen and unseen
elements. Some visible elements are, for example, the specification of
material properties and inspection procedures. Some unseen elements are among
those, such as the use of prequalified joint configurations, which control
stress concentrations. Thus while fracture control is often based on fracture
mechanics,. a fracture mechanics expert is not always necessary to perform it.

The adoption of a fracture control plan has many benefits. Obviously
costly inspections of and repairs to cracked parts can be avoided by pre-
venting the cracks from forming, or by critically assessing the severity of
the cracking a priori and designing tolerance into the structure. Increased
attention to cracking in the design and fabrication of a structure will lead
to a higher quality structure. The ultimate result is a safer, more cost-
efficient structure and a better use of resources.

1.3 Fracture Control of Fixed Offshore Structures

Fracture control practices consider the risk of fracture as a part of
the entire risk of an offshore project. For ease of discussion, this report
has determined four major activities related to the fracture control of fixed
steel offshore platforms. First, material selection and quality control are
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aimed at the prevention of brittle, and types of ductile, fracture and fatigue
due to substandard material properties. Second, design provides the structure
with resistance to crack growth and tolerance of damage. Third, construction
phases are conducted and inspected in such a way as to minimize substandard
fabricated details (especially welds), initial defect sizes, and detrimental
residual stresses. And fourth, operation and inspection* are carried out to
maintain the integrity of the structure. In examining the current practices
used in the fracture control of these structures, it is necessary to consider
all practices used in the four major activities and see how they may relate to
fracture control.

The current practices related to fixed steel offshore structures
constitute a fracture control plan, whether or not explicitly or formally
stated as such, Much of the documentation of this plan can be found in
industry publications (e.g., APT RP-2A and the American Bureau of Shipping's
"Rules for Building and Classing Offshore Installations" (referred to
hereinafter as the ABS Rules**), professional journals (e.g., American Society
of Civil Engineers, or ASCE, journals), and the proceedings of technical
conferences (e.g., Offshore Technical Conference, or 0TC). Also many of the
practices summarized in this report are discussed in more quantitative detail
by P.J. Fisher in the proceedings of the 1981 Conference on Fatigue and
Offshore Structural Steels,

The most basic American fracture control document is the API RP-2A,
"API Recommended Practice for Planning, Designing, and Constructing Fixed
Offshore Platforms,” which is not a code or regulation, but a compilation of
recommendations describing currently acceptable practices. It was first
issued in October 1969, and is now in its thirteenth edition. Because

*Inspection may be treated as a separate activity (see Section III:4.4) but,
because most inspection occurs before and during the operation phase, is
considered here as a part of that activity.

**As noted in the references, the 1982 draft version of this document was used
in preparing this report, and that version has not been checked against the
nonavailable 1983 ABS Rules.
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American experience has been mainly in the Gulf of Mexico, the API RP-2A
generally represents that experience. Two types of structure covered by this
document are discussed next.

Template Platform: A template-type platform consists of three
parts. The jacket is a welded tubular space frame which is
designed as a template for pile driving and as lateral bracing
for the piles. The piles anchor the platform permanently to
the sea floor and carry both vertical and lateral loads. The
superstructure is mounted on top of the jacket and consists of
the deck and supporting trusses necessary to support
operational and other Tloads. Generally, template-type
platforms are carried from the fabrication yard to the site on
a barge and are either lifted or launched off the barge into
the water. After positioning the jacket, the main piles are
driven through the jackets' legs (usually four or eight), one
through each leg. Other piles, "skirt piles," may be driven
around the perimeter of the jacket as needed.

Tower Platform: A tower platform 1is a tubular space frame
which has a few, generally four, large diameter legs (e.g., 15
feet). The tower may be floated to the site on its large legs
without a barge; such a tower is also known as a "self-
floater." Piles, when used, are usually driven in groups or
clusters through sleeves located either inside or outside the
large legs. When piles are not used, spread footings may
support the tower.

The ABS Rules apply to "fixed structures" defined as pile-supported platforms,
gravity structures, guyed towers, and {with other requirements) to articulated
buoyant towers and tension Tleg platforms. A1l of these are discussed,
individually or collectively, in this summary report. Figure 1 illustrates
several types of platforms.

In addition to o0il and gas drilling and production platforms, fixed
steel structures have also been used for 1light stations, oceanographic
research, supertanker terminals, and other applications. However, the main
interest of this report is in drilling and production platforms, which are
steel tubular space frames.

Offshore technology is growing rapidly. The first shallow water steel
template was installed in twenty feet of water in 1947. Today there are over
2000 platforms installed in the Gulf of Mexico, in water depths of up to 1050
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feet, Along with this growth in technology, fracture control related
practices have also changed. The API RP-2A 1is now in its thirteenth edition
in as many years.

The primary motivation for all this development has been the extension
of the technology to deeper and rougher waters. The ABS Rules/1982 Draft, in
its foreword, states that the document is specifically aimed at "unique struc-
tural types or structures located in frontier areas, which are those charac-
terized by relatively great water depth or areas where little or no operating
experience has been obtained." New frontiers have opened in the North Sea,
Southern California, Alaska, Canada, the East Coast of the United States, and
all around the worid. Aiding this development has been the concurrent growth
in computer-aided structural analysis and design. Today's large complex
structures are designed with computer programs which characterize wave loads
and analyze dynamic response, stress, and fatique life.

The prevailing types of designs have also been changing. For example,
early tubular joints were designed to transfer loads through gusset plates.
Modern tubular joints transfer loads through shell action, without the use of
gussets. Large joints in deep water platforms are often stiffened internally
with rings, as in aircraft frames. Future trends in the design of offshore
structures will, undoubtedly, involve more complex analyses and more thorough
understanding of tubular joints.

Thus, the fracture control practices of this industry are clearly a
fast moving target. A summary of current practices must, therefore, not only
define the average, or typical, practice and the variation about the average,
it must define the trend, or direction, of those practices. This is a goal of
this project.

1.4 A Summary of Current Practices and Trends

After a short discussion of the scope of the fracture problem
(Section 2), the current practices of the four major activities related to
fracture control will be summarized (Sections 3, 4, 5, and 6). Emphasis is
placed on Gulf of Mexico practices because most American offshore structures
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are located there. The concluding section (Section 7) will compare Gulf of
Mexico practices with North Sea practices.

The four current practices sections will discuss material selection,
design, construction (including fabrication, transportation, and installa-
tion), and operation and inspection. In each section, the philosophy of the
current practices with respect to fracture control will be 1indicated,
including frécture control goals and trade-offs between goals made when using
particular practices. The current practices will be summarized. Quality
control measures such as testing or inspection will also be summarized. And a
brief discussion will highlight current trends, points of controversy, etc. A
short list of principal references for the subject will conclude each section.

Offshore technology has spread around the world. In spite of the
number of different areas being developed, international practices tend to
fall into two types. One type follows American Gulf of Mexico practices. The
other follows North Sea practices.

The practices used in the North Sea have grown out of a different
physical environment and a different regulatory structure than those in the
Gulf of Mexico. In a sense, they represent the opposite philosophical pole.
These practices are documented by the Det norske Veritas "Rules for the
Design, Construction and Inspection of Fixed Offshore Structures," 1974 (the
DNV Rules), and by the United Kingdom Department of Energy "Offshore
Installations: Guidance on Design and Construction,” 1977 (the UK DOE
Guidance).

The final section of this report compares the main differences between
Gulf of Mexico practices and North Sea practices. The practices found
elsewhere in the world, or the United States, will probably resemble one or
the other, or will be somewhere between the two.

11
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1.5

Principal References*

American Petroleum Institute, "API Recommended Practice for Planning,
Designing, and Constructing Fixed Offshore Platforms," API RP-2A,
Thirteenth Edition, Dallas, Texas, January 1982,

Det norske Veritas, "Rules for the Design, Construction and Inspection of
Fixed Offshore Structures," Oslo, Norway, 1974,

United Kingdom Department of Energy, Petroleum Engineering Division,
"0ffshore Installations: Guidance on Design and Construction," Her
Majesty's Stationery Office, London, 1977.

Marshall, P.W., "Fixed-Bottom, Pile-Supported, Steel Offshore Platforms,”
ASCE Convention, Atlanta, Georgia, October 1979.

McClelland, B. (ed.), The Design of Fixed Offshore Structures, to be
published by Van Nostrand Reinhold, New York, 1982.

American Bureau of Shipping, Rules for Building and Classing Offshore

Installations, ABS Special Committee on Offshore Installations, New York,
(Draft) 1982.

Fisher, P.J., "Summary of Current Design and Fatigue Correlation," in
"Fatigue in Offshore Structural Steels," Conference Proceedings, London,
February 24-25, 1981,

*A11 references cited in this document were current or the most recent avail-
able to the authors at the time this study was undertaken. The ABS rules
were finalized in 1983,

12

486 -3 34



2.0 THE SCOPE OF THE FRACTURE PROBLEM

2.1 Introduction

While it is well known that welds often crack during fabrication of
fixed steel offshore structures, and that divers' inspections sometimes reveal
cracked or parted joints, or even missing braces, there is a reluctance of
some members of the offshore industry to admit that cracks exist in these
structures. This apparently is due to a desire to maintain the public's
confidence in offshore operations. In truth, cracks or crack-l1ike defects
always exist in all of the welds and heat-affected zones of steel structures,
whether they be offshore platforms, bridges, buildings, or nuclear reactors.
The question is not, do they exist, but rather, how significant and serious
are they?

This section will briefly examine the common sources of crack initi-
ation in fixed steel offshore structures and some typical examples. The sig-
nificance of these types of cracking will also be considered.

2.2 Sources of Crack Initiation

Cracks or crack-Tike defects may initiate during the construction of an
offshore structure, during its transport and installation, or after installa-
tion, during its operation. The first source of crack initiation encountered
in the Tife of any structure is a defect in the original material. In steel
plate such a defect might be a porous region, or a non-metal inclusion or
Tamination, In good practice the largest and most significant of these
defects are detected and rejected before the plate is used.

There are several opportunities for cracks to initiate from the welding
process. Poor weldability of the materials or poor welding technique can
leave large crack-like defects in the weld. Certain joint configurations lead
to heavy restraint of the welds, which results in high residual stresses and,
sometimes, cracking as the welds cool and shrink. The worst examples of this
type of cracking are normally caught in inspections during fabrication, and
can be prevented by using the proper preheat and other welding procedures.

13
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Improved and special welding procedures can also alleviate problems
with material embrittled by welding. Such material is susceptible to brittle
fracture when Jloaded. Also, the use of material with special through-
thickness ductility in critical locations can reduce the chance of fracture by
lamellar tearing, and of brittle crack extension in the rolling-plane of leg
and brace walls subjected to significant out-of-plane loads.

Finally, during construction, there are many opportunities to overload
a joint. For instance, assembly of the frames may require the coordinated
effort of several cranes. Mispositioning a crane, not balancing the Toads
correctly between cranes, or sudden impact loading could Tead to joint over-
load, and hence crack initiation. Cracks may initiate in several ways during
the load out, transport, launch, and operation of the structure. Impact
damage 1is probably the most common cause. A boat collision or a dropped
object from the deck are examples of this. In these cases, the operator
usually knows when (and perhaps where) to check for crack initiation.

More subtle sources of crack initiation are corrosion and fatigue.
Since these processes occur slowly and their cracks evolve over a period of
time, continued or periodic surveillance is required to find these cracks.

- Cracks due to overloads may be suspected after a severe environmental
loading such as a storm or an earthquake. However, cracks may initiate, but
not be anticipated, if the ordinary loading is not properly considered in
design, i.e., if the structure is underdesigned. In the first case, overload,
the operator usually knows where cracks may initiate and should find them
easily. In the second case, underdesign, the operator probably doesn't expect
cracks to initiate, so they might not be discovered until they become rather
large, or make themselves known by causing problems.

2.3 Typical Examples

With good welding practice and proper controls, cracks and crack-like
defects large enough to degrade the structure are usually prevented or caught
and rejected during the welding process. However, there are classes of
defects that are known to exist in a welded joint but are allowed to remain.

=

14

486 -3 34



A small defect in the weld root is one example. When found, the defect and
the joint are considered for their "fitness-for-purpose,"* that is, they are
evaluated to see if, even with the defect, the joint will still accomplish its
intended purpose (i.e., strength and useful fatigue life). Thus, these cracks
are not considered to be problems.

Lamellar tearing was a serious problem about ten years ago. The extra-
thick plate used in North Sea platforms was particularly sensitive to this
problem, Today, when conditions of heavy weld restraint and through-thickness
loading occur, a special plate material is used, with high through~thickness
(or z-direction) ductility, which resists Tlamellar tearing and in-plane
brittle crack extension.

Crack indications are sometimes picked up with underwater ultrasonic
testing only a few years after the platform has been installed. In the cases
where the indications correspond to real cracks, many questions are asked.
The first always is, when did the crack occur? Sometimes the cracks initiated
during fabrication, but were not found; possibly those welds were not
inspected thoroughly at that time. In other cases, it is suspected that they
initiated from an overload during installation or from fatigue during trans-
port. If either of these is the case, the operator's concerns are clearly
different than in the case where no significant crack existed at the time of
installation, and the crack has suddenly appeared in a few years. For this
serious situation of structural degradation with time, the operator must
determine whether the structure is underdesigned, or whether the crack is due
to another problem, and then must estimate how much time is available before
remedial measures (inspection, repair, or replacement) are needed.

An apparently common problem is to have heavy objects drop off the deck
and strike one or several braces on their way down. For example, pile
followers, used as an (above water) extension to the hammer when the top of
the pile is under water, have been dropped. Obviously, depending on the

*"Fitness-for-purpose” will be defined and discussed in more detail in the
sections on Construction and Operations and Inspection.

15

486 -3 34 @



object dropped, the resulting damage could be negligible, a dent in a brace, a
crack, a gouge, a tear, or complete separation of a joint.

Corrosion, as mentioned, can be a subtle problem; however, it isn't
always. An improper or inadequate ground for an offshore welding operation
can turn the underwater welds into electrolytic anodes, resulting in rapid,
highly detectable, corrosion of the weld metal. The damage may be corrosion
pitting or more severe knife-edge slices (crevice corrosion) into the weld.

Finally, it is known that some of the first platforms installed in the
North Sea have had problems with fatigue. In early North Sea designs fatigue
was not explicitly analyzed and the severe environment (wave load spectrum)
for fatique led to cracking. Another problem for later platforms has occurred
with the horizontal framing supporting the well conductors at the first level
below the surface. In those designs, vertical wave forces probably were
underestimated and repeated joint overloads also led to fatigue cracking, even
though fatigue was considered.

2.4 Conclusions

It appears that there are two basic types of fracture problems. One
type occurs because of poor workmanship or direct human error. Examples of
this are significant crack initiations due to poor welding technique, con-
struction overloads, and falling objects. Fracture control 1is achieved in
these cases by preventing the errors from occurring.

The other type of problem relates to new technology or new frontier
areas. In these cases, as experience is gained the problem diminishes 1in
later designs. Examples are the weldability of new materials, lamellar
tearing in thick plates, and fatigue in the North Sea. Experience has shown
that the first generation of platforms to be installed in a frontier area has
the most problems, the second has fewer, and by the third generation, most of
the problems have been worked out. Fracture control is best achieved in these
cases by first being aware of the unique characteristics and demands of a
technology or area, and then by rapidly gaining experience and applying
appropriate measures.

16
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Rolfe, S.T. and J.M. Barson, Fracture and Fatigue Control in Structures,
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3.0 CURRENT PRACTICES: MATERIAL SELECTION

O0f the four major activities related to fracture control, the current
practices used for material selection exhibit the most variation in the indus-
try. There are several reasons for this; a major one is because there is
disagreement over what material properties are needed to control fracture.

This section discusses the questions: What properties are selected and
why? How are they specified? What tests are done to see that the materials
have the desired properties? And, what are the current thoughts on how these
practices may be deficient and how best improved?

3.1 Philosophy

The fundamental fracture control goal in material selection is to
assure that the material will behave at least as well as assumed in design
calculations. For tubular joints in offshore structures this means that the
material must be able to accommodate large amounts of plastic deformation
without fracture. Thus, there are two sub-goals: to limit material defects
which might initiate fracture, and to avoid material susceptible to brittle
fracture at the service temperature of the structure.

There is an important trade-off to be considered in material selection.
To decrease the weight of the structure, a material with a higher yield
stress, i.e., a stronger material, will often be chosen for the joints. There
is, however, often an jnverse correlation between the strength and the frac-
ture resistance, or toughness, of a material. That is, a stronger steel is
usually less tough. So when choosing a stronger material for the joints, it
is possible a material Tless resistant to fracture is also being chosen.
Therefore, the trade-off between strength and toughness should be carefully
considered. One way to avoid the strength-toughness dilemma is to bear the
expense of more costly steels for which both properties are adequate. This
option creates a more complex trade-off among strength, toughness, and cost.

18
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3.2 Current Practices

3.2.1 Desired Properties

General properties such as yield strength, ultimate strength, and duc-
tility are standard. In special cases, through-thickness ductility may be
needed to prevent lamellar tearing.

To limit defects which might initiate fracture, tolerance levels for
porosity, inclusions, and laminations in the rolled plate are set. Since the
presence of material defects is controlled by the steel manufacturing process,
the process itself may be specified., The chemical composition of the steel is
also controlled to assure the material's key mechanical properties and weld-
ability. Carbon-equivalent is the most important relevant measure for weld-
ability and some other key properties.

Brittle fracture is a frequently catastrophic failure mode in struc-
tural steels, initiated by a crack or crack-like defect, that occurs suddenly
and with 1ittle or no warning, such as through prior plastic deformation. To
avoid brittle fracture, material selection is based on the Fracture Analysis
Diagram (FAD), of which the most important element is the nil ductility
transition temperature (NDT). The NDT represents the temperature below which
fracture is almost entirely brittle and the probability of ductile failure is
negligible, The FAD plots the nominal dynamic stress required to propagate a
given flaw size to failure in a Naval Research Lab (NRL) Drop-Weight Test
plate, as a function of the test temperature, which is calibrated against the
NDT (see ASTM Standard E208-69). This test, which dynamically bends a
sharply-notched plate, closely simulates the strains and strain rates of a
dynamic fracture initiation at the highest-stress locations (hot spots) of
welds in tubular joints. Cracks are always initiated dynamically during this
test; a specimen passes the test only if the crack is arrested before it can
break the plate. A family of S-shaped, stress-versus-temperature curves is
plotted for different init