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SUMMARY I
Marine Structures are employed in the exploration, production and

transportation of offshore minerals as well as for transportation of people

and products across nations and for the defense of the country. The

structures used for the production of oil and gas are generally located at a

particular site offshore while others are mobile. These structures are often

at the mercy of the harsh environment of the ocean in the form of waves, wind,

current and earthquake and must survive the severest storm encountered during

its lifetime.

Design of an offshore structure is based on the extreme responses

experienced by the components of the structure under the influence of the

environment faced by the structure in its lifetime. If the structural

components may be treated as a linear system, the derivation of the extreme

responses is relatively straightforward. However, most practical offshore

systems have nonlinear responses, and these design tools are not applicable.

The purpose of this report is to perform an extensive state-of-the-art

review of the available and emerging techniques for the determination of

extreme responses of a nonlinear marine structure and system. The contents of

this report may be categorized into two parts; one presents the nonlinear

characteristics of wave-induced forces and corresponding structural responses,

and the other discusses the extreme value analysis of nonlinear systems

relevant to offshore and marine structure design. The report reviews the

generic procedures for the nonlinear analysis of marine structures and

investigates the method in which they may be applied to the probability

analysis of extreme events.

Different types of nonlinear behavior of interest for various classes of

offshore structures have been studied. Nonlinearities in the analysis of

these structures appear at various stages, e.g., waves, material properties,

forcing function and motion response. The solutions of the dynamic problem

with time dependent loads fall into two main categories: deterministic and

nondeterministic (stochastic). Deterministic solutions include both the time

domain (time history analysis) and the frequency domain analysis. While the

time history analysis can retain most of the nonlinearities in a marine

system, frequency domain solutions are necessarily linearized. Review of

I
I
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these various generic procedures for nonlinear analysis has been made.

In the case of probabilisitc method of obtaining extremes of a response

of an offshore structure, distinctions are made regarding short-term versus

long-term.

A short term means a period of time which is short enough to describe the

sea and the response as a stationary random process. This period of time is

on the order of 30 minutes to 3 hours. It is a general practice to assume

that the short-term statistical distribution of response amplitudes follows

the Rayleigh distribution function. Based on this function, the probabilities

of certain extremes over a given short term may be predicted. The waves are

assumed Gaussian for this purpose. For responses, the narrow handedness and

linearity are inherent assumptions. However, the response (output) of a

nonlinear system is a non-Gaussian random process even though the waves

(input) is Gaussian. This fundamental principle has been addressed in the

report. The prediction of the statistical properties of marine systems with

strong nonlinear characteristics is not possible using a linear analysis. For

statistical analysis of nonlinear systems, the probabilistic prediction of

non-Gaussian random process is essential. This area has been discussed in the

report, and several non-Gaussian random processes have been included.

For extreme value statistics, a long-term (of the order of 20-100 years)

distribution of the response parameters is often required. The long-term non-

stationary random process is sometimes written as a sum of a large number of

short-term stationary process. The extreme values of a given probability

level are also obtained by order-statistics. This area is briefly reviewed.

Various available methods in the above areas have been summarized, and

their applicability, assumptions and limitations have been discussed. Based

on this discussion, several conclusions and recommendations have been drawn.

iv
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TABLE 1.1 - TYPES OF OFFSHORESTRUCTURES

MARINE AND

OFFSHORE STRUCTURES

QFIXED1*2 clFLOATING2s3

Drilling Jackets

Production Platforms

Oil Storage Tanks

Caissons

I

Ships

Barges

Sernisubmersibles

Buoys

TLPs

Articulated Buoyant Towers

Guyed Towers4

rFLEXIBLE

1
Catenary Cables

Chains

Risers

TLP Tendons

Marine Hoses

NOTES:

1. Fixed structures may be piled or gravity type.

2. Fixed or floating structures may be rigid or non-rigid. The non-

rigid structures will undergo small deflections or displacements

under environmental loads.

3. Floating structures are usually moored in place in operational mode.

4. Strictly speaking, guyed towers do not belong to this category; but

its analysis is similar to the others in this category.



1.0 INTRODUCTION

The marine and offshore structures and their components may be classified

into three broad categories: fixed structures, floating structures and

flexible structures. Table 1.1 shows these three classes of structures.

The fixed structures in the open ocean are held in place by their weight

or by piling. Generally, jacket type structures consisting of a large number :

of tubular members in various planes are held in-place by piling. Many such

structures may be seen in the Gulf of Mexico. On the other hand, large-

volumed production structures made of concrete and steel that exist in the

North Sea are gravity-type structures. The weight of these structures

provides sufficient bearing pressure to overcome sliding or overturning dueto

environmental loads, thus fixing their position.

There are two primary types of floating structures. One type is powered

to move from one location to another and is used to transport materials across

bodies of water. Examples of this type of.structures are ships and barges.

The other type of floating structures is mechanically connected to the ocean

bottom or moored in place for use in offshore operation such as in the

production, processing and storing of oil. Such structures may be articulated

towers, semisubmersibles, tension leg platforms (TLPs), etc.

Fixed and floating structures may be rigid or non-rigid. Large struc-

tural components are considered rigid for the analysis of wave forces and

motions. Long members of small cross sections, e.g., in jacket platforms may

undergo deflections or displacements which are substantial and should be

considered non-rigid. An articulated tower may also experience natural period

vibrations in higher vibration modes than the rigid body motion. These

members are treated as non-r”igid in the response calculation.

The third type of structures, namely, the flexible structures undergo

large deformations which must be taken into account when being analyzed. It

may be important to update the external forcing function on these structures

based on their displaced configuration. Examples of these structures are

risers, TLP tendons, catenary lines, hoses, etc.

Because of the nature of these flexible structures, the nonlinearities in

the design analyses appear in different phases and are sometimes typical of



the structures in question. On the other hand, certain types of

nonlinearities are common to most of these structures, depending on the

environment experienced by them.

This report discusses the common types of nonlinearities (Chapter 2)

encountered in the design of offshore structures. The types of nonlinearities

are arranged in the order in which they may enter into the analysis of a

structure. Applicability of these nonlinearities to the types of structures

included in Table 1.1 is discussed. Examples of the nonlinearities are

presented from which the importance of the nonlinear terms may be assessed.

The main thrust of the present report is the extreme value analysis of

nonlinear systems relevant to offshore or marine structures. This area is

relatively new, but progress in this area in the last several years has been

rapid and steady. Because of the complexity of the problem, the extreme value

analysis of nonlinear systems makes approximate assumptions in order to make

the mathematical problems tractable and fit one of the known extreme value

analysis methods. Chapter 3 discusses various probabilistic methods and

distribution functions used in predicting short- and long-term extreme

response values for an offshore structure. Most of the nonlinear systems

which appeared in Chapter 2 are addressed here.

The applicability of the various approximate methods in nonlinear extreme

value analysis is discussed in Chapter 4. Some of the assumptions and

limitations of these techniques are summarized. Based on this evaluation,

consistent methodology applicable to the probabilistic approaches is provided

in Chapter 5. As will be clear from the discussions in the earlier chapters,

a single methodology may not be appropriate for evaluation of all systems.

Therefore, based on certain input parameters depending on the types of

nonlinearities, different methodologies and formulations are recommended.

Moreover, because of the cost and schedule constraints of this contract,

several recommendations are made for possible future work in this area.



2.0 TYPES OF NONLINEARITIES

The nonlinearities enter into an offshore structure analysis at various

phases. The first and foremost of these is the environment itself. In

describing the environmental conditions that influence the offshore

structures, nonlinear theories are often needed. For example, waves are often

nonlinear and require a mathematical series expression which depends on

various wave parameters (e.g. wave height) in a nonlinear fashion. In

describing the effect of the environment on the structure, the external

loading may become nonlinear. Examples of such nonlinearities are current

load, wind load and wave drag load. The response of the structure resulting

from the environmental loads may be nonlinear due to nonlinear damping, for

example.

Let us, at this point, explain what is understood about a nonlinear

system and how it differs from a linear system.

2.1

that

time,

DEFINITION OF NONLINEAR SYSTEMS

Consider a nonlinear system. If y(t) is the response at a given time, t,

is single valued and nonlinear due to an excitation x(t) at the same

, t, then

y(t) = g[x(t)] ‘ (2.1)

,
where g(x) is a single ~alued nonlinear function. of x. The system g(x) is

nonlinear if
., ..

9(al X1 + az x2) * al 9(X1) + az 9(X2) (2.2)

where al and a2 are arbitrary constants. This system is considered a “zero

memory” system, meaning that the response of the system does not depend on the

past value of the excitation. If the system is a constant parameter nonlinear

system and if the excitation x(t) represents a stationary random process, then

the response y(t) will also be a stationary random process. In this case, the

correlation function of the output, and between input and output are given by



RYY(T) = E[y(t)y(t + T)]= E[g{x(t)} g{x(t + T)}] (2.3)

RxY(T) = E[x(t) y(t + T)] = E[g{x(t)} g{x(t + T)}] (2.4)

where R refers to the correlation at a time lag, T, and E refers to the

expected value. Examples of zero memory nonlinear systems that are often

found in the offshore structure analysis are

● Square-Law System: y = X2

● Cubic System: y = X3

● Square-Law System with Sign: y = 1X1X

types of nonlinearities

structure design. The

In this section, we shall describe the various

that are encountered in the marine and offshore

subjects are introduced in the order mentioned at the beginning of this

section. First of all, nonlinearities encountered in describing the

environment will be described. ‘ Then the external loading from these

environments that are nonlinear will be discussed. Finally, the responses

from external loadings that are nonlinear will be addressed. It should be

noted that the design extreme value analysis should properly account for these

nonlinearities.

2.2 NONLINEAR WAVES AND WAVE SIMULATION

In computing the wave loads on the components of an offshore structure, a

suitable wave theory must be chosen based on the wave parameters. Numerous

water wave theories have been developed which describe the kinematic and

dynamic properties of the water particles at or below the free surface of the

wave profile. Although the ocean waves are random in nature, the wave

theories describe wave profiles that are regular and periodic in nature.

There are three basic parameters that are used in describing all wave

theories: water depth, wave height and wave period.

The linearity of waves is determined by the wave height or the wave

slope. The simplest and most commonly used wave theory is known as Airy

theory which is linear with the wave height (hence, also called the linear

theory). Because of the linearity of the Airy theory with the wave height,

4



the structural response obtained using this theory is often quite straight-

forward, even though not necessarily linear. This is the theory that is

almost exclusively used in the extreme value analysis of responses, and forms

the basis for the latter chapters.

The free surface boundary conditions are linearized in describing the

linear Airy wave theory. Therefore, it is not possible to accurately predict

the statistical and spectral properties of particle kinematics in the free

surface zone. Anastasiou, et al. (1982) derived the probability density

function of particle kinematics in the free surface region, which is correct

up to the second order. The wave loads in the free surface zone on a vertical

cylinder were computed to demonstrate the nonlinear properties of the particle

kinematics.

However, in many physical situations the linear theory is not adequate to

accurately describe waves. In this case one has to resort to other theories

to match or at

other commonly

are (1) Stokes

cnoidal theory

least approach the physical data. Besides the linear theory,

used nonlinear theories in the

higher order theory [Skelbreia

[Weigel (1960)] and (3) stream

design of offshore structures

and Hendrickson (1960)], (2)

function theory [Dean (1965),

(1970)].

To offer an example of the differences among theories, Airy linear theory

provides an expression for the horizontal water particle velocity as

u mH cosh ky Cos (kx
‘~sinh kd - &) (2.5)

whereas Stokes second order nonlinear theory expresses the same parameter as

U=%-wrcos(kx- (2.6)d++(+) 2=COS 2(kx-ut)

where H = wave height, T = wave period, d = water depth, y = vertica

coordinate of particle, k = wave number (= 2T/L, L = wave length)

x = horizontal coordinate of particle, u = wave frequency, c = wave celerity,

and t = time. The first term on the right hand side of Eq. 2.6 corresponds to

the first order theory and is linear with the wave height. However, the

second term is proportional to the square of the wave height (or wave slope).

Similarly, the horizontal water particle velocity of an Nth order stream

5



function theory is given in a series form with terms Up to N as follows:

N
u =. z nk cosh (2n-l)ky [X(2n-1) cos(2n-l)kx + X(2n) sin(2n)kx] (2.7)

n=l

in which X(n) are the coefficients of the stream function. The statistical

distribution properties of nonlinear waves have received some attention in

recent years which have been discussed in Chapter 3.

The applicability of the wave theories may be described by two

nondimensional parameters, d/gT2 and H/gT2 based on the three basic wave

parameters, d, H and T. This is described by the regions shown in Fig. 2.1.

The limits of validity of the various theories are based on how well the free

surface boundary conditions are satisfied, although there has been limited

experimental verification. For this reason, in using this chart, one need not

strictly adhere to the boundary lines in selecting a theory. In fact, the

linear theory has been shown to work quite well in predicting structure

responses well beyond its analytic limitations.

These wave theories are used in computing the response function of an

offshore structure. High order deterministic wave theories are used

extensively in the design of offshore structures despite their inability to

model the randomness of a wind generated sea. The extreme values of responses

(linear and nonlinear) are predicted invariably in linear random waves. For a

linear system this procedure is straight-forward with the use of a wave energy

spectrum model as will be described in the next chapter. For a nonlinear

response function, the solutions are often obtained in the,time domain. This

requires the simulation of a time series from the energy spectrum model.

The random waves in the ocean cannot be described by a theoretical

model. They are generally described by their energy density spectrum. Often

a mathematical formula is used to describe the energy density spectrum of an

ocean wave. A commonly used form is the Pierson-Moskowitz spectrum given by

(2.8)

u

in which S(w) is one-sided (i.e. O < w < =) energy spectral density,

Hs = significant wave height and ~ = peak frequency corresponding to the

energy spectral peak.



0.05 I 1 I I 1 I I
I !’ I

0.02

0.01

I

0.0002} f’~ i /
1= I

d
-
gT2

FIGURE 2.1 REGIONS OF VALIDITY ‘FOR VARIOUS WAVE THEORIES [AFTER LEMEHAUTF

(1976)]





While the above form of the energy density spectrum may be used as a

modified two parameter spectrum having Hs and ~ as independent Parameters-

the P-M spectrum is a one-parameter spectrum of a fully-developed sea in which

Hs is related to ~ by the relationship

2
‘o ‘s
—= 0.161

9
(2.9)

Thus, given a significant wave height, the peak frequency can be determined

and vise versa. Recently, Buckley (1986) analyzed ocean wave data obtained

from measurements at a platform in the Gulf of Mexico, NOAA data buoys, Navy

SOWM data and data from Canadian and Great Lakes waters. Based on the

significant wave height and peak period of this set of data, an empirical

boundary describing the limiting steepness was obtained as

2
‘o ‘s—= 0.306

9

which is about twice

For a frequency

are used directly.

(2.10)

that prescribed by the P-M spectrum.

domain analysis, these spectrum formulas (e.g., Eq. 2.8)

A wave profile is simulated from such a spectrum for a

time domain analysis. One of the straight forward methods of simulation of

the time series is the linear superposition method of dividing the energy

density spectrum into several slices of width, Am. Then the wave height

representing the energy under these slices is given by the formula

Hi(ui) =2 f7qq%i “(2.11)” -.

where ~ corresponds to the central frequency of the slice. The corresponding

period is given by

(2.12)

This, then, gives the component of the wave representing the frequency

interval, i, given by the wave height - period pair, (Hi, Ti). The phase

angle is assumed uniformly distributed over (O, 21T) and is chosen randomly.

Then the profile of the random wave is obtained by adding all the components

of the wave thus generated



N H.
n(x,t) = E ~cos(kix - wit + vi) (2.13)

j=l

where ki = 2~/Li , Li = wave length at a frequency O+ and N = number of slices

made in the wave spectrum (typically 50-200).

The random wave profile produced by this method is Gaussian only in the

limit as N extends to infinity. In order to avoid this problem [Tucker, et

al. (1984)], Eq. 2.13 may be rewritten in terms of two coefficients, ai, bi

(instead of vi) which are functions of the cosine and sine component of (kix -

Wit). These coefficients are then assumed to be randomly distributed in a

Gaussian form to ensure n to be Gaussian. It has been shown [Elgar, et al.,

(1985)] that the group statistics of the wave profiles by either of the two

methods produce similar results.

In a deterministic approach the maximum wave cycle in a random wave field

is often used to obtain the design response value. Such cycles are generally

highly nonlinear with sharper crasts and require higher order wave theory

(e.g. stream function theory) to describe the wave cycle.

A method of simulation of nonlinear random seas was provided by Hudspeth

(1975). The method

components by a Fast

the linear random

frequencies that are

the product of the

involves inverting the Fourier wave amplitude spectral

Fourier algorithm. Second order corrections are made to

sea surface. These nonlinear components appear at

sums or differences of the linear frequencies and include

linear spectral components. The nonlinear random sea

surface is derived from a linear simulation. The kinematic field, i.e. water

particle velocity and acceleration are obtained by a digital linear filtering

technique.

2.3 WAVES PLUS CURRENT

When current is present along with the waves, the current is often

considered steady and its effect is linearly superimposed on the effect of the

waves on responses. It is sometimes found that the combined effect of waves

and current on the responses may be different from their individual effects

linearly superimposed because of wave-current interaction. This is

particularly true for a moving structure for which the motion may become quite

complex and nonlinear even for linear waves. In addition, however, when

8



current is in the direction of waves there are additional changes experienced

by the waves.

On encountering a current, the characteristics of a wave change. In

particular, in the presence of current the wave height and the wave length

experience modification. If the current is in the direction of wave

propagation, the wave slope decreases and its length increases. On the other

hand, if the current opposes the wave, the wave slope increases in magnitude

and the wave length shortens. These changes take place due to the interaction

between the waves and current.

In deepwater in the presence of a uniform current the wave number, k, is

related to the wave frequency, u, by the generalized dispersion relationship

k=
4&g

[1+ (l+4uM/g)VJ*
(2.14)

where U may be positive (in the direction of wave propagation) or negative

(opposite to the wave direction). Note that the expression in Eq. 2.12

reduces to the deepwater dispersion relation (k = u2/g) in the absence of

current (U = O). When U is positive the value of k is smaller so that the+
wave length is larger. Likewise when U is negative, the value of k increases

and the wave length is smaller than the no-current case.

The wave-current interactions in a random wave field show that the wave

energy density spectrum likewise undergoes profound changes. Under the action

of a steady current in deepwater, the wave ener~ spectrum takes the form

S*(U) = 4 S(LJ

(l+!A
: ‘1’2

[1+(1+ ~)1’212
(2.15)

When the current speed is negative there is a cut-off frequency in the surface

wave spectrum given by the condition 1 + 4Um/g = O beyond which no waves

exist. Since the phase speed, c (= w/k), of gravity waves is a monotonically

decreasing function of wave number and frequency, the influence of current

will be predominant at the higher wave number range. Furthermore, the

contribution from the higher wave number range dominates the wave surface

slope whereas the current changes the surface slope pattern drastically. This

is

u

demonstrated in

for different

Fig. 2.2 in

values of

which-the ratio of S*(W)/S(m) is plotted versus

steady current with and against the wave

9
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direction. It is seen that the effect of current at the low frequency is

small. At higher frequencies the effect of current increases energy level

when it opposes waves and decreases when it is with the waves. This is

further illustrated in Fig. 2.3 where S*(U) is shown versus m. The wave

energy density spectrum, S(W) represents a P-M spectrum for a wind speed of

Uw = 20 miles/hr. The spectra

mean water level are given by

su*(m) = (? S*(U)

and

s** (m) = #s*((ll)

Figure 2.4 shows the effect of

velocity spectrum, S*U(U) for

Spectra of water particle acce”

2.4 NONLINEAR FORCE

It is clear from the prev

of fluid particle velocity and acceleration at

(2.16)

(2.17)

wave current interaction on the water particle

different current speeds of U = t3 ft/sec.

eration exhibit similar characteristics.

ious sections that nonlinear waves will produce

nonlinear responses even if the transfer mechanism is linear. On the other

hand, for a linear wave the responses are nonlinear if the transfer function

is nonlinear. Thus the responses of a marine structure will be nonlinear if

the exciting forces arising from (linear) waves are nonlinear. One of the

most common types of dynamic nonlinearity encountered in the exciting forces

is due to the drag force. The nonlinear steady drag force due to wind and

current is well-known. Extending this form to the case of waves, adding the”

inertia component and taking into account of the reversal of force in a wave

cycle, an empirical formula was proposed about 25 years ago which is commonly

known as the Morison equation.

2.4.1 Morison Equation

The Morison equation was developed by Morison, et. al. (1950) for

describing the horizontal forces on a vertical pile. It is written in terms

of the water particle velocity and acceleration components as

f = kM O + kDlulu (2.18)
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in which

‘M
=pCMf D2 (2.19)

and

kD=; pCDD (2.20)

and f = hydrodynamic force per unit length of the vertical cylinder, P = mass

density of water, D = cylinder diameter, u and d = water particle velocity and

acceleration, and CM, CD = inertia and drag force coefficients respectively.

This empirical force model has been the most widely used method in

determining forces on small diameter vertical cylindrical members in an

offshore structure. The computation depends on a knowledge of the water

particle kinematics and empirically determined coefficients. Extensive

research effort has been expended in the past in obtaining the values of the

force coefficients, CM and CD. In this area, the most noteworthy laboratory

results on CM and CD were produced by $arpkaya [see Sarpkaya and Isaacson

(1981)] from his U-tube experiments. His data show that these coefficients

are functions of the Keulegan-Carpenter number (KC), Reynolds number (Re) and

roughness parameter of the cylinder. The Keulegan-Carpenter number is a

measure of the water particle orbital amplitude with respect to the cylinder

diameter and is defined as KC = ‘oT/D where U. is the amplitude of the water

particle velocity. Typical results for CM and CD from Sarpkaya’s experiments

for different values of KC are shown in Fig. 2.5. His analysis shows that for

smooth cylinders, the value of CD approaches 0.65 and CM approaches 1.8 at

higher values of Re. In waves, these values from pure 2-D oscillatory flow

should probably be considered an “upper limit. Limited correlation of these

data in waves has been made. One such correlation in a limited range of Re

was made by Chakrabarti (1981) in Fig. 2.6. Note that the correlation is

quite good except for CM near KC = 10 and at higher values of KC where

Chakrabarti ’s data are sparse and need further verification.

The Morison equation has been used in the application of both regular

waves and random waves. In a design, the coefficients in the random waves are

often chosen from the regular wave tests and assumed constant with

11
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frequency. The coefficients have generally been derived in the laboratory in

oscillating motion or in regular waves. The data from ocean tests have

produced large scatter which does not validate the applicability of the

Morison equation. In a test with

and Bouquet (1985) measured the

kinematics at a small section of

considered these signals as output

a vertical cylinder in a wave tank, Vugts

forces and corresponding water particle

the cylinder in random waves. Then they

and input signals respectively, and applied

the measurements to a general transformation model consisting of linear and

nonlinear paths. They chose four models, one of which corresponded to the

Morison equation. The Morison equation was found to be the best suited,

giving a good match between the two signals. The inertia coefficient was

found to be reasonably constant for a given frequency spectra while the drag

coefficient decreased in value with frequency.

The Morison equation has been extended to inclined cylindrical members of

an offshore structure in terms of a normal velocity component, ~, and a normal

acceleration component, ~. In this case, the force is written as a vector

quantity

~=kM~+kDl~

The force vector per

w (2.21)

[nit length of cylinder may be decomposed into its three

components along 3 axes XYZ by writing

Y ‘ u~t + Uyi + u~k

and

(2.22)

(2.23)

It has been shown through experiments [Sarpkaya (1984), Garrison (1985)] that

the coefficients CM and CD for an inclined cylinder may be obtained as those

values from the vertical cylinder tests.

The expression for the inclined cylinder, Eq. 2.21, is general enough

that the forces on a small cylinder in any plane may be obtained from it.

This formula is applicable to derive forces from various types of offshore
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structures and structure components. Some of these are jacket structure,

risers, tendons, articulated-tower, legs of semisubmersible and guyed tower.

It should be noted, however, that the applicability of Eq. 2.21 to a randomly

oriented cylinder needs further investigation.

The regions of applicability of the Morison equation and, in particular,

the areas of drag and inertia force predominance may be discussed in terms of

the chart in Fig. 2.7. The chart has been obtained by examining the ratio of

the maximum drag force, fDO, to the maximum inertia force, flO, for a cylinder

in linear waves. Note that

‘DO CD

‘= ~ (KC) (2.24)
’10

M

where KC is the Keulegan-Carpenter number. Assuming CD = 1 and CM = 2, the

percentage of drag to inertia may be established. The limits are stated in

terms of the KC number, and the diffraction parameter, kR = mD/L, R = cylinder

radius. According to this chart the nonlinear force due to the drag effect

tends to become important when KC becomes greater than 2. The wave force from

the Morison equation becomes mostly drag for KC >90.
4

By virtue of the form of the drag term, the drag force component is

nonlinear in the time series even if the water particle velocity is

sinusoidal. On the other hand, the inertia term is linear if the sinusoidal

water particle velocity (e.g. by linear wave theory) is used for the (local)

acceleration. If the local horizontal acceleration is replaced by the total

horizontal acceleration including convective terms, the inertia term has a

nonlinear form.

DU _ au—- QL+v M+W*
Dt %+uax ay (2.25)

in which u, v and w are the components of the water particle velocity vector

in a rectangular Cartesian coordinate system. Wave force data reduced on the

basis of nonlinear (irregular) stream function theory dependent on the

measured wave profile and local measured forces have shown satisfactory

correlation with measured total forces [Chakrabarti (1980)].

In addition to the extensions, of the Morison equation stated above,

several modified forms of the formula are used in the offshore structure
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design. These have to do with combining different environmental effects into

the formula. The two most important of these are current and structure

motion. Current can be applicable to all three types of structures while the

structure motion is important only for a floating or flexible structure.

2.4.2 Fixed Cylinder in Waves and Current

When current is present with waves, the formula for a fixed structure is

written in terms of the total velocity including a steady current, 11,and an

oscillatory component, u as

f =kM~+kD

where -U represents

tion.

However, it is

adequately express

Iutul (U.tu)

uniform current

sometimes argued

the total drag

(2.26)

opposing the direction of wave propaga-

that a single drag coefficient does not

force in the presence of waves and

current. An alternate form of the Morison equation has been suggested

f=kMfi+kD

where ED is defined

~D=~P~DD

Iulu +rD U2

in terms of a steady drag coefficient, ~D as

The Keulegan-Carpenter number and the Reynolds number in a

field are defined as

(uOt U)T
KC= D

~e (uOf U) D
=

v

where U. = amplitude of u and v = kinematic viscosity of water.

It should be emphasized that the values of the hydrodynamic

(2.27)

(2.28)

wave-current

(2.29)

(2.30)

coefficients

in the wave-current field are expected to be different from those in waves

alone. Unfortunately, such data are limited. Iwagaki, et al. (1983)
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presented values of CM, CD versus KC from a combined wave-current test. These

values shown in Fig. 2.8 are not much different from the wave alone data.

Because of the difficulty of generating waves on a steady current an

alternative and often considered equivalent approach is taken. Sarpkaya

et al. (1984) had adopted one such method in his U-tube in which the cylinder

was moved steadily in an oscillating flow field. They used the relative

velocity model (Eq. 2.26) to derive CM and CD. Results obtained from such a

test on CM and CD are shown in Figs. 2.9-2.10. Reference may be made to

Sarpkaya’s (1984) paper for other similar data.

Moe and Verley (1980) took a slightly different approach. They

oscillated a horizontal cylinder sinusoidally in a uniform current field and

measured forces on the cylinder. They used the three-term Morison equation,

similar to Eq. 2.27, with the exception that u is replaced by ~, J by ~ and

kM by kA, where x is the amplitude of the oscillating cylinder and

‘A = PCAmD2/4. . The coefficient, CA, is defined as the added mass

coefficient for the oscillating cylinder and is related to CM by CM = 1 + CA

for a buoyant cylinder. They derived the values of~D ,and Fourier averaged

CA and CD. The coefficients CA and CD showed complex dependencies on the
*

amplitude parameter x = xo/D and the reduced velocity,

v~ = UTO/D (2.31)

where To = period of cylinder oscillation. The plot of~D vs. ; for various

values of VR is shown in Fig. 2.11.

From the above tests it is obvious that the values of the hydrodynamic

coefficients are directly related to the form of the force equation used,

e.g., independent flow field or relative velocity model. The advantage of the

three-term Morison equation is that the steady drag force may be easily

separated from the oscillating part, e.g., in the analysis of a structural

dynamic problem. However, it seems simplerto use the relative velocity model

since it means choosing and working with one less coefficient.

2.4.3 Oscillating Cylinder in Waves

15

When a rigid structure is free to move in waves, the effect of the

structure motion can be combined with the wave effects to form
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f =kM8- kA~+kDIUlu -k~lllx (2.32)

where kA=pCA~D2/4, k; ‘~ P C~ D, CA = added mass coefficient and C~ = drag

coefficient due to structure motion defined separately from the fluid dynamic

drag. This form is known as the independent flow fields; a far field due to

the wave motion and relatively unaffected by the structure motion, and a near

field resulting from the structure motion. The values of CM and CD may be

obtained from wave experiments while the coefficients CA and CL are derived

from the experiments of an oscillating cylinder in otherwise calm water. ‘The

values of the KC and Re numbers are obtained from the respective velocities

and periods.

When the forces are written in terms of the relative motion, single

coefficients for the inertia and drag are assumed to apply. Thus, the form of

the force term including the structure inertia due to its acceleration,

(m; term) is

f =kM(ti - ;) + kDlu - ~l(u - ~) (2.33)

This model is known as the relative velocity model. It requires fewer

coefficients than Eq. 2.32, and has been used extensively in the past, e.g.,

to evaluate the stochastic dynamic response of offshore platforms, motions of

articulated towers, etc.’ In this case, the Reynolds number and KC number are

defined in terms of thd relative velocity, Vr, as

‘rOTr
KC=- Re _ ‘rOD.—

v
(2.34)

where Vro = amplitude of Vr and Tr = combined period of Vr. Note that Vr need

not be sinusoidal even if u and X are.

It is sometimes convenient to separate the inertia coefficient from the

added mass coefficient. As an example, the diffraction-radiation theory

provides different values for the force and added mass coefficients. There-

fore, a third alternative form of the modified Morison equation is written in

terms of the relative velocity, and the acceleration terms are.separated.
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f =kMfi -kA; +kDlu -x1(u -x) (2.35)

The question arises as to which is the more appropriate form of the

modified Morison equation for a structure moving in waves. Since there is a

variety of offshore structures, e.g., jacket platforms, articulated columns,

risers, tension leg platforms, that fall under this category in which the drag

effect is important, it is worthwhile to discuss the appropriate and useful

applications of Eqs. 2.32, 2.33 and 2.35. Because the original Morison

equation is empirical, it is not possible to justify its extension to other

cases and to discuss which one is more “correct”. Obviously, coefficients

derived from one of these formulations can be justifiably used in the

application of that form only. However, experimental data in this area is

scarce. An attempt to investigate this area was made by Chakrabarti et al.

(1983-1984) through model testing. An articulated column was tested in three

modes with the same setup: (1) fixed in waves, (2) harmonica ly oscillated in

still water, and (3) free to move in the plane of the waves. The amplitude of

velocity of the structure was comparable to the water particle velocity. The

test showed that the relative velocity form of the Morison equation is

appropriate, even though the observations were limited. Considerable work is

needed to determine the appropriate values of CM and CD in the relative

velocity model in waves.

An experiment with a submerged articulated tower was performed recently

by Dahong, et al. (1982) in which the motions of the tower both in-line and

transverse to the direction of waves were measured. From these measurements

the values of CM, CD from a relative velocity model (Eq. 2.33) and lift

coefficient, CL, were derived. The mean values of these coefficients versus

KC are presented in Fig. 2.12.

The region of applicability of the relative velocity and independent flow

fields model may be discussed in terms of reduced velocity, VR (defined by U.

instead of U in Et

applicabi”

while the

For

● 2.31) and an amplitude parameter, ~ . The limits of

ity are g’ven in Fig. 2.13. The x-axis is the reduced velocity, VR

y-axis is the KC number based on the water particle velocity.

compliant structures, e.g. articulated towers, KC, VR and i are

relatively large. For conventional jackets,

small. In both cases the flow is quasi-steady

17

KC and VR are large, but ~ is

and the periods of oscillation
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of the structure generally coincide with the periods of the incident waves.

The use of the relative velocity term in the computation of the drag force may

be appropriate in these cases.

Two other cases may be considered. High KC and small VR values cor-

respond to a resonating drag dominated structure, i.e. a high-frequency

cylinder oscillation in a slowly oscillating external flow. Examples of this

case are vibrating structures at high resonant frequency such as riser cables,

TLP tendons, etc. Similarly, low KC and high VR values mean a low frequency

cylinder oscillation in a high frequency flow oscillation. This second case

includes the slowly-oscillating drift motions of a moored structure, e.g.,

ships, semisubmersibles, TLP surge, floating caissons, etc. In these two

cases, the concept of relative velocity applied in Eqs. 2.33 and 2.35 is

highly suspect and the independent flow fields model, Eq. 2.32, is ap-

plicable. The main reason for this choice is that the two motions are quite

different and relatively independent of each other. Thus, the smaller motions

are capable of creating local wakes independent of the larger motions. The

relative velocity model accounts for their combined effect, thus ignoring the

smaller motions. The two drag coefficients may be chosen from the two types

of test data, one from a fixed cylinder in waves and one from an oscillating

cylinder in still water (or alternately, oscillating water past a stationary

cylinder). The KC and Re numbers are computed from the individual velocities

for this purpose.

A simple technique may be employed in determining which of the two

models, relative velocity and independent flow field, is applicable in a

particular application. When the two flows are comparable, one influences the

other and the relative velocity model is applicable. The independent flow

fields model may be used when one of the velocities is large compared to the

other. The applicable coefficients are chosen based on the test results

obtained from the corresponding models.

2.4.4 Oscillating Cylinder in Waves and Current

For a structure free to oscillate in the presence of waves and current,

the Morison equation is modified as

f ‘kMfi-kA ;+kDIUt U-kl(Ut U-A) (2.36)
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Other forms of Eq. 2.36 may be written as before and have been used in the

past. These forms are applicable to moving structures in waves and current

whose member sizes are such that the hydrodynamic drag force is significant.

Even though the equation is written to

analysis, the terms from Eq. 2.36 appear

motion. For example, the first term on

function. The second term is an inertia

side of the equation of motion. The third

define a force term, in a motion

on both sides of the equation of

the right hand side is a forcing

term and belongs to the left hand

term includes both a force term and

a damping term coupled together. If this term is linearized, then the two

components may be uncoupled into two terms belonging to the two sides of the

equation. In a time domain analysis it is treated as a damping term.

Test results under this condition, however, are almost nonexistent.

Considerable work is needed to achieve insight into this most complex

problem. The force and the motion are dependent upon the water particle

kinematics as well as the velocity and acceleration of the structure itself.

Because of the lack of data in this area, the hydrodynamic coefficients for

the analysis of such problems are chosen from studies similar to those

described in the preceding sections.

2.5 STEADY DRIFT FORCE

The second-order theory for the steady drift force is based on the first-

order diffraction-radiation theory and is applicable to regular waves. The

regular wave results are then applied to wave groups and irregular waves. In

addition, a steady drift force develops from the drag force term at the free

surface as well as in current.

In the following section, the steady drift force due to viscous flow is

discussed. It is generally applicable to structures that have members in the

drag-dominated areas (refer to Fig. 2.7), e.g., in jacket structures, TLP

tendons, etc.

2.5.1 Steady Drift Force Due to Viscous Flow

The forces on a small vertical cylinder due to linear waves may be obtai-

ned from the Morison formula by substituting u(t) = U. cosut in Eq. 2.18.

Then, noting that ;(t) = -uuo Sinmt ,

19



f=-kMuuosinut+kDu~

This form of the wave force at a

wave cycle. If the cylinder is

Ices mtlcos (l)t (2.37)

submerged location has a zero mean over one

allowed to oscillate harmonically in waves

with a displacement amplitude of X. at a phase angle of a with respect to the

wave so that x(t) = X. Cos(ti + a), then the relative velocity model

(Eq. 2.33) gives

f = -kM AIsin(ti + ~) + kD V2 Icos(ut + $)lcos(mt + $) (2*38j

in which the quantities V and $ are defined as

v ‘ [u: + (Wo)z - 2 M U. X. Cosl a]llz

and

wxo sin a

+ = tan-l( u
- uxo cos a )

o

(2.39)

(2.40)

The expression in Eq. 2.38 also has a zero mean. Comparing Eqs. 2.37 and

2.38, it is clear that for a moving structure in waves, U. should be replaced

by V and ut by wt”+ $. pence, the subsequent derivations are done only for a

fixed cylinder.

Note that there a’re’two areas that will prod,uce a non-zero mean viscous

drift force. When current is present along with waves, a mean drift force is ‘

generated from the drag force at any elevation of the cylinder. Moreover, due

to the changing free surface of the waves at the cylinder, the force will

produce a mean drift at the stil1 water level (SWL).

In the presence of current, U, the relative velocity drag force may be

broken up into two simpler

between U and Uo. For 1111>

expressions depending on the relative magnitude

UO*

+ cos 2ti) + 2 U U. COS d] (2.41)

where the negative sign app”ies to the case of current opposite to the wave
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direction, and for

fD = kD [U* +

UI <U.

+U:( 1 + cos 2&) + 2 U U. cos wt] sgn(u + U) (2.42)

in which sgn is a sign function and takes on values of ~1 depending on the

sign of u + U.

2 the mean viscous drift force for unit submergedWhen normalized by kDuo ,

length of a vertical cylinder is given by the following expressions. Defining

the quantity, V, as

$ = Cos-1(-+), o<l#<lr
o

we have

(2.43)

‘D
=*[;+(})212

‘D ‘O o
(2.44)

and

TD
—=+ {(+)2(24-T) + q(+)sin*+ (v-f+~sin 2V)] for~< 12
‘D ‘O

o 0
U.

(2.45)

where the bar denotes average value over a cycle. The numerical values of the

normalized force are presented in Fig. 2.14 as functions of U/u. in the range

of -2.0 to 2.0. Note that the curve is asymmetric about U/u. and becomes

parabolic at higher values of U/uo. A few experimental data points at low

current values are also shown in this figure.

In order to obtain the expressions of the free surface force on a

vertical cylinder, use of the Morison equation is made. Current is not

included in this derivation since current is generally considered present up

to the still water level in the application of the Morison equation. The

force per unit length of the cylinder due to wave only is given by Eq. 2.18.

According to linear theory, the maximum velocity, U. is given as

u kH cosh ky
o F= u cosh kd

21
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TABLE 2.1

kH

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

VALUES OF c1 AS FUNCTIONW kH

c1

1.0003

1.0030

1.0084

1.0164

1.0272

1.0409

1.0574

1.0768

1.0994

1.1251

kH

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

c1

1.0013

1.0053

1.0120

1.0215

1.0337

1.0487

1.0667

1.0877

1.1118

1.1392



in which g = acceleration due to gravity, k = wave number, H = wave height,

d= water depth and y = elevation from bottom. Assuming that the linear

th@ory can be applied up to the free surface, the total force is obtained from

the integral

which provides

F .~M 9H sinh k(d + ~)= lk
gkH

2 cosh kd
sin mt +7 D( 2ucosh kd )2

[ (d + ~) + sinh 2k (d + ~)2k ] ]Cos ut ICos Wt

(2.47)

(2.48)

The inertia part of the force has a zero mean. The drag force yields an

average value over one wave cycle.

F =J-#[& +C,(W COth Zkd 1
q

(2.49)

The numerical values of Cl are shown in Table 2.1 as functions of kH. Note

that Eq. 2.49 is due only to the free surface variation even though the

integration in Eq. 2.47 is carried out over the entire submerged length. The

mean value, however, is a function of the water depth.

Since the linear theory is applicable for infinitesimal wave amplitudes

and is valid up to the SWL, use of the expressions for the water particle

kinematics up to the free surface of a finite wave” is questionable.

Therefore, “stretching” formulas have been suggested in finite water depth by

which the water particle kinematics at the wave crest and the wave trough

assume the same values. If one of these stretching formulas is applied, the

water particle velocity is written as

= gkH
cosh kY (~) cos ut

u
z cosh kd (2.50)

and ~ is expressed in terms of U. and u as done earlier, then the total force

up to the free surface is given by
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(d + n) [1 ++ ]ICOS utlcos tit (2.51)

The mean value of F is obtained on integration as before.

T (kH)3

2kD g/k2
‘~ [ sin; 2kd +* I (2.52)

Thus, the mean force from the free surface effect of a small vertical cylinder

(where viscous effect is important) is a function of the cube of the wave

height as opposed to the square of it for the potential drift force, as will

be found in the following section.

Note that in deep water, M2 = gk and the expression in Eq. 2.49 approxi-

mates as

T c1

Zk g,k2 ‘~(kH)3
(2.53)

D

However, the mean free surface force from Eq. 2.52 approaches zero as the

water depth approaches infinity. The mean drift force from Eq. 2.53 have been

plotted in Fig. 2.15. Note that the normalized force depends on kH

approximately as its cube [Chakrabarti (1984)].

2.5.2 Steady Drift Force Due to Potential Flow

For structures that are large, the force is mainly inertial and potential

theory is applicable. The steady drift force is second order and can be shown

to arise from the first-order potential. The contribution due to the steady

drift force from the potential flow about a floating body has four components

which are addressed in the following section.

2.5.2.1 Wave Elevation Drift

Consider the extension

Force

of pressures above the mean water level to the

instantaneous free surface at the body while the body is in motion. Then the

integration of this pressure around the object at the water line gives rise to

a steady second-order force whose component, Tl, in the horizontal direction

is given by
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in which the bar denotes mean value, g = acceleration due to gravity,

C1 = first order wave amplitude at a point on the

cosine, and WL = water line at the body surface.

For a fixed vertical cylinder that extends

submerged point where there is no wave action, the

moving body, nx = direction

from the free surface to a

body may be treated as two-

dimensional and the MacCa~-Fuchs theory is applicable. In this case, the

horizontal wave elevation drift force may be obtained in a closed form. The

time-independent steady force component may be written as

~l=4pg~2D ~ ~l-n(n+l)l

~2(kR)3 n=O (kR)2

1
An(kR) An+l(kR)

where D = cylinder diameter

k = wave number, and An(kR) =

order n of the first and

derivative with respect to the

(= 2R), g = incident wave

J:2(kR) + Y~2(kR) , Jn,Yn =

second kind respectively,

arguments.

(2.55)

amplitude (= H/2),

Bessel function of

and prime denotes

2.5.2.2 Velocity Head Drift Force

The second term of Bernoulli’s equation provides a steady second-order

component when the first-order velocity potential including the diffraction-

radiation effect is used to compute the pressure. Then the steady horizontal

force component may be obtained from the integral

(2.56)

in which s = surface of the body and V@ = first-order velocity vector.

For the fixed vertical cylinder in deep water, the horizontal velocity

head drift force may be calculated using the total velocity potential.

(2.57)

Combining Eqs. 2.55 and 2.57 we obtain the total steady force on the fixed

vertical cylinder.
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In intermediate water depths, this force is a“

1
AnAn+l

(2.58)

so a function of the depth.

Numerical values of the wave elevation drift force, ~1 , and the velocity

head drift force, ~2 , as well as the total steady force due to the total wave

potential in the presence of a fixed vertical cylinder are shown in

Fig. 2.16. These quantities are normalized with respect to pgG2D and plotted

versus the diffraction parameter, kR. The numerical values correspond to

water depths ranging from d/R = 1 to reasonably deep water, d/R = 5. Note

that the quantity~l is positive whileT2 is negative over the range of kR

considered. Also, the nondimensional steady drift force (~1 +~2 ) approaches

a constant value of 1/3 in deep water at higher values of kR.

For a moving cylinder there are two other components due to the motion of

the body contributing to the total steady drift force.

2.5.2.3 Body Motion Drift Force

The first-order wave force on the body is computed at its mean

position. However, the body undergoes motion due to waves and assumes a

different orientation at the instant this force is calculated. Therefore, if

a Taylor series expansion about the mean body position is made, the second-.
order steady horizontal force term takes the following form:

(2.59)

where ~ = motion vector.

2.5.2.4 Rotational Inertia Drift Force

This term arises because the first-order forces due to the pressure are

always normal to the surface. As the vessel oscillates the direction of these

normals rotate. If the components of these normals in the directions of the

fixed coordinate system are considered, a nonlinear drift load develops.

Then, mathematically, the second order drift force contribution assumes the

form
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‘4 =- (2.60)

where F= force vector.

Thus, only the results based on the first-order velocity potential are

needed to obtain the steady second order force. The total steady drift force

is obtained by adding the four components

(2.61)

in the direction of surge.

The preceding four contributions arise from the assumption that the fluid

flow is irrotational and the potential theory is applicable. In order to

determine whether the viscous effect is important, calculations may be made to

compute the viscous drag force on the moving body from the drag part of

Morison equation. For a moving cylinder in surge, this calculation takes

form

‘D =kDlu-; l(u -~)

in which ~ = surge velocity of the cylinder. When this term

the free surface- above the SWL, a steady component

proportional to the thtrd power of the wave amplitude.

the

the

approximation of this expression in the absence of motion gives
,

~= &kD (gk) L3

(2.62)

is extended up to

arises which is

A deep water

, (2.63) “

which is comparable to Eq. 2.53 except for the constant Cl (= 1 here) and

which may be written in a form similar to Eq. 2.58 as

~ _ 2CD
~ (kR)(c/R)

PgG2D
(2.64)

The effect of the viscous drift force on the cylinder in relation to the

drift force contribution from the potential flow is shown in Fig. 2.16. Con-

sider the radius of the cylinder to be 2 ft. and a wave height of 0.5 ft. for

all wave periods so that L/R = 0.125. The value of CD is considered to be

26



1.0. Then, the values of the viscous drift force are as shown in Fig. 2.16.

Note that, in general, the viscous drift force is small compared to the poten-

tial force for all values of kR and increases linearly with kR. At kR = 2,

the viscous effect is about 15 percent of the potential drift force. For

smaller diameter cylinders and higher waves the viscous effect can become more

predominant because of its third order dependence on the wave height.

For a general floating body, it is difficult to discuss the ranges of the

diffraction parameter, kR and viscosity

viscous or the potential drift forces are

assessment of their relative importance

vertical cylinder in deepwater. If Z is

parameter, H/D (or q/R) where the

predominant. However, a qualitative

may be made by considering a fixed

considered the ratio of the viscous

to the potential drift force, then the region may be constructed as shown in

Fig. 2.17 for different values of Z = 0.1, 1 and 10. The middle curve (Z = 1)

represents equal contribution from the viscous and potential drift forces.

For Z = 10, the potential drift may be neglected just as the viscous drift at

z = 0.1.

An example of the effect of a nonlinear viscous term on the motion of a

TLP [Kobsyashi, et al. (1985)] is shown in Fig. 2.18. In this case, steady

drift force as a function of the wave period in regular waves is given. The

solid line represents the computed values based on potential theory. The

dotted line includes the effect of the viscous drift force from the relative

velocity model. The correlation of the experimental data is much better with

the latter results. Moreover, the contribution of the viscous drift force is

much larger than the potential drift force at higher periods (beyond 7.5

sees.) where the ocean waves have much higher energy. Note that for a

structure with small members in large waves, such as a compliant tower (where

Z is closer to 10), Fig. 2.17 shows the drift force to be primarily viscous.

In order to compute the steady wave drift force due to wave groups and

irregular waves, the following procedure is used. The wave energy density

spectrum, S(U), where u = wave frequency, for the particular wave group or

irregular wave is determined. Then, the steady drift force, T1 , due to the

wave group or the irregular wave is calculated using the regular wave steady

drift force Fp(u) resulting in the transfer function
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in which ml and w are the lower and upper frequency limits of the waves.

2.6 NONLINEAR MOTION RESPONSE

A floating structure is connected to the ocean floor in several different

ways. An articulated tower is connected to the seafloor via a universal joint

which allows certain degrees of freedom of the tower. A ship, barge or a

semisubmersible is attached to the seafloor by means of a catenary system

through a turntable so that it can weathervane. In this case the structure

has all six degrees of freedom. A tension leg platform is held in place by a

series of vertical tendons. It is free to surge but has limited heave and

pitch motion.

In addition to the forcing function, the equation of motion typically

includes an inertia, a linear damping and a restoring force term. The inertia

term includes an added mass term. The added mass coefficient is obtained from

the linear diffraction/radiation theory for a large structure or from the

modified Morison equation for a small member. The limits of applicability in

terms of the diffraction parameter ka have been shown in Fig. 2.7. For ka >
*

0.5 the diffraction becomes important. The linear damping term generally

comes from the radiation theory as well. The restoring force term arises from

the structure geometry and the type of mooring system. This term is often

nonlinear, but may be linearized over the range of application if the motion

of the structure is small. The

The nonlinear viscous damping

introduced in the equation

analysis.

is

of

catenary system is described in Section 2.9.

often significant

motion of the

and, therefore, needs to be

system- in the first-order

2.6.1 First-Order Motions with Nonlinear Drag Damping

The problem of calculating exciting forces using the first-order theory

reduces to solving for the total velocity potential, a(x,y,z,t) which can be

written as the sum of an incident velocity potential, $i(x,y,z,t) and a scat-

tered velocity potential, @s(x,y,z,t). The incident velocity potential, ~i is

known from the Airy wave theory. The total velocity potential, o, satisfies

Laplace’s equation and the appropriate linearized boundary conditions at the

free surface, the ocean bottom and the cylinder surface, as well as the
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Sommerfeld radiation condition. The body surface condition states that the

normal velocity component on the surface is zero. In the boundary value

approach of the problem, on application of this condition, the numerical

problem in terms of the unknown scattered potential reduces to a two-

dimensional Fredholm integral equation in Green’s function. The first-order

forces are computed at the mean equilibrium position of the cylinder on the

assumption that the motion is small. The first-order pressure on the

submerged surface of the cylinder at its equilibrium position is obtained from

the first term in Bernoulli’s equation,

(2.66)

The added mass and damping coefficients associated with the motions of

the body are obtained for the body oscillating harmonically in still water.

The formulation of this problem is quite similar to the previous one for fixed

structures and uses the same Green’s function. The integral equation is

modified by the body surface boundary condition which states that the normal

velocity component of the fluid at a point on the body is equal to the

velocity of the body at that point. In this case, the incident wave potential

is absent and the velocity potential for a particular motion of the body e.g.,

surge, sway, heave, pitch, roll and yaw, @j (j = 1, 2, . , ., 6) replaces the

scattered potential in the earlier formulation. Once a particular @j j5

known, the in-phase and out-of-phase components of the reaction forces

constitute the added mass and damping coefficients for that degree of freedom.

Considering that the nonlinear damping is important,- the motion of the

system may be described by a set of six coupled differential equations of

second-order as follows:

6 ..
z [(mjk + ‘jk) ‘k + ‘~k ‘k + ‘~k!;k!~k

k=l

+ Cjkxk] = Fjei(ti + aj) , j =1,2, ..6 (2.67)

in which mjk = mass and moment of inertia matrix, ?4j k = added mass

matrix, Njk = linear damping matrix, Njk = nonlinear damping matrix,

Cj~ = restoring force matrix, and Fj, Uj, = exciting force vector

ciated phase angles, i = imaginary quantity and w = wave frequency.
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represent derivatives of the displacements, xk, with respect to the time, t.

The quantities, Fj and ~j are obtained from the linear diffraction theory

while Mjk

restoring

structure

term, N~k

on a drag

and N~k”are results of the corresponding radiation problem. The

force matrix, Cjk i$ composed of the buoyancy change of the

and the spring constant

is evaluated from the drag

coefficient. This term is

in the system. The nonlinear damping

part of the Morison equation and depends

particularly important for a motion near

the natural period of the structure.

All terms in Eq. 2.67 are linear (on the assumption that the springs in

the mooring line are linear) except for the nonlinear damping term. For a

simplified solution of the equation of motion, Eq. 2.67, this term is

linearized with respect to time in the following way. The motions are assumed

harmonic

xk=xk@i(d+~) (2.68)

in which Xk = amplitude of motion not necessarily linear with the wave

amplitude and Bk = its phase angle. Then the nonlinear damping term is

approximated as

(2.69)

The right hand side of Eq. 2.69 is the first term of the Fourier series

expansion of the left hand side. On substitution of Eqs. 2.68 and 2.69 in

Eq. 2.67 and elimination of time, t, the following matrix equation in

unknowns, Xk and Bk are obtained:

6
~ [-W2(llljk+Mjk) + i~(N~k +$N~k ~Xk) “jk]

k=l

Xk ei6k =FjelUj, j=l,2, ..6 (2.70)

The solution for Xk and ~ are obtained by an iterative scheme in which Xk in

the term with ti~kis assumed zero initially to obtain the first estimate of Xk

and Bk through a 6 x 6 matrix inversion. This value of Xk is then substituted

for Xk in the t@rtTIwith N~k to compute the subsequent solution until a

numerical convergence is reached.
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Several different variations of the equation of motion are possible and

have been used in analyzing the motion of floating structures. When nonlinear

(drag) damping effects on the structure are considered small, the equations of

motion reduce to

6

~ZII( ‘jk ‘“jk) ‘k ‘N~k ‘k “jk ‘k] = j

~ ei(~t + ~j)

=
(2.71)

which is a linear equation whose solution is obtained as Eq. 2.70 for N? = ().
Jk

The correlation of the numerical results with experiments in wave tanks

on a variety of floating structures has shown that satisfactory agreement can

be obtained by the simplified theory. An example of such an experimental

correlation for a conventional barge is shown in Figs. 2.19 and 2.20. The

barge was tested in the head sea position in which the surge, heave and pitch

motions were significant, (Fig. 2.19) as well as in the beam sea position

where sway, heave and rol1 were important (Fig. 2.20). The cross marks

represent the linear theory results. The correlation is quite satisfactory

everywhere except near the natural period of the spring-mass system (e.g. in

roll). The theory seems to overpredict the motion in this area

the experimental data, partly due to the low damping values near

period from the linear theory.

In Figs. 2.19 and 2.20, the nonlinear solution

shown as the solid line. While the scatter in the

obtained from

experimental

due to a different amount of nonlinear damping with different

compared to

the natural

Eq. 2.70 is

data may be

wave height

(while the theoretical curve is obtained for a given wave height) the

correlation is better with this added nonlinear damping term. Thus, the

nonlinear damping improves the solution near the natural period of the

structure in a particular mode of oscillation.

The coupled nonlinear equations describing the various degrees of motion

that include a significant relative-velocity-squared drag term cannot be

solved in the frequency domain while retaining their nonlinear character-

istics. The use of the independent flow fields model or the relative velocity

model in the equations of motion depends on the relative magnitudes of the

water particle velocity drag force versus the structure motion damping

force. If the two are comparable then the relative velocity model seems

appropriate. Otherwise, the independent flow fields model is applicable.
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In random waves the equation of motion is written as before except that

the added mass and damping coefficients are obtained from the convolution

integrals. This is required for a random seastate because these quantities

are functions of wave frequencies. Thus, the equation of motion including

only the linear damping term becomes

6 t
z [(mjk ‘M~k);k + !m ‘~k (t -

k=l

where

and

Mjk(w) = Mjk (u) +; ~rn N*
o jk

The quantities Mjk and Njk are the

T) ik(~) dr ‘Cjk Xk]= Fj(t) (2.72)

(2.73)

(t) sin ut dt (2.74)

frequency dependent added mass and damping

coefficients, respectively. It is clear that this set of equation can only be

solved in a time domain analysis. The solution method is quite cumbersome and

requires considerable computer time.

2.7 LOW FREQUENCY OSCILLATION

The surface profile of a unidirectional random seastate may be

represented as its short-term

components having frequency,

described by Eq. 2.13. The

complex notation

description by a large number, N, of sinusoidal

on and random phase, En (n = 1,2,....N). as

wave profile may be conveniently written in a

N i~nt
?-l(t)= x ~2S(%)du~n e (2.75)

n=l

where the quantity under the radical sign is the wave amplitude and in is a

complex Gaussian random variable with the following properties:

E [l;n21] = 1; E [;m;n] = O; E [~m~n] = O (2.76)
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where E refers to the expected, value

denotes conjugate.

The steady potential drift force

appear from the second-order terms of

irregular wave has multiple components

of the argument, m # n and asterisk

in regular waves has been shown to

the first-order potential. Since an

of frequency, the interaction of two

wave components at two frequencies will give rise not only to a steady drift

force as before, but also oscillating drift”force components at low as well as

high frequencies. This is illustrated by a simple example.

There are several contributions to the high and low order components.

One of them is the free surface component. Another one is considered in ‘the

present example. The pressure at a submerged location of the TLP is given

from potential theory by Bernoulli’s equation

p=p2&l 7P (u*+ V*) (2.77)

where Q is the total potential due to the wave field in the presence of TLP, u

and v are the corresponding horizontal and vertical velocity components and p

is the mass density of water. By linear theory, the first term in Eq. 2.77 is

a first order pressure while the second term is second-order. Let us consider

only the incident wave field and also assume that it is composed of two

regular wave components having frequencies Ml and u2. Then, by linear

superposition of Airy

u = u Cos Ut +
11

the~ry, the particle velocity components are

‘2 Cos u2t (2.78)

v = v, sin mlt +Vg sin m9t (2.79)

where (ul,

respective’

P2 =

Vl) and (U2, V2) are the velocity amplitude components at Ml and m2

Y* Then, the second-order pressure term, on expansion, reduced to

U*2 + V12 + “22) +

. *
; (Ulz- VIZ) Cos 2(111t++ (U2Z - V2Z) Cos 2m2t +

(U1U2 - V1V2) Cos(q + M*)t +
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The above

twice the

force and

(2.80)(U1U2+ V1V2) Cos(q - w2)t]

expression will produce a steady force, a component of force at

frequency of the individual components, ml and

a difference frequency force.

Thus, while the energy of wave at the heave and pitch

as well as surge frequency is negligible, two individual

W2, a sum frequency

natural frequencies

frequencies within

the wave energy may be chosen such that their sum or their difference

approaches the high frequency (e.g., heave and pitch of a TLP) periods or the

low frequency (surge of a TLP) period. For example, a 6 second period will

produce a second harmonic at 3 seconds which may correspond to heave or pitch

natural period. Similarly, an 8 second and 4.8 second period would add to a 3

second period. A combination of 8 second and 8.7 second period will produce a

difference frequency corresponding to the surge natural period of 99.4

seconds.

The oscillating drift force is computed following the method outlined by

Pinkster (1980). In an irregular wave this force appears as a slowly-varying

force having the form

N
F2(t) = :M=l n~l ~ cn{p(tim’mn)Cos[(wm - Wn)t - Em + En ]

+ Q(Wm,Mn) sin[(~m - ~n)t - ~m + En J ] (2.81)

where N = number of wave components of frequencieswn (n = 1, 2, . . ., N) in

the irregular wave, P (symmetric) is the in-phase component of the wave drift

force in a wave group of frequencies ~ and Un, Q (asymmetric) is the

corresponding out-of-phase component of the drift force, and ~n represents

wave amplitudes at frequencies ~,and phase angles En.

The force, F2, in Eq. 2.73 may be similarly expressed as

N i(wm - mn)t
F2(t) = ~ x ~mn ‘m-nuu*e

m=l n=l

where

(2.82)

(2.83)
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In the above expression for F2, real Parts are assumed=

For a linearly moored lightly danped system, the equation of horizontal

motions (to which the second-order force is sensitive) may be written as shown

in Eq. 2.71 where the right hand side is replaced by expressions of the form

of Eqm 2.82. The solution for this set of equations in the frequency domain

may be written as

where

and T; is given by

T: = [- (OJ - Wn)2(mij+ Mij) + i(wm - Wn) N~j + Cij]-l
m

(2.84)

(2*85)

(2.86)

Newman’s (1974) approximate solution may be obtained from the above.
+, narrow-band spectrum, e.g., for a wave group, it may be assumed that ~

are close to each other so that they may be replaced by their mean

without appreciable error. Then

~+% ~+”nP(wm,un) ‘P [ z ,~] = Pmn

Q(u)m,(on) = Qmn = O

and

For a

and tin

values

(2.87)

(2.88)

(2.89)

where Pmn is obtained from the regular wave steady drift force at a frequency

corresponding to the mean of the frequencies, ~ and ~.

If it is further assumed that the only frequency that is of any large

consequence in determining the slowly-oscillating mooring line load is the

natural frequency, ~, of the system; then we can assume
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(2.90)

and only the diagonal terms in Eq. 2.89 are relatively important which gives

F(t) =~p cOS (~t) (2.91)

Since the slowly oscillating mooring line load occurs at or near the

natural frequency of the system in surge, a reasonable estimate of its “

magnitude may be made from the following differential equation:

m; + Nl~ + N21~l~ + Kx =’F(t) (2,92)

in which m = total mass of the cylinder including added mass, N1 = linear

damping coefficient, N2 = nonlinear damping coefficient, K = spring constant

of the mooring line and F(t) is given by Eq. 2.91.

in form to Eq. 2.67 and an approximate solution

fashion by assuming x to be sinusoidal

x ‘XOCOS(~t+E)

This equation is similar

s obtained in a similar

(2.93)

where X. = amplitude of oscillation and s = its phase angle. The solutions

for XO and E are

and

(2.94)

tan z=-
q4[Nl+~qqN2xol

[K-~m]
(2.95)

Once X. is known, the mooring line load amplitude is computed as

TM= Kxo (2.96)

2.8 HIGH FREQUENCY SPRINGING FORCE

When a floating structure, e.g., a TLP is restrained in the vertical
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direction by its tendons, the natural period in heave is small, being of the

order of 2-4 seconds. This gives rise to the problem of high frequency

oscillation of TLP in heave due to a high frequency second order force. The

general design approach for the TLP is not particularly different from any

other compliant offshore structures. What makes the dynamics of TLP unique

from other floating structures is its response to the high frequency wave

exciting forces. Besides the responses at the wave frequency, the platform is

subjected to a high frequency tension oscillation of the vertical tethers

(often called springing) and a low frequency drift osci1lation in surge. The

overall damping of the system (including mechanical and hydrodynamic) is

extremely

produce a

The

velocity

transfer

small for both the springing and drift oscillation so that they

significant load in the tendons and significant motion in surge.

second-order forces are obtained from the first- and second-order

potentials and the complete Bernoulli’s equation. The quadratic

functions obtained from these expressions are used to derive the

difference frequency wave exciting force (drift force) and the sum frequency

second order force (springing force). Thus, generalizing Eq. 2.81

NN
F(2)f(t) = ~ C.i3j{‘~j COS [(~i t Uj)t - (Ei * Ej)]

i=l j~l

+ Qfj sin [(ui i uj)t - (si t Sj)] ] (2.97)

where P?,j and Q:.
lJ

are the even and odd components of normalized forces due to

‘i and m.
J’ ‘i

and gj are the corresponding wave amplitudes, and N is the

number of wave components in the random

above expressions that in regular waves

F(2)-(t)= ()

wave simulation. It is clear from the

(2.98)

and

N
F(2)+(t) = I <:{P;i Cos 2(uit - (2.99)~i) + Q~i sin z(~it - Ei)}

i=l

Thus, the low frequency force is absent while the high frequency force appears

at twice the regular wave frequency. Moreover, this force is nonlinear, being

a function of the square of the wave amplitudes, ~i (second-order). The
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amplitude and phase of the quadratic transfer function are

T~i = [(P~i)2 + (Q~i)2]1/2

= -tan-1
E
ii ($)

(2.100)

(2.101)

‘ii

Based on this transfer function then, the tether forces in the high

frequency springing may be simply obtained by solving a linearized equation of

motion in heave and pitch. A model test was performed on a vertical cylinder

in waves in which forces on the fixed cylinder were measured. The waves

generated in the tank were regular waves, wave groups and irregular waves.

The wave groups consisted of two regular waves whose sum frequencies

corresponded to the natural pitch frequency of a hypothetical TLP. An example

of the forces measured due to one of the wave groups is shown in Fig. 2.21.

The wave profile corresponds to waves of frequencies 0.44 HZ and 0.88 HZ. The

force has additional peaks present corresponding to second harmonics of the

above frequencies, and their sum frequency component at 1.32 HZ. These higher

order loads are small, being on the order of 3 to 5 percent of the first-order

loads. The correlation of the second-order fixed cylinder loads in regular

waves with the computed load approximated by the first-order potential is

shown in Fig. 2.22.

Numerous analyses and model tests have been performed on TLPs which

considered different aspects of platform motion and tether dynamics. One of

such analyses that included all three areas of response of the TLP was

performed by DeBoom, et al. (1984). They analyzed the motion and tether

forces for a TLP. The heave and pitch natural periods were almost

identical. In random waves, the added mass and damping terms were assumedto

be frequency dependent as outlined in Eqs. 2.72. The solution was obtained by

a finite difference scheme. DeBoom, et al. (1984) conpared results from such

an analytical solution with the measured high frequency tether forces in

regular waves in a test with a four column TLP model. The correlation is

shown in Fig. 2.23. The fore and aft tether forces were found to be almost

180° out of phase. From this, it is concluded that most of the high frequency

contribution came from the pitching motion of the TLP. The springing force

appeared at the higher (twice for regular waves) frequencies and was nonlinear
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(Eq. 2.99) so that the corresponding motion was also nonlinear. While the

fore and aft tether forces are the same theoretically, the measurement showed

different values. The force being second-order is difficult to measure

accurately and hence the discrepancy and somewhat poor correlation.

The springing forces on a large scale (1:16) TLP model were measured in a

test in the CBI tank [Petrauskas and Liu (1987)] with a four-legged TLP hull

connected to the sea floor with four vertical tendons. The springing forces

arised from the resonant pitch periods of about 3 seconds. Regular waves at

twice the pitch period amplified the resonant springing force in the tendon.

The amplification of the force at the tendon due to a random wave is clearly

shown in Fig. 2.24. The tendon load at the wave frequencies is almost

negligible compared to the resonant load at twice the wave frequencies. The

corresponding correlation of the regular wave (averaged) springing load in the

tendons is shown in Fig. 2.25. The computed results for different damping

values show the importance of the knowledge of damping in determining the

springing force.

2.8.1 Damping at Low and High Frequency Responses

The resonant response of a mooring structure, e.g., a TLP, is limited by

the amount of damping present in the system. The TLP system experiences

damping from two natural sources, e.g., material and hydrodynamic. Sometimes,

mechanical dampers [Katayama (1984)] or other active damper systems are

introduced externally. The material damping appears from the tendons and

their attachments to the TLP as well as to the bottom. The subsea template

also provides some damping. The hydrodynamic damping appears in the form of

the radiation damping as well as nonlinear viscous damping. Additionally, a

slow drift of the structure in the presence of waves produces an added damping

force which may be called wave drift damping (or wave damping). For the surge

motion of a slender body, the contribution of the quadratic viscous damping

was found to be small by Nakamura, et al. (1986). However, for the yaw

motion, it was important.

The contributions from the material and radiation damping are nearly

equal. In an example problem, Nordgren (1986) considered the material damping

factor to be 0.1 while the radiation damping for the dominant pitch response

was 0.13. The heave response at a natural period of 2.5 seconds was small
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compared to the pitch response at a natural period of 3.0 seconds. However,

the drag-induced damping in the high frequency resonance modes in heave, roll

and pitch motions of a TLP is rather negligible because the amplitude of

platform motion is extremely small.

Chakrabarti (1984) presented the low-frequency hydrodynamic coefficients

in surge and sway for several floating vessels including a semisubmersible and

a vertical cylinder. The results from the vertical cylinder showed that the

radiation danping in surge is negligible (less than 0.02 percent) and most of

the still water damping is linear viscous damping (about 1 percent). The wave

damping factor in regular waves was proportional to the square of the wave

amplitude and was equally impor+afi+

The heave damping factor

discussed earlier [Petrauskas

percent to 1.6 percent. The

smaller if they are assumed to

UU11U9

obtained from the pluck test of a TLP model

and Liu (1987)] was found to range from 0.11

corresponding prototype values should be even

be dependent on the Reynolds number.

The wave damping at the lowrfrequency in surge of a TLP may be treated

analytically in the following way [see Hearn, et al. (1987) for details].

Since the period of slow drift oscillation is an order of magnitude higher

than the wave period, the problem may be assumed to be equivalent to computing

the added resistance of the TLP advancing at a slow forward speed during half

the drift cycle in regular waves. This approach was taken by Hearn et al.

(1987) in computing wave damping coefficient in slow drift of a

semisubmersible.

wave frequencies

transfer function

resistance as the

Once the added resistances for different forward speeds and

are known, the wave drift damping coefficients’ quadratic

may be computed from the velocity derivative of the added

forward speed approaches zero.

aRU(U)

b21=r U=o (2.102)

where b21 = wave drift damping coefficient, U = forward speed from slow drift

and Rw = added resistance in waves. A comparison of the computed wave damping

coefficients with the model test results on a SEDCO 700 semisubmersible has

been made by Hearn, et al. (1987). This is reproduced in Fig. 2.26. Note

that near a wave frequency of M= 1.1 rad/sec., the damping is

at lower frequencies, it is quite small. This observation is,

large whereas

however, only
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valid for the particular geometry but is made to

drift damping could be quite significant in

computation.

As mentioned earlier, the surge natural period

illustrate that the wave

surge drift oscillation

for a typical TLP is long,

being of the order of 100 seconds. Qi, et al. (1986) tested a four-legged TLP

model at a scale of 1:64 for low frequency hydrodynamic coefficients in

surge. The measured surge period of the model was about 12.5 seconds (100

second prototype). The natural period .in waves was slightly higher due to

additional added mass. The damping was computed in still water and in regular

and random waves. The pontoon geometry was changed from circular section to

rectangular section of the same cross-sectional area.

The still water linear damping was obtained from a pluck test using the

transient equation of motion. The damping factor in surge was found to be a

function of the initial

damping. As expected,

From the information

approximately estimated

Circular

displacement, possibly due to the presence of viscous

rectangular pontoons provided higher damping values.

presented by Qi, et al., the damping factor was

as follows:

Damping Factor

pontoon 0.03 - 0.06

Rectangular pontoon 0.03 - 0.09

In regular waves, the damping increased for the rectangular pontoon whereas

the damping showed a slight decrease in value for circular section. The

radiation damping component was dependent on the wave frequency.

2.9 MATERIAL PROPERTIES

Often the nonlinearities are encountered in the properties of the

material involved in the offshore structure system. This is particularly true

for the flexible members of an offshore structure. Examples of these

components that exhibit nonlinear behavior are risers, mooring lines, etc.

2.9.1 Catenary System

The type of nonlinearities encountered

is illustrated here. Consider a mooring
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type mooring system

is composed of two



different line materials with a clump weight attached to their intersection.

The clump weight may be considered acting positive upwards in which case it is

replaced by a buoy. The two elements of the line may have different weight

and elastic properties. In a mooring system it is often customary to use a

cable element at the upper part and a chain element at the lower part of the

catenary. A clump weight is also often used at the junction. Thus, the upper

part of the catenary reacts to

while the

occasional

Given

conditions

quantities

follows: Q

lower part is prov-

big waves.

these conditions,

where both parts

the smaller waves and behaves as a soft system

ded to make

Fig. 2.27

of the line

the system stiff in response to

demonstrates the four possible

assume a catenary shape. The

in the figure and in the subsequent analysis are defined as

= length of lower element lying on seafloor; B =weight of clump or

buoyancy of buoy at the intersection of two elements; {al, bll = coordinates

of element intersection; {a2, b2} = coordinates of upper element at surface

vessel; *1 = angle lower element makes with horizontal at anchor; V4 = angle

upper element makes with horizontal at surface vessel. The four possibilities

of Fig. 2.27 can be broken down into two cases. Either the line touches the

seafloor or it does not. If these two situations can be analyzed, then the

only problem remaining is to choose the proper location for the intersection

{al, bl} such that the summation of forces at the intersection is zero. See

Fig. 2.28.

Turning first to the situation described by Fig. 2.29a, the following

assumptions are made: the lines are uniform and supported at two points and

the line can only carry loads along its axis. Then, the summation of forces on

a small element, As (Fig. 2.29a) in the horizontal and vertical directions

must equate to zero. This gives rise to the following differential equation

for the catenary:

9= f[l +(+)211/2 (2.103)

where w = weight per unit length, which may be reduced to a first order

differential equation by substituting

k=? (2.104)
x
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Thus

(2.105)

$f= k (1 + ,2)1/2

The form of the solution of Eq. 2.103 is

Y=+ cosh (kx + Cl) + C2

(2.106)

(2.107)

Equation 2.107 must be solved in terms of boundary conditions. Since

there are three unknowns, k,

itions. In this development

and elevation, e = By - Ay.

equation can be derived:

[22 - e’] sinh u 2
~=( u )

c

where u = ~ .

Cl, and C2, there must be three boundary cond-

these are line length, ~; scope, Sc = Bx - Ax;

Using these boundary conditions the following

(2.108)

Equation 2.108 is solved by a computer

technique such as the Newton Rhapson method.

be derived from Eq. 2.107.

program using standard numerical

When u is known, Cl and C2 can

The above analysis gives the classical catenary solution. It” will

depart, however, from the classical theory if stretch is added to the

analysis. Throughout the line, the horizontal component of tension is

constant. The vertical component is constantly changing as the slope of the

line changes. Thus, the tension in the line is a function of position which

will change with the stretch in the line. It is assumed that the stretch can

be added to the initial line length

modified uniformly which is cons”

Employing Hook@’s law for e“

F..ds

dered

astic

and the weight per unit length can be

a valid assumption.

deformation

(2.109)
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where d6 = incremental

cross-sectional area of

On substitution of

6 becomes

deformation; Fx = load; ds = incremental

cable; and E = Young’s modulus.

various quantities on the right hand side,

+ cosh 2(kx + Cl)] dx

length, A =

the form of

(2.110)

After d is determined from Eq. 2.110 it is added to the initial line

length and a new line length, 1, is used in Eq. 2.108. This procedure is

repeated until the tension in the line balances the stretch in the line.

Turning to the situation described in Fig.

line now lies on the seafloor. For simplicity,

0}. At this point, the slope of the line is zero;

rewritten in the form

y = l/k cosh k(x -Q) - l/k

The length s is determined such that

s = l/k sinh-k(Bx - Q)

and
.

l=Q+s “
,.

2.29b, part of the mooring

assume that {Ax, AYI = {Q,

therefore, Eq. 2.107 can be

(2.111)

(2.112)

(2.113)

Upon substitution of the coordinates of the surface vessel {Bx”,By} into “ ““

Eq. 2.111, two simultaneous equations with two unknowns are derived.

‘Y = l/k cosk k(Bx -Q) - l/k (2.114)

g = Q + l/k sinh k(Bx - Q) (2.115)

Upon solution of this set of simultaneous equations for k and Q, Cl and

C2 can be easily derived and the catenary equation defined. Stretch may then

be added to the line in a fashion similar to the prior situation with the

slight change that no integration is required for the line lying on the



bottom. In this part of the line, the tension is constant and equal to

Fx = w/k. Therefore,

FXQ

81 ‘r

Fx ‘X

~z=~ { + [1 + cosh 2(kx + Cl)]dx

and the total stretch, 6, equals

This total stretch is added to

length, ~, is substituted into the

process is repeated until convergence

(2.116)

(2.117)

(2.118)

the initial line length and a new

pair of simultaneous equations.

is achieved.

line

This

It is cle,arfrom the above analysis that this type of system will produce

a nonlinear spring constant in the mooring line, making the motion analysis of

a floating moored system nonlinear. Such a system is quite prevalent in

offshore operations. Examples of application of such systems are moored

storage tankers, pipelay barges, single point mooring systems, floating

production systems, and guyed towers.

A typically moored tanker system with catenary chains is shown in

Fig. 2.30 where four chains have been used on a turntable. Figure 2.31 gives

an example of the load-elongation characteristic of the catenary chain model

used in a wave tank model test. The solid line is the theoretical curve

obtained from the above equations while the symbols represent actual data

obtained from the simulation of the catenary in the test setup.

2.9.2 Flexible Structures

The material stiffness of the components of a flexible structure

contributes to the dynamic characteristics of the structure. The application

of such an element in the marine field may be seen in the marine risers, OTEC

cold-water pipes, and members or conductors in a production platform. Various

end conditions for a flexible

free, pinned-free, etc. The

member are possible, e.g., fixed-fixed, fixed-

basic horizontal equation of motion of such a
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flexible cylindrical member including its internal forces, surface and body

forces may be written in the x-y coordinate system as

~z 2
-’# [ wY)~l - Te(Y) ~ - (2.119)w(y) ~+ mx(y) ~= f(y~t)

ay

The first term on the left hand side in Eq. 2.119 is the horizontal reaction

from the flexural rigidity, the second and third terms arise from the

effective tension, Te, and buoyant weight, w, respectively. The final term is

the inertia of the riser accelerating in the horizontal direction The right

hand term represents the external forcing function.

For static riser problems, the value of the last term is zero and the

right hand side of Eq. 2.119 is replaced by the time independent drag term due

to a constant current profile as

f(y) = ; P CD(Y) D(y) U2(Y) (2.120)

where p = mass density of water, CD = drag coefficient and U(y) = horizontal

current velocity as a function of the vertical coordinate, y.

For a dynamic riser analysis, the right-hand side of Eq. 2.119 may

include the wave inertia and drag forces. In this

is given as a forcing function, f(y,t) which may be

Morison equation (including relative velocity, e.g.,

effect from Eq. 2.35 is included in the last term of

2.119.

case, the right hand side

expressed by the modified

Eq. 2.35). An added mass

the left hand side of Eq.

The solution of Eq. 2.119 for the static or dynamic case requires

additional constraints or boundary conditions, e.g., deflection and rotation

at the two ends or the top horizontal offset for a marine “riser. The

solutions are achieved in one of several available numerical techniques, e.g.,

direct or indirect finite difference or finite element methods. A frequency

domain analysis is possible only after the linearization of all the nonlinear

terms, and may not be suitable in many riser applications.
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3.0 PROBABILISTIC METHODS FOR EXTREME VALUES

The design and performance of an offshore structure depends largely upon

the response of the structure to the environmental loading such as waves. The

response analyses outlined in Chapter 2 are generally applicable to regular

waves. However, the extreme responses of a structure in random ocean waves

should be known for the adequate design of the offshore structure. The

extreme response chosen for the design of a structure should meet, as a

minimum, the following criteria:

LIFETIME RESPONSE

The expected maximum response during its lifetime should be known to

ensure the integrity of the structure.

OPERATIONAL RESPONSE

The responses of the structure under its normal operating conditions must

be known to ensure the intended operability of the structure.

FATIGUE DAMAGE

The accumulated

must be known to

period.

responses of the structure during its entire lifetime

assess the cumulative damage of the structure over this

The design criterion of a structure.is governed by the failure of its

structural members due to the environment it is exposed to during its

lifetime. This failure may be caused by the maximum instantaneous stress

experienced by the member due to a given environment. Alternatively, it may

fail due to fatigue damage resulting from an accumulated number of cycles at

varying stress levels. Thus, the design value should be an upper bound to

these quantities.

The primary concernof this report is to discuss available computational

methods of the extreme event due to the environmental loading. The design of

an offshore structure is based on either a deterministic or a probabilistic

approach. In a deterministic method, the response analyses described in

Chapter 2 for a given wave and wave

method of design may include a

theory may be applied. The probabilistic

short-term prediction or a long-term
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prediction. The short-term response statistics are obtained on the basis of

one particular seastate. This seastate is specified by an energy spectral

model having a given significant wave height and a characteristic period. On

the other hand, the long-term prediction method includes all seastates which

the structure is expected to

For fixed structures,

structures, a deterministic

used. However, in fatigue

encounter during its design lifetime.

for example, steel piled and concrete gravity

method of extreme value prediction is normally

assessment, a long term probabilistic method is

often used for these cases, For an extreme value analysis of floating

structures, a probabilistic method is common, but only for the short-term

seas. The operational mode of floating structures is generally analyzed on

the basis of long-term prediction.

A short-coming of the deterministic and probabilistic extreme value

predictions based on short-term statistics is in the choice of the

environment. It is not always obvious which set of environmental conditions

will produce the largest responses. On the other hand, the long-term

environmental data over the entire service life of a structure, e.g., in the

form of a wave scatter diagram is scarce. Therefore, the reliability of the

choice of long term data on which the responses are based may be

questionable. The extrapolation of a few (typically, 2-5) years’ direct

measurements of data to the structure’s lifetime and beyond introduces

uncertainties in the subjective evaluation. Sometimes, hindcast methods are

used to obtain similar information.

For Gaussian response processes, the probability of system failure may be

related to the excitation process statistics. This relationship is well

established and straight-forward to perform. Unfortunately, however, small

nonlinearities are invariably present in the response of a real system. This

nonlinearity, however small, may cause significant departures of the response

characteristics from the Gaussian form in the extreme “tails” of the response

distributions. Sinc,e the extreme responses are derived from the tail end of

the response distribution, such derivations have a very profound effect on the

probability of the system failure. It is thus of vital importance to develop

methods of predicting the distribution of the response in the” nonlinear

case. The general nonlinear problem is largely unsolved. Some limited

information on the response characteristics may be obtained from the
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perturbation methods and equivalent linearization techniques. Distribution

functions of some nonlinear problems may be obtained by the series method in

probability theory.

Tickell (1978) presented a review of the state-of-the-art on the

probabilistic approach to the problem of fluid loading on an offshore

structure. Linear random wave theory is generally used to describe the water

particle kinematics. While it represents a versatile model for the random

sea, it has certain limitations. For example, the spectra of the particle

kinematics and their derivatives become increasingly large at the high

frequencies (tail end of the spectra) where wave energy is generally small.

This is particularly enhanced in the free surface zone. The higher moments

of the spectra, mn, which depend on the nth power of frequency, likewise “blow

up” due to this divergence of spectra at the high frequencies. These moments

are often needed for the computation of the distribution functions. Moreover,

the linear process of describing a surface cannot account for the vertical or

horizontal asymmetry seen in steep storm waves.

For a particular seastate characterized by the random wave parameters,

HSY Tz and f30,where Hs = significant wave height, Tz = zero-crossing period

and 00 = angle of mean wave direction, the short term response of the

structure may be obtained by the spectral and probabilistic techniques. For a

linear system, this procedure is straight forward. In this case, since the

waves are assumed to be a stationary Gaussian random process, so will be the

responses for which all the statistical properties are known. Thus, the

spectral analysis technique may be used to determine the statistics of the

linear system. For structures whose responses are linear with respect to the

excitation force, once the force distribution function is known, the

probability distributions of response normalized with respect to standard

deviation will have the same form.

The prediction of the effect of nonlinearities either due to the

environmental loading or due to nonlinear structural behavior for an offshore

structure in random seas is not straightforward and a general procedure is not

known. For a linear system subject to Gaussian excitation, the response is

also Gaussian. However, if the system contains nonlinear elements, the

response will no longer be Gaussian. In this case, the solutions for the

probabilistic responses may be obtained only in special types of
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nonlinearities. Often approximations are necessary before a probabilistic

theory may be applied to the nonlinear responses. One of the methods of

prediction is the nonlinear transformation of random variables.

3.1 SOME COMMON TYPES OF PROBABILITY DISTRIBUTION FUNCTIONS

The probability density function (pdf) henceforth denoted by p, is

defined as the fraction of a designated period of time that a particular event

is expected to occur. The probability distribution or the cumulative

distribution function (CDF), denoted by P, is the fraction of the time period

that this event is not exceeded. The probability of exceedance, denoted by Q, I

is the fraction of time the event is exceeded. Thus, P is related to Q by the

relation, Q = 1 - P.

3.1.1 Normal or Gaussian Distribution

The probability density of a normal or Guassian distribution of a random

variable, x, is given by

(X -Pxjz
p(x) = 1 exp [ -

m ox
1

20X2

where I-Ixis the mean value of x, and ox is

formula applies to the entire range of x from

is clear that p(x) is symmetric about the mean

I.Ix.It drops off fast in the shape of a bell.

width of the bell. If Eq. 3.1 is integrated

(3.1)

its standard deviation. This

-a to += . From Eq. 3.1, it

value of x and has a maximum at

The value of ax determines the

between tax about Vx, it will

give a value of about 0.68. Thus a range of *OX about the center of the bell-

shaped curve contains 68 percent of the area of population, a *2ux covers 95

percent while a k30x gives 99.7 percent of a normal population.

The expression for the cumulative probability, P, is not known in closed

form, and the values of P are obtained from Eq. 3.1 by integration

P(x) = T P(X) dx (3.2)
-a
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The plots of the probability density, p, and the probability distribution

function, P, for a zero mean (l.Ix= O) and unit variance (ax) are shown in Fig.

3.1. The shaded area in the density curve is represented by the value of the

cumulative probability, P, on the distribution curve.

If the variable x is transformed to a quantity z by

(3.3)

then this transformation is called normalization and z is called ‘the

“standard” normal distribution, because it has a zero mean (l.Iz= O) and

standard deviation of unity (OZ = 1). The symbols that are commonly used to

represent the probability density and cumulative probability of the standard

normal are O(Z) and Q(Z) respectively, which are given by

(3.4)

and

@(Z) = ; $(Z) dz (3.5)
-a

.

The values of O(Z) are tabulated in many textbooks on mathematical statistics

[e.g., Tobias and Trinclade (1986)].

3.1.2 Rayleigh Distribution
‘,

Unlike the Gaussian distribution, the Rayleigh distribution applies to a

random variable, x, which is always positive (o <x<=). The probability

density function for the Rayleigh distribution is given in terms of the mean

value of x, Px, as

p(x) =— ‘x2exP [-+121
211x

(3.6)

This function may be integrated in a closed form using Eq. 3.2 to obtain the

expression for P(x).
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P(x) = l-exp[-~(~ )21 (3.7)

The probability density and. the cumulative probability of Rayleigh

distribution are shown in Fig 3.2. The mean value of x in these plots is

taken as one (l.Ix= 1). In other words, the plots represent the independent

variable as normalized with respect to Vx.

3.1.3 Gumbel Distribution

The Gumbel distribution is given by the formula

P(x) = exp [-exp {- a(x - 6)}] (3.8)

This first asymptotic (Type 1) distribution is not bounded and grows without

limit, albeit in a logarithmic scale. A reduced variate is introduced as

y=a(x-f3) (3.9)

The quantities a and B are the slope and the mode defined as

‘a= E(uN)/aN (3.10)

and

BN‘Y - E(YN)/U (3.11)

where E(oN) and E(YN) are the expected value of the dispersion of N values and

the expected value of the reduced variate, respectively, uN iS the standard

deviation, and~N is the mean of the variables, xi (i = 1* 2* ● . . N)- The

Gumbel distribution for a slope, a = 1, and mode, B = 3, is plotted in

Fig. 3.3.

The reduced variate is related to the probability value as

y = -ln [-in PI (3.12)

obtained from the formula given in Eq. 3.24.
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The expected values E(u) and E(y) are functions of the total number of

observations. Their asymptotic values for an infinite number of observations

are

E(a) = IT/~ (3.13)

and

E(y) = 0.5772 (3.14)

which may be used

the extreme values

x=B+y/a

for large but finite number of observations. The curve for

is then given by

= XN + UN ~x (y - 0.5772) (3.15)

3.1.4 Weibull Distribution

The Weibull distribution function is given as

P(x) = 1 - ~)klexp[-(xA (3.16)

The quantity k is called the shape parameter and is generally assigned a value

between 0.75 and 2.0. The parameters A and B are determined from observed

data by the least-square method.

An alternate form of the Weibull distribution is given by

P(x) = 1 - exp [- B Xm] (3.17)

The probability density is obtained by differentiating the above equation with

respect to the variable, x

p(x) =

If Eq. 3.17

In [ln

m B XM-l exp [- B Xm]

s rearranged, it may be written as a linear equation

1
~11-

=lnB+mlnx

(3.18)

(3.19)
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where In B is the intercept and m is the slope. The values of B and mmay be

determined by fitting data.

The Weibull cumulative probability distribution for wave height may be

written as

-A(~)m

p(H) =l-e rms (3.20)

where A and m are constants. The probability density function is written as

-A(~)m

p(H) = Am( ~ )m H-le ‘ms
rms

Taking the logarithm twice and rearranging terms

In In ~.=lnA+mln~

(3.21)

(3.22)

which is the equation of a straight line of intercept in A and slope m. The

parameters A and m are determined by the empirical fitting of data. For A = 1

and m = 2, the expressions reduce to the Rayleigh distribution.

3.1.5 Frechet Distribution

A distribution function

for annual maxima of e;trbme

P(x) = exp [- ( ~ )-kl

This equation may be written

of the Frechet type was proposed by Thorn (1973)

wave heights

(3.23)

as a linear equation

in [- in P] = -klnx+klnA (3.24)

in which -k is the slope and klnA is the intercept of the line. An example of

the Frechet distribution for a slope of 2 and an intercept of 1 is shown in

Fig. 3.4. The probability density is obtained as
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P(x) =}(; )-k-l exP[-(*)-kl (3.25)

This type of Frechet distribution is known as Fisher-Tippett Type II

distribution. The Type II distribution is related to the Type I (Gumbel)

distribution by an exponential transformation. Thus, in P will provide a Type

I distribution. The parameters for the Type I distribution are simpler and

more

by a

efficient to compute, from which the Type II parameters may be obtained

transformation.

Analyzing the significant wave height data from Ocean Station Vessel

(OSV), Thorn (1973) obtained the significant wave height distribution function

as

P(Hs) = exp [ - ( } )-6”0 ]
s

(3.26)

in which the scale parameter of the wave distribution is related to the scale

parameter of the wind distribution by

bs = 0.455 bv (3.27)

where bs is in feet of wave height and bv is in mph of wind velocity. The

scale of wind is obtained from OSV data as
.

bv = [373.8 ijmax + 5.~2.4]1/2 -23.3 (3.28)

,

in which ~max = maximum of the monthly mean wind speed in a year in mph.

These values of the wind speed have been charted for all oceans by Thorn

(1973). The quantile for the significant wave is then obtained as

Hs(P) =exp [ln bs -~ln in (~)] (3.29)

The extreme waves may be derived from 1-15on the assumption of Rayleigh

distribution for the short-term waves.

EXAMPLE: For a North Sea location 55N-5E find the maximum wave height for a

probability level of 0.98.
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The maximum monthly mean wind speed, ~max , for the above North Sea

location is 19 knots or 21.8 mph (9.8 m/s). This value is obtained from the

figures provided by Thorn (1973). Then

bv = [373.8 X 21.8 + 542.4]1/2 -23.3

= 70 mph (31.3 m/s)

Using Eq. 3.27

bs = 0.455 x 70 = 31.9 ft. (9.75m)

The probability distribution of H~ based on this value of bs is shown in

Fig. 3.5. The significant wave height, Hs, for a probability level of 0.98 is

computed from Eq. 3.29

Hs(O.98) = exp [ in 31.9 -~ln in (~) ]

= 61 ft. (18.6m) ~

Hmax =1.8X61= 110 ft. (33.6m)

where a factor of 1.8 has been used considering 900-1000 waves in the record

to achieve the maximum wave height.

3.1.6 Cumulants and Gram-Charlier Series

The nth cumulant of a random process x is defined as ‘

kn= ~ L [ln M(6)] 16=0
in

den
(3.30)

where M(6) is the characteristic function. Note that the probability density

function p(x) and M(9) are a Fourier transform pair

M(e) =% ~ P(X) e ‘ox dx
-m

(3.31)

The quantity, kl, can be shown to be the mean value of x, ~ say , while kz is

the variance, 02 say. The importance of the cumulants lies in the fact that

the probability density function of a general non-Gaussian random process can

be written in the form of a series, the coefficients of which are functions of
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the cumulants. One of the common forms of these series is called the Gram-

Charlier series given by

‘3
p(x) ‘ * e“ 1/2 ‘2 { 1 ++ (T) (23

mo
- 3Z)

.
a

‘4
+ & (~) (Z4 - 6Z2 + 3) + .....]

o

where

(3.32)

(3.33)

Besides kl and k2 defined above, two other quantities of importance are

the skewness, defined as k3 / ~3 and the kurtosis, given as k4 / ~4 . For a

Guassian random process

kn = O for n > 2

Thus, for a random process if higher cumulants are

they provide a measure of the deviation of the
*

process.

3.2 DISTRIBUTION OF SHORT-TERM WAVE PARAMETERS

3.2.1 Wave Elevation Distribution

(3.34)

evaluated, e.g., k3 and k4,

process from the Gaussian

The sea surface elevation is assumed “to follow a Gaussian distribution

with a zero mean. Therefore, for the sea surface elevation, n (where ~n is

assumed to be zero)

(3.35)

where u = @ and mo is the area under the wave energy spectral densityn
curve.
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3.2.2 Wave Height Distribution

For a narrow-band Gaussian ocean wave whose components are in random

phase uniformly distribution over *n, the wave height follows Rayleigh

distribution given by its probability density function,

~2
p(H) =#-exP (-~]

rms rms

(3.36)

where H = individual wave heights in a wave record and Hrm~ = root-mean-square

wave height.

Based on this distribution the most probable maxima in a given number of

waves can be determined. According to Cartwright and Longuet-Higgins (1956)

the largest expected value is related to the rms value in terms of the number

of zero upcrossings, N, by the formula

H .-(l+&l Hrms
max

(3.37)

where the Gamma function, G = 0.5772. For example, in 1000 waves the most

probable maximum is related to the significant wave height, H~ by

Hmax = 1.86 Hs

where

Hs = 1.416 Hrms

This constitutes the short-term extreme value prediction for wave

heights. If the input waves are assumed to be Rayleigh distributed, then the

linear responses may be shown to be Rayleigh distributed as well. In this

case the extreme value of the response is computed from this distribution as

above. This analysis is called the short-term extreme value analysis for a

linear system.

3.2.3 wide Band Spectrum

The extreme values of a short-term stationary random process having an

arbitrary

probable

bandwidth spectrum have

extreme value as well

been predicted by Ochi (1973). The most

as the extreme value at a prescribed
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probability level have been derived, the latter of which was recommended for

the design of offshore structures. Selected points on a scalar random process

are illustrated in Fig. 3.6. In evaluating the extreme value, it is clear

that only the maxima of the random process with positive values (or minima

with negative values) need be considered. It should be noted that the

presence of several maxima between consecutive zero crossings indicate a broad

band spectrum for the random process.

The probabi”

(

ity density function of the maxima, x, is given by

~)2}
5($

in which the spectral moments are given by

m
n

= ~@Un5(U) du
o

E = spectral width parameter

2
2=1 ‘2
& -—

mom4

O<x< = (3.38)

(3.39)

defined as

(3.40)

and m is referred to as the standard normal distribution given by
U2

o(u) = $ ~~e-~du (3.41)

If the variable x is nondimensionalized by dividing by ~, then the

probability density function of

(3.42)
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becomes

O<; <w

(3.43)

If the random process is assumed to have a narrow-band spectrum (E = O) then

Eq. 3.43 reduces to
$

-—
p(~)=~e 2 o<~<m (3.44)

which is the form of the Rayleigh distribution. Similarly, for a wide-band

(3.45)

which is the truncated (at ~ = O) normal (Gaussian) distribution. Figure 3.7

shows the probability density function for various values of E.

The cumulative distribution functions of x and~are derived by

integration as follows:

P(x) = 2

1+~

(3.46)
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In order to derive extreme values, let us consider that there are N

observations of the type of Fig. 3.6. Let~i be the observed maxima of these

N records in nondimensional form. We first arrange~i in ascending order of

values Gi. Let a be a small probability level that LN be exceeded. Then

for e < 0.9, a simple formula for the extreme value may be obtained as

for G <0.9 (3.48)

This formula is valid when a is small, on the order of 0.10 or less. For s =

O (narrow band process)

(3.49)

Figure 3.8 shows the relationship in Eq. 3.48 for various values of s when a =

0.01. Note that the dimensional values, xN, may be obtained by multiplying

by 45. It is interesting to compare the extreme value for the narrow-band
-,

spectrum with the corresponding most probable extreme value, TN .

YN=J7ri7rR forc=O (3.50)

Thus for small a, ~N is considerably larger. This should be expected because

for a large value of N, the probability of eXC&2ditWJzN.I’IIay be ,shown to be

quite high

limp[i~>~N]=l-e-l ----
N+=

The most probable extreme value

“ = U.b3Z (3.51)

fOrO<E<().9iS

(3.52)

which reduces to Eq. 3.50 for & = O.
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Expressing N as a function of time, TR, in seconds the extreme value for

a narrow-band process is obtained as

‘R @ ]1’2;N=21n [{~

This value is plotted in Fig. 3.9 for

zero crossing frequency, (4-) as a

most probable value is

3.2.4 Nonlinear Gaussian Waves

for small a (3.53)

a= 0.01 and for different values of

function of time. The corresponding

(3.54)

The statistical prediction of wave-heights assume the waves to be

Gaussian. In this case, Rayleigh distribution is applicable (for narrow-

banded waves). For nonlinear waves, the distribution is not Gaussian.

Longuet-Higgins (1980) suggests that the Rayleigh distribution may still be

valid as long as the rms value of the linear Gaussian waves are adjusted by a

factor of 0.925 in the distribution.+

Forristall presented a two-parameter Weibull distribution to fit wave

data from the Gulf of Mexico given by

p(g) = exp( $ ) (3.55)

where E is nondimensional wave amplitude (half the trough-to-crest height) and

a and B are empirical parameters. The values of a and B were found to be a=

2.126 and B = 1.052 by fitting the wave data.

Longuet-Higgins (1952)

surface seas of sinusoidal

wave amplitudes

P(a) =exp(~)
a

derived Rayleigh distribution

components as the distribution

for narrow-banded

function for the

(3.56)

where T denotes the rms wave amplitude. For linear waves when the

individual wave crests are approximately sinusoidal, the zeroth moment is

related to = by
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–2mo=~a (3.57)

In this case, the distribution function may also be written as

P(a) = exp( ~ )
o

(3.58)

However, for nonlinear waves where crests are narrower and higher than troughs

as

In-

well as for finite bandwidth, the relationship in Eq. 3.58 is not valid.

the latter case, for example,

~2

~=1
- 0.734V2 (3.59)

where

2 P2
v=—

;2m (3.60)

0

where P2 is the second moment of the spectrum about the mean frequency, m .

For a P-M spectrum, the correction factor becomes 0.931. Using

1/
~= 0.925 (2mo)2 (3.61)

Longuet-Higgins showed that the same Gulf of Mexico data was fitted by the

Rayleigh distribution as good as the Weibull distribution.

3.2.5 Nonlinear Non-Gaussian Waves

It has already been noted that the response (output) of a nonlinear

system is a non-Gaussian random process even though the waves (input) are

Gaussian. Therefore, even though linearization technique works quite well for

many nonlinear systems, marine systems with strong nonlinear characteristics,

e.g., tension leg platform, may require the probabilistic prediction of non-

Gaussian random processes. In recent years, several prediction methods have

been made available in the literature that deal with this subject applicable

to ocean structure.

The deep-water waves have been shown

measurement at sea as well as in the
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to follow Gaussian distribution from

laboratory. A correlation of the



probability density of time history of

is shown in Fig. 3.10. Note that the

model. on the other hand, the wave

shallow water due to the bottom effect,

random laboratory waves in deep water

wave follows a Bretschneider spectral

profile becomes highly nonlinear in

showing excessively high crests and

shallow troughs. This is illustrated in Fig. 3.11. Thus, the histogram in

this case will not be symmetric with respect to the mean value but rather

skewed to the positive side which will increase with the increase in the

severity of the sea.

Bitner (1980) obtained an expression for the probability density function

of the crest-to-trough wave height for,non-normal waves. She assumed that the

wave profile is a quasinormal random process and narrow-banded about a central

frequency. The time-varying sine, xs(t), and cosine, xc(t), components of the

central frequency, however, are considered nearly normal. Written in terms of

a combined parameter, k4, of the sine and cosine components, the probability

density for height H becomes

where

k4= (n14 - 3) + (r124- 3) + (n12n22- 1)

and

‘1 = (xc - ‘c) /a

q = (Xs - Q ,
0

(3.62)

(3.63)

(3.64)

(3.65)

The quantity, k4, is determined numerically from rI1 and r12. The mean wave

height, ~ , has a form

(3.66)
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This density function is compared with the Rayleigh density function in Fig.

3.12.

In the derivation of non-Gaussian wave probability distribution,

assumptions are made that the waves are narrow-banded and the nonlinearity is

weak. For strong nonlinearity, the problem is extremely complicated.

In obtaining the Rayleigh distribution for the wave heights, the

magnitudes of the statistical properties of wave height are assumed to be

simply twice those of the wave amplitudes. However, more appropriately as

shown above, the magnitude of the crest-to-trough heights should be determined

disregarding this assumption which is often invalid. In this case, the height

is taken as the sum of an upper-envelope value and a lower-envelope value for

the profile that are separated by half the average period. Tayfun (1981) used

this concept to determine the probability density function of the average of

the ttioenvelope values [namely, a = (al + a2) / 2] Separated by T/2 where T

= wave period. It is given as an integral of the joint probability

distribution p (2X - =2, =2 ; T/2) and p(T), where p(T) is the period

probability density function. The joint density function between al, and a2

is written as

—.
ala2

TTr (=12+ =22) ~
P (=1s=2 ; ~) ‘~Io(l.r

122)exp[- (3.67)
2(1 - r2)

——
where al, a2 (>0) = dimensionless amplitudes =

ai
~,(i=l,2),

o

al
= A(t) ;

a2
= A(t + T) (3.68)

(3.69)

a

P(T) ‘& ~$(w) COS(OI - (AO)Tdw (3.70)
00

a

A(T) = # j’ S(m) sin(m - mo)~ d~ (3.71)
00

The computation of this expression is very complex, and Tayfun suggested the

following simplification on the assumption of narrow-bandedness around the

mean frequency, ; . Then
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A(T) = O, and

p(T) = r(-c)= 1 - ~ (=VT)

The probability density function of a, then becomes

2a
p(a) = 2jp(2a-a2, a2; ~)da2

o T

(3.72)

(3.73)

(3.74)

This density function is plotted in Fig. 3.13 along with the Rayleigh density

function and observed data. It is noted that this density function has a

higher maximum value than Rayleigh.

There are several distribution functions available to represent the non-

Gaussian random phenomena, e.g., observed in the wave profiles in finite water

depth. These generally have series representation and are obtained either

from the probability theory or nonlinear wave theory. Examples of non-

Gaussian probability theory distributions are Gram-Charlier series, Edgeworth

series and Longuet-Higgins series. The nonlinear wave theory uses, for

example, Stokes’ wave series. These have been derived by Ochi (1986). Here,

only the essential results will be given.

The Gram-Charlier theory starts with the normal probability density

function and writes a series in terms of the derivatives of the standardized

(by subtracting mean and dividing by standard deviation) normal density

function. This gives rise to the Hermite polynomials. The non-Gaussian

density function then has the form for a random variable with zero mean and a

variance of 02 as follows:

-x 2

2=2 =
p(x) = ~ e z CnHn (:)

m n=o

and the coefficients, Cn have the following values:

‘3 ‘4 ‘5=o,c3=7p c4=~,c5=~,CO=l, C1=C2

‘6 ’32 ‘7 ‘3 ‘4
C6 =~+~J7=7+~

2!(3!)

(3.75)

(3.76)
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(3.77)

and so on, where Hn is the Hermite polynomial of order n, x is the value of a

standardized normal variable

k.
A.=- = i
J

(k2) $
J

and kj are the cumulants having the following properties

E[(x - U)2] = k2 = IS2 (3.78)

E[(x - P)3] = k3 (3.79)

E[(x - ~)4] = k4 + 3k22 (3.80)

E[(x - (3.81)~)5] = k5 + 10k3k2

E[(x - V)6] = k6 + 15k4k2 + 10k32 + 15k23 (3.82)

and so on. Note that the quantity, A3 in Eq. 3.77 is called the skewness,

and A4 is equal to the kurtosis minus 3.

It has been shown by Ochi (1986) that the Edgeworth and the Longuet-

Higgins series reduce to the same form. In fact, the normalized Longuet-

Higgins series in terms of non-zero standardized values of

Z[ = (x - V) / u ] may be obtained by replacing X/CI

Eq. 3.75.

It is interesting to note that the first term of

the Gaussian density function (since Ho = 1). In order

by Z on both sides of

the series reduces to

to examine the effects

of various terms in the series on the density function as well as their

correlation with a measured severe wave (Hs = 2.05m) record in shallow water

(d = 1.4m), an example from Ochi and Wang (1984) is reproduced in Fig. 3.14.

It is found that the higher order terms introduce negative density values

(albeit smal1) at large negative value of the variable, x. Ochi and Wang

concluded from this and many other such correlation that the second term is

the most dominant in the non-Gaussian distribution and the first three terms

best describe the non-Gaussian waves.
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Knowing the initial distributions of the wave profile, the distribution

of the peaks and troughs (including their extreme values) and the wave heights

may be determined. In this respect, it should be emphasized that for

nonlinear waves, e.g., shown in Fig. 3.13, the probability functions for peaks

and troughs are different

peaks is obtained from the

and should be derived separately. The variance of

variance of x as

For the variance of troughs, the term inside the parenthesis is inversed. The

probability density function of peaks, E+, is obtained from the expression

‘~ j lx’! P(G+, x’)dx’

P(E+) = + -:

~ IX I P(O, X’) dx’
.-

(3.84)

where p(x, x’) is the joint probability density function of displacement and

velocity. The non-Gaussian density function of displacement is known from Eq.

3.75 having a variance given by Eq. 3.83. The velocity, x’, is assumed to be

Gaussian with zero.mean and variance obtained from a given wave spectrum. The

displacement and velocity- are assumed to be statistically independent. The

probability density fupction of wave heights (peak-to-trough) can be derived

from the convolution integral of the individual density functions of peaks and ,.
troughs.

The linearization technique or the perturbation technique are appropriate

only when the nonlinearity in the system is weak. This allows the response of

the system to be expressed as a Gaussian system. The above examples of

nonlinear waves show that the response of a nonlinear system will not be

Gaussian. For a stronger nonlinear system, the Fokker-Planck equation may be

applied. In this case, no restriction is applied to the degree of

nonlinearity in the system. For a white-noise spectrum, the probability

density function is obtained for a non-Gaussian response. Among others, such
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an analysis was carried out by

technique to a single degree of

equation

; + g(i) + h(x) = f(t)

Ochi and Malakar (1984). They applied this

freedom system having the following nonlinear

(3.85)

where f(t) is the excitation force function for unit (total) mass of the

system. The damping per unit mass is expressed as

(3.86)

the first term of which is linear while the second term is the viscous drag

term. The restoring force per unit mass is written as

(3.87)h(x) = MN*x + rx3

including a linear spring and cubic spring term; 61Nis the natural frequency =

dm ●

The Fokker-Planck equation for this nonlinear system may be derived as

-i & p(x, i) ++ [ {9(;) + h(x)} P(X, ~) 1 +g<2 P(X, :) = o (3.88)
ax ax

where p(x, i) = joint probability density function of x and ~ , x =

displacement from the mean, ~ = vertical velocity deviation from the mean,

and S = white-noise spectrum of force, f. This equation is solved

numerically.

Once the joint density function, p(x, ~) , is known, the, probability

density function, p(x), may be derived following the previously described

method (Eq. 3.84) by applying least square fitting technique. The other

quantities, e.g. density function of peaks, trough, etc., may then be obtained

as before.

Note that the method is limited by the use of a white-noise spectrum.

Therefore, it is desirable to find a white-noise spectrum which is equivalent

to the excitation spectrum. Ochi (1986) suggests equating the variances of an

equivalent linear system obtained by superposition and Fokker-Planck equation
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methods and obtaining the equivalent whit”e-noise spectrum. An example of the

probability density function of the peak-to-trough surge motion of a TLP

having nonlinear damping and restoring characteristics in a sea of Hs = 9.15m

is shown in Fig. 3.15. The corresponding Rayleigh distribution on a linear

system assumption is shown as dotted line.

According to the probability theory [Cramer (1970)], the characteristic

function, O(X) can be defined as the expected value of elxC . Thus, O(X) can

be

of

It

written as the Fourier transform of the probability distribution function

the random variable L, i.e., P(L) as follows

(3.89)+(x) ‘~ eixcP(g) dc
-m

can be shown that the right hand side may be expanded in a power series of

eixc to give

‘+.l+J#+.. . ..+p’m#+.m...l$(x)=l+lll .
. F r.

+

2 rix)+ A2~+
= exp {Al . ● m.,. w+A’x+

r r. ● *”””1 (3.90)
.

where pr’ and

represents

are related explicitly to these moments as follows

Ar are the rth order moment and cumulant respectively. If IJr

rth order moment about the mean, then the first eight cumulants

‘1
=0

‘2
. ~z

A3 = 1.13

‘4
=P4. 31122

A5 = p5 - lol1311* (3.91)

‘6
= ~6 - 15v41.12- 101.132 + 30 V23

- Zl~51.12- 35p4V3+?10UjU22
‘7

= ~7

‘8
= ~8 - Z8U5U2 - 56P5U3 - 35v4 + 4201J4U22 + 560u32p2 - 630u24

For a Gaussian distribution

pzr = J&N J
Zrr!

(3.92)
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l’2f-+1 = o, F>l (3.93)

and

A2 = ~2

+.=o, F>2 (3.94)

for all r.

The values of moments

determine if a process is

higher-order approximations

and cumulants offer a quantitative measure to

Gaussian or not. For a non-Gaussian process,

are necessary requiring higher moments and

cumulants. Longuet-Higgins showed that Edgeworth’s form of the type A Gram-

Charlier series [Kendall and Stuart (1963)] is a good approximation for

nonlinear waves. In terms of the Hermite polynomial of degree r defined as

r-2 r-4
Hr=tr-r([l -l) >+ r(r-l)j~-2) (r-3) ~- ....

22
(3.95)

. .

where t is the normalized wave elevation, t = </$s the distribution

function of L is given by Longuet-Higgins (1963) as
—

lJt2

p(~) = (2~k2~zez [l+: k3H3+ (&k4H4+~k32H6) +..... ] (3.96)

r/2where kr = Ar / A2 . The full Edgeworth’s form up to eight terms has been

given by Huang and Long (1980) as

+ ‘6;2;0k32H6 + ‘7;o:;k4k3H7

k + 56k5H3 + 35k42
+8
~

H8+ .....] (3.97)

The series up to the sixth term reduces to Longuet-Higgins’ series (Eq. 3.96)

for kr = 0,r>5. Huang and Long (1980) showed with the laboratory

experimental data that additional terms make the approximation worse.

Moreover, even for highly non-Gaussian waves for which the skewness, k3,

approaches one, the four-term approximation in Eq. 3.97 does a good job in
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predicting the wave elevation distribution. This is illustrated in Fig. 3.16.

Another interesting feature evidenced in this figure is that a gentle hump

appears near the mean amplitude of waves given by 1.4@ .. This indicates

that the amplitudes of waves have a preferred range ofc height rather than

appearing completely random. Note that the Gram-Charlier expansion introduces

a slightly negative density value at large negative surface elevation as

discussed earlier.

If the wave field is described by denumerably many independent pure

sinusoidal components, by the central limit theorem, the probability density

function of the surface profile becomes Gaussian.

however, satisfy only the first-order wave theory

slopes, ka, approaching zero (k =

For many real wave fields,

nonlinear theories for individual

wave number, a =

the value of ka

wave components

The sinusoidal components,

and are applicable for wave

wave amplitude).

is finite and higher-order

are applicable. One of the

most obvious effects of nonlinearity in waves appears as sharper peaks and

shallower troughs. In this case, the waves are no longer symmetric with

respect to the mean water line and, consequently, the surface elevation will

no longer be Gaussian.

We have already discussed the non-Gaussian distribution using Edgeworth’s

form of the type A Gram-Charlier series. It was shown that for steep waves,

the probability density~-function becomes negative for large trough values.

The other disadvantage, of this distribution is that it requires the values of

skewness (k3) and flatness (k4) which are extremely difficult to comPute=

For nonlinear waves, Tayfun (1980) obtained the probability density

function of deep water second-order waves. He used the standard technique of

transformation of a pair of random variables and

probability density function from the joint

approach).

the computation of marginal

density function (mapping

Huang, et al. (1983) presented the probability density function for waves

to third order. They used a perturbation scheme on the assumption of small

wave steepness. The third-order approximation for the probability density

function for the surface profile is given by
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where

R = 1 ++ ~2k2n2

Jn = N[l - Zukn + 02k2 (~ n2 - 2) ]

N = ~ + ~2k2

Hq = N[n-uk(n2- 1) + azkz (~ n3 - 2n)

and n is the normalized surface elevation given by

-:~=L
o

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

2
where ~ = o k to third order. The probability density function depends on u

as well as ok (slope parameter).

Note that ok is proportional to the significant slope, s = u/A where a is

the rms value and A is wave length corresponding to the peak frequency. The

probability density of surface profile for s = O, 0.01, 0.02, 0.03, 0.04 and

0.05 is plotted in Fig. ’3.l7. The density values are always non-negative

unlike the Gram-Charl ier”approximation.
*

Moreover, a hump is evident for high s values (larger skewness) for n

between 1 and 2.
,.

This hump appears because of the constant term in the third- “

order Stokes’ wave profile and has been found earlier in experimental data in

Fig. 3.16.

A third-order approximation for the density function can be derived in

finite water depth following similar a procedure. In this case, the

expression for p(n) is similar but more involved.

- Hs2

p(rI)= e~
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where the subscript s stands for shallow water and

N5 = (1 + a2k2S02$3)1/2

SO = coth kd

‘2 =l+&+sin;4kd

S3= 1+(1+ 3 )2
2 sinh2 kd

-i- 9

8 sinhb kd

Hs = Ns{n- ~k [(SO + Sl)n2 - So]

+a2k2[2(So +Sl)2n3-:S2n3-2S0 ($o-Sl)rIl }

hs=Sl - uk (2S.S1 + 2S1 - &2)rI

~ = { 1 -2uk (So+ Sl)n+u2k2 [6(S.+ S1)2 -&2]n2
l-i

- 2a2k2SO(So + S1) ] Ns

Rs = 1 + akHshs

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

In this case, additional dependence on the depth parameter, kd is clear. One

should note, however, that the !jtokes’ higher order waves have limited

applications in shallow water.

The non-Gaussian response characteristics of an offshore structure may be

linked to the nonlinearity in the wave kinematics, as discussed earlier, as

well as the free-surface fluctuations of the water at the structure free-board

and the nonlinearity in the force due to the presence of the drag effect. The

first of these make the waves non-Gaussian. The effect of the free-surface

fluctuations is that the loading on the structure is intermittent near the

mean sea level and is therefore no longer Gaussian. Thus conventional
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spectral analysis is no longer sufficient to fully define the response. The

spectral analysis indicates only the variance. Higher order moments of the

response must be known for a complete probabilistic description of the

response in terms of its mean, variance, skewness and kurtosjs coefficients.

The nonlinear forces make the response non-Gaussian.

Kanegaonkar and Haldar (1987) analyzed the dynamic response of an

offshore platform of the jacket type. The equation of motion was written in a

matrix form for a lumped mass system. The nonlinearity was introduced in the

relative-velocity drag term which was linearized in terms of a relative

velocity rms value. The analysis considers the free-surface fluctuations and

their effects on the spectral and probabilistic analysis.

Near the mean water level where the structure is intermittently loaded,

the horizontal water particle velocity is given as

*
u = uH(n - Y) (3.116)

A
where u is the effective velocity, u = velocity by the Stokes’ wave theory

and H = Heaviside unit-step function. Assuming that the effective velocity is
+

stationary, Tung (1975) showed that the approximate spectral density function

of velocity is

where

Z(B) = -L exp(-$ )
m

and

(3.117)

(3.118)

(3.119)

Z(B) = ; z(f3)dB
B

(3.120)

Also, the acceleration spectra
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S;(GJ) = fA2s;(m) (3.121)

Based on this effective velocity, ~ , the equation of motion is modified and

the spectral density of the displacement is obtained in terms of S~(U) and

S~(M) , the frequency

equation. These then

variance, skewness and

probabilistic analysis.

(1987).

transfer function and modified and linearized Morison

were used to express the first four moments (mean,

kurtosis) of the load which are necessary for the

The derivation is shown by Kanegaonkar and Haldar

The unknown non-Gaussian distribution for the displacement response can

be assumed to be a mixture of,a set of distributions, Pi, each one having a

weighing factor, wi, associated with each so that

I
Zwi=l and Wi>o (3.122)

i=l

The distribution, Pi, is chosen such that it has the same mean and variance

the net distribution, Px. The response distribution, Px, is assumed to be

the form

Px = WIP1 + W2P2 (3.123)

where PI = standard normal and P2 = shifted exponential distribution given

its density function

as

of

by

(3.124)

For this distribution, mean = u + i3,variance = $2 , skewness = 2.0 and

kurtosis = 6.0. Through numerical examples, it was shown that if the surface

fluctuations are included in the analysis, the high seastates yielded WI =

0.3. On the other hand, at low seastates as well as without fluctuations, the

displacement of the jacket structure at its deck was Gaussian

(W1 =1, W2= O). The non-Gaussian distributions showed significant

deviations from the Gaussian at the upper tails with much higher probability

of exceedance values for the same displacements. The rms values were slightly

reduced. The skewness and kurtosis were near zero at

heights and increased in value as the height increased.

lower significant wave
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3.2.6 Wave Period Distribution

The probability functions for evaluating the statistical properites of

the ocean wave periods have been derived by Longuet-Higgins (1975), Cavanie et

al. (1976) and Arhan, et al. (1976). They derived the joint probability

density function of wave height and period. Once the joint density function

and the individual density function of one of the variables, namely the wave

height, is known, the density function for the other single variable, namely

the wave period, is simply the marginal probability density function of the

joint distribution. Longuet-Higgins derived the density function of the zero

crossing period while Cavanie, Arhan, et al. (1976) obtained the density

function of the crest period (between the maxima).

Defining a nondimensional period having a mean of zero-crossing period,

T , as

where u is a measure of spectrum width defined as

‘om2 - h2
u= 2

ml

(3.125)

(3.126)

Then the Longuet-Higgins probability density of nondimensional period is given

by

p(n) = 1

2(1 + l?) 3/2 (3.127)

The probability density is symmetric about the mean period having a bell-

shaped curve similar to a normal distribution.

It is noted from the definition of n, that the period T becomes negative

for rI< -(l/u) . Therefore, in orderto limit the probability density to the

positive periods, n should be truncated at n = -(l/u) ● In this case, the

probability density function of n becomes [Ochi (1982)]
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‘1 + /
p(n) =

1

(1+ ’1+U2)
(1 i- ~z) 312

In dimensional form, the density function of T is

.:<n<. (3.128)

~ –2
p(T) = (UT O<T<U

(l + ~ [(u~)2 + (T - ~)2] 3/2

The Longuet-Higgins formulation is based on a narrow-band

the other hand, Arhan, et al. obtained an expression for a wide

(3.129)

spectrum. On

band spectrum

in terms of the parameter, E. The probability density function for the time

interval between two maxima is given in terms of dimensionless period is

~3~2~
p(T) =

[(T2 - ~) 2 + $621 3/2

.a<~<a (3.130)

where~=T/~m,~m is the expected time between two successive positive

maxima given by

a .+(1+ ‘1 - E2)

(3.131)

(3.132)

(3.133)

Note that for E = O, a = 1 and 6 = O, and the probability density function

does not exist. A comparison of this relationship with that derived by

Longuet-Higgins was made by Goda ‘(1978) assuming T = n. The correlation

showed that at least for small correlation coefficient values (E between 0.5

and 0.7) between H and T, there is little difference between the two forms.
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3.2.7 Wave Heiqht-period Distribution

While it is important in a statistical analysis to know the wave height

distribution and maximum wave heights, in a response analysis the joint

distribution of the wave heights and periods is often needed. The statistical

description of the sea surface is usually divided into short-term and long-

term statistics. The short-term seastates are usually assumed to be

stationary even though the seas are often expected to vary over a few hour

period. For a varying seastate at a given location, the probability

distribution of the height and period of the highest wave has been derived by

Krogstad (1985). Consider a wave record over a time period, TR, during a

constant seastate, s, where the individual wave height and period are denoted

by {(Hi, Ti), i = 1, . . . N}, qnd Hmax is the maximum of all the heights.

The CDF of Hi with the seastate, s is given by

P(Hi < H) = F(H>s)

If the wave heights are independent

p(Hmax < H) = F(H,s)N

Assuming .-

Tz=~ r
m2,-

“iii04

(3.134)

(3.135)

(3.136)

the maximum wave height in a time interval [O,TR] is

P(Hmax < H) = F(H,s)TR/Tz (3.137)

If s varies over [O,TR], then the interval is partitioned into subintervals

over which the seastate is constant and in the limit

P(Hmax
c H I [O,TR]) = exP {

The conditional probability d-

‘R
J log FIH, s(~)]~} (3.138)
o z

stribution for the period of the maximum

wave is identical to the conditional probability distribution of the wave

period for that particular seastate and wave height, p(TIH,s). The
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conditional probability distribution of Tmax for given Hmax for the whole time

interval which is partitioned into subintervals is given by

N
p(TIH = Hmax) = z p(TIH = Hmax, Si) x p(Hmax occurred in Ii) (3.139)

i=l

which reduces to the following form for max (AIi) + O

‘R
JO ~lo9F[H,s(~)] p(TIH,s(~)] d~/Tz(r)

p(TIH = Hmax) = (3.140)
‘R
~ ~ log F[H,s(T)] d=/Tz(~)
o

If the distribution of the seastate is known and is equal to P(s) where ~P(s)

ds = 1 for an observation time, TR, then

P(HMax < H) = exp { TR ~ p(s) ~log [F(H,s)I ds ]
z

(3.141)

and

~ p(s) ~ log F(H,s) P(TIH,s) ds/Tz(s)
p(TIHmax= H) = (3.142)

~ p(s) + log F(H,s) ds/Tz(s)

Now we require the short-term distribution functions F(H,s) and

p(TIH,s). Assuming F as a function of Hs only, Forristall (1978) gives

F(H,s) = 1 - (3.143)exp {-(4H/H5)a/B}

This is a two parameter Weibull distribution. It corresponds to the Rayleigh

distribution for a = 2 and 6 = 8. However, for extreme value analysis, it is

the upper tail (H > Hs) distribution of wave height that is important, not the

overall distribution. Thus, we are interested in the values of a and B that

fit the upper tail.

Considering the normalized variable

4Hmaxx.~
Hs

A
where Hs is an estimate of Hs, x is modified by

(3.144)
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x = (4Hmax/fi~) (log NO/log N)1/2 (3.145)

where NO is fixed and N = TR/Tz. Then x has a CDF of

F(X) = [ 1- exp (-xa/13) ]‘o (3.146)

The parameters aand i3are computed from a plot of log [-log (1 - F1/NO)]

vs. log(x). Based on the Norwegian Sea wave rider data, these values ar@

obtained

from the

The

(1955),

(1979).

Gaussian

as shown in Table 3.1. Note that these values are quite different

Rayleigh distribution parameters, a = 2, and 6 = 8.

joint height-period distribution in a record was obtained by Wooding

Longuet-Higgins (1975), Ezraty, et al. (1978) and Chen, et al.

Both Longuet-Higgins and Ezraty, et al. assumed a narrow-band,

model. Longuet-Higgins’ formula is easy to apply and shows symmetric

distribution in the wave period. On the other hand, Ezraty, et al. showed a

complex distribution form which is difficult to apply. They found an

asymmetric distribution with respect to period, but the distribution is a
-

function of the spectral width parameter, E, depending on occasionally

unstable fourth-spectral moment, m4. The conditional probability distribution

of the wave period following Chen, et al. (1979) is assumed to be normal,

N(p,a2) where

p = CUTZ (3.147)

and

Hs
o = COTZ ~ (3.148)

max

The values of Cv and Co were found to be functions of Tz only as shown in

Table 3.2. These values are shown as functions of Tp in Table 3.3.

The numerically computed expectation of Hmax coincides with the

asymptotic relation derived by Forristall (1978)

Iia [1 i- o.5722/(alogN)]E(Hmax/Hs) = 0.25 (BlogN) (3.149)
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TABLE 3.1

SITE

LOCATION

Utsira

Halten

Tromsoflaket

BEST FIT VALUE OF a AND 6

FROM OFFSHORE NORWAY HAVE DATA

H~ NO. OF

m RECORDS a— —

>5 230 2.37

>5 405 2.50

>5 384 2.38

~

12.5

15.6

12.9



TABLE 3.2

Tz(s)

4

6

8

10

12

VALUES OF Cv AND Ca VERSUS Tz

IN THE EMPIRICAL DISTRIBUTION OF HAVEPERIOD

CORRESPONDING TO HAXIWJM HEIGHT

Cv

1.50

1.41

1.32

1.30

1.20

ca

0.50

0.39

0.30

0.25

0.23



TABLE 3.3

Tp(s)

6

8

10

12

VALUES W Cu AND Ca VERSUS Tp

IN THE EMPIRICAL DISTRIBUTION HAVEPERIOD

CORRESPONDINGTO MAXIHUMHEIGHT

14
.-

16

18

CD

1.05

0.94

0.89

0.85

0.82

0.76

0.70

0.26

0.21

0.19

0.20

0.22

0.26

0.30 .,



Note that this expression reduces to Eq. 3.37 for a = 2 and B = 8. An example

of the joint distribution of Hmax and THmax is shown in Fig. 3.18 for given Hs

and Tz.

The distribution in Fig. 3.18 shows that it is symmetric around the mean

period, Tz. However, field data have shown that the joint distribution is

generally asymmetric [cf. Chakrabarti and Cooley (1977)]. Longuet-Higgins

(1983) revised his earlier derivation by introducing an asymmetric joint

distribution of wave amplitudes and periods. This revised distribution also

depends on the first three moments of wave spectrum (mo, ml and m2) which are

simpler to use. I

Defining nondimensional wave amplitude and period as

(3.150)

where ~ = 2~mo/ml , we can write the joint probability density function

62 -n2 [1 + (1
P(L, n) = ~—

-:) 2 / V2] L(v)

G V+e

and L(v) is defined as a normalization factor to account for

L(v) =
2

(1+=)

Note that for small v, L=l+~v2 andatv=O, the

symmetric about the mean period, independent of the

amplitude. Joint density plots for low and high v values

3.19. Note that at v = 0.1, it is almost symmetric about n

0.6, it is not.

(3.151)

positive m

(3.152)

distribution is

normalized wave

are shown in Fig.

= 1, while at V=

The density function of the wave amplitude may be obtained by integration

with respect to the period n over its positive range

p(g) = 2Ce-E2L(v) +($ (3.153)
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where t is the well known error function. Thus, the density is almost

Rayleigh differing by the factor L+($) which is small for small v. The

density of the period n may be similarly obtained by integration with respect

to c over its positive range,

P(n) =% [ 1 - (1 -+ )2/ V21 ‘3’2 (3.154)

The conditional distribution of n for a fixed value of g may be found as

(3.155)

Lindgren and Rychlik (1982) derived approximate expressions for the joint

distribution functions of crest-to-trough heights and periods of a stationary

random process irrespective of its covariance or spectral structure. The

process, however, was assumed Gaussian with mean zero. They compared their

solutions with the approximate theory of Cavanie’, et al. (1976), who

considered only the positive maxima, thus excluding the shorter waves. It

works for relatively narrow-band spectra (E < 0.7) and agrees with an

approximation of an exact model process shown by Lindgren and Rychlik. The

latter method requires time-consuming numerical integration, but can handle

many practical cases including low-frequency noise and bimodal spectra.

Another approximation based on a simplified model has also been developed by

Lindgren and Rychlik and is simpler to use and is similar to the Cavanie’

approximation in accuracy, but includes shorter waves.

Nolte (1979) derived the joint probability density function including an

additional order of approximation for the wave period which provided better

agreement with the measured data [Nolte and Hsu (1979)].

Truncating the joint probability density function at n = -~ in order

to avoid negative period, Ochi (1982) showed

P(E.,l-l) =
1 1

E,2exp [--J
1- 0(- E/v) m

3.2.8 Extreme Wave Height - Steepness Distribution

(3.156)

The extremely high waves in deep water are responsible for capsizing

smaller vessels as well as for damaging marine structures with their slamming

83



loads. Thus, the estimates of the encounter probabilities of occurrence of

these waves are very important from the design point of view. These waves are

invariably asymmetric. In describing these individual waves, one would

require additional parameters besides wave height and wave period. Myrhaug

and Kjeldsen (1984, 1987) presented the following three additional parameters

to describe their steepness and asymmetry:

(1) Crest front steepness, E

(3.157)

where YIc = crest elevation measured from MWL, and T’ = time between crest and

zero-uncrossing.

(2) Vertical asymmetry factor, A

‘=? (3.158)

where T“ = time between crest and zero-downcrossing so that Tc = T’ + T“.

(3) Horizontal asymmetry factor, B

(3.159)

Thus, the estimation of the probability of occurrence of steep waves

should include these parameters. Myrhaug and Kjeldsen (1987) derived the

joint distribution of crest-front steepness and wave height. The joint

probability density distribution for this purpose may be written as the

product of the marginal

conditional distribution of

p(:, i) = p(;li) p(i)

density distribution of wave height and the

wave steepness:

(3.160)
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where ; = H/Hrm5 and ~ = E/~rm~ normalized height and crest steepness

respectively, p(h) is marginal probability density of ~ and p(~l~) is the
*

conditional density distribution of ~ and h .

Based on the measured wave data on the Norwegian continental shelf, the

Wiebull distribution was found to be suitable for p(~) . For the conditional

distribution, both Weibull and log-normal distribution were found to work

equally well.

The Weibull probability density function for a parameter, x, is given.by

-1
Bxx‘x

p(x) = ~ [ - (y 1
x

Px

(3.161)

where 6X and px are the Weibull parameters. For Bx = 2, one obtains Rayleigh

distribution.

The log-normal probability density distribution is given by

p(x) = 1 exp [ (ln x-6x)21 XZO
* (3.162)

4% Vxx 2VX2

2 denote the mean value and variance of in ~, respectively.where 6X and Vx
.

The rms values, Erm~ and Hrms used in the normalization were obtained by

fitting data as F ,

Hrms
= 2.8582 $

and

E = 0.0202 + 32.4K ; K = ‘2
rms

g-

Thus, K is related to a steepness parameter, K = Hs/ 4g~z2 .

(3.163)

(3.164)

Use of Weibull distribution as the marginal distribution of ~ from data

gave

Pfi = 1.05 and Gfi= 2.39 (3.165)
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The Weibull distribution fitted to the conditional distribution of ~

given ~ for the Norwegian shelf data, yielded the following functional

relationships

I
*2

1.37 - l.10i + 0.57h for i < 1*9

p.(i) =
E

(
0.36 tan-l [2.80(~ - 1.9)] + 1.34 for ~ > 1.9 (3.166)

i3A(i)= 0.56 tan-l [3.57(; - 1.7)] + 2.28 (3.167)
&

On the other hand, the log-normal distribution fitted to the conditional

distribution of the same data gave the following relationships for the

parameters 9 and y2 .

.2
0.024 - 1.065~ + 0.585 h for ; < 1.7

eA(i) =
E

0.32 tan-l [3.14(; - 1.7)]-0.096 for ; > 1.7 (3.168)

Y2A = -0.21 tan-l [2.0(~ - 1.4)] + 0.325 (3.169)
&

Both these models fit the data reasonably well. However, the log-normal

distribution seemed to do better at the higher values of ~ and ~ . The

estimates of the probability of occurrence of extremely steep waves were

significantly higher for the log-normal conditional distribution.

3.3 SHORT-TERM RESPONSE PREDICTION

The short term is defined as the period of time in which the ocean waves

may be considered stationary and ergodic. Thus, a given wave record and a

corresponding energy density spectrum is needed to describe the short-term

probabilistic properties of the sea of a particular severity level. The

severity level may be described by the mean wind speed or the characteristic

wave height (H$) and wave period (Tz). The duration of a short-term sea is

typically a few hours whereas the wave record is typically on the order of

30 reins. long.
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The short-term response analysis is then based on the short-term waves.

If a frequency domain analysis is possible, then only the wave energy density

spectrum is required. In the case of a numerical time domain analysis, a time

history of the short-term waves is needed. It has already been shown how the

time history may be generated from a wave spectrum. If a time domain analysis

is performed where a frequency domain solution is not possible, then the

amplitudes of the response time history may be fitted to a distribution

function to generate the short-term distribution of the response. This

may be used in the short-term prediction of a nonlinear system.

however, time consuming.

For a linear system in which the response is linearly related

method

It is,

to the

waves, a spectral analysis provides all the necessary information regarding

the responses, as will be shown shortly. For a nonlinear system,

approximations are often made in both frequency and time domain analysis. The

approximation chosen depends on the extent and complexity of the nonlinearity

in the system. The majority of the work on nonlinear problems deals with the

short-term responses and the statistics related to the short-term responses.

Section 3.2 is the longest section of Chapter 3 as most of the available
~

techniques on handling nonlinear problems in offshore mechanics are reviewed

in this section. In some cases, brief derivations of the equations for the

statistical probabilities are shown. While a few’ distribution (or density)

functions for the response time history are shown, the important aspect

addressed here is the probability distribution of the amplitude of response.

Of course, once the distribution is known, the distribution of the maximum

response amplitude at a chosen probability level may be easily determined.

Methods of projecting this short-term response to a long-term response,

corresponding to the design life of the structure under consideration, are

briefly outlined in the following section.

3.3.1 Linear Systems

The inertia force on an object including the forces obtained by the

linear wave diffraction theory is a linear force. The inertia part of

Morison’s equation can be written for a vertical cylinder per unit length as

fl(t) = kM t(t) (3.170)
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where ; (t) is the water particle acceleration. Under linear wave theory

‘(t) = - %%% ‘in (’X - ‘t)
(3.171)

or

:(t) =
cosh ks

9’ ~
n(t + T/4) (3.172)

where T is the wave period and T/4 in this case represents a phase lead of

90°, i.e. the acceleration is zero at the wave crest. Therefore,

fl(t) = kM gk- ngOO (t) (3.173)

Then writing the covariance of fl in terms of the covariance of n and taking

the Fourier transform of both sides

Sf (m) = H; (u) S(U)
I I

where

Hfl
.’Mg’~

(3.174)

(3.175)

The significant

the response spectrum

amplitude of the force is obtained from the area under

curve.

f5=24rb fI(@dm

Assuming a mean period of

(3.176)

9 seconds and a short-term period (TR) of 2.5 hours,

the probable maximum value of the force amplitude (for 1000 waves) is

fmax
= 1.86 fs (3.177)

In usual extreme value analysis, the maxima (or minima) are assumed to be

uncorrelated and statistically independent. This may be a crude approxi-
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mation. If the random process under investigation is Gaussian and narrow

banded, then one may work with the derived process, namely, the envelope of

the narrow-band process. The neighboring maxima of an envelope process are

generally not as well correlated as those of the underlying process.

Moreover, the extreme values of the envelope process

estimate of the extreme values of the base process.

analytical formulas for the envelope process of

may be taken as an upper

Naess (1982) developed

a narrow band Gaussian

system. Assuming that the random variable under investigation is given by

x(t) for a time interval, TR, the expected maximum value of x(t) is given by

E[max x(t)] < mO (n +:) (3.178)

where G denotes the Euler’s constant, G = 0.5772, and n is obtained from the

solution of

n= 2 M(KnN) (3.179)

where N = number of maxima in x(t), and

.
K=2 42 11(1- p~) 41 -E~(l +/~”)”’ (3.180)

s = spectral width parameter, p = correlation coefficient defined as

2
‘1p.—

‘O”2

and the spectral moments, mn, are defined by

n = 0,1,2,...

(3.181)

(3.182)

It was shown through numerical examples that the introduction of statistical

dependence between neighboring maxima (through p) into the extreme value

prediction generally leads to a decrease of the resulting extreme value

estimates.
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3.3.2 Nonlinear Systems

When the response function has a nonlinear relationship with the wave

amplitude, the system is called nonlinear. Thus, when drag is present in a

system, it constitutes a nonlinear system. The same is true for nonlinear

damping for a moving body. In these cases, approximate methods are employed

in predicting extreme response values. One of these approximations is a

series representation of the nonlinear term so that only a few terms in the

series require

only the first

linearized.

consideration, depending on the extent of nonlinearity. If

term of the series is retained, then the system is called

3.3.2.1 Wave Drag

In the case where drag is important and cannot be ignored, the conversion

of the wave spectrum to the response spectrum is not straight forward. In

this case, a linearization technique is often used for the drag force.

Since the drag force is proportional to the square of the velocity, the

linear approximation of the normalized drag force is written as

IX(t)lx(t) = CIX(t) (3.183)

where x(t) = u(t)/ou and ISu is the rms value of the velocity profile.

Assuming that u(t) is normally distributed with zero mean and standard

deviation, Uu, the most accurate linear estimate of Iulu gives

c1 = d~ (3.184)

Similarly, the cubic approximation

1X1X = Clx + C3X3

will yield

c1 =
~~, —C3 =Jk

(3.185)

(3.186)
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The quintic approximation

1X1X - Clx + C3X3 + C5X5

will give

-.T .- . -

(3.187)

(3.188)

In terms of

does a fair

according to

tion will do

the dimensionless quantity, x = u/uu, the linear approximation

job for 1x1 < 2; that is, if the velocity is within +2uU. Si”nce

normal theory this happens 95% of the time, the linear approxima-

a good job of estimating the spectral density most of the time.

The cubic approximation is quite an improvement over the linear expres-

sion, yielding results accurate to more than 3UU. The quintic approximation

is only slightly better than cubic producing results accurate to nearly 4au.

3.3.2.2 Wave-Plus-Current Drag

When current is present and drag is not negligible compared to inertia,

then the relationship between the wave force and wave profile is further

complicated by the presence of current, U. If the current is considered

uniform and flows ~n the same direction as the wave (or opposing it, in which

case U is negative) then ihe drag force per unit length of a vertical cylinder

is written in terms of,
particle velocity. “

the relative velocity between current and water

fD(t) ‘kD IU(t) - U [u(t) - u] (3.189)

In Eq. 3.189 the current is in the opposite direction of the wave. In

the presence of current, the mean value of the relative velocity is not zero

as before. In this case, the linearization is more complicated. If we

approximate vlvl as

Vlvl = Co+clv (3.190)
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where v = u(t) - U, uv is the mean value of v, and Ovz iS itS variance about

the mean, then

co
= (0: - U:) [20(Y)- 11-2PVL3V+ (Y) (3.191)

and

Cl=2Uv[2@ (Y)- 1]-4crv $(Y) (3.192)

where the mean value pv = -U and y = -U/au is the strength of the current.

The quantity, $(x), is written as

-X212
$(x) =~ (3.193)

=

whereas O(X) is given by its integral and known as the error function

~-t2/2
o(x) = Jx dt = ~x y(t) dt (3.194)

-~ m -m

3.3.2.3 Structural Dynamics Response

When a structure responds to waves, the motion of the structure results

in a relative velocity between the wave velocity and the structure velocity.

The modified form of the Morison equation is used in analyzing structural

dynamic response in random waves.

In many cases, the structural motions are small compared to the water

particle motion. Assuming that the response velocity is small compared to the

water particle velocity, the nonlinear drag term is expressed in a Taylor

series, and higher order terms in.structural velocity are neglected.

Ill- il (u - ;) = Iulu - 21uli (3.195)

Further the term involving absolute values of u are replaced by their

polynomial approximations
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(3.197)

The parameter, a, is introduced in Eq. 3.197 which indicates a small

fluctuation in damping about its time average.

the solution may be obtained by a perturbation

A second method, known as an equivalent

On using these approximations,

method.

damping method, transforms the

equation of motion to its fundamental resonance mode and uses the

approximations of the wave drag force outlined above, including a time varying

damping in a series form. An equivalent constant damping is obtained as a

first approximation by replacing the time varying terms with equivalent

constant term. The equivalence is obtained in terms of work done over a

cycle. To a first approximation, the resonant response as well as the

nonresonant response

The linear and

force on a cylinder

For this example,

are considered to be Gaussian.

cubic estimates of the spectral density of the wave drag

of unit diameter and unit length are shown in Fig. 3.20.

the random wave is chosen as having Hs = 24m and

Tz = 14 sec. The spectrum is computed at the surface and 40m below the
+

surface. It is seen that the cubic representation of the drag force provides

more energy at about 3 times the predominant frequency. This gives rise to

the super-harmonic response of the structure at higher frequencies in waves.

Eatock Taylor and Rajagopalan (1981) compared the method of equivalent

linearization for the nonlinear term with the complete nonlinear time history

simulation. They found that the response spectra produced by the

linearization technique may be underestimated, particularly in high waves.

Inclusion of the cubic term significantly improves the estimation.

Dao and Penzien (1982) investigated the effect of linearizing the drag

force through an example where a single degree of freedom system was subjected

to a harmonic excitation. They considered the forcing function for the second

order linear differential equation to be nonlinear and composed of the

modified relative velocity model of the Morison equation. Three different

cases were considered; (1) the coupled relative velocity form of the nonlinear

drag term, (2) the uncoupled nonlinear drag term and, (3) the linearized form

of the drag term.
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In the second case, the drag term was uncoupled, assuming that the water

particle velocity is much larger than the structure velocity, e.g., for a

jacket structure. Then the approximation takes the form given by Eq. 3.195.

The quantity Iulu is replaced by a Fourier series by writing u = uo cos @t and

using

ICos d! cos uit= r a cos mwt, m= 1, 3, 5, . . .
m

(3.198)
m

where

-8/[m~(m2 - 4)] for m = 1, 5, 9, . . .

am =
8/Lmr(m2 - 4)] form=3,7,11, . . .

(3.199)

Also, IuI is replaced by its temporal average,

Iul =Uolcos tit = +~uo (3.200)

Thus, the nonlinear terms are linearized and the equation of motion can be

solved for x(t) in a series form as functions of mmt.d

In the third case, linearization is achieved by writing

Iu-il(u-i)=cl(u -i) (3.201)

where Cl minimizes the error in a least square sense. The value of Cl is

given by

[VRIVR II

c1 =
(3.202)

[vRzl

IfvR(=u - ~) is assumed harmonic, then

c1
= 1.20 UVR (3.203)

where avR is the rms value of vR. Once this linearization is introduced in

the equation of motion, the expression for x(t) may be obtained in terms of

‘vR which may be solved by an iterative technique.
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The numerical results for a single degree of freedom system in regular

waves showed that the first two solutions are quite close while the linearized

solution produces large error. The analysis was then extended to random

waves. For random waves, the extreme values of the response were found to

closely follow the Gumbel Type I distribution given by Eq. 3.8. This was true

irrespective of the method of representation of the drag force. In random

waves, the mean square values produced by the three methods are similar, while

the mean extreme

65% of the maxima

Dunwoody and

structures to the

value determined by the linearized method can be as low as

for large values of Hs/D (> 20).

Vandiver (1981) predicted the dynamic response of offshore

random wave excitation. The response included the effect of

the separated flow drag force in terms of the relative velocity formulation.

The equation of motion had the form similar to Eq. 2.67 with the nonlinear

damping replaced by the relative velocity terms. The drag term of the Morison

formula was approximated by a cubic polynomial in the relative velocity

between the fluid and the structure. Thus, following an approach similar to

that developed by Bergman (1969) the relative velocity drag is written as

lv~tv~ = CIVR + C3vR3

where vR = U - i.

The coefficients Cl and C3 have the values

and

C3 . d? 1
nr

‘R

which are equivalent to Bergman’s expressions with u asvR
vR. The correlation between the nonlinear term and the

(3.204)

(3.205)

(3.206)

the rms value

approximation

Eq. 3.204 is quite good over a large range of OVD (up to about 3) as shown

of

in

in

Fig. 3.21. The cubic term is handled through ;he convolution integral (see

next section) similar to Bergman except for the relative velocity form. The

solution is obtained by iteration due to this coupling. The linear and
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nonlinear components of the hydrodynamic force spectra for a single degree of

freedom of cylinder motion in a random fluid field are shown in Fig. 3.22.

Note that at the low frequency, the drag contribution is large. The quantity

a is the ratio of the fluid added mass to the sum of the cylinder mass and the

added mass, while o; is the rms value of the cylinder velocity. The linear

term is proportional to the fluid velocity spectrum only.

Sigbjbrnsson and MHrch (1982) analyzed the effect of the second term of

the series (cubic approximation) representing a nonlinear drag term that

includes the three-term convolution of the autospectral density of waves. The

main peak of the wave force spectral density appears at the modal frequency.

From the series expression, Eq. 3.204, it is evident that superharmonics may

appear in the load spectral density in frequency bands near 3, 5, 7, . . .,

respectively times the modal frequency of a single peaked wave spectral

density. Inclusion of the lowest superharmonics made the load spectral

density bimodal. This method was applied to the example of a jacket-type

fixed tower which was permitted to deflect.

A JONSWAP type wave spectrum was chosen for this purpose, as shown in

Fig. 3.23, having a significant height of H5 = 15m, a modal frequency of

(q-J= 0.35 rad/sec. and a peakedness parameter of y = 3.78. The autospectral

density of drag forces acting on a 0.5m diameter vertical pile at different

elevations is given in Fig. 3.24. The computation includes two terms of the

series approximation for the drag force. No secondary peak is visible close to

the free surface. This is because the linear contribution of the drag force

is large and overshadows the convolution contribution. In deeper waters the

secondary peaks become clearly visible because of the slower depth attenuation

of the cubic contribution compared to the linear one. The auto spectral

density of the total

has the same general

result of drag force

reduction is seen in

load on the pile (including inertia) shown in Fig. 3.25

trend as the drag force spectral density. This is a

dominance in this case. However, a certain amount of

the relative size of the secondary peak because of the

presence of the inertia forces.

Table 3.4 shows the mean square (ins) force contributions due to the

inertia forces and the linearized and nonlinear (second-order) drag forces,

respectively,

obtained from

for different water elevations (depths). The nonlinear drag is

the three-fold convolution contribution of the energy density
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TA8LE 3.4

HEAN SQUARE HAVE FORCE COMPONENTS

FOR VERTICAL PILES FOR A JONSUAP SEASTATE

SIGNIFICANT WAVE HEIGHT = 1%; MODAL FREQUENCY = 0.35 rad/s

[SIG8JORNSSON, ET AL. (1982)1
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spectrum

force).

contribut4

dominated

(second term of the series approximations of the nonlinear drag

The results are given for two different pile diameters. The

on due to the nonlinear term is not significant for the inertia

pile, D = 5m, as can be expected. In fact, even the linear drag

term is of secondary importance compared to inertia. For the drag dominated

pile, D = 0.5m, the nonlinear term is only about 15% of the linear drag term.

These examples indicate that the stochastic linearization method

represents the mean squared wave forces quite reasonably for engineering

purposes. However, the “super harmonics” present in the drag forces may

produce secondary spectral peaks which may be extremely important in the

evaluation of dynamic structural responses.

Let us illustrate this by the following example of a structural

response. Assume a jacket structure in 300m water depth having a fundamental

natural frequency, ~ = 1.05 rad/sec., and a corresponding modal damping

factor, L = 0.027. The displacement of the deck of the structure due to the

JONSWAP wave of Fig. 3.22 was investigated by $igbj~rnsson and M~rch (1982)

in terms of a single degree of freedom linear equation of motion, but with

nonlinear excitation derived earlier. Assuming that for a fixed offshore
+

platform in severe seas, the water particle velocity is much larger than the

structure velocity, or in other words, E[l;l] > E [I;l] , the matrix equation

of motion of”the platform is

m;+Clflli + KX = F(t)

The displacement spectrum is obtained from

Sx(o))= H(w) S(m) HT*(u)

where

(3.207)

(3.208)

(3.209)

where the superscript, T, refers to transform and a star refers to the complex

conjugate. The autospectral density of the deck displacement is shown in

Fig. 3.26. The secondary peak in the loading spectra, being in resonance with
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the fundamental natural frequency of the platform, produces a sharp secondary

peak in the displacement spectra. Thus , in designing fixed platforms, the

fundamental natural frequency of the platform should be matched against the

superharmonic frequencies of the drag force contribution to investigate the

possibility of amplification. If such possibilities exist, then these terms

may have to be included in the analysis of the response. Of course, the

higher order terms may make the analysis extremely complicated and time

consuming. A time domain simulation would, of course, include these effects

explicitly.

For fixed platforms that respond statically, the extreme value analysis

is carried out in the usual way by computing the short-term force

distributions on the platform and quasi-static structural and foundation

analysis. However, deepwater platforms may be excited at the lower wave

frequencies of about 3 to 4 sees. and the super-harmonic loads discussed

above. In this case, the dynamic response of the structure should be

accounted for in terms of the dynamic inertia forces. The degree of dynamic

response will depend on the frequency content of the exciting force from

random waves and the structural and hydrodynamic damping. Thus, to account

for the dynamic inertial loads, the regular wave static solutions are

corrected by the dynamic amplification factors (DAF) computed by random wave

analysis. Larrabee (1982) provided a method of selection of the dynamic

amplification factor. The method is based on selecting a given probability

level (of exceedance) over a given duration of seastate for both the dynamic

response and static response and then defining DAF as the ratio between the

two ●

3.3.2.4 General Linearization Technique

The technique of equivalent linearization for the specific cases outlined

in the earlier section is often used as an approximation method of solution of

nonlinear problems. A general method may be described to approximate the

nonlinear term as a linear one such that the mean square error between the two

terms is a minimum. Thus, for a nonlinear damping term of the form l~la-l ~,

we write
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Then the form of Cl becomes

c1 = 4“ 2“/2 ~ ($? ) #

where o% is the root mean square velocity.

dimensionless but has a dimension dependent

= 2 gives

-

(3.211)

In the above expression, Cl is not

upon the value of a. Note that a -

(3.212)

For the linear approximation, the drag force becomes

fD(t) =kD +’ouu(t) (3.213)

In this case, the drag term may be treated as a linear system in constructing

a transfer function and calculating the response spectrum using the

appropriate equation, e.g. Eq. 3.174.

Roberts (1977, 1978) obtained an approximation to the stationary joint

density function of the displacement and velocity response for oscillators

with nonlinear damping and excitation by white noise. An approximate one-

dimensional (Markov envelope) equation to the resulting Fokker-Planck equation .

was obtained. The results were “compared with digital simulation, as well as

perturbation and equivalent linearization methods. The stiffness was con-

sidered linear and the damping nonlinear, taking the form

f(i) = ;(1 + Eli In) (3.214)

An example of this correlation is shown in Fig. 3.27 in which the quantity

IAU02is plotted versus S* for n = 2. The quantity E* is a non-dimensional

nonlinearity parameter

‘* ‘ E ‘Onuon

in which s = nonlinearity

deviation of the nonlinear

(3.215)

parameter, W. = natural frequency, o = standard

response and U. = standard deviation of the linear
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response (i.e., for z = O). The figure shows that the equivalent

linearization (EL theory) result is very close to the Markov envelope (ME

theory) result over the entire range of E* shown. The digital simulation for

the damping ratio values of Lo = 0.05 and 0.50 are also shown. For a low

damping factor, the simulation results are in excellent agreement with the ME

theory. At the higher damping factor, the correlation is less satisfactory,

but still close. The perturbation solution matches others only when S* is

smatl (< 0.05), i.e., for small nonlinear damping compared to the linear term.

3.3.2.5 Nonlinear Response Spectra

The drag force per unit length of a vertical cylinder is given by the

second term of Eq. 2.18. In order to compute the response spectra due to the

drag force, the covariance of both sides of this expression is taken. In this

case, the covariance function of the drag force has a highly nonlinear

relationship with the covariance function of the water particle velocity.

Rf (T) = k~(s; YIRu(T)/ofi]
D

where T = time, a: the variance of the velocity spectrum given by

2
‘u = ~ Su(u) du

o

(3.216)

(3.217)

and RU(T) is the covariance of the velocity, u. Substituting r = Ru(T)/u~,

~(r) is a function defined by the formula

v(r) = [(4r2 +

$(r) can be expanded

~(r) = ~ (8r +

2) sin-lr + 6r (1 - r2)1/2]/m

in a power series in r as follows:

4r3 r5 r7
T ‘m+ m+””””)

(3.218)

(3.219)

The spectral density for fD is the Fourier transform of the covariance

function. Hence

m
sf (LIJ)= f Rf (T) e-iu~ d~ (3.220)

D -m D
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or,

(3.221)

In terms of the series expansion of $(r),

R (T)

Sf (u) = k~u: 7 ;[8”+. +”*+”Q+*. mle-f”’dT
D -w a 30” 15U”

u (3.222)

This yields the following expression for the drag force spectral density in

terms of the velocity spectral density.

k204 8SU(u)
sf(w)=+[ z +L s (m) * Su(m) * Su(m) + ● . ● ]

D a ~06 U
u u

in which the asterisk means convolution. Note that a

domain appears as a convolution integral in the frequency

(3.223)

product in the time

domain. Thus

su(d*su(d*su(u) = 1 ~ Su((J’)Su(LII’ -d’) dm’’Su(m - u’)du’--2 ~= -m

(3.224)

or the triple convolution of SU(W) with itself. The other higher order terms

in the series, Eq. 3.223 may be similarly written.

The discussion in the previous paragraph suggests a reasonable

approximation for SfD, namely, the linearization of $(r) by

Then

2

Sf (m) =
8kDUu
y SU(u)

D

(3.225)

(3.226)

101



It is found [Bergman (1969)] that the maximum error introduced

approximation of $(r) is of the order of 15%. If the first

terms are introduced, then the error is reduced to about 1%.

by the linear

two nonlinear

When current is present along with the waves, the drag force is

represented in terms of the relative velocity. The presence of current alters

the energy density of waves which, in deep water, has been represented by Eq.

2.15. Under the deep water assumption, an expression for the drag force L

spectrum due to relative velocity is shown by Tung and Huang (1972, 1973). To

the first order of approximation, the spectrum of the Morison force may be

shown to have the form

(3.227)

where recall that Y is defined as the strength of the current (Y = U/au)

and afiis the variance of the fluid particle velocity spectrum. The asterisk

indicates that the spectrum has been modified by current. The rms force

magnitude may be written as

‘f = {E[f2] - E2[f]}1’2 (3.228)

where

E[f] = 2 kD O: [Y 4(Y)+ (1 + Y2) Q’(Y)] (3.229)

and

1 2 2 [4 + k2(y4 + 6Y2 + 3)]E[f2] =~kM a; (3.230)

in which the quantity K is defined as

2
2kDou

K==
(3.231)

In the absence of current (y = u/uu = O), the expression for E[f2] reduces to

that given by Bergman (1965),

E[f2] =kM2~2+3k#4 (3.232)
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Note that the linear combination of the Gaussian inertia force and non-

Gaussian drag force is non-Gaussian.

The parameter, K, is a measure of the relative importance of the drag to

inertia components of the fluid force. It, therefore, serves as an indicator .

of the degree of closeness of the force by Morison equation, f(t), to a

Gaussian process. Thus, the larger the value of K, the more important is the

drag force compared to the inertia force , and the more the force deviates from

Gaussian. In the presence of current, a similar conclusion may be drawn with

the Uu replaced by av. The effect of current on the non-Gaussian property of

f(t) is more pronounced when current is negative. The expression for the

probability density function of f’(t) = f(t)/P was derived by Tung (1974) and

is given by

P(f’)=-+{ J~exp[-+(&+s2)2

-~(s+#)2]ds+ jjew[-+(kif~h-s2)2
.y(@!!)2]ds] (3.233)

in which k~ = kM/P, Y is the current strength parameter already defined, and

s is a dummy variable. The probability density function for the force time

history in the absence of current may be obtained from the above expression by

setting T = O in Eq. 3.233. The integrals for the density function cannot be

solved in a closed form and are computed numerically, as is the distribution

function. This distribution, Eq. 3.233, can be obtained in terms of four

parameters given as the coefficient of variation, Cu, force parameter, K,

correlation

*:
coefficient, p ( = - ~ ) and acceleration frequency, u ( = ~ ). The

numerical values can only be obtained by solving the equation on a computer.

Note that the expression in Eq. 3.233 can be written in a nondimensional form

in terms of ~ = f/kM oh. The probability density function for the (initial )

distribution of f(t) normalized by kM ~ has been provided by Bergman (1972)

assuming that f(t) is Gaussian. A similar expression has been given by Vinje
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(1980) for f(t) which includes a non-zero mean velocity, e.g., from current

[similar to Eq. 3.233]. An asymptotic form of the distribution applicable to

large values of the maxima was derived by Vinje (1980) and was found to match

the numerical results of the distribution.

The probability density and distribution function for the force resulting

from a current of U = *3 fps (0.915 m/s) as well as for U = O are plotted in

Figs. 3.28-3.31. It is clear from the figures that the distribution is non-

Gaussian for non-zero current. The effect of the interaction in modifying the

velocity and acceleration spectra is shown to be quite important. For the no-

current case, the Gaussian approximation holds, the difference being only due

to numerical error.

The density function in Eq. 3.233 is an indicator of the non-Gaussian

property of the total force including inertia and drag. However, it does not

provide the information on the extreme force maxima which is the quantity

required for the design of an offshore structure.

3.3.2.6 Statistics of Narrow-Band Morison Force

For the wave force derived from the Morison equation the distribution of

the peak values

transformation of

1. If the

becomes

of the force may be obtained by the method of nonlinear

random variables in the following ways:

sea surface is assumed to be Gaussian, the force model

non-Gaussian and wide banded. In this case, the

distribution can only be obtained numerically on a computer [Tickell

(1977)].

2. If, on the other ‘hand, the force model is assumed to be an

approximate narrow-band model for the Gaussian variables, a

distribution function for peak forces may be derived analytically

[Bergman (1972)].

3. If either drag or inertia is disregarded then an analytical

expression may be obtained even for a wide-band model [Tickell

(1977)].
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Gaussian models for ocean waves involve superposition of numerous linear

waves. For a Gaussian sea, all of the probability properties of the sea

surface may be predicted. In the Gaussian model, the energy density spectrum

completely determines the probabilities of all wave properties especially if

the spectrum is assumed to be narrow banded. A statistical model for the wave

forces faces mathematical complexities if the waves are of appreciable

amplitude causing nonlinearities to be introduced. Because of this

difficulty, statistical treatments are frequently based on linear theory. If

the Morison force with its nonlinearities is assumed to be narrow banded, then

the probabilities of the extreme values for the force may be derived in a

straight-forward manner.

A simple deterministic model of the short-crested directional sea

condition is

m

ll(x,y,t)= z an cos(knx cos 6n + kny sin en - unt + $n) (3.234)
n=1

where the subscript n represents the nth linear wave, an is the amplitude of

the nth wave, kn, Wn and @n are its wave number, frequency and phase,

respectively. Assuming that waves are coming from directions covering an area

given by the angle -m < e c m, an integral representation is

m(x,y,t) = Jm JT a(m, e) cos [ kx COS6 + ky sine - mt + v(u,13) ] d6 dm
o -lr (3.235)

On the assumption that both the amplitude and phase of the component

waves are random with arbitrary probability laws, Bergman (1972) presented a

stationary, second-order stochastic process for predicting the sea surface.

The Gaussian model is a useful, though somewhat restricted model which assumes

that the amplitude is related to the energy content, and phase is independent

and random but uniformly distributed over the interval (-m, m). Thus ,

dividing the two dimensional plane (u, e), into small cells of width AM and

AO,

tl(x,y,t)= E [ 2 S(f, G) Au A6]l’2 cos (kx cose - ky sin6 - mt + V)
all cells
(Au, Ae) (3.236)
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where u and e assume values at the midpoints of the cells. This expression

may be used to derive wave profile from a directional sea given by the energy

density S(f,e) and is thus a generalization of Eqs. 2.11-2.13. Alternatively

n(x,y,t) = J’”~m [2S(f,e) dmd6]1’2 cos(kx COS6 + ky sine - ut + y)
o -lr (3.237)

The Gaussian model implicitly assumes symmetry about the still water level.

It fails to encompass the crest-trough inequality. For the latter case, a

general second-order stochastic model with multivariate probability law

similar to those described in Sections 3.2.2 and 3.2.4 is needed for the sea

surface. In

describe the

functions of

the general second-order model, the spectrum is not adequate to

probabilistic properties. It is just one of many characterizing

the wave; bispectrum is another.

A more detailed

model is restricted

density. Then

w

probabilistic structure can be obtained if the Gaussian

to unidirectional waves (6 = O) and a narrow spectral

ll(x,t)= ] [2S(U) dm]l’2 COS (kx - ut + V) (3.238)
-o-

.-

Recall that for a narrow-band model, the Rayleigh probability law applies for

the wave amplitudes, a- .

1 - exp (-a2/2a~)
P(a) = {

o

ifa>O

ifa<O
(3.239)

where Go is the rms value of the wave profile. The corresponding density

function is

Ia/U02 exp (-a2/2002)
p(a) =

0,

fora>O

fora<O
(3.240)

.,
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The mean-square amplitude, a~~ is given by

2
arms = 2a02 (3.241)

If linear wave theory is applied to the Morison equation, then the

inertia and drag force amplitudes are written as

‘I = CIH

and

fD = C2H2

where Cl and C2 are known functions of CM, CD, d, D and T.

parameters to be constant, one obtains

p(fI) dfI = P(fD) dfD = P(H) dH

(3.242)

(3.243)

Assuming these

(3.244)

The probability density function for the inertia and drag force amplitudes are

then obtained assuming that the wave heights follow Rayleigh distribution

2f~ - (>) 2
p(fl) ‘~ e lr (3.245)

‘Ir

and

‘I
- (~)

P(fD) ‘$ e
Dr

r

where

‘Ir = C; H:ms

‘D
= C2Hr:s

r

(3.246)

(3.247)

(3.248)

The cumulative distributions are written as
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‘I 2
- (~)

P(fl) = 1 -e lr (3.249)

-(g)
P(fD) = 1 - e ‘r (3.250)

Thus, the inertia force peaks follow Rayleigh distribution while the drag

force amplitudes follow exponential distribution.

Similar expressions may be obtained for the inertia and drag force peaks,,
if the wave heights are assumed to follow two-parameter Wiebull distribution.

The wave force on a one-foot section of a vertical cylinder as a function

of time is written as

f=kM;+kDlulu (3.251)

where kM = CM p TD2/4 and kD = CD P D/2. A number of simplifications in the

statistical theory for forces are possible if as before the wave spectrum is

assumed to be quite narrow and concentrated around a single frequency. Using

the linear theory to describe water particle kinematics, the force from Eq.

3.130 may be written equivalently as

22
‘D ‘O Cos e +

f={
22

- ‘D ‘O Cos 6

kM Wuo sin6 if 161 < m/2

(3.252)

+ kM UUo sine if~/2< 161 <m

where o = kx - wt and U. ‘m.

Since the important quantities of

are the peak forces in the profile, the

(kMu)*

‘D”;+~
f~={

kM (IIUo

interest for extreme value prediction

maximum force is given by

kMm

if~<l

k~w
(3.253)

ifq~l

We note here that for a narrow-band spectrum the wave height, H, is Rayleigh

distributed. Hence, U. and JO given by linear theory are also Rayleigh
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distributed. Thus, f. in Eq. 3.253 is a linear combination of a first power

and square of a Rayleigh random variable. The probability law of fo from that

of H may be obtained by converting the probability of non-exceedance of fo to

that of H.

The cumulative probability of maximum force amplitudes, f, for the
*

inertia dominated and drag-inertia regions is given by
A

;2
1- exp ( --- I

rms

P(;) = {

The probability density

*
;2

*exP (-T)
rms rms

p(;) = {

4;TD-T12
* exp(- )

D rms
4~D H~ms

2kDf

if~<l
M

(3.254)

2kD~

ifo<~<l
M

(3.255)

2kDf

if~>l
M

*
where ~D = ~D/H2, ~1 = ~l/H, and ~1 and fD are the inertia and drag force

amplitudes., Note that for the inertia dominated case (the upper expression),

a Rayleigh distribution is obtained. For the drag-dominated case, the

distribution is exponential.

Any normal stochastic process can be completely described by its mean and

convariance functions, but an appropriate description of a non-normal

stochastic process requires more information. These will yield the mean and

the variance of the offshore structural response. A major shortcoming of this

approach is that it essentially ignores the fact that the structural response

is usually not a normal (Gaussian) process. For example, the knowledge of

response kurtosis allows a substantial improvement over the usual prediction
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for a normal process (with a given variance and power spectral density).

Since kurtosis is a fourth moment property, it is a natural next step beyond

variance.

Hu and Lutes (1987) obtained expressions for computing fourth order

cutnulant function for the force which provides the value of the kurtosis of

the response through numerical evaluation. In the frequency domain, the non-

normality may be described by a three-dimensional spectral density function.

3.3.2.7 Statistics of Wide-Band Morison Force

Tickell (1977) derived a general multivariate distribution of wave loads

including the nonlinear drag force from the linear Gaussian long-crested

random seas. Probability distributions of the peak loads were developed.

These distributions showed the general behavior of a wide-band process in

contrast to simpler distributions which resulted from the narrow-band

assumptions. The probability density function of force time history, F(t), is

written in an integral form as follows:

p(F) = r
-m

(3.256)

and computed numerically. The quantities Xl and $2 are defined as

+l=-U (3.257)

and their standard deviations are computed from the second and fourth moments

of F as

E[F2] = U2
4

$2
+ 3 U*l (3.259)

E[F4] = 3D4 + 18 a2 o:+ 105 a8
$2 4’2 1 $1

(3.260)
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This basic force distribution theory has been compared with data obtained

from an offshore platform in the Southern North Sea. The cumulative distribu-

tion function of the vertical bending stress in a bracing member of the

platform is shown in Fig. 3.32 along with the Gaussian CDF. A measured

kurtosis (= E[F4]/E2[F2]) of 6.9 indicates a strong deviation from the

Gaussian distribution as demonstrated in the figure. For a mean zero Gaussian

distribution the corresponding kurtosis is 3.0. .

While this formulation indicates the importance of the non-Gaussian

formulation for the nonlinear loads, it is not useful in the practical design

where the distribution of the peak forces is needed. The cumulative peak

distribution may be estimated from the expected number of peaks above a

certain force level. However, it involves higher moments of the spectrum

(e.g. sixth moment of the velocity spectrum) which are inaccurate because

representation of the tail of the wave spectrum (e.g. P-M spectrum) is often

inaccurate. If the time history of the force is assumed to be a narrow-band

process, the distribution requires the fourth moment of the velocity

spectrum. If, in addition, the force and its first time derivative are

assumed to be independent, then the distribution may be obtained from the

second and fourth derivatives of force only. This results in a narrow-band

non-Gaussian force amplitude distribution. The theoretical and observed

distribution of the stress range of the prototype data discussed earlier and

the tip displacement range from a laboratory test on a vertical cantilever

under random wave input are shown in Figs. 3.33 and 3.34. The ranges are

defined as the highest peak to the lowest trough between successive zero

crossings in a record. The Rayleigh distribution is also shown in the

figures. In each case, an improved estimate of the range is achieved by use

of the non-Gaussian distribution.

For a narrow-band model, the probability distribution

force, ~, which is normalized by the standard deviation of force

of the peak

is given by

I
($ K2+l)?exp [-~(~K2+l)~2]

for f < K-l(: K2 + 1)-1/2

1/2 K-l ~ + (~ K2)-1]
p(f) =

(~ K2 + 1)1/2 K-l exp [ - (~ K2 + 1)

for~>K ‘1 (~ K2 + 1)-1/2 (3.261)
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* ‘o
where f = —, f~ = peak force, of = standard deviation of force, and K is

‘f
defined as the drag-inertia parameter. The drag-inertia parameter is the

ratio of the drag force amplitude to the inertia force amplitude given by

2

K
4 CD % = 2kDou=
“MDUZ ‘MUi

(3.262)

where u: = Uzuu, Uz = zero uncrossing frequency of the water particle

velocity, and au = corresponding standard deviation.

If the inertia force predominates, then K

p(;) =;exp(-*;2)

which is the Rayleigh distribution describing

a narrow band process. On the other hand when

Eq. 3.261 reduces to

+ O and from Eq. 3.261

(3,263)

the probability distribution of

drag forces dominate, K + = and

(3.264)

which is the equation of an exponential distribution. The cumulative

probability distribution of peak forces is obtained by integration of p(?).

The probability of non-exceedance of the normalized peak forces for different

values of K, namely K = O, K + m and K = 0.5 has been plotted in Fig. 3.35.

For a wide-band model, the peak distribution of force, f, is expressed in

terms of the joint probability density of force and its first and second

derivatives (obtained by differentiating Morison equation)

~ Jo ~p (f, f=O, ~) d; d;

p(f) = 1 - ‘w :- (3.265). .

; ;P(f, #=0, ~) d;
m

First, a multivariate Gaussian distribution for the velocity

derivatives is constructed. Then, it is transformed into the force
..

and its derivative to form p(f, }, f) using the Morison equation

(1977)]. A simple closed form expression for the general force case

and its

variable

[Tickel1

does not
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seem possible. The individual probability densities for drag-dominated and

inertia-dominated limits are obtained respectively as

4= 1-E21

=(
erf [-— —

2 )’2’+1
E

+(:)1’* q*exP[-qlfll
2&

(3.266)

where E = spectral width parameter for the water particle velocity, and

erf = error function,

p(;l) =+ (1 - s2)1/2 ~ exp [

2 1/2
erf [-(+)

2E

9, where E = spectral width parameter

;2
fl+*~exP[-~1 (3.267)

for the water particle acceleration. The

last relationship is the Rice’s distribution.

In the above expression, if E + O, then the expressions for the wide band

peak distributions for both drag- and inertia-dominated areas reduce to the

corresponding narrow-band solutions (Eqs. 3.263-3.264). The results from the

wide-band model (for a value of E = 0.7) for K = O (inertia dominated,

Eq. 3.267) and K + m (drag-dominated region, Eq. 3.266) are plotted in

Fig. 3.35.

It may be observed that the effect of nonlinear drag forces is most

pronounced in the upper tails of the distribution function. Thus, the

probability of exceedance of large peaks increases with increasing value of

the drag-inertia parameter, K. Moreover, at least for K = O

narrow band model yields results that are close to and higher

band model. These results suggest that these models may be

used in predicting extreme

If the spectral width

extreme value is expected

and K + W, the

than the wide-

conservatively

responses.

parameters nonzero (E > O), the prediction of the

to be different from the case of E = O. It can be
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shown that for the inertia dominated region, the limiting relative magnitude

is given by (4 In N)‘1 ln(l - S2) whereas the drag-dominated limit can be

written as (2 In N)-l ln(l - G2). Therefore, if the number of force peaks, N,

is large, the deviation is small. For example, if we choose N = 1000 and

E = 0.7, the reduction in the expected extreme values is 2.4% for the inertia-

dominated case and 4.9% for the drag-dominated regions.

A slightly different approach in the extreme value analysis was adopted

by Moe (1979). Instead of expressing the probability density of force maxima,

Moe derived expressions for the expected rate of occurrence of force maxima at

any intensity on a cylindrical member of a structure. The expected number of

peaks per unit time exceeding .a prescribed value of the force maxima can be

found from these expressions by integration. On the assumption that the sea

surface is not necessarily a Gaussian process but a non-narrow-band stochastic

process, the expressions are obtained for the inertia and drag force as well

as for the Morison formula. The expected number of extremes per unit time per

unit increment of the loading level, f, is given in terms of the extreme rate

density, u(f).

Knowing u(f), other statistical quantities may be readily computed. The

probability density function for extremes is given as

The probability of ~ > f. (a defined valu@) is

‘; v(f) df
P[; > fo] = o

}; v(f) df

The expected extreme value is

(3.260)

(3.269)

(3.270)

For the purpose of these derivations, several definitions for the

frequencies are required. These are the expected frequencies of the wave

profile, its derivative, the particle velocity, the particle acceleration and

its derivative. They are defined as follows:
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‘1
= Uulurn; % = qau:

=U la;~ifiq ‘; = 0;/ afi (3.271)

in which r is the decay factor depending on the water depth and m(t) refers

to the decayed vertical amplitude of the water particle orbit. In deepwater

(W2 = kg), We have ~; = (111and m~ = m2.

Note that by Airy theory,

“w
(3.272)

s“(u) = rz m2 Sri(u) (3.273)

Sa(u) = r2 W4 Sri(W) (3.274)

The peak rate density of the wave height for a sea surface of any

bandwidth, E(O < E 6 1) is given by

‘; H2
A

n(i) ‘— [ Jexp(.— )
4r ~ m 8 &2mo

+

{

where &2 = 1 -

(1 - E2)1/2 H2
~exp(-~)
2q

1- +:
21/21}1

(*) (3.275)

m~/(mO m4) = 1 - (~/u~)2 and O(X) is the cumulative distri-

bution function for a Gaussian variable.

The short-term rate density for the inertia force maxima is given by

‘3 “ f2
*

~(;) =2=+wl(-2 ~

‘M ‘a
2

M ‘a

Note that for a narrow-band process W3

corresponds to a Rayleigh distribution.

) (3.276)

=(1)=61
1

i and the above expression

The short-term rate density for the

integrated total inertia force on a cylinder has the same form as Eq. 3.276 if
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k~z oa2 is replaced by the corresponding integral representation

force.

The rate density for the short-term drag force was derived

for the deepwater case assuming relatively narrow-banded waves.

the total drag force on the pile may be approximated by

FD(t) = 0.5 kD gln(t)ln(t)

and the rate density of the drag force maxima has the form

for the total

by Moe (1979)

In this case

(3.277)

(3.278)

Mhen the wave amplitude is such that both inertia and drag components are

important in the Morison formula then both terms are needed. This criterion

is established from the parameter

(3.279)

Note that no has a unit of length as opposed to K in Eq. 3.262 which is a

dimensionless parameter. Thus , no may be thought of as a measure of wave

amplitude which determines the importance of the drag force compared to the

inertia force. For small values of n < no, inertia is predominant while drag

becomes significant for large values of n > no. Once the expected rate

density of force maxima for a given amplitude is known, the expected number of

peaks for this limiting value of force may be determined by integration of the

density function. For a point at the surface, we have r = 1 and no = 1.5D to

3.OD, depending on the cylinder roughness. For ~ > no (which means both terms

are important in the Morison formula.)
*

A ‘2 1
f - fo/2

~(f) ‘z 2 kDu~ exp ( - 2 L ),
‘D ‘U

f>fo (3.280)

and

zkz
‘2 M

‘O = 2kD
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EXAMPLE

Consider an ITTC wave spectrum model

(3.282)

in which a = 0.0081 and B .= 3.11/Hs2. Since higher order moments of the

spectra are required in considering a distribution of peak forces, and since

the higher order moments of this type of spectra are divergent, an upper cut-

off frequency must be specified in these cases. A cut-off frequency’ of

~cut = 1.257 (period = 5 sec.) was chosen to limit Ua. Then

%
= 3.75m, Ou = 1.69 m/see. and Oa = 0.943 m/sec2

Assuming the pile diameter D = lm, ~g = 1026 kg/m3, CD = 1, and CM = 1.5, we

have kD = 513 and kM = 1209, ml = 0.4507 rad/sec and U2 = 0.5580 rad/sec. The

force, fo, is obtained as f. = 444 N/m. Then from Eq. 3.280 the force at the

surface per unit length has the rate density

(3.283)

and the drag force-has th~ rate density (Eq. 3.278)
*

0.0717 ‘ ‘DM(FD) =
70770

exp[-—
70770 ) (3.284)

.,

Thus the number of peaks in the surface process is 0.0717/secand in the
..

velocity process 0.0848/sec. The expected number of

exceeding a given limiting value of ; and ~D is found by

M(f’) = 0.0786 e-f’/2g30

M(FD’) = 0.0717 e-FD’/70770

peaks per unit time

integration.

(3.285)

(3.286)

For example, about 37% (e-l) of the peaks will exceed 2930 N/m (at the

surface) and 70770N (total drag force), respectively. These functions are

shown graphically in Fig. 3.36.
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3.3.2.8 Statistics of Wave-Current Force

When current is added to the waves, the velocity is given by the relative

velocity between the two and the force has a non-zero mean. The extreme value

analysis for this case may be obtained by the above analysis if further

simplifying assumptions are made. Moe and Crandall (1978) derived the extreme

statistics of the wave-current force based on the extreme rate density, p(f).

3.3.2.8.1 Narrow-Band Gaussian Wave and Small Current

The assumption of narrow handedness implies that ml, w, etc. (Eq. 3.271)

are nearly equal. The amplitude or envelope ~(t) of a narrow-band Gaussian

process is distributed according to the Rayleigh distribution

A

P(;) =~exp I - ~2/20n2 1
0
n

(3.287)

In the presence of a small steady current, U

u = U+ ~ r q cos [kx - qt + $(t)]

*
a= n r m’12 sin [kx - Ult + y(t)]

.
where n(t) and ~(t) are slowly varying. Then

(3.288)

(3.289)

(3.290)

and

;2
2;22exp{-2k 2221’

O<; <f
o

‘M ‘1 ‘u M ‘1 ‘u

p(;) =
exp { - [; - fO/2 - 2(kD U2 [~ - fO])l’2]/(2 kD o;) }

,;>fo
2 kD cr:[1 + (kD U2/[~ - fO])l’2]

(3.291)

where

{ k-;
‘O=2kD
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correct to the first order in U/uu. For U = O

exp {- (; - fO/21/(2 kD @
p(i) =

2 ‘D ‘u
2 ;>fo (3.293)

which is the same as that given

between Eqs. 3.293 and 3.280.

by Bergman (1972). Also, note the similarity

Now consider surface elevation, n(t) not necessarily a narrow-band

process. Asymptotic estimates of extreme force statistics may be obtained in

this case. If the joint probability density function for the force f(t) per

unit length on a cylinder and its time derivative, f is p(f, f ), the peak

rate density is given by

(3.294)

The asymptotic approximation of p(f, ? ) is

1/2 + f2/(4u;f)llp(f,?) =BTO: exp {-~[f-fo/2 - 2U (kDf)
‘D+

2kDUu (3.295)

‘2
2 f12

where fO = Zf . The peak rate density p(~) is
D

m2 exp {- [; - fo/2 - 2U(kD~)1’2] /(2k~ou )}
n(f) ==

2kD 0U2[1+ (kDU2/~)1’2]
(3.296)

Comparing the two expressions in Eqs. 3.291 and 3.296, the former is

valid for any ~ > 0 but is restricted to narrow-band waves. The latter has no

band width restriction but is only valid for large ~ asymptotically. Both

results are restricted to small currents, i.e. U/ou u 1. When U = O, the only

difference is m2 vs. ml. This suggests that the frequency of larger extremes

is

by

determined by the frequency ~ of the velocity, u(t), process rather than

the frequency, ml of the surface elevation, n(t), process.
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EXAMPLE

Let us investigate the large-force behavior of v(~) for a cylindrical

pile 1.3m (4.3 ft.) in diameter for a P-M spectrum seastate for wind speed of

30 m/s (67.1 mph) in the absence of current. The spectrum is truncated at a

frequency of 0.98 rad/s. The result is calculated at a section where

‘1 = 1.8m/s (5.9 ft/s), Ua= 0.90 m/s2 (3.0 ft/s2), f. = 68 kgf/m

2= 450 kgf/m (310 lb/ft).(4.6 lb/ft), and 2fDou The extreme rate density is

shown in Fig. 3.37 from Eq. 3.296 by setting U = O. The peak rate density,

u(f), has an exponential decay here.

Grigoriu (1984) considered the. extremes of the modified Morison force in

the presence of current by two different methods. In the first case the

extremes were predicted based on the assumption of Gaussian force through

linearization. The corresponding Gaussian approximation for the drag force

will have the form

~D2
-7?2 }

P(~~) = [ * (3.297)+N~o@(~D)]exp {-7 -NeD

in which N is the number of peaks defined as N = 21TTR/U12where W2 is defined

in Eq. 3.271 and TR is the duration of the storm under consideration. In the

second case the actual distribution of force was considered. Expressions for

extreme value density functions were obtained for the drag force alone and for

the drag-inertia force combination from the Morison formula. The probability

density function of the peak drag force (in the presence of current) is given

in terms of the nondimensional force

TD =

- Pf‘D D
(3.298)

~fD

peak drag force amplitudes, wfn = mean value of the peak drag forcewhere fD =

and of = corresponding standard deviat~on. The dependence of current is
D

introduced in

the inverse of

the expression of the density function in terms of a which is

y. Thus, scan be defined as:

au~.—
u

>.

(3.299)
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where U = current velocity. Thus, a + O when l!is dominant (y + m) and a + =

as current approaches zero. (Y + O). The probability densities for the exact

and approximate expressions were used to determine the mean and standard

deviations of the peak drag force by numerical integrations. The mean and

standard deviation of the peak drag forces from the exact and approximate

methods are normalized by U2 and shown in Fig. 3.38 versus N for a = 0.5. The

figure shows that the Gaussian hypothesis yields approximations which

significantly underestimate the mean and standard deviations of the peak drag

force. For example, these values from the exact formula are 10.4 Uz and 0.86

U2, respectively, while the corresponding values from the approximate formula

are 6.0 U* and 0.26 U2 for N = 10,000 and a= 0.5.

3.3.2.8.2 Finite Current

Naess (1983) developed a general method of investigating extreme values

of a compaund stochastic process. The method relies upon the mean uncrossing

frequency, f;(f) at a level E of a process, e.g., force, f(t). In the extreme

situations these upcrossings are rare events. Such upcrossings are assumed to

be statistically independent which is at least conservative. The zero

* crossing frequency is derived in the following way.

By the Poisson probability law, the probability that f(t) stays below a

level g during a time interval of length, TR, is given by

P[f(t) < E] = exp {- f~(f)TR} (3.300)

Thus, if f: is known for all large values of E the probability distribution

function of max {f(t)} is known.

The general procedure of obtaining the zero uncrossing frequency, f;(f)

is applied to the forcing function computed by the Morison formula. The

problem is to obtain the uncrossing frequency of the forcing function, f(t).

The fluid velocity, u(t), is assumed to be a stationary Gaussian process and

is differentiable. The quantities u(t) and fi(t) are independent random

variables. - “’”
.- .L ,, L,. .–9..--* lL\ *L —2..–—

by E[u(t)] =

in me presence oT a curren~ u, T,nemean value OT u~t~, 1s given

u. Normalizing the velocity and acceleration terms as

;(t) = (3.301)
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and the forcing function f(t) by

(3.302)

Eq. 3.251 is written in a nondimensional form as

(3.303)=;(t) +jKl~(t)l~(t)

The variables, ~(t) and~(t) are two stationary Gaussian processes of unit

variance

E[il(t)] = O (3.304)

and

y>o (3.305)

The mean uncrossing frequency f;= ~f+(f) of f(t) is determined by the

well-known formula of Rice.

Using the law of marginal distribution and transformation of variables,

the probability density of mean uncrossing frequency may be written as an

i@egral of the product of conditional probability density function between

~ and ~ and the probability density function, pf. The expression for f is
t

where

and

-“ $
a = Var[~l; = ;, u =;1= —(1-P2)

~2

(3.307)

(3.308)
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2~.
where u2 = o~/uu, and the correlation coefficient, P = ~. Alternately,

Uu

e+(Tfi)2+y@ (v
*

7f;. ; ~:[~ ❑ ) ] exp {-~ [; + (~ - Y)21] d;
u “ (3.309)

where

This equation for the zero uncrossing frequency can be solved numerically. An

asymptotic relation for f+~ valid for all current speeds is obtained by Vinje

(1980)

(3.311)

Note that Bergman considered the case of U = O while Moe and Crandall (1977)

investigated the case of Y < 1 .

For a long time interval (i.e., large E), the probability distribution

function of the largest value of f(t) is obtained assuming a time interval

length, TR and defining

T=;l max {f(t)]

as

p~(ll)= Prob {~~ n}

= Prob {max[f(t) < WI]

ssexp { -f+ T 1
WI R

The expected value of the maximum force is obtained from

Gel(TR)
E[max {f(t)}] = KE[~ = 2K [ BO(TR)2 + U 61(TR) +

VI

(3.312)

(3.313)

+ O [(in ~ TR)-3’2 ] (3.314)
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where G = Euler’s constant (= 0.5772),

and

‘n(T~)= [ (n + 1) fn Q T + U2 2n 1/2R --g] ~

(3.315)

n = 0,1 (3.316)

Note that as TR + rn the variance of the maximum values of f(t) approach

~2K2/6.

It may be similarly derived that the component of the drag force has the

expected extreme values given by

E[max {fD(t)}]
‘2TR -1/2]‘2TR 1/2 + U12 + 2KG [1 + U(2fln~)

= v[(2fln~)

‘2TR -3/2+ 0 [(~n~) 1 (3.317)

which has the same asymptotic variance as the total force.

EXAMPLE: Consider a pile of diameter D = lm and a seastate given by the

significant height, Hs = 6m and zero uncrossing period Tz = 8 sec.

Assume CM/CD = 1 and U = 1.

For this case, au = 1.21 m/see and cr~= 1.70m/sec2. Then

and

The mean uncrossing frequencies f: are plotted versus the load level, E

in Fig. 3.39 along with the uncrossing frequencies f~(fD) of the drag force

component. The expected largest values of the total force, f(t) and drag

force, fD(t) are shown as functions of time interval, TR, in Fig. 3.40. The

expected values of the inertia force, fI(t) is a Gaussian process. Since
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loading is high and mainly in the drag regime, the extreme value analysis can

be performed on the drag force component alone with reasonable results. On

the other hand, a term by term extreme value analysis of the Morison equation

(centerline, Fig. 3.40) substantially overpredicts the expected value.

3.3.2.9

If

assumed

extreme

Statistics of Nonlinearly Damped Systems

the excitation for a single or multi-degree of

Gaussian and the damping in the system is linear,

freedom system

the prediction

is

of

values of the response of the system is straightforward by computing

the response spectra first. This has already been demonstrated. However, if

the damping is nonlinear, then the prediction formula is difficult to obtain

in general. The problem of the response of a nonlinearly damped system

subject to a Gaussian excitation has been addressed by Brouwers (1982) and

approximate expressions for the probability distributions for small damping

have been derived.

The derivation is based on the fact that if damping is small in a system,

the response near resonance is finite (unlike an undamped system) but still

extremely large compared to the response away from the resonance. This is, of

course, true if the natural frequency falls near the center of the excitation

spectrum. For a natural frequency far in the tails of the excitation spectrum

where there is very little energy the response will be small even if the

damping is small. The overall solution in the former case is dominated by the

response near resonance.

Therefore, for small damping the response is narrow banded (but non-

Gaussian for nonlinear damping) over a small band of frequencies. The

excitation spectrum over this band may be considered constant. An example of

this scenario is shown in Fig. 3.41. The frequency, ~ corresponds to the

natural frequency of the system and the relative magnitudes of the width and

height of the response spectrum is indicated in the figure. In this case, the

input spectrum may be treated as a white noise for which solutions have been

obtained by Roberts (1977). Because of the narrow handedness of the solution,

it may be represented by a sinusoidal wave of slowly and randomly varying

amplitude and phase. An exact solution for the joint probability density of
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the amplitude and phase has been obtained by Roberts (1977). Brouwers (1982)

provided an alternate method of solution for these density functions for

amplitude and phase in integral form.

The equation of motion of a single degree of freedom system involving

nonlinear damping is written as

m; -tg(~) + mu~x = f(t) (3.318)

where m = mass of the system, ~ = undamped natural frequency, x = displace-

ment response, g(;) = damping force as an odd function of ~, and f(t) = sta-

tionary Gaussian excitation with zero-mean. If the damping term is assumed to

have the form

g(;) = Nl@ ~

then a simplified expression for the integral

probability density function may be obtained. Note

friction is represented. If a= 1, the damping is

(3.319)

representation of the

that for a = O, Coulomb

linear viscous while if

a=2, it is the usual fluid dynamic drag. The probability density for the

response maxima (amplitude a) is

(~+l)r(~)a r(*)a2
a+l

p(a) = exp [-{ }-1
2 Oaz 2 2

r (~) 2oa2
2

r(~)

(3.320)

where r is the gamma function tabulated in mathematical handbooks. For a= 2,

the expression for p reduces to that for a Rayleigh distribution. The

variance of the response may be computed from



The probability density function is plotted in Fig. 3.42 for u= O, 1 and 2.

The expected extreme response may be obtained from the probability

density of the largest amplitude

dPn(a)
P(amax)={~la=a

max

by an asymptotic approximation.

(3.322)

a.— .—2r(*l}l/2K
E[amax) = Oa {

~;l{l+~.tn.] a+l

4
r(~)

In r(&)

[l+~K1n K+ (G- a+l )K

(a- 1)* 2
‘~~K ~nK+O(K2)]

where G is Euler’s constant (= 0.57722) and

K=+r

(3.323)

(3.324)

The expected extreme values of the response for different values of a and

large N (= 1000 and 2000) are tabulated in Table 3.5. The extreme value is

seen to decrease as a increases.

If an equivalent linearization technique as shown in Section 3.3.2.4 is

employed then the mean square displacement has the form

The ratio of the mean square displacement between the general solution and

linear approximation has the form
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TABLE 3.5

RATIO ~ THE EXPECTED EXTREME RESPONSE OF NONLINEAR

ANDLINEARIZEDSYSTEMTOTHE ROOTMEAN SQUARE RESPONSE

VS. THE NONLINEARITY PARAHETER a

[BROihiERS (1982)]

a=

N o 1 2 3 4 5

1000 5.60 3.87 3.26 2.95 2.76 2.63

2000 6.05 4.05 3.37 3.02 3.83 2.68

2,.2
‘eq 0.85 1.0 0.96 0.89 0.82 0.75

1000 0.64 1.0 1.16 1.24 1.27 1.28

E[=leqlE~

2000 0.62 1.0 1.18 1.27 1.30 1.31



(a+l) r(+)
(3.326)

These values for a= O, 1,

a= 1, linear case), the

mean square value which

increasing a.

... 5 are shown in Table 3.5. In all cases (except

equivalent linearization method underpredicts the

increases with increasing nonlinearity, i.e.,

For an equivalent linear representation of the damping force which is

considered small, the probability density of maxima reduces to a Rayleigh

distribution whose extreme value formula is known as

‘1/2 N{l+~yln N+ O(~n2N))E[a ] = ~ aeq inmax eq (3.327)

A comparison for the expected extreme values between this solution and the

general solution is shown in Table 3.5. The linearized solution overpredicts

the extreme response in all cases (except for a < 1). Thus, this simplified

method may be applied as a conservative method in this case.

An example problem was provided by Brouwers (1982). For certain types of

offshore structures the response is governed by resonance. (If the response

at resonance is not important, on the other hand, the nonlinear damping term

is of no consequence in the analysis.) The riser of a

Storage (SALS) system fo-~ oil production (Fig. 3.43) may

gory. Consider a 4m ~iameter riser in 140m water depth.

predominantly in the first mode at a natural frequency of

Single Anchor Leg

fall in this cate-

The riser responds

1.4 rad/sec. which

is well in the center of typical wave spectra. The second natural frequency
.,

of 5.5 radlsec is outside the range of energy spectra. Assuming a small

damping, Brouwers (1982) obtained the distribution for extreme amplitudes by

the present approximate method as well as by numerical time domain solution.

The results for u = O, (Coulomb friction) and 2 (quadratic damping) are shown

in Fig. 3.44. Note that the approximate solutions in both cases are quite

satisfactory.

Roberts (1987) considered a class of nonlinear motion response problems

which have a linear-plus-quadratic damping and linear-plus-cubic stiffness,

with a softening spring characteristic. Thus, the problem involved a second-
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order equation of motion of a moored floating system having drag-type damping

and hawser lines. A generalized method of stochastic averaging was applied to

deduce expressions for various response statistics. A modification of the

Markov process allowed use of a non-white spectrum shape. The excitation was

assumed to be a stationary process with zero mean.

The cumulative distribution based on this modified theory is compared in

Fig. 3.45 with the experimental data on roll peak amplitudes of a ship model

in a random beam sea. The results from”the previous theory [Roberts (1982)]

are also shown on the figure. The modified theory seems to match the

experimental data well.

3.3.2.10 Statistics of Drift Force Response

In order to predict the maximum values of the slow drift responses of a

moored vessel, the statistical distribution of the slow drift response must be

known. In this case, the exciting forces are non-Gaussian. In addition, the

mooring system generally has nonlinear restoring properties, but that

nonlinearity has not been discussed in this section.
w

For an infinitely narrow-banded wave spectrum, the slow drift response

follows an exponential distribution [Stansberg (1983)]. However, for a wave

force spectrum of finite bandwidth, the statistical distribution of the

second-order wave force differs from an exponential distribution [Langley

(1984)].

The second-order force may be expressed in regular.waves i,nterms of a

reflection coefficient

F = C(U) (~ )2 = C(W) a2 (3.328)

Thus, the force is proportional to the square of the wave amplitude, and the

reflection coefficient, C(w), is a function of the wave frequency, w. A

random sea is written as a superposition of linear wave components

N
ri(t) = x (an cosmnt + bn sinwnt)

n=l
(3.329)

This process may be equivalently written in terms of a single wave component

with time varying amplitude and frequency
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(3.330)n(t) = a(t) cos rti + 6(t)]

where

a(t) = (A2 + B2)l/2
(3.331)

e(t) = tan-l (B/A) (3.332)

N
A= Z {an cos (on .~)t +bn sin(mn .~)t} (3.333)

n=l
N

B = Z {an sin(un -Z)t + bn Cos(un .~)t} (3.334)n=l

and = is a central frequency, e.g., the mean frequency of the spectrum. The

time varying amplitude, a(t) is known as the envelope of n(t). The time
varying frequency is given as ~+ s where dot represents derivation and 6 is

variation about the mean frequency. With this definition, then, the second
order force due to a random sea may be approximately written as

F2(t) = C(= + 6) [a(t)]2

The joint

p(a,~) =

(3.335)

probability density function, p(a, ~) may be written as

a2 ;2
exp{-~[a2(~+~)l}

mlu2
n ‘u o u

n u

(3.336)

where an is the rms surface elevation and au = Vfi;fi u is the rms surface
velocity and q is a measure of the spectral width given in terms of the

moments of the spectrum
9

q2 1 ‘i=

‘O”2
(3.337)

Thus, q + O represents a narrow banded spectrum.

The joint density function, P(F2,3) may be obtained by transforming from

(a,~) to (F2,5)

(3.338)
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-.. . . . . . -. —
Ihe density tunction or the SeCOnd-OFder force F2 can be found by

p(F2,5) over s. Nondimensionalizing F2 and 6 as

‘2
F2=T,

‘n

nwhere = is chosen such that ~ = ~i = ~
l-l

integrating

(3.339)

(3.340)

(3.341)

In the limiting case of q = O, the expression may be integrated analytically

(3.342)

which is the exponential distribution.

The probability density function of 8 is given by integration over the

envelope, and

(3.343)

Letting r =% , the probability density function of the modulus of r is

obtained as J

Irl
P(lrl) =2 J p(F)dr = lrl [r2 + q2]-1/2

o

For q = 0.3 (a typical North Sea wave spectrum bandwidth),

0.4ti;20% of the time for which the exponential form for narrow

will be inaccurate.

(3.344)

8 wi11 exceed

band spectrum
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The probability density function of ~2 is shown for ~i = 0.38 and q = O

to 0.5 in Fig. 3.46. This illustration shows that even for a slightly wide

band spectrum, the second order slow drift force may not follow exponential

distribution. Note that the distribution described here refers to the

marginal probability density function of the process (force time history)

which does not say anything about the distribution of the force maxima.

3.3.2.11 Statistics of Low Frequency Motion

Pinkster and Withers (1987) examined the statistical properties of the

slow-drift motions of floating moored structures through time-domain

simulation as well as from model tests. They derived the expression of

optimum duration of simulation so that the convergence in the statistical

properties is achieved. They assumed a band width limited white noise

spectrum for the drift force with an exponential distribution. Then the surge

drift motions become normally distributed about its mean value.

It was shown using experimental data that as long as linear mooring

systems are used, the assumption of normal distribution of the surge motion is

quite valid. The troughs and peaks likewise follow Rayleigh distribution. On

the other hand, for a nonlinearly moored system, the deviation of the surge

motion distribution from the normal distribution is significant (Fig. 3.47).

Likewise, the amplitudes of motion do not follow Rayleigh.

It was also found that the duration has a s’

statistical properties of the slow drift motion.

statistical variance. Typical length of 18-20

gnificant effect on the

Longer duration reduced

cycles of surge period

oscillation may not be enough to achieve stability. About 5 times this

duration (i.e., 90-100 cycles) are needed for a small variance in the

statistical results.

It is clear from Eqs. 2.89 and 2.84 for forces and motions, that they may

be written in a general matrix form as

x(t) = UTHU*

where H is the ~atri~w ~iven by the
m

vector given by urn e and u* is

(3.345)

tensor notations Hmn or Gin , u is the

its conjugate. The matrix, H, is complex

Hermitian,
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(3.346)

so that a diagonal matrix A may be obtained where

H = RTAR* (3.347)

The properites of R and A are as follows:

(1) A contains the eigenvalues of H which are real.

(2) The rows of R* contain the eigen vectors ofH.

(3) RTR* = I

(4) The eigenvalues Aj, and eigen vectors, vj, satisfy the relationship

‘j ‘H= AjvjT (3.348)

Substituting these relationships in Eq. 3.345, the second-order quantity,

x(t), becomes

x(t) = ! Aj I Xj I*

+ j=l
(3.349)

where the vector X has the form

X=RU (3.350)

Since u is a complex Gaussian random variable and X is a linear combination of

the components of u, X is also a complex Gaussian random variable at a given

time and from Eq. 2.76.

E[lXj 12] = 1; E[Xi Xj] = O; E[Xi Xj*] = O, i+j

Then, writing

‘Aj IXjl 2‘j-

(3.351)

(3.352)

the second-order quantity x(t) is a sum of independent random variables, zj.
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The following is according to Naess (1986) and Langley (1987). The real

and imaginary parts of Xj are independent Gaussian random variables each

having a mean squared value of 1/2 (Eq. 3.35). Under these conditions, it can

be shown that IXjI has a Rayleigh distribution [see Stansberg (1983)].

Similarly, lXjl2 has an exponential distribution with a mean value of unity.

Then the probability density function is given by

-z./A.

‘(zj)=l+TeJJ (3.353)

This equation is valid for positive zj if Aj > 0 and negative zj if ~j < 0.

The characteristic function, Mj(o) of zj is defined as the expected value of
eiOZj

Mj(6)= E [eiezj] = ~ eiezj p(zj) dzj = (1 - iAje)-l (3.354)
-a

From this and the relationship in Eq. 3.352, the characteristic function of x

is given by

M(e) =E[e iexl = ~J ( 1 - iAj6)-1 (3.355)

The probability density function of x, p(x) is a Fourier transform of M(e),

P(x) = & 7
-a

Substituting the

integration [Naess

e‘i 6XM(6) d6 (3.356)

value of M(e), the integral is evajuated by contour

(1986)]

P(x) = { J;l ‘j ~J ‘-x.

j=~+~ ~ e ‘Aj
X<(I (3.357)

where the eigenvalues have been ordered such that Aj, j = 1,2,....M are

positive and Aj, j = M + 1, ......N are negative. The quantities U+ are
d

given by -
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= ! (1 -:)-1
‘j k=l

j
k+j (3.358)

Langley (1987) has shown through numerical computation that the value of

N, the number of frequency components, should be in the neighborhood of 200.

Vinje (1983) and Naess (1986) used N = 8 in their computation with a slightly

different approach through matrix inversion which is too small for convergence

of results.

In Langley’s (1987) method of pdf for second-order forces and motions,

the cumulants may be evaluated from the eigenvalues, Aj, as

kn=(n-l)!z~~
jJ

(3.359)

Langley considered an example of a half-submerged circular horizontal

cylinder of 10m radius in long-crested beam seas. Only the sway motion of the

cylinder was considered. The incident wave field was given by an ISSC

spectrum. Fig. 3.48 shows the probability density function of the force. The

force is highly non-Gaussian having a skewness of 1.96 and a kurtosis value of

5.87. The pdf of the sway motion for a damping factor of 0.005 is shown in

Fig. 3.49. It compares quite well with the corresponding Gaussian distribution

having the same mean and variance. However, it should be cautioned that at

the tail of the pdf, the agreement is poor so that the extreme value

prediction is expected to be quite different with an assumed Gaussian

distribution.

The total second-order response includes a linear and a second-order

term. Naess (1986) derived expressions for pdf of the pure quadratic response

term. On the other hand, Vinje (1976) derived the pdf of a weakly nonlinear

response from Taylor expansions of cumulants. Kato et al. (1987) obtained a

total second-order response probability based on the approximate theory of

continuous distribution. The total second-order response process of a moored

floating structure was obtained in a closed form by the difference of two

random variables which yield the Gamma distribution. In this case, the pdf of

the second-order response, x, was obtained as
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m~-1 r (ml) r (ml + r) m -r-1
~)xl

m+r -x/2g1
p(x) =Cx (+) 2 e

r=O r ‘ml
-r)r (r+

forx>O

and

‘2-1 r (m2) r (m2 + r) ‘/2;
p(x) = c z

-r-l lml+re z
(-x)mz (=)

r=O r ‘m2
-r)r (r+ 1)

where

and

forx<O

%1+ 52 5.
a.—

9 mi=~ z (i = 1,2) ,.-
2ele2

c 1=
‘1

(261) (232)
‘2

r (q) r (m2)

The parameters, ~i , and degrees of freedom, ~i , are given by

;. = ( z‘ij)2
,1 = 1,2; j = 1,2, . . . .

‘ (z A;j+c; /4)

(3.360)

(3.361)

(3.362)

(3.363)

(3.364)

(3.365)

and r is a Gamma function, ~j (j = 1,2,.....n) are the eigenvalues while ~lj

(j = 1,2,...nl) and ~2j (j = 1,2,.....n2) are the positive and negative

eigenvalues (n = nl + n2), Cj are the coefficients of l{near Gaussian random

variables. The summation in Eqs. 3.364 and 3.365 is on j.

From the statistical properties of the Gamma distribution, the first- and

second-order cumulants are given by

(3.366)
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-z -2
K2=2EA:+ EC:= 4ml ‘1 + 4m2e2 (3.367)

where K1 is the mean value E(x) and K2,

response.

The pdf of the slowly varying

rectangular cylinder obtained from the

3.50. The Gaussian distribution as well

also shown. The latter matches well with

Fig. 3,51 compares the probability

response with that of the total response

1

(.

:he variance V(x) of the second-order

;way motion of a moored floating

above formulation is given in Fig.

as the pdf from Naess formulation is

Kate, et al. (1987).

distribution’ of a pure second-order

including the first-order term, The

asymmetry of the total second-order response is higher.

3.4 SHORT-TERM RESPONSE MEASUREMENTS

Many offshore structural models have been tested in the CBI wave tank.

These tests involved both fixed ahd floating structures and included random

waves generated in the tank.

Waves are generated in the test tank using a pneumatic type wave maker.

The wave maker consists of a low pressure blower connected to a large open

bottom plenum chamber that is partially submerged in the tank. A flapper

valve between the plenum and the blower controls the pressure in the plenum

chamber. By changing the position of the flapper, the inlet or the outlet of

the blower can be connected alternately to the plenum, causing the water level

in the chamber to alternately rise and fall. The cyclic motion of the water

in the plenum chamber generates the waves in the tank.

The position of the flapper valve is controlled by a hydraulic servo

system. The system accepts both a flapper position feedback signal from a

transducer at the flapper and a reference signal, and operates a hydraulic

cylinder to cause the flapper position to match the reference. The amplitude

and frequency of

frequency of the

The method

the generated waves are directly related to the amplitude and

reference signal.

of random wave generation is similar to that described in

section 2.2. Random waves are created

number, e.g. 200, of sinewave components
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phases. By tailoring the amplitudes of the frequency components, a desired

ocean wave spectrum can be modeled. The wave reference signal is initially

calculated and stored as a digital time series. To generate the analog

reference required by the servocontroller, the stored time trace is output one

point at a time through a digital to analog converter under the control of a

dedicated microcomputer. By generating waves from a stored time series,

identical waves can be repeated for any number of tests.

The results on the responses of structures tested in the tank in random

waves are presented in this section. The structures that are considered for

this presentation are fixed vertical and inclined cylinders, articulated

towers, barges, tankers and semisubmersibles. For the fixed structures, the

wave loads were measured whereas for the moving structures, the loads and

motions were recorded. The short-term distribution of these quantities are

presented and compared with theoretical distribution function. Where appro-

priate, discussions have been presented in correlating the measured distribu-

tion with the theoretical techniques presented in the earlier sections.

3.4.1 Random Wave Load Tests

A series of tests were conducted with circular cylinders of various

diameters fixed in waves. A small section of the cylinders was instrumented

to measure two component local forces. The cylinder was orientated to measure

the inline and transverse or lift forces on them. The instrumented sections

were placed under water so that they were never exposed in air during the

passing of waves. The orientations of the cylinders were changed from the

vertical to inclined in a few test setups. In some cases, currents were

generated along with the random waves. This section provides results of the

waves generated, kinematics measured at the instrumented sections and forces

on these sections.

3.4.1.1 Vertical Cylinder

In a test series in the CBI tank with a 3 inch diameter fixed vertical

cylinder, forces due to random waves on two 1 ft. smooth sections of the

cylinder were measured. Two random waves were chosen having broad band

spectra with a bandwidth parameter, E of about 0.70 but different frequency

distribution. A plot of one of the wave spectrum is shown in Fig. 3.52. A
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small portion of the measured wave profile and in-line and transverse forces

on the two instrumental sections is shown in Fig. 3.53.

Correlations are made of the measured in-line force spectra with the

theoretically computed spectra. The hydrodynamic coefficients are considered

constant over the frequency range of the wave spectrum and are chosen based on

an equivalent KC number. In this regard it should be noted that it does not

seem appropriate to assign values of CM and CD based on individual waves in

the spectrum depending on a small frequency band. In fact, an attempt to

derive the KC number on this basis by dividing the spectrum into several small

frequency bands of equal width showed that the method is rather impractical

and produced values that are not realistic. An equivalent KC number may be

defined in several different ways. An equivalent KC number may be obtained,

for example, based on the rms value of the water particle velocity and a mean

zero-crossing period obtained from the moments of the wave spectrum.

Calculation for one of the measured wave spectra showed that au = 0.388

ft/sec. and~z = 2.2 sec. so that the equivalent KC number is computed as

07
KCeq =+=3,4 (3.368)

From Fig. 2.6, this value of KC gives a mean CM = 2.2 (tO.35) and a mean

CD= 0.8 (tO.5).

Correlation of force spectra is based on Bergman’s (1972) method with the

drag force spectra approximated by its linearized term. The values of CM and

CD chosen for all measured force spectrum correlations are

CM= 1.90

CD = 0.10

These values correspond

but are chosen strictly

the measured. While the

Fig. 2.6 for KCeq = 3.4,

to a KC value near the equivalent KC number of 3.4,

to give a good fit of the computed force spectra to

chosen CM and CD values are within the range shown in

these values are low and fall near the lower limit of

the variation at this KC value. The correlations of the force spectra are

shown in Fig. 3.54 Note that the correlation is good in general. Thus, it

has been possible to obtain good correlation with constant CM and CD values
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over the frequency range of the wave spectrum. Moreover, these values

correspond to an equivalent KC number based on the rms velocity and mean

period of the wave spectrum, albeit at their low end of the range, in these

cases.

The transverse force on the cylinder due to these random waves has been

generally small. A measured transverse force spectrum is given in Fig. -

3.55. Note that the peak frequency of the spectrum (~) is at about twice the

frequency of the peak of the wave (or in-line force) spectrum. Thus, the

transverse force, while irregular in nature, has frequencies that are

generally twice the component frequencies of the random waves.

3.4.1.2 Inclined Cylinder

Similar tests were conducted with a 6 inch diameter inclined cylinder

near an inclined plane boundary. The slope of the boundary was changed from

0° to 40° and 70° with respect to the horizontal. Similarly, the uniform gap

between the cylinder and the boundary was varied from 0.25 inches to 2.5

inches and 4.5 inches. Several random waves were generated past the cylinder

for each boundary gap and each slope. The random waves were modeled after the

Bretschneider spectrum and were three minutes in duration.

A sample spectrum from the wave generated in the tank is shown in

Fig. 3.56. A small portion of the corresponding measured wave profile, water

particle velocity and in-line andnormal forces on the instrumented section is

shown in Fig. 3.57. The data are presented from the smallest cylinder-

boundary gap of 0.25 ins. The velocity and load in the in-line (X) direction

follow the wave profile reasonably well with one-to-one peaks. However, the

normal load (in the Y direction) has twice as many peaks as the wave. The

additional peaks are due to the second harmonic component in the force.

Moreover, the downward force is much larger than the upward force. At the

larger gaps, the normal force frequencies follow the wave frequencies and the

asymmetry in the profile disappears. A sample calculation was made of the

linearized drag force spectra. For the wave spectrum chosen, we obtain the

rms velocity, ou = 0.2 ft/sec. and the mean zero-crossing period, ~z = 2.0

sec. Then, an equivalent KC number is computed as

140



m

c

FIGURE 3.56

GAP=4.5 IN.

/’
1

.
0.3 0:9

FREQU:NCY (tiz)

SAMPLE MEASURED WAVE SPECTRUM



* NORMAL LOAD ( Y ~ ON lNSTRUMENTFIl SFCTlON
d

IN - LINE WATER PARTICLE VELOCITY

‘o 5 10 20 ;5 30
TIME ( SE:ONDS )

FIGURE 3.57 SAMPLE MEASURED DATA FROM RANDOM WAVES



OUT*
KC =~= 0.8eq (3.369)

For this KC value, the drag coefficient from Sarpkaya’s (1981) data is

CD = 1.0. The drag force spectra computed with these values was on the order

of 1% of the inertia force spectra. Since the drag force contribution is

insignificant, for the subsequent calculations CD is taken as zero.

Therefore, the computation of the force spectrum is rather straightforward.

The correlations for the in-line force spectra for all

slopes of 0°, 40° and 70° are shown in Figs. 3.58 - 3.60,

that the correlation is good in all cases.

The normal force on the cylinder due to random waves

gaps and the

respectively.

was generally

three

Note

smal1

in all cases except for the smallest gap of 0.25 ins. This is evident from

the measured normal force spectra given in Fig. 3.61 for gaps of 4.5 and 0.25

in. Note that there are two distinct peaks in the spectrum for the 0.25 in.

gap; one at the peak frequency of the wave and in-line force and one at twice

this frequency. There is a third ‘peak at a low frequency corresponding to the

set-down shown in Fig. 3.57. The correlation of the linear part is made using

the above procedure. The spectra due to second harmonic is computed from the

transfer function measured in regular waves [Chakrabarti and Libby (1987)] and

the following relationship

s~(2f) = 8S2(f)

where RAO = transfer

s(f). This formula

spectrum computation

Fig. 3.61 is similar.

[RAO(f)]2(Af) (3.370)

function and Af = frequency increment in the estimate of

is similar in form to that used in the drift force

[Rye, et al.

However, the

3.4*1.3 Force Distributions

It has been shown by several

(1975)]. The shape of the two spectra in

correlation may only be termed fair.

investigators earlier [Gods (1985)] that

even for a relatively broad band wave spectrum (S c 0.7) Rayleigh distribution

provides a good approximation to the individual wave heights defined by the

zero-uncrossing method. If the wave heights follow Rayleigh distribution and

responses due to waves are linear with the wave heights then it is straight-

forward to show that the response amplitudes also follow the Rayleigh
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distribution. Thus , if the forces measured on the cylinder

inertial then these random force amplitudes may be described by

distribution function.

are strictly

the Rayleigh

From the earlier force correlation it is found that the drag force

contribution in the total force is quite small. For the vertical cylinder

tests, the cumulative distribution of the wave heights and in-line force

double amplitudes (heights) are shown in Figs. 3.62 and 3.63, respectively.

It is found that the forces follow the Rayleigh distribution function as good

as or better than the wave heights. The wave heights show some departure at

the high end of the distribution function. The in-line response has a

somewhat similar trend. While the overall correlation seems satisfactory in

both cases, this deviation at the upper tail may be important from the point

of view of the extreme value analysis.

The transverse force, on the other hand, while small in magnitude, shows

a significant departure from the Rayleigh

force has a form

fL(t) = ~ CL P D [u(t)]*= C[u(t)]2

distribution. Note that the lift

(3.371)

i.e., the lift force is proportional to the velocity squared. In the above

expression, the value of CL is assumed to be constant with time. This

assumption is not strictly correct because the lift force is irregular.

However, if the most predominant lift force frequency is twice the wave

frequency, this assumption is reasonable. This form is similar to the wave

drift force profile. Langley (1984) showed that for a wave drift force, the

asymptotic initial distribution of the drift force profile for a narrow band

spectrum follows an exponential distribution. For a wider band spectrum, the

distribution is sharper depending on the value of q. Bergman (1972) has shown

that on a narrow band assumption, the drag force amplitudes follow an

exponential distribution. The lift force due to regular waves may be

approximated by the formula

2
‘L ‘ ‘L ‘m Cos 2mt (3.372)
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where kL = 1/2 CL P D. In this

lift force profile are ignored

regular waves is given by

2
‘Lm = ‘L ‘m

form, the other frequencies in

as small. Then, the maximum

the irregular

lift force in

(3.373)

Following a method similar to Bergman’s (1972) for the drag force amplitudes,

the lift force amplitudes may be expected to follow the exponential

distribution at least on a narrow band spectrum assumption. This distribution

may then be given by
. *

P(;L) = 1
‘L ‘L

-exp[-r]=l-exP [-= 1

L rms

(3.374)

A

where fL = amplitudes of f
$

and urm~ = rms value of the water particle

velocity and (fL)rms = kL urm~ ● The correlation between the measured lift

force amplitudes and the exponential distribution is shown in Fig. 3.64. From

this correlation it is seen that at least at the low end of KC number (< 10)

the lift forces do not follow the exponential distribution well, especially at

the intermediate range of the independent variable. On examining the lift

force profile, it is found that the frequency contents of the lift force

correspond to the wave and the inline force frequencies as well as twice these

frequencies. Thus, the distribution of the lift force amplitudes is between

the Rayleigh distribution and the exponential distribution function and may

have to be obtained as a distribution of a polynomial series in the powers of

velocity.

The forces measured on the instrumented section of the inclined cylinder

in the in-line (X) and normal (Y) directions with respect to the cylinder axis

are mostly inertial. Therefore the random force amplitudes are described by

the Rayleigh distribution function. At the smallest gap, however, the normal

force had larger force components at twice the frequencies of the wave

frequencies and may not be expected to follow the Rayleigh distribution

function well. The normal force is expected to be a mixed distribution. When

the second harmonic is small, e.g., for larger gaps, the distribution will be

closer to the Rayleigh distribution.
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The cumulative distribution of the wave heights, in-line and normal

force amplitudes for random wave runs with a 0° slope and gaps of 2.5 in. and

0.25 in. are presented in Figs. 3.65 and 3.66, respectively. The wave heights

and in-line forces are found to follow the Rayleigh distribution reasonably

wel1 even though the departure from the theoretical curve is not

insignificant. Part of this deviation may be due to a large bandwidth. The

normal force for the larger cylinder/boundary gap of 4.5 ins. has a similar “

correlation. However, the normal force at the 0.25 in. gap compares poorly

with the Rayleigh distribution. The distribution of the measured force

amplitudes rises more sharply than the Rayleigh curve and corresponds more

nearly to the exponential distribution. It is possible that the correction

required for a larger band width may improve this correlation as shown by

Langley (1984) for the initial drift force distribution.

Additional test runs were recently made with a 2.5 inch diameter vertical

cylinder with a 1 ft. instrumental section submerged 1 ft. below the still

water level (SWL). Besides the wave profile, the velocity components at the

center of the instrumented section (18 inches below SWL) were measured. Two

random waves having similar significant wave heights (Hs = 8.4 - 8.5 inches)

but slightly different peak frequency (Fig. 3.67) were chosen. The

probability density of the wave elevation and horizontal velocity for these

runs is compared with the Gaussian distribution on the top of Figs. 3.68 and

3.69. The probability density of the inline load and the cumulative

distribution of its amplitudes are shown in the middle along with Gaussian and

Rayleigh probability respectively. The transverse (or 1ift) force is

correlated with the exponential distribution at the bottom of the figures.

The wave and the velocity profiles follow Gaussian distribution even though

there is some random departure in the case of the velocity. The inline force

seems to be asymmetric and skewed to the right in both cases. This trend is

definitely comparable to the distributions derived for linear-plus-quadratic

terms by Kate, et al. (1987) in Fig. 3.51.

The transverse force probability density function is generally symmetric

and sharply peaked compared to the Gaussian density function. This is,

however, expected as there are numerous small peaks due to higher harmonics
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present in the lift force which provides. a bias towards its mean value.

Because of the presence of multiple harmonics, correlation with the

exponential distribution is not satisfactory.

Additional test runs were made in the presence of uniform current. In

these cases, the horizontal particle velocity was measured as well at the

center of the instrumented section. The random wave run was repeated with an

inline and an opposing current having a strength of y = 1.0. The horizontal

velocity and the inline load histograms are correlated with the Gaussian

distribution in Fig. 3.70. The top plots represent waves without current

while the bottom ones correspond to the inline and opposing current

respectively with the waves. The horizontal velocity and inline loads follow

the Gaussian distribution in the absence of current. While current is

present, the distribution represents a non-zero mean, positive or negative

depending on the direction of current. Moreover, there is a small tendency of

the histograms to be skewed towards the zero value with respect to the mean.

This skewness is more pronounced for the inline load in the opposing current.

The distributions of the transverse forces are shown in Fig. 3.71. The

left-hand sides show the correlation of the force histograms with the Gaussian

distribution while the right-hand side plots represent the cumulative

probability distribution of the force amplitudes with the theoretical Rayleigh

distribution function. The departure from the Rayleigh distribution is quite

evident and is more pronounced in the adverse current case. Similarly, the

force profiles are more peaked compared to the Gaussian distribution,

particularly for the opposing current case. The transvere force, however, has

a zero mean in all cases.

3.4.2 Response of an Articulated Tower

An articulated tower was tested in random waves in which the inline

oscillation angle of the tower at the bottom as well as the horizontal load at

the universal joint were measured (Fig. 3.72). The random wave represented a

modified P-M spectrum. The tower was subjected to a steady load from the

simulated wind. The histograms of the wave elevation, horizontal U-joint load

and tower oscillation are compared with the” Gaussian distribution in Fig.

3.73. Note the non-zero mean values in the latter two cases due to the

applied steady load. The amplitudes of these measurements are compared with
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the Rayleigh distribution in the same figure. The correlation of the tower

oscillation with the Gaussian and Rayleigh distributions is reasonably good.

The horizontal load, however, show some deviation. The dimensions of the

buoyant tower relative to the wave were such that some drag dependence of the

load may be expected.

3.4.3 Response of a Moored Tanker

A tanker model moored by catenary anchored lines was tested in the wave

tank. The tanker model represented a 100,000 dwt displacement tanker class,

and the mooring arrangement was similar to the one shown in Fig. 2.30. The

load-elongation characteristics of the catenary system are shown in Fig.

2.31. During the test in random waves, the surge of the tanker as well as the

line tension in the forward mooring line were measured. The tanker was

ballasted at 50 percent and was subjected to a steady wind load. One run also

included a steady current load.

The results for the line tension and tanker surge are presented here.

These data are digitally filtered to remove the high frequency oscillations

corresponding to the wave frequencies so that the responses correspond to the

low-frequency oscillation only. The histograms and cumulative distribution of

amplitudes of the line tension and tanker surge are correlated with the

Gaussian and Rayleigh distribution respectively in Figs. 3.74 and 3.75. These

runs correspond to two different random waves and wind; the second one having

steady current as well. The distributions are somewhat asymmetric about the

non-zero mean value, but otherwise, close to the Gaussian distribution

function.

3.4.4 Response of a Barge

A conventional barge model was tested in the CBI wave tank. The barge

was 12.5 ft. long, 3.25 ft. wide and had a draft of 0.42 ft. It was moored in

head seas by a linear spring fore and aft such that it had a natural period in

surge of approximately 30 seconds. The details of the barge characteristics

have been reported by Chakrabarti (1982). The mooring line load and surge

motion of the barge were measured in random waves.

The data was filtered as before to remove the high frequency oscillations

using a high pass filter with a cut-off frequency of 0.2 Hz. The results are
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presented in Figs. 3.76 and 3.77. There are two limitations that can be

stated regarding this set of data. First of all, the length of data runs was

limited (five minutes of model time). It has been shown by Pinkster, et al.

(1987) that the statistical parameters should be unstable for short duration

of runs. Moreover, the number of components used to generate waves

smal1. These limitations are evidenced in Figs. 3.76 and 3.77.

individual measurements correspond to each other, any trend in the

data is lacking.

were also

While the

histogram

3.4.5 Response of a Semisubmersible

A model of a semisubmersible pipelay barge design was tested in the CBI

wave tank. The major dimensions of the semisubmersible were 8.1 ft. long and

2.8 ft. wide. The barge was composed of twin hulls and six legs supporting a

box superstructure. It was ballasted at the legs to a draft of 0.78 ft. The

model was moored to two fixed points by linear springs. The springs on the

fore and aft sides of the model were identical with a spring constant of 0.49

lbs/ft. each. The spring constants were chosen so that the translational

natural period of the moored system was about 30 sec. The mooring lines were

instrumented with load cells. In addition to the wave elevations, the dynamic

pressure in the free-stream flow, one

also recorded.

The results for these measurements

foot below the still water level, was

are shown in Fig. 3.78 for a P-M wave

spectrum and in Fig. 3.79 for a JONSWAP wave spectrum. The data for the line

load was likewise filtered as before to retain only the low-frequency loads.

Thus, the correlations with the Gaussian distribution in Figs. 3.78 and 3.79

correspond to the high-frequency wave as well as corresponding dynamic

pressure and low-frequency line load. Note that the line loads are biased

towards positive values and show poor correlation with Gaussian.

3.5 LONG-TERM RESPONSE PREDICTION

The long-term refers to the desired lifetime of a marine system or an

ocean structure. During this period of time, the structure experiences a

large number of seas from very small to very large. Each of these individual

seastates is a short-term phenomenon and

nonlinear excitation depending on its size.

may be treated as a linear or

Similarly, the responses may be
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linear or nonlinear depending on the type and size of them. Thus, it is

understood that long-term response statistics would include both linear and

nonlinear response parameters. In long-term statistics, a few statistical I

parameters representing individual short-term seas, whether linear or

nonlinear, are required. Thus, the long-term statistics involve parameters

obtained from both linear and nonlinear analysis, even though many of the

severe seas will produce parameters involving a nonlinear system.

There are two types of information useful in the study of the long-term

statistics of waves. One is the sea severity. The severity of sea is

generally expressed in terms of the significant wave height or significant

wave height coupled with the associated zero-crossing or modal wave periods.

In this case, the probability distribution of Hs or the joint distribution of

Hs and ~z (or To) is needed. The other type of information is the long-term

probability of individual wave heights.

Unlike individual waves in the short-term record, no theoretical method

is available to derive the probability distribution of the significant wave

heights or the joint distribution of Hs and Tz . These distributions are

obtained from actual measurements in the oceans at frequent intervals over a

reasonable period of time (e.g., several years). The distributions of these

significant wave heights have been compared with known distribution functions

in order to examine their suitability. Of the available distribution

functions, e.g., described in Section 3.1, the common ones considered most

often are the Weibull and log-normal distribution. Correlations have shown

[Ochi (1982)] that the Wiebull distribution is poor at small Hs values while

log-normal underestimates Hs, at the large values of Hs. The log-normal

distribution seems to be slightly better, in general, and has certain

advantages, as well.

The zero-crossing wave periods have also been found to follow log-normal

distribution quite well. Since both height and period individually follow

log-normal distribution, it may be shown [Ochi (1978)] that their combined

statistical properties follow bivariate log-normal probability law.

A long-term probability defines events and extreme value statistics for a

period on the order of 20-100 years, as opposed to a few hours for the short-

term probability. The concept of extreme waves is associated with that of

design waves for an offshore structure. In order to obtain a long-term
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probability of wave heights, the wave height data at a particular site are

collected over the period of a few years. The wave heights are plotted on a

suitable probability distribution paper so that the distribution of the data

appears as a straight line. Then the straight line is extended to the desired

return period to obtain the extreme wave height.

If information is available for numerous short-term statistics of the

wave heights then the long-term probability of wave heights may be obtained by

the following simple method of order statistics. The short-term wave heights

are ranked in the order of higher wave heights. If there are N short-term

wave heights over a long-term period such that TL is the long-term period and

TS is the short-term period, then

N ‘L
‘~

TL is also termed the return period

wave. The probability distribution of

P(Hm) =+

(3.375)

or recurrence interval of the maximum

the wave height is given by

(3.376)

and the probability of exceeding a given height is

Q(Hm) = 1 - & (3.377)
.

In order to obtain the total probability, this figure should be multiplied by

the short-term probab’iliity. The long-term probability could seldom be

obtained by the above method because of lack of long-term wave data. “ -.

Therefore, one has to rely on a theoretical probability distribution

function. There are several such formulas available as discussed in

Section 3.1. Suitability of these formulas

established with limited field data that may

data are usually available at the upper tail

fitting different distributions and choosing

difficult task.

to a particular instance may be

be available. Since little or no

of the probability distribution,

the most suitable one is always a
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3.5.1 Bivariate Short- and Long-Term Distribution

3.5.1.1 Short Term

Because of the variability of wave spectral shape, Ochi (1978) advocated

use of a family of wave spectra for given significant wave height and peak

frequency. Using the two-parameter spectral model of modified P-M, he showed

that in the short term (P(.) c 0.99), the significant wave height and peak

frequency follow log-normal distribution. The statistical properties of

combined wave height and wave period then follow a bivariate log-normal

probability distribution. The conditional distribution of the

uo, for a given significant wave height, Hs, is written as

P(TOIHS) =

‘o
u

in To - ‘TO IHs
exp [-~

~ To

peak frequency,

] (3.378)

where the probability of To refers to a given Hs, U. = 21T/ To p =

correlation coefficient between wave height and period, u and a refer to mean

and standard deviation and

‘TO
‘~T~ —(ln Hs-uH)

‘TOIHs () ‘Hs s
(3.379)

Analyzing the recorded North Atlantic wave data, Ochi (1978) obtained the

expressions for the most probable as well as the upper and lower values of the

peak period. The most probable peak period is given by

‘T.
To(m) ‘exp[uT+~ —(ln Hs-uH)-~ aTo] (3.380)

o ‘Hs s

while the upper and lower values of the peak period for a given confidence, y,

is written as
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‘TO
TO(Y) = exp [ ~TO+ p — (In H~ - ~H)Ax~uT ] (3.381)

‘H~ s o

where the confidence level, Y (= m) is a standard normal for the argument x,

4(X) = ~ (e-t2/2dt (3.382)

In particular, the values of x are

x 4

1.96 0.95

1.44 0.85

1.15 0.75

0.67 O*5O

If x is set equal to 1 in Eq. 3.381, then the most probable value Of To (Eq.

3.380) is obtained. From the mean North Atlantic data the peak period for

various confidence coefficients are shown as functions of the significant wave

heights. The equations for the peak frequency for the various confidence

values are given in Table 3.6.*

An example of how this family of spectra may be used to predict the

extreme responses, the formulas for the most probable extreme value and the

design extreme value are considered as follows. The design extreme value of a
A

response amplitude, yn , is given in

Ts
jn(R) r ‘o}@=21n{m’~ (2.383)

in which R = risk factor, T~ = largest duration of sea in sees., and N =

number of encounters with a specified sea in the structure’s lifetime. For

the most probable value, ~n, in the above equation, R = 1, and N = 1.

Ochi (1978) presented results of a numerical analysis on a semi-

submersible in which the transverse forces in a beam sea are computed. The

extreme values of the transverse forces for various seastates are shown in
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Fig. 3.80. The most probable as well as upper and lower extreme values for

the modified P-M spectra are given in the figure. In the computation, the

beam seas are assumed to be exposed a quarter of the assumed 20 year life.

3.5.1.2 Long Term

In contrast to the short-term prediction, the long-term prediction

experiences all waves encountered by the structure, large and small. This is

important from the standpoint of the fatigue life of the structure. The long-

term predictions also deal with the extreme of the response in the lifetime of

the structure. In order to evaluate the long-term extreme response, the long-

term wave statistics must be known. This may be accomplished in the form of

the frequency of occurrences of all possible seastates or the long-term joint

probability distribution of wave height and wave period.

The frequency of occurrence for the seastates in the North Atlantic was

obtained by Ochi (1978) and is shown in Table 3.7. The product of this and

the short-term probability of a family of seastates may be obtained as the

long-term probability. The short-term probability will depend on whether the

system is linear or nonlinear. The probability function for the nonlinear

system depends on the type of nonlinearity, some of which have already been

covered in Chapter 3.

The short-term distribution of a narrow-banded Gaussian response

variable, x, follows the Rayleigh distribution function

P5(X) = 1 - exp(-x/ ~2

where ~ varies linearly with wave amp”

(3.384)

itude, and is est”mated from wave

spectra and transfer functions by means of the linear superposition

principle. Thus, the statistical short-term distribution of a response

variable is completely defined by one single parameter, E, for given structure

size, heading angle, forward speed and seastate (~, He ). For nonlinear

systems, E will not vary linearly with H, but

obtained for a given seastate. In this case,

is not appropriate, and additional parameters

probability.

a single ~esponse value may be

Rayleigh distribution function

may be needed to describe the
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TABLE3*6

mDAL FREQUENCIESFORTIiE (HEAN)NORTHATLANTICmvE SPECTRA

AS FUNCTIONSOF SIGNIFICANTHAVEHEIGHT[OCHI (1978)1

Lower UO

Most Probable

Upper ~

NOTE : win rps

I-Isin meters

Y VALUE OF ~

0.95 0.048 (8.75 - tn H~)

0.85 0.054 (8.44 - An H~)

0.75 0.061 (8.07 - ~nH~)

O*5O 0.069 (7.77 - In H~)

0.50

0.75

0m85

0.95

0.079 (7.63 - ~n H~)

0.099 (6.87 - &n H5)

0.111 (6.67 - m H~)

0.119 (6.65 - En H~)

0.134 (6.41 - m Hs)
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TABLE3.7

FREQUENCY OF OCCURRENCE OF VARIOUS SEASTATES

IN THE (MEAN) NORTH ATLANTIC [OCHI (1978)]

SIGNIFICANT
WAVE

HEIGHT
(m)

SIGNIFICANT
WAVE

HEIGHT
(m)

FREQUENCY
OF

OCCURRENCE

FREQUENCY
OF

OCCURRENCE

0.0079<1 0.0503 9-1o

0.2665 10 - 11 0.00541 -2

2-3 0,2603 11 - 12 0.0029

3 -4 0.1757 12 - 13 0.0016

0.1014 13- 14 0.000744-5

5 -6 0.0589 15 - 16 0.00045

0.000126 -7 0.0346 16 - 17

7 -8 0.0120 > 17 0.00009
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The long-term non-stationary response process is written as a sum of a

large number of short-term stationary processes. Therefore,

w
PL(X) = ~ p(x)p(~) dfl

o

where PL is the long-term probability.

The long-term distribution of ~ is sometimes assumed

(3.385)

og-normal.

Likewise, the long-term distribution of response amplitudes is assumed log-

normal [Jasper, et al. (1956)].

Nordenstrom, et al. (1973) obtained a long-term distribution from data

from seven different ships by formal integration of the above equation. They

grouped the measured ~values (of longitudinal bending moments) into five

Beaufort groups and found that the long-term distribution of -within each

group was approximately a normal distribution. The integration was carried

out separately for each Beaufort group and the final long-term distribution of

amplitudes was obtained as a weighted sum of long-term distributions for

Beaufort groups.

Lewis (1973) made a similar analysis for ship bending stress. The actual

stress (trough

weather system

mean square

distributed.

to peak) in any record were Rayleigh distributed. The total

was divided into n weather groups. In each weather group, the

values of stress, fi from many records were normally

Nordenstrom (1973) investigated a distribution function which was in-

between the normal and log-normal, but closer to the normal one and was

capable of describing the entire range of ~ . This function was found as

the Weibull distribution function

P(n) = 1 - exp [ - ( ~/a)m ] (3.386)

where a and m are parameters. Note that m = 1 gives exponential distribution

while m = 2 yields the Rayleigh distribution. The Weibull distribution was

based on 1577 full scale recordings of longitudinal stress amidships on seven

ships, as well as other published data. The resulting long-term distribution

of amplitudes was found to be another Weibull distribution
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P(x) = 1 -exp

where the parameters

Weibull distribution

(3.387)

b and k are functions of m. A method of obtaining this

and the values of the parameters involved has been

described by Nordenstrom.

The long-term response depends at least on the following

having an assigned weighting factor: (a) sea severities, (b)

quantities each

spectral shape,

and (c) number of cycles in the response due to a seastate. Considering these

factors, the long-term probability density function is given by

~ ~ Ns pi Pj P(X)

@) = i J
z z Ns pi pj
ij

where p(x) = short-term response

(3.388)

probability density function.
N5 = number of short-term responses = ~?

Pi = weighting factor for sea condition (state)

Pj = weight factor for wave spectrum shape

The total number of response expected for the lifetime of the structure is

given by

N = X Z Ns pi pjTL
ij

where TL is lifetime in seconds.

Ochi (1978) utilized the above approach in computing the long-term

response of the semisubmersible loads in beam sea. Two different methods

produced two probability functions from which the extreme values are shown in

Fig. 3.81. Note that the extreme values estimated by the two methods of long-

term prediction agree quite well.

(3.389)

3.5.2 Time and Frequency Domain Long-Term Predictions

When the

known, whereas

long-term probability density function for a response is not

the long-term distribution of waves is given in a tabular form
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in terms of probability level for the pair

the short-term response due to long or

first. It is then extended to a long-term

wave data. This method is applicable in

system [e.g., Fukuda (1968)].

Assuming that the response, e.g., the

of wave parameters, Hs and Tz, then

short-crested waves are computed

distribution based on the available

the frequency domain for a linear

bending moment of a ship addressed

by Fukuda is a linear function of the regular wave amplitude, the short-term

distribution of the bending moment in a short-term sea follows the Rayleigh

distribution. The standard deviation, am of the bending moment in a short-

crested wave of constant heading is given by

02m = Jm Je [H(M, 0- 6.)]2 S(U, e) dude
-n o

(3.390)

where 9 = angle between wave component and mean wave direction, 90 = ship

heading angle with respect to the mean wave direction, and the transfer

function, H, corresponds to the heading angle, O.. The directional sea may be

assumed to be given by the cosine square law

:5(U)COS26, -:<0+
s(b), e) = {

o, elsewhere
..

Then, the variance due to a short-crested sea is given by

22 lT/2 =
0.== / f [H(u, 0- %)]* S(U) COS2e dude

(3.391)

(3.392) “ ~~
Ill II -

-Tr/2 -0

where S(U) is a theoretical

noted here that for the

response spectrum is not

response is needed.

u .-

or measured spectral energy density. It should be

long-term response prediction the shape of the

important; only the variance of the short-term

Once the short-term response parameter, IS,

the probability of exceedance of the variable

bending moment) beyond a given Ml, is given by

2
‘1

q(M>Ml)=exp [-—
2U2]

m

for a linear system is known,

M (e.g., the amplitude of the

(3*393)

155



Assuming that the probability density function of a is given by pL(U), the

long-term probability of exceedance is obtained from the integral

2
‘1

Jm exp [ -v] p(~)doQL(M>MI) = ~ (3.394)
20

which is evaluated by replacing the integral by a summation.

Let pij denote the long-term frequ@ncY of occurrence of a short term wave

given by the significant wave height, Hi, and the average period, Tj. AIso,

let Uijk denote the short term response Parameter for this wave and for a wave

angle of ek where k is the kth equal interval between -Ir/2and m/2. Then the

probability for all waves at this heading an91@, Gk is 9iven by
c1

Qk(M> Ml) =
‘1’zxexp(-~lpij (3.395)

ij ijk

If it is assumed that the long-term probability is uniformly distributed for

heading angles between O and 2w, then the total probability is obtained from

Q(M>M1)=f; Qk(M>M1) (3.395)

where N6 is the total number of intervals of heading angle between -IT/2 to

lT/2. Usually a 10-15° increment of heading angle is sufficient for response

calculation for the short-crested waves.

The above method is applicable only to linear systems, i.e., systems in

which the response function is related to the excitation~ e.g.~ wavess in “a

linear fashion such that if the wave amplitude is doubled the response

amplitude also increases by a factor of two. When this relationship between

the wave and the response doe’s not exist, a more elaborate time domain

analysis, sometimes termed total system analysis, may be used. It should be

noted that this method is extremely time consuming and is prohibitive to use

routinely in the design of a structure. It may be used as a benchmark for

other more efficient albeit approximate methods.

The time domain analysis is applied to the short-term response

prediction. For a given wave energy density spectrum, e.g., given by the
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parameters, Hi and Tjz a time history of the wave is generated by one of the

methods such as outlined in Chapters 2 and 3.

From the relationship between the response and the regular wave (e.g.,

wave force given by the Morison equation in terms of the water particle

velocity and acceleration), the time history of the response due to the short-

term wave (Hi, Tj) may be computed. The method of computation may include a

finite-difference or a finite-element scheme and may involve one of the

analysis methods outlined in Chapter 2. Considering the variability of the

spectral shape for a given (Hi, Tj), it has been proposed by Ochi (1978) and

Hoffman and Walden (1977) that a family of wave energy density spectra be used

in place of a single spectral model. In this case, several time histories of

the response are generated, one for each spectral shape. Similarly, if the

wave direction is an important consideration for the response, then a response

time history for each increment of wave direction is needed.

From these short-term time histories, a histogram of the extreme values

may be constructed. This then will provide the probability density function

of the response from which the expected value and variance of the response may

+, be computed. It is sometimes possible to consistently fit a known theoretical

distribution through these histograms. In this case, the subsequent analysis

is much simpler as illustrated by the Rayleigh distribution for a linear

system earlier. Once all the short-term parameters for all possible wave

conditions are known by this method, the long term prediction of the response

may be carried out by the ordinary statistical method outlined earlier.

3.5.3 Extrapolation of Wave Scatter Diagram to Longer Duration

In order

structure and

the extremes,

measurements,

measured wave

to cover all wave conditions over the entire service life of a

obtain statistically reliable response predictions, particularly

one should choose a period much longer than the period of wave

generally encountered in literature. Thus, extrapolation of the

scatter diagram is needed. Inglis, et al. (1985) showed that it

is desirable for the aforementioned reasons to consider a scatter

the sea states that is at least ten times the service life of the

This will provide a much better value for the average occurrence

sea states.

diagram of

structure.

of various
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A simple method is outlined below to extrapolate a wave scatter diagram

to a period that is long compared to the structure’s service life. It can be

achieved

1.

2.

3.

4.

5.

6.

in the following steps [Inglis, et al. (1985)].

Plot the cumulative probability distribution

height, P(H~) for the available observations

Determine the parameters A, B and C of the

distribution

P(Hs) = l.exp(. ~)c

which fits the data.

of the significant wave

on Weibull scales.

three parameter Weibull

(3.397)

(3.398)

Calculate P(HS) for a range of values of Hs in excess of the largest

H~ in the observations using the above Weibull distribution.

Assuming one observation every 3 hours, the total number of

observations in 1000 years is 2921940. The number of occurrences in

1000 years, smaller than or equal to HS* is

N(Hs x Hs*) = 2921940 P(Hs < Hs*)

The number of occurrences of each H~* value chosen is

N(H~*) = Nl(Hs < (Hs* + 6)) - N2(Hs < (Hs* - 6)) (3.399)

where 6 is half the difference between two adjacent HS* values. Sum

all numbers of occurrences N(Hs*) for Hs* values exceeding the

highest Hs in the actual observations; this sum is NT.

The number of occurrences N(Hs*) are associated with an estimated

mean wave period, Tz, such as, assuming a constant wave steepness.

The number of actual observations for each (Hs, Tz) pair is finally

scaled up by the factor
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where

2921940 - NT

Na
(3.400)

Na is the actual number of observations. This gives the total

number of observat’

2921940.

3.6 Extreme Value Statistics

ons in 1000 years to the required total of

The extreme value is defined as the largest value expected

certain specified period of time. Since the specified

equivalently expressed in terms of number of observations of

to occur in a

time may be

the variable

under investigation, extreme value may refer to a specified number of

observations. This specified time may be a short-term interval, e.g., within

a wave record of 30 min. duration, which is considered statistically

invariant. Alternately, it could be long term in terms of the lifetime of the

structure. The distribution function, P(.) of the short-term wave heights, as

a random variable, is called the initial cumulative distribution for extreme-

value statistics. Similarly, the corresponding density function is the

initial probability density function. On the other hand, the extreme wave

height as a random variable in N observations has a different probability law.

If the initial probability distribution is known, e.g., Rayleigh

distribution of

straightforward

extreme values

distribution if

wave heights in a short-term sea, then the extreme value is

to compute by the order statistics. On the other hand, the

may be estimated without the precise knowledge of initial

the measured data or maxima are available. In the latter

case, an asymptotic extreme-value distribution is obtained.

As mentioned earlier, the probability distribution of extremes is

different from the initial distribution. Thus , the probability density

function of extreme wave heights, yn is

q(Yfl)= n [p(x) [P(x)n-llx = y
n

(3.401)

and the cumulative distribution is

Q(Yn) = [ [p(x)]n lx = y
n

(3.402)
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From the above

derived as

+-- dYn)
n

two equations, the probable extreme wave height, ~n , is

= o (3.403)

which gives

p’ (Yn) P(yn) + (n - 1) [P(Yn)]2 = O (3.404)

Assuming P to follow Rayleigh distribution, Longuet-Higgins (1952) showed that

Y*
2~[nexp (-~ )]-[exp (--$

rms rms ‘rms

Neglecting second term as small for large N, yn

Yn=J2 In n Xrms

) -1] = o (3.405)

is solved as

(3.406)

which is equivalent to Eq. 3.70.

In the previous discussions, the maxima were assumed to be statistically

independent which render the derivation simple. On the other hand, for a

narrow-band spectrum, the maxima changes slowly through envelope process and

are, therefore, highly correlated. The statistical dependence of maxima may

be included through the concept of Markov chain condition. In this method,

the magnitude of a maximum point depends on the immediately previous one, but

not any other prior ones. In this case, the joint probability distribution of

two successive maxima is needed. This is illustrated and derived by Ochi

(1982).

In the approximate method, measured or observed maxima over a certain

period (e.g., a number of years) are ranked and fitted with known probability

distribution curve. If the fit is good, the distribution function is used to

obtain extremes. In case the match is poor, the ranked data are plotted on a

probability paper as
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1- P(x) = + (3.407)

and extended for extremes over a certain return period. However, this method

may not be satisfactory as it relies on highest waves whose measurement may

not be very reliable. An alternative scheme of representation by fitting the

entire data by a least squares method has been discussed by Ochi and Whalen

(1980).

.-
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TABLE 4.1 CONT’D

TYPE OF
NONLINEARITY NONLINEAR TERM POLYNOMIAL APPROXIMATION REMARKS SOURCE

Relative Iu-il(u -i) /zauu+@- [ 4: au Linear and Eatock Taylor,
Velocity Drag T u Cubic Terms et al. (1982)

T ‘2 for Small ;
‘UU2 ];CJzau

Relative IU+ (u-i)
7

C(u-i); c=zJyav; vR=u-i VR is
Velocity Drag R Harmonic

Dao & Penzien
(1982)

Relative Iu-ij (u-i) U:E
Velocity Drag

am =

NOTE: U = u(t) and i =

-2
am cosm~t+2J; uOk u is Dao & Penzien

Harmonic (1982)
Fourier Coefficients

k(t) are random functions of time, t, and the current U is steady.



4.0 EVALUATION OF PROBABILISTIC APPROACHES

Several different methods have been described in the previous chapter

(Chapter 3) in handling nonlinear problems in the prediction of extreme

response values. These methods are evaluated here regarding their assumptions

and limitations. Limiting values of their application are prescribed wherever

possible.

4.1 DISCUSSION OF LINEARIZATION TECHNIQUE

One of the common methods of handling the stochastic description of

nonlinear responses is to linearize the nonlinear terms. Sometimes it is

convenient to retain the first few terms of the polynomial approximation thus

maintaining some of the nonlinearities in the system. In the linear case the

probabilistic description of the responses is simple and straightforward

specially if the sea surface is assumed to be a Gaussian random variable.

When higher order terms of the polynomial series are retained the problem is

somewhat more complex but is still solvable in a number of cases.

Different methods of linearization have already been presented in

Section 3. Let us discuss the limits of applicability of these various

linearized terms. The often used polynomial approximations of several common

nonlinear terms are summarized in Table 4.1. The nonlinear terms in the table

relate to the drag term of the Morison formula or its modified form including

damping and relative velocity terms. As such, they have wide applications in

the analysis of marine and offshore structures for both the evaluation of

exciting forces and corresponding responses.

On small members of a jacket structure, or on structures with flat

surfaces and sharp corners where flow experiences separation the wave drag or

wave-current drag is important. On moving structures, e.g. most of the

floating structures that experience resonance the hydrodynamic damping term

may be significant. On moving members, e.g., risers, tendons, catenary lines,

the relative velocity drag term should be included.

On large floating structures moored with soft springs, e.g., single-point

mooring system, catenary anchored ships and semisubmersibles, slow-drift

oscillation occurs in certain degrees of freedom, e.g., surge. In this case,

nonlinearity appears from the nonlinear exciting forces (drift force) as well
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as nonlinear mooring line characteristics. Floating structures that are

tethered with taut vertical lines, e.g., TLP, experiences springing force in

their tendons that are nonlinear. In this case, the damping is small and any

contribution from the nonlinear damping term may be important.

The most common form of nonlinearity that is often linearized for

convenience in the analysis is the nonlinear drag term found in the Morison

equation. The nonlinear wave drag term and the corresponding linear, cubic

and quintic approximations are shown in Fig. 4.1. The independent variable in

these plots is taken as the nondimensional quantity, u/ou. The nonlinear term

is quadratic. According to this figure, the linear approximation seems to be

reasonable for velocities of up to about two standard deviations. The cubic

term is good for u = 30U while the quintic term is close for the velocity up

to about 4 standard deviations. In the spectral estimate of the load, the

cubic term has been shown to give rise to a triple convolution of the velocity

spectrum. Similarly, the quintic term will yield a fifth convolution integral

and, thus, will require more time-consuming computations.

The linear approximation of the hydrodynamic damping will provide a

similar plot as for the linear term in Fig. 4.1. In fact a similar higher

order polynomial approximation may be written for the hydrodynamic damping

term. The nonlinear damping term of this form may be handled in an equation

of motion by several approximate methods of solution, e.g., the Rayleigh-Ritz

averaging technique. .

A general damping ‘term may be written in terms of the power of the

absolute velocity whe’re”a = O refers to the Coulomb friction. a = 1

corresponds to linear damping term while a = 2 is the velocity-squared term. .

Plots are presented in Figs. 4.2-4.3 showing the correlations ‘between the

nonlinear and linearized damping terms for a = 2 and 3. For a = O, the

nonlinear term takes on positive or negative constant values. a = 1

corresponds to the linear term and is, thus, exact. The region of

correlations for a = 2 and 3 is similar.

When current is present in waves the drag force is written in terms of

the relative velocity between the waves and current. In this case, the

linearization involves a constant term plus a linear term and depends on the

strength of the current given by y (= Ulou) in addition to the two

coefficients in the two terms. The correlation of the nonlinear drag term and
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Its linearization is shown in Figs. 4.4-4.6 for different

0.5 and 1.0, respectively). Note that the correlation

becomes poorer as the strength of the current increases.

If the structure is allowed to move, the drag force

values of y (= 0.1,

of t,he linear term

on the structure is

given in terms of the relative velocity between the structure motion and the

water particle. In this case, the linearization is achieved [Eatock Tayor, et

al. (1982)] in terms of the relative velocity, u - ~ , as shown in Table

4.1. The correlation between the nonlinear relative velocity drag term and

the linearization for different structural motion amplitudes ~/uu = 0.1, 0.2

and 0.3 are shown in Figs. 4.7, 4.8 and 4.9, respectively. In all cases the

correlation seems to be good for u/uu values of about 2.

4.2 DISCUSSION OF NONLINEAR EXCITATION STATISTICS

The linearization of nonlinear systems is only possible when the non-

linearity in the system is relatively small. In Chapter 5, the limits of

arguments of nonlinear systems for which linearization technique is applicable

without serious errors will be discussed. For predominantly nonlinear

systems, this simplified technique is not useful. In these cases, one of the

methods outlined for non-Gaussian systems is applicable.

The non-Gaussian random waves found, for example, in shallow waters have

several available representations of distribution functions. These take the

form of a series either in the probability theory or in the nonlinear wave

theory. When waves are nonlinear with sharper peaks than throughs, the series

expression in Eq. 3.62 provides one representation for the probability density

for the wave heights. This expression is easy to apply, but assumes narrow-

banded waves of weak nonlinearity. Another representation of the wave

amplitudes (half the crest-to-trough height) is given by the integral repre-

sentation of Eq. 3.74. In this case, computation of the probability density

is more involved in terms of the joint probability of crests and troughs.

Both these distributions show that the density value is higher than Rayleigh

and occurs slightly ahead of the Rayleigh distribution.

The non-Gaussian probability theory for waves provided the distribution

functions represented by the Gram-Charlier series, Edgeworth series and

Longuet-Higgins

number of terms

series. These series representations can be extended to any

with added complexity for each additional term. However, the
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representation does not necessarily improve with added terms, but in fact may

deteriorate. For example, the first three terms of the Gram-Charlier series

best describes the non-Gaussian waves. Another limitation of this function is

that it produces negative density values at large negative wave troughs. The

Edgeworth and Longuet-Higgins series suffer from the same drawback. Moreover,

the skewness and flatness required by the Edgeworth series are difficult to

compute. For the Edgeworth series, approximations up to four terms are

sufficient. Another interesting feature of the series is the presence of a “

second hump indicating a preferred range in the density function near the mean

wave amplitude.

For a strong nonlinear system, The Fokker-Planck equation may be applied

in which case the degree of nonlinearity may be left as arbitrary. For a

single degree of freedom motion system, the equation may be written in terms

of a joint probability density function of displacement and velocity (Eq.

3.88). Once the numerical solution is known, the probability density of

displacement is obtained. For a practical multi degree of freedom system,

however, this procedure is quite involved and time consuming. Moreover, it

uses a white noise spectrum as the input for the excitation force.

The probability density functions for nonlinear third-order Stokes waves

in deep water as well as in finite water depth are known. For these waves,

the probability density values are always positive. The expressions are

obtained (Eqs. 3.98 and 3.104) in a closed form in terms of nondimensional

surface elevation. This function shows that the non-Gaussian nature of

distribution increases with the increasing value of a slope parameter.

higher slope parameters, the maximum density values increase, and

distribution becomes more and more skewed. For zero slope, it reduces to

Gaussian distribution.

4.3 DISCUSSION OF NONLINEAR RESPONSE STATISTICS

the

For

the

the

There are basically three types of nonlinearities that are encountered in

the analysis and design of an offshore structure. These nonlinearities are

grouped according to the stages at which they appear: (1) nonlinear waves,

(2) nonlinear external forces and (3) nonlinear responses.
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The incident waves based on nonlinear wave theories are non-Gaussian.

Theories are available to describe the non-Gaussian characteristics of these

waves, some of which are included in Chapter 3 and discussed in Section 4.2.

However, they have found limited use thus far in the extreme value analysis.

While some attempts have been made in developing nonlinear wave spectra, these

have not found applications in the extreme value analysis.

The nonlinear external forces may appear in the form of drag forces

exerted on the structural member or may be due to the time varying wetted

height of structure. The general form for the nonlinear drag forces is

included in the Morison formula (including inertia and drag force) and its

several modifications. Some of these modifications discussed in Section 2 are

wave-plus-current effect, relative velocity model, etc. The nonlinear drift

force appears from the wetted-free surface and convective-inertia terms. The

exciting force for TLP springing has the same origin.

The nonlinear responses may arise from the responses at frequencies other

than the imposed wave frequencies (e.g., second-order frequencies, low

frequency drift, etc.) or nonlinear damping or restoring force in a dynamic

offshore structure system. The latter case arises from the material

properties or geometric nonlinearities of the components present in the

offshore structure system. Two of these, namely the catenary system and

flexible structures, are included in Section 2.

Some attempts have been made in examining the extreme value analysis in

all these areas of nonlinearities. Because of the complex nature of the

nonlinear problem, it may be solved numerically using time domain simulation

on a computer which is time-consuming and difficult to use in a design case.

The other approach in obtaining the probability distribution of the extreme

values has been to make simplified assumptions so that the solution may be

obtained in a closed-form or a semi-closed form expression. These approaches

are discussed in Chapter 3 and summarized by nonlinear categories in Table

4.2. As can be seen from the table, the sea surface has been invariably

chosen as Gaussian.

For the nonlinear drag force, a polynomial approximation developed by

Bergman is popular. The second term of the force spectral estimate gives rise

to a triple convolution integral of the velocity spectra. Similarly, the

third term may be shown to yield a quintic convolution integral and so on.
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NONLINEAR
TERM SEA

1. Nonlinear
Drag

2. Nonlinear
Drag

3. Morison
Formula

4. Morison
Fornwla

5. Morison
Formu1a

6. Morison
Formula

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

SUMMARY

APPROXIMATION

Polynomial;

TABLE 4.2
OF METHODS OF NONLINEARRESPONSE PREDICTION

lin~ar Wave Theory

Polynomial; Kine-
matics are unidir-,,
ectional & Gaussian
& water particle
velocity substan-
tially larger than
structure velocity

Narrow Band
Spectrum

Wide Band Spectrum

Force is narrow
banded; but non-
Gaussian .

Any band width, but
u~kfi

force >T

METHOD OF SOLUTION

Triple Convolution
of Velocity Spectra

Triple Convolution
Velocity Spectra
t

Transformation from
the distribution of
wave height, H, to
force amplitude, f.

Moments of the velo-
city spectrum upto
6th order are needed
for computation

2nd & 4th derivatives
of force only
required for compu-
tation

Extreme value is
based on peak rate
density whose expres-
sions are derived

REMARKS

May be extended
with mathematical
complexity

Effect of super-
harmonics in load
spectrum shown
on displacement
response of a
fixed platform

Two expressions
for the inertta
(Rayleigh) & drag
predominance (ex-
ponential) are
obtained

From .ioint dis-

SOURCE

Bergman (1972)

Sigbjdrnsson
& Mdrch (1982)

Bergman (1972)

Tickel 1 (1977)
tribution function
of force and its
second derivative

Force & its 1st Tickell (1977)
time derivative
are statistically
independent

Separate expres- Moe (1979)
sions for inertia,
drag & Morison force



TABLE 4.2 CONT’11

NONLINEAR
TERM SEA APPROXIMATION

7. Morison
Formula

8. Wave-Plus
Current
Drag

9. Wave-Plus
Current
Drag

10. Wave-plus
Current
Drag

11. Wave-Plus
Current
Drag

12. Wave-Plus
Cul-rent
Drag

13. Relative
Velocity
Drag

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-hlean
Gaussian

Statistically in-
dependent mean un-
crossing frequency

Polynomial; deep
water

Narrow Band
Small current;
Y = U/au <1

Wide band but large
extreme force

Gaussian force

Exact form

Cubic Polynomial;
relative velocity
term is assumed to
be Gaussian with
zero mean

METHOD OF SOLUTION

Numerical solution

First approximation
to the relative
velocity

Based on extreme
rate density related
to pdf

Based on extreme
rate density related
to pdf

Linearized method

Numerical solution

Triple convolution
of relative velocity
spectra; simplified
by Gaussian closure
amroach; iterative

REMARKS SOURCE

Expressions for Naess (1983)
total force as
well as drag force

Effect of current Tung & tiuang
on wave in deep (1972-1973)
water accounted for

Expressions for Moe & Crandall
the probability (1978)
density given

Expressions for Moe & Crandall
the peak rate (1978)
density given

Mean & standard Grigoriu (1984)
deviation of peak
drag force

Presented actual Grigoriu (1984)
distribution of
force

Finite wave Dunwoody &
height effect Vandiver (1981)
ignored as is
almost always done

method of solution due
to relative velocity



TABLE 4.2 CONT’D

NONLINEAR
TERM SEA

14. Nonlinear Zero-Mean
Damping Gaussian

15. Nonlinear Gaussian
Damping

16. Slow Zero-Mean
Drift GaussIan

17. Linear & Zero-1
Quadratic Gauss’
Damping &
Linear &
Cubic
Stiffness

lean
an

18. Low Fre- Zero-Mean
quency Gaussian
Force and
Motion

19. Total Zero-Mean
Second- Gaussian
Order
Response

APPROXIMATION

One dimensional
equation

Small damping and
very narrow band
spectrum

Wide band

Stochast
averaging

c

Ordered
Eigenva?ue
Series

Continuous dis-
tribution; Series
representation

METHOD OF SOLUTION

Markov envelope
method

Asymptotic approxi-
mation for expected
extreme

From joint pdf of
force and derivative
of phase function.
For narrow band,
reduces to exponen-
tial function

Generalized Markov
process

Characteristic
function and contour
integration

Gamma distribution

REMARKS SOURCE

Excited by white Roberts (1977)
noise; correlated
with digital
simulation

General form of Brouwers (1982)
damping is used

Initial distribu- Langley (1984)
tion describes
the 2nd order
force time
history

Non-white spec- Roberts (1987)
trum shape;
Experimental
correlation

Square of Langley (1987)
response vector
assumed to have
exponential
distribution

Positive and Kato (1987)
Negative Eigen-
values are used
in the Series





Therefore, in principle, as many terms of the polynomial expression as desired

may be added. The complexity and computer time consumption for the evalution

of the integrals are enormous. In general, the inclusion of the second term

of the approximation provides a reasonable estimate unless the drag

contribution is extremely high. An example in Fig. 3.25 shows that for a near

surface KC number of 94 based on the significant wave height and modal

frequency and the relative drag contribution parameter, K, of about 117, the

second term contributes about 16% of the first term and about 10% of the

maximum total force.

There is another effect of these higher order terms on offshore

structures (e.g., jackets) whose modal frequencies of vibration are at

frequencies higher than the wave frequency. Since these higher components

appear at higher harmonics of the load spectrum and since damping is small at

the natural frequency of the jacket structures, the responses (e.g., stress,

displacement, etc.) are amplified at these frequencies. An example of this

phenomenon is shown in Fig. 3.26. The responses at the second harmonic are of

the same order of magnitudes as those at the first harmonic.

Besides the Gaussian assumption if the wave heights are assumed to follow

Rayleigh distribution (narrow band assumption) then the distribution of the

maximum forces for the Morison formula may be readily obtained from that of

the wave height [Bergman (1972)]. Another approach was taken by Tickell

(1977) in which force spectrum, instead, was assumed to be narrow banded. For

a wide-band spectrum, expressions are obtained for the limiting cases of all

drag or all inertia situation. These solutions are compared in Fig. 3.26 with

the corresponding numerical solution and are found to be acceptable in these

areas. A general numerical procedure was developed by Naess (1983) for the

prediction of extreme forces by the Morison formula. The expressions for the

expected extreme values are given for the compound inertia and drag terms and

are obtained in terms of the level up-crossing frequency.

For the wave-plus-current drag or the relative velocity drag, a similar

polynomial approximation as for the wave drag is possible. In these cases, a

force spectrum may be obtained including inertia and drag term of the modified

Morison equation. This was shown by Tung and Huang (1972-1973) and Grigoriu

(1984) for the wave-current drag and by Dunwoody and Vandiver (1981) for the

relative velocity drag. In the first case of waves, the current influences
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the incident wave as well through the kinematic interaction. Only linear

terms of the polynomial were used in these analyses. The extreme rate density

method was used by Moe and Crandall (1978) to obtain expression of extreme

forces in the presence of small current for both narrow-band and wide-band

Gaussian sea. In the latter case, the expressions for the extreme forces were

approximated by an asymptotic formulation. An exact form was solved

numerically by Grigoriu (1984) for the wave-plus-current drag.

The case of nonlinear damping in the differential equation of motion for

an offshore structure has been considered in an approximate way by Brouwers

(1982) on the assumption that the damping is small and the motion response is

extremely narrow-banded in the area of the natural frequency of the

structure. In this case, any motion of consequence is from the resonance at

the natural frequency of the structure. If the excitation is considered to be

a white noise having nearly equal amount of energy at all frequencies over the

narrow band of interest, then a method of solution was developed by Roberts

(1977) based on the Markov envelope method. For a spectrum model used for

ocean waves this procedure is adaptable. Most ocean structures are inherently

designed to have natural periods away from the wave periods. In these cases,

the responses are generally some combination of resonance plus mass (or

stiffness) controlled response. When both of these separate responses” are

significant, this method is not applicable. However, in cases where the

resonance response is much higher than the wave excited response, e.g., the

oscillating surge drift motion of a ship or the high frequency springing load

on a TLP tendon, the method of Brouwers and Roberts is suitable. In a recent

work by Roberts (1987), the limitation of white noise spectrum was waived by

modifying the Markov process and using a generalized stochastic averaging:

The revised theory produced higher values of cumulative probability compared

to Rayleigh distribution as well as the earlier results. The new theory

seemed to match the experimental data on ship roll well.

The slow drift force is nonlinear being proportional to the square of the

wave height. For a narrow-band spectrum the initial distribution of the force

reduces to an exponential distribution function. However, Langley (1984)

obtained an expression for a wide-band spectrum which is markedly different

f“romthe exponential distribution.
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In a recent important study by Pinkster and Withers (1987) through

numerical and experimental simulation of slow drift oscillation, e.g., surge

motion, it was found that as long as the mooring system is linear, the low

frequency surge motion follows Gaussian distribution quite well. However, for

a nonlinear mooring characteristic, the deviation from the normal distribution

is large. The expressions for the probability density function for the

second-order forces and motions have been given by Langley (1987). It is

obtained by contour integral and expressed in terms of eigenvalues of the

matrix equation of motion as a ‘series expression. The number of terms which

is equal to the number of wave components in the irregular wave should be

large (about 200) according to Langley. The non-Gaussian characteristics of

the nonlinear force is given by high values of skewness (-2) and kurtosis

(>5). However, the motion probability density of an example problem showed

that it is close to Gaussian.

The total second-order response including the first and second-order

terms has been investigated by Kate, et al. (1987), and an expression for the

pdf of this response is given. It is expressed as a series of Gamma functions

and eigenvalues. Numerical examples showed that the addition of linear term

+ makes the pdf of the response more skewed.
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5.0 CONSISTENTMETHODOLOGY

The response of an offshore structure to random wave excitation is

usually computed in two distinct stages. First, the excitation force on the

structure due to the wave kinematics around the structure is computed. Then

the responses of the structure such as displacements, stresses, @tC. due to

the application of this excitation force are obtained. If the responses are

linear with respect to the wave amplitudes, then the relationship between the

force and the wave and that between the response and the force must be ,

linear. The nonlinearities in this analysis may enter in either one of these

two steps. The excitation may be nonlinear from higher order effects in the

wave loading, e.g., the drag force, the drift force, etc. On the other hand,

the responses may be nonlinear even if forces are linear due to nonlinear

damping or

It is

consistent

predicting

fact most

predicting

restoring force etc.

clear from the discussion in the previous sections that one

methodology for all types of nonlinearities that appear in

the responses of an offshore structure cannot be prescribed. In

of the

extreme

assumptions that

nonlinearity.

probabilistic methods available today that are used in

values of a nonlinear system are based on simplified

are dependent upon the type and characteristic of

Let us discuss the type of nonlinear problems in offshore applications

that have been dealt with using the extreme value analysis. The most common

nonlinearity that appears in the marine structure design is in the calculation

of the exciting forces. This takes the form of the nonlinear drag force,

e.g., in the Morison formula. There are several variations of the Morison

formula in terms of the presence of current or structure motion. Some of

these areas are also investigated in predicting extreme response values.

Other areas include nonlinear damping and slow drift oscillation.

In all these formulations, the sea has been invariably assumed to be zero

mean Gaussian. If the sea surface is high which usually produces the extreme

responses then the crests are higher than the troughs and sea surface in all

likelihood will not have a zero mean nor will it follow a Gaussian

distribution. In these cases, the non-Gaussian properties of the waves should

be known. The non-Gaussian distribution is usually represented in a series
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form based on a nonlinear wave theory, e.g. , Stokes’ higher order theory or

probability theory, e.g., Gram-Charlier series. These theories show that the

waves generally have a non-zero negative mean and higher skewed density than

Gaussian. The distribution of wave heights similarly have higher density than

Rayleigh. However, the effect of non-Gaussian sea on a nonlinear response is

generally not known. On the other hand, probability distribution of several

specific nonlinear non-Gaussian responses of marine structures has been .

presented.

Because of the above limitations and various simplified approximations

involved in nonlinear extreme value analysis a cookbook method for an engineer

to follow is not possible at this stage of the development. The state-of-the-

art is such that various simplified methods may be recommended. None of these

techniques may be applicable to a particular problem in which case several

methods should be tried to find the differences in the results. Then an

engineering judgment should be used in choosing the appropriate extreme

values.

5.1 EXTREME VALUE PREDICTION FOR NONLINEAR SYSTEMS

A simple flow chart for the evaluation of the extreme responses of a

marine structure is shown in Table 5.1. Depending on the type of the extreme

value that is sought for in the design, the computation may be stopped at the

short-term level or continued to obtain long-term statistics or extreme and a

fatigue analysis. The process is similar

a nonlinear function of the environmental

in our case.

For a linear system, the rms value of

whether the response is a linear or

input variable, which is the waves

the response defines the short-term

statistics of the response. This may then be extended directly to the long-

term statistics if the long-term probability of the short-term waves is

known. For a nonlinear system, the rms value of the response is generally

only one of the parameters that determines the response statistics. Other

statistical parameters are needed to complete the description of the short-

term extremes of the response. Therefore, in the long-term response analysis

the appropriate statistical dependence of the short-term response must be

included along with the long term wave statistics.
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TABLE 5.2

RANGEOF APPLICABILITY OF

LINEAR APPROXIMATIONOF C(14MONNONLINEARTERMS

NONLINEAR TERM PARAMETER VELOCITY

Wave Drag u < 20U

Wave Current Drag Y = O*1 v < 2UV

Y = 0.5 V < 2.5av

y = 1.0 10<V<30V

Relative Velocity Drag Uv/Ou = 0.1 v < Z’ov

= 0.2 v < 2UV

= 0.3 v < 2UV

.



Different approximation methods that are available and are described in

Chapters 3 and 4 are summarized here in a logical order. In the extreme value

analysis for the design of a marine structure, the random waves are

customarily assumed to have a Gaussian distribution. A suitable spectrum

model, e.g., P-M, JONSWAP, etc., is chosen as the wave model to represent the

seastates for a long-term prediction depending on the sea severity.

Sometimes, more than one spectrum model is suitable. For example, the lower

waves may follow a P-M model while the JONSWAP model may be suitable for the

higher seastates. Once the wave environmental model is chosen, the next step

in the prediction is computation of the environmental forces on the offshore

structure.

If the forces are linear, then the forces may be obtained in the form of

a force spectrum. For a linearized approximation of a nonlinear system a

similar approach may be taken. One of the most common forms of nonlinear

forces is given by the Morison equation representing a drag and an inertia

force. The values of the velocity for which the linear approximation may be

used with reasonable accuracy have been given in Table 5.2. If current is

present with waves, the validity of a linear approximation is measured in

terms of the strength of the current as well. These limiting values are also

given in the table.

Higher order terms in the force spectrum may be estimated based on the

series expansion of the nonlinear terms. These higher terms in the estimate

are time-consuming to compute but may become significant if the nonlinearity

of the force term is large. The extreme values are difficult to obtain from

these spectrum extimates without knowing the distribution of the force maxima

which is not generally Rayleigh.

However, the additional terms in the spectrum produce peaks in the

spectrum in the higher frequency range which may coincide with the natural

frequency of vibration of the structure under investigation. In this case, if

the structural damping is small, the response may be peaked at this frequency

leading to a narrow band spectrum. This response spectrum may then be treated

as Rayleigh distributed so that the response extremes may be easily

determined.
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If the force spectrum is narrow banded, then the distribution of the

force extremes may be given in terms of inertia or drag dominance. For the

inertia-dominated region, the force maxima are distributed according to the

Rayleigh distribution. For the drag-dominated area, the distribution is

exponential.

For a wide-band wave force model, similar separate expressions for the

drag-dominated and inertia-dominated areas are known but now in terms of an

additional parameter, E. These expressions are, however, only valid for the

limiting values of the drag-inertia parameter, K, namely, K = O and K + -.

The comparison between the two cases shows that the narrow-band assumption

overpredicts for the same probability level at both the limiting values of K.

The

terms of

use the

process.

extreme value analysis for a wide-band spectrum was also provided in

the expected rate of occurrence of force maxima. These expressions

appropriate frequencies corresponding to kinematics involved in the

The expected number of peaks per time unit are obtained from these

expressions by integration.

Similar analysis have been made for wave-current force. The latter was

derived on the assumption of large force. Separate expressions for narrow-
+ band and wide-band process have been given. In this case the modified form of

the Morison equation is used. However, current is assumed small in the sense

that only the terms in the first order in U/uu are retained. Thus, the

expressions are valid for current of the order of 10-20% of the rms water

particle velocity.

The expression for the expected extreme value for the component of the

drag force in the presence of a finite current is shown in Eq. 3.317. The

extreme value depends on a time interval, TR.

If a dynamic system is nonlinearly damped, the simplest solution for the

extreme responses is to derive the solution of an equivalent linearly damped

system. The damping is particularly important near the natural frequency.

Moreover, if the damping is small then the response may be treated as an

extremely narrow-band process. Then, the input spectrum over this area of

response may be treated as a white noise process for which the solution is

known. The Markov process is a powerful tool for these derivations and a

generalized method has been derived to waive the requirement of white noise.
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5.2 A CONSISTENT LINEARIZATION METHOD

A common technique of handling these problems is a linearization

technique in which the nonlinear problem is linearized by one of many means,

e.g., the Fourier averaging, least square error ted

expansion, etc.

Table 4.2 includes the polynomial approximations

nonlinear terms that appear in the structure response ca’

be-generalized in the following way. Let

f = f(x)

nique, Taylor series

of various forms of

culations. These may

(5.1)

be a nonlinear function of x. Let x be a variable that follows a zero mean

normal (Gaussian) probability law. Thus, x could be such quantities as the

wave profile, velocity profile, relative velocity profile, etc. The problem

is to compute a polynomial approximation of f(x) given by

f(x) = z Cnxn (5.2)
n

such that the quantity

Q = /m [f(x) - z c Xn]z ~
n

exp [- X2 /20x2] dx (5.3)
-m n m ox

is minimized. The last part of the integrand is the Gaussian formulation.

The values of Cn (n = 1, 2, . . .) may be obtained by differentiating Q with

respect to Cn and setting the result equal to zero. Thus, depending on the

number of terms desired in the polynomial, an equal number of equations in the

unknowns Cn may be obtained. The values of Cn are then obtained by setting up

a matrix equation and its inversion. For example if

f(x) = 1X1X

and only one term in the polynomial (linearized) is desired then

c1
= 4: ax

(5.4)

(5.5)

174



This is then a generalized method that can be used for any nonlinear function

f(x) as long as the function f(x) is explicitly known as a function of x where

x is an independent variable. Many of the nonlinear response terms for a

marine structure have already been worked out and the results are tabulated in

Table 4.1.

Once the problem is linearized then the usual procedure of a short-term

Gaussian process is applicable. For example, in the case of wave drag

f(u) = kDlulu (5.6)

Once the right hand side is linearized through the formulation in Eq. 5.3, we

have

f(u)
T

=kD4Youu (5.7)

Since u(t) is assumed to follow Gaussian distribution with a zero mean so

would the force f(u). Thus, the amplitudes of force, f, will follow Rayleigh

distribution for which extreme values may be predicted. This linearization

will apply only for small nonlinearity.

The adequacy of assuming Gaussian response statistics of a linearized

nonlinear problem depends on the type of nonlinearity and the sea severity.

The ranges of the values of u for which this linearization is reasonably valid

along with all the other nonlinear terms included in Table 4.1 are summarized

for convenience in Table 5.1.

5.3 RESPONSE SPECTRUM COMPUTATION

In some cases of nonlinearity, more exact solution is possible by

spectral or stochastic averaging technique, This may provide nonlinear

relationship between the wave spectrum and force spectrum depending on the

area of nonlinearity. In a few cases, a probabilistic description of the

response is also possible. However, because of simplification of the

structure, etc. in these analyses, the practical application is quite limited.

For a linear system the response may be related to the waves by a

relationship of the type
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x(t) = H(u)n(t) (5.8)

where x = response function, n = wave profile, t = time, and H = a function of

the frequency, u. This relationship can be directly converted from the time

to the frequency domain through the autocovariance method. Thus, taking the

lagged product of both sides and integrating

j“ x(t) x(t i- T) dt = H2(u) ~rnn(t)n(t + T) dt (5.9)
o 0

or

RX(T) = H2(w) Rn(T) (5.10)

Then the Fourier transform of both sides provides the wellknown relationship

between the wave spectrum and the response spectrum for a linear system

~mRX(T) e‘uTdT = H2(w) ~wRn(T) eiUTd~
o 0

or

(5.11)

SX(LII)=H2(u) S@ (5.12)

Here, H(u) is called the transfer function between the wave profile and the

response. Since the wave profile is assumed to follow the Gaussian distri-

bution and wave height, the Rayleigh distribution and since the transforrnati”on

is linear, the response amplitudes also follow the Rayleigh distribution from

which the extreme values are easy to determine.

This approach may be extended to nonlinear systems as well, if the

nonlinear functional relationship is expressed in a polynomial form as shown

in the previous section. Let us take the example of drag force related to the

water particle velocity

f = kDlulu (5.13)

176



In this case, after the autocorrel ation function for the force is

written, the right hand side is expanded in a series form the first three

terms of which take the form

Rf(T) = Hi(f) RU(T) + Hz(f) RU3(T) + H3(f) RU5(T) + . . . (5.14)

where Hi(f) = 8/~kD2uu2, H2(f) = 4 kD2/(3 mou2) and H3(f) = kD2/(151TOu4).

By taking the Fourier transform of both sides, the

may be related to the velocity spectrum. Note that

autocorrelation function appear in the frequency domain

integral. Thus ,

drag force spectrum

the powers of the

as the convolution

~mRu3(T) e‘UTd~= ~= ~=$(u) S(W1 - u“) S(kl- w’) dm’ dm”
o 00

(5.15)

This integral is easy to evaluate numerically even though it is time

consuming. Thus, in principle as many terms in the series in Eq. 5.14may be

included in the evaluation of Sf(w) even though in the practical sense

anything beyond the second term may be prohibitive in terms of execution time

requirements of a computer.

Moreover, even though the response spectrum is known and its significant

value may be calculated, the computation of the extreme value is not

straightforward. $ince the relationship is nonlinear the force amplitudes do

not necessarily follow- Rayleigh distribution even though the velocity

amplitudes do. Therefore, it is difficult to predict the extreme values for

the force.

The importance of this analysis, however, may be stated in the following

way. Let us examine Eq. 5.14. If the first term on the right hand side

produces the first harmonic frequency of the force, the second term will have

a peak at the third harmonic, the third term at the fifth harmonic and so

on. These higher order terms will generally be reduced in magnitude in

succession. However, many fixed structures have natural frequencies of

vibrational modes at frequencies much higher than the wave frequency range.

One of these vibrational modes may coincide with this higher frequency in the

force spectrum in which case an amplification of the response, e.g., stresses,

etc. may be generated. Moreover, if the structural and hydrodynamic damping
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are small in this region the response, e.g. , stress or displacement, will

appear as a narrow-band spectrum in this frequency range. The response then

may follow Rayleigh distribution even if the force does not. The extreme

values may be derived for the responses due to this nonlinear excitation.

5.4 RESPONSEPROBABILITYDENSITYFUNCTION

Consider two random processes, x(t) and y(t), where x(t) is an excitation

and y(t) is the corresponding response. If x(t) is Gaussian while y(t) is not

there is strong indication that the physical system is nonlinear. Unlike

linear systems, no general methodology exists for nonlinear system analysis.

For a class of nonlinear systems, however, a consistent method exists for

deriving the initial distribution of the response if the excitation is assumed

Gaussian. While the initial distribution of the response does not provide

information regarding the extreme values, it may give some insight into the

nonlinear nature of the response and a degree of departure from the linear

system. Thus, it may help provide, and evaluate the validity of an approximate

method of the extreme value analysis of the nonlinear system. The following

analysis is according to Bendat (1985).

Let us consider that the excitation function, x(t), is a stationary

ergodic random process with zero mean value such that at any time, t, the

random variable x = x(t) has the first-order Gaussian probability density

function

p(x) = 1 E’XP (--$)
ox m x

where the mean value, Ux, and the variance, ox of x are given by

l’x= E[x] = O

2
‘x = E[x2]

(5.16)

(5.17)

(5.18)

For the pair of random variables xl = x(t) and x2 = x(t + T), the joint

probability density function is given by the second-order Gaussian form
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{ exp
-1 [ x; - 2p xl x2

2CIX2 (1 - P2)
+x;]}

(5.19)

where p is the correlation coefficient between xl and x2

The auto correlation function

RxX(T) = E[x(t) x(t + T)] = EIx1 X21

RxX(0) = E[x(t) x(t)] = E(xf] = E[x:] = n:

Hence

RxX(T) RxX(T)
P(T) = Pxx(~) ‘-~=~

xx
‘x

(5.20)

(5.21)

(5.22)

(5.23)

The expected value of the response and its moments can be obtained from g(x)

and p(x) as follows:*

E(y) = E[g(x)] = ~rn g(x) P(X) dx
-m

m

E(yn) = E[gn(x)] = ~ 9n(x) p(x) dx

‘Y
2=E[y2] - (E[Y])2 (5.26)

If the response y = g(x) is a zero memory nonlinear system that is

single-valued and one-to-one, the response probability density function P2(Y)

for the response y(t) is given by

x)
P2(Y) =& (5.27)

expressed in terms of y. If each value ofy = g(x) corresponds to n values of

x which are equally likely, then

x)
P2(Y) =*
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Whenever p(x) is Gaussian and g(x) is nonlinear, the resulting p2(y) will be

non-Gaussian.

Example: Two Slope Systems

A nonlinear mooring line may be approximated, sometimes, by two

straight lines of two different slopes (often within the range of

its application in an offshore system). Let us consider the example ‘

of the nonlinear two slope system given by

Y=g(x)=x forx<A

=A+b(x -A) x>A

where g(x) is an odd function, g(x) = 9(-x). Then

= b

Note that (dy/dx) is discontinuous at 1x1 = A.

The response probability density function is obtained from

P*(Y) = p(x) = p(y) fory<A

=+{r@+[(H)/b])} y>h

= + { P[-A + [Y + A]/b] } y< -11

If it is assumed that the

distribution with unit variance

p(x) =~ exp (-x2/2)
m

excitation follows the normal

(ox = 1)

for 1x1 >A

1x1 > A

(5.29)

(5.30)

(5.31)

(Gaussian)

(5.32)

then the response probability density function is given by
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P~(Y) =

=

=

It is clear

discontinuity

1 exp (-y2/2) IYI <A (5.33)
E

1 exp { -(A + [(y -A)/b])2 ~
2

y>A (5.34)
b~

1
exp { -(A - [(Y + A)/b]2

2 } y< -A (5.35)
b~

from the above expressions (Eqs. 5.33-5.35) that there is a

of the response density function at y = A. Depending on the

case of clipping for O < b < 1 or hardening for b > 1, the quantity P2(A+) is

either greater than or less than p2(A-).

Example: Square-Law System

The second-order wave force, e.g., the wave drift force follows a

square law with respect to the waves. Let us consider a response

y = g(x) = X2

Then

gy=g, (x)=zx
dx

and X=*G (5.36)

The response probability density function

2 (x)=@
P2(Y) =* ~ fory>O (5.37)

with p2(y) = O for y > 0 and p2(0) = m. If p(x) has a Gaussian distribution,

then

p(fi)=- exp (-y/20x2)
ox m

Hence

P2(Y) = 1 exp (- y/20x2)
ax my

fory>O

fory>O

(5.38)

(5.39)
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This is the form of an exponential distribution. Note that

E[yn] = E[x2n] = 1, 3, 5, . . . (2n - 1) ax2n

‘Y
= E[y] = ax2

RYY(0) = E[Y2] = 3 0X4

(5.40)

(5.41)

(5.42)

(5.43)

Example: Cubic System

The load-elongation characteristics of a mooring system may often be

expressed by the cubic law. A nonlinear cubic system is given by

y = g(x) =X3

Hence

Then

$= 3X2 and x=yl/3

the response probability density function is given by

p(x) 1/3
P(Y )P2(Y) =~=~

13X I

Assuming a Gaussian distribution for p(x)

P2(Y) =

In this case,

‘Y =

RYY(0) =

(5.44)

(5.45)

1

3 Ux y2’3 m

P2(-Y) = P2(Y)

exp (-y2/3/2ux2) (5.46)

and p2(0) approaches infinity. Note that

E[y] = E[x3] = O (5.47)

E[Y2] = E[x6] = 15 0X6 (5.48)
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Example: Square-Law System with Sign

The wave drag force is expressed as the square law with sign in

terms of the water particle velocity. A nonlinear square-law system

with sign is defined as

Y = g(x) = 1X1X

i.e.

Y=X2

2= -x

Then

forx<O

forx<O

Also

X=+iy

=- 4 -y

*=9’(X) =2’X :
r

= -2x

Hence, the response probability density function

Then P2(Y) = P2(-Y) and P2(0) tends to infinity= AISO

‘Y
= E[y] =EIIxIx] = O

fory>O

fory<O

forx>O

X< o.,.,

fory>O

fory<O

(5.49)
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RYY(0) = E[y2] = E[x4] = 3UX4 (5.50)

The above theory provides a simple method in obtaining the initial

distribution of a nonlinear system subjected to Gaussian excitation. As

mentioned before, an initial distribution (distribution of the profile values)

does not indicate the extreme values for the system. But it may aid in

examining the nonlinear system against any approximation used in deriving the

extreme value of the nonlinear system.

5.5 RESPONSE EXTREMES BY ORDER STATISTICS

The extreme value of the” maxima of a Gaussian (linear) response may be

derived by applying order statistics. The extreme value defined in this

respect is the largest value of the maxima that will occur in N observations

in a short interval of time (of the order of a few hours).

If the value of the bandwidth parameter, E, for a random variable is

known, then the probability density function of the variable may be

estimated. For example, if the spectrum of the response, e.g., the force

spectrum derived in a previous section, is known, the bandwidth parameter, c,

may be estimated from its moments. The distribution function for the broad

band spectrum (varying between truncated normal, E = 1, and Rayleigh, E = O)

is then known from Eq. 3.67.

For a random sample, xl, X2, . . ., xN of size N which are the observed

maxima of a random process, the samples may be ordered in ascending values,

cl, C2, ● ● ● , CN where CN is the largest. Each one of Ci will have its own

probability density function different from that of xi (Eq. 3.63). For

example, for a given probability level, a, such that

p[~N > ;N]=a

we can obtain the relationship

[p(~N)]N = 1- ~

(5.52)

(5.53)
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* A

where P(GN) is given by Eq. 3.67 for F1 = LN. The problem then is to
*

compute ~N for a given valu@ of u. This is a difficult task from an equation

of the type of Eq. 5.53.

However, considerable simplification may be made if the following two

assumptions are made:

e a is small being of the order of 0.1 or less

o N is large

● E < 0.9

All these assumptions are reasonable from practical standpoint since most

response spectra will lie in the range of O < E < 0.9 and the extreme values

will generally be sought from large number of observations with the cumulative

probability of 99% or more.

Under the above assumptions the error functions in Eq. 3.67 reduce to

either zero or one and the eXtI%Me ValUe, ~N, is derived as

(5.54)

Note that Eq. 5.54 is a “peak

also that ~N is normalized so

response (as a random process)

factor” applicable to a Gaussian process. Note

that the extreme value of the amplitude of the

is obtained by multiplying this value by ~.

The number of observations, N, is difficult to work with, but it can be

related directly to the time length, TR. For practical purposes, it is more

meaningful to express the extreme value as a function of TR.

(5.55)

where TR is given in seconds.

Ochi (1973) worked out examples for extreme values from data from a wave

basin. The examples include various random waves generated in the tank and

the recorded pitching motion of a ship model in random seas. The results are

summarized in Table 5.3. The predicted values are based on the moments of the

spectrum computed from the recorded data. The most probable extreme

value, lN, corresponds to the value at which the probability density is
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RESPONSE

Waves

Waves

Waves

Pitching Ang~e

Pitching Angle

Bow Acceleration

TABLE 5.3
COMPARISON OF PREDICTED AND OBSERVED EXTREHE VALUES

FROM tWDEL TESTS
[Ocw (1973)]

TEST
SEA SPEED TIME

STATE (knots) (rein)

5 27.5

6 24.8

7 32.9

7 10 23.5

6 15 24.8

7 10 37.4

BAND
WIDTH NO. OF

PARAMETER MAXIMA
(E) OBSERVED EST.

0.513 177 186

0.616 282 308

0.598 213 220

0.378 160 172

0.350 233 211

0.231 360 326

EXTREME VALUE (DOUBLE AMPLITUDES)
OBSERVED _ J4?EDICTEDA .

‘N ‘N ‘N ‘Na=O.10 a=O.05 a=O.01

22.3 20.6 24.8 26.0 28.4

32.0 33.3 39.6 41.3 45.0

48.7 45.1 54.2 56.6 61.9

18,9 16.3 19.7 20.6 22.5

11*2 12,1 14.4 15.1 16.5

1.78 1.75 2.07 2.16 2.35

UNIT

ft

ft

ft

deg

deg

deg



TABLE 5.4

SHORT AND LONG TERM MOTIONRESPONSE EXTREMES

COMBINED WAVE
WAVE FREQUENCY AND LOW

SWAY ONLY FREQUENCY SWAY
Short term most probable
maximum in 10 year seastate 9.lm 11.5m

Long term maximum with a 10%
probability of being exceeded
at least once in 1 year 9*8M 12*9M

.
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maximum. The extreme values are obtained for three different probability of

exceedance values of a = 0.1, 0.05 and 0.01.

The agreement between the predicted most probable extreme values and the

observed extreme values is satisfactory. But the probability of exceeding

this value is quite high (about 0.63 for s = O ). Therefore, for design

purposes the extreme values corresponding to a = 0.01 or so are more

appropriate. These values are about 25-40% higher than the most probable

values.

There is no universally applicable theory for describing the response

behavior of general nonlinear systems either spectrally in the frequency

domain or probabilistically in the amplitude domain. Under certain

conditions, however, solutions may be obtained in a few cases. Two such cases

discussed earlier are second-order drift force along with associated low

frequency motion and Morison type .force. The short- and long-term predictions

of two such examples are provided here [Inglis, et al. (1985)].

EXAMPLE 1 - LOW FREQUENCY MOTION RESPONSE

It has been shown [Pinkster (1980)] that the time-domain description of

the second-order force on a floating structure due to a wave group having

frequency components, tii(i = 1, 2, . . . N) is given by

NN
z Z Ci Cj Qij Sin {(wi - uj)t + (Ei - Ej)} +

i=l j=l

high frequency terms (5*55)

where Pij and Qij are the in-phase and out-of-phase components of the time

independent transfer functions. The mean second-order force is found by

setting ~i = bJj

(5.56)
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which may be generated as

F2(t) = 2 ~m S(u) P(u,u) do)
o

where S(u) dw = ~ G2 and L is the wave amplitude.

The spectral density of the low frequency

computed from the square of the transfer function

m a

(5.57)

components of the force is

as

(5.59)

SF(M) =8 ~ S((I)+ U’) S(U’) TL (M+u’, m’) du’ (5.58)
o

where

T2(w+ u’,u’) = P2(M+ w’,w’) + Q2(u+ (1)’,u’)

and T = amplitude of the quadratic transfer function.

The motion response spectrum may be obtained from the force spectrum if

the system is considered to be a single degree of freedom system having linear~

damping. For a catenary moored system, this approximation usually provides a

good estimate of the motion. Assuming that the system is lightly damped, as

the case is for a low frequency oscillation, the motion response spectrum

becomes quite narrow-banded acting as an effective filter. Thus, even though

the force spectrum follows a non-Gaussian process, force being proportional to

the square of the wave amplitude, the probability distribution of the resonant

response is almost independent of the probability distribution of the

excitation. Thus, for a linear transfer function between force and motion,

the motion response can be well represented by a Gaussian process. The motion

response spectrum describes the short term probability of the low frequency

motion response. If the high frequency and the low frequency responses are

assumed to be statistically independent, the two response spectra can be added

together. Once the

wave scatter diagram

The short-term

short-term response is known it can be combined with the

to generate the long-term response.

estimates are made in terms of a storm with a 10 year

return period having a significant wave height, Hs = 14.2m and a mean zero .

crossing period, Tz = 13.6 sec. The long-term response may be estimated for a
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return period of 10 years. On the other hand, the maximum response may be

determined which is experienced (at least) once during a given period (say,

1 year) with a given probability level.

The cumulative probability of a response exceeding a particular value, M,

is Q(M). Then the probability of not exceeding this value is 1 - Q(M).

Assuming a period of L years (e.g., the lifetime of the structure) and the

number of peaks, N, in a year, the probability of not exceeding the prescribed

value M in L years is (1 - Q(M) )N*L. If it is assumed that this value Mwill

be-exceeded once in L years, the probability Q1(M) is given by

QI(M) = 1- (1 -Q(M))N*L (5.60)

An acceptable probability of exceeding the design value of M is chosen as

lo%. The short-term most probable value for a 10 year storm and the long term

response for a 10% probability of being exceeded once a year are shown in

Table 5.4.

In the above

response extremes

example, the difference between the short- and long-term

is quite small. However, the long-term extreme is obtained

on the basis of exceedance in one year as opposed to the 10 year storm for the

short-term response.

EXAMPLE 2 - EXTREME FORCE BY MORISON FORMULA

The Morison formula describing force on a vertical cylindrical member of

an offshore structure is given by

f = kM ; + kD IUIU (5.61)

where kM = CM P IrD2/4,kD = 1/2 CD P D, u = horizontal water particle velocity

and ; = horizontal acceleration. In order to derive a force spectrum, Eq.

5.61 is statistically linearized as

f=kM6+4~kDuuu (5.62)
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where Uu = standard deviation of the water

seastate is known, Uu is known and force

height. A transfer function for force may

depend on the seastate under consideration.

For a short-term response prediction,

directly without any difficulty similar to

long-term prediction method, the transfer

particle velocity. Thus, once the

is strictly linear with the wave

be determined which, however, will

the transfer function can be used

any linear system. However, for a

function has to be modified with

each seastate. An example of the difference in the transfer function is shown

In Fig. 5.1. In order to overcome this problem, a further approximation is

made by choosing one seastate to obtain the transfer function which is then

used to derive of for all seastates.

Using the narrow band solution, the probability density function of the

normalized force amplitude, ~, is given by

p(~) = (~K2
$K2+1 *

+l)Yexp(- ~ 7) for~<h

(5.63)

3 2+1)1’*~K ~ K2 + 1)1/2 T
(~-~))for~>hp(T) = ( ~ exp ( - K

(5.64)

where

h=

and

T=

Thus, the

1

K(; K2 + 1)1’2

‘o—

peak force amplitude distribution depends on of and K.

(5.65)

(5.66)

The standard deviation for the force using the Morison equation is

2=3kD204+kM20;2
‘f u (5.67)

whereas the linear approximation gives
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SEASTATES [INGLIS, ET AL. (1985)]



TABLE 5.5

EXTREME VALUE FORCES ACTING ON 1 m

ELEMENT OF PILE AT 13 m BELOM SEA LEVEL

BY HORISONFORMULA

PEAK
FORCE PROBABILITY

CALCULATIONS DISTRIBUTION

Short Term Gaussian Response
10 Year
Sea-State Non-Gaussian Response
Hs = 14.2 m, K = 1.11
TZ = 13.6 sec.

Long Term Linearization in each
sea state

Single transfer function
linearization in l-year
sea state

Single transfer function
linearized in 10 year
sea state

Single transfer function
linearized in 100 year
sea state

MOST PROBABLE EXTREME FORCE (kN)

3.7 xRMS = 5.7

7.7 xRMS= 11.9

Non-Gaussian
K = 0.00579 * Hs * Tz

Non-Gaussian
K = 0.00579 * Hs * Tz

Non-Gaussian
K = 0.00579 * Hs * Tz

Non-Gaussian
K = 0.00578 * Hs * Tz

Linearization in each Gaussian
sea state (Rice distribution)

14.3

12.8

14.4

16.0

7.0



2 .8
‘f

~kD2 UU4+ kM2 ci;2 (5.68)

Then the error in the estimate of K given by the ratio of drag to inertia

force components is of the order of 8%. Note that K is a function of Hs. In

the present example the dependence of K to Tz is found to be linear in Tz

given by

(5.69)

where K. = 0.00579. These formulations were used to predict long-term extreme

force. The results are given in Table 5.5. In the example, both the

nonlinear peak distribution for a narrow-band non-Gaussian process and the

linear exponential (Rice) distribution for a general wide-band Gaussian

process have been used. The short-term prediction is based on a 10year storm

while the long-term prediction assumed a 10% probability of exceeding once in

a year. The factors for the extremes for the short-term prediction are used

as 7.7 times the standard deviation for the non-Gaussian process and 3.7 times

the standard deviation for the Gaussian process [Brouwers and Verbeek

(1983)]. From the table it is seen the non-Gaussian response more than

doubles the extreme value prediction. The long-term predictions in this case

are higher than the short-term ones by about 20%.

i

.
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6.0 CONCLUDING REMARKS

The nonlinear analysis for various responses of an offshore structure and

the extreme value prediction of those responses are reviewed in this report.

Different classes of offshore structures are introduced and the applicability

of the nonlinear systems to these structures is discussed wherever

appropriate. Because of the complexity of determining the probabilistic

properties of a general class of nonlinear responses, only approximate

solutions in the extreme value analysis is possible. Various methods of

approximating nonlinear systems and the limitations in their application iman

offshore structure design are discussed. Nonlinear problems leading to the

non-Gaussian distribution and the extent of their departure from a Gaussian

distribution are investigated. Based on these solutions, techniques of

predicting extreme values of both linear and nonlinear responses for marine

structures that are consistent within the particular methods are given.

The discussions included in this report warrant the following

conclusions:

1. For a nonlinear system, the response parameter is nonlinearly

related to the wave elevation through nonlinear elements in the wave

force excitation or in the structure’s system characteristics. In

either case, the response becomes non-Gaussian. No consistent

method exists -for such a system. In a few special cases, the

solutions may be found by approximations or modification of the

analysis procedure. Sometimes the response characteristics of the . ...

system act as a linear filter, e.g., for a lightly damped system

even when force excitation is nonlinear in wave elevation. Examples

of such possible systems is the finely-tuned springing of a TLP

tendon. Thus, even if force probability distribution is non-

Gaussian the response is nearly Gaussian.

2. The structural response time history for a single degree of freedom

system is similar between uncoupled, coupled and linearized drag

forces. In the latter case, the error is about 20% for large

H/D > 20. For random waves, the mean square values are similar, but

the 1inearized method produces considerably lower (60% at Hs/D > 20)
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extreme values of response. The nonlinear drag also alters the

spectral distribution of wave forces providing an increased energy

at higher frequencies. This may increase the resonant response

compared to a linearized analysis.

3. The expected extreme responses of members of offshore structures by

the nonlinear drag forces exceed significantly those predicted by

equivalent linear methods, particularly when drag forces are

predominant. Nonlinear effects can be expected to be important in

fatigue damage computed when for a significant portion of the life

of the structure the drag forces constitute a significant part of

the total force. Typical example of such members are the small

diameter members of jacket structures in water near the free

surface, conductors and risers in areas of severe wave action. For

extreme value analysis, the effect of drag nonlinearity may be

important even for larger members.

4. If a linearized method is applied in a complex numerical analysis,

the effect of the nonlinear probability distribution not taken into

account in the analysis should be corrected. While this is not an

easy task, in a limited number of cases, a reasonable correction

factor may be achieved by the comparison of results presented in the

report. For example, Fig. 3.47 shows the amount of deviation in the

probability of exceedance of a low-frequency surge motion from

Gaussian. Care should be exercised in using these data, however, as

they are limited.

5. The surge periods of a large compliant structure (for example,

catenary anchored) is very long, of the order of one minute. The

second-order wave forces based on difference frequencies of

component waves excite the structure at its natural frequency giving

rise to large anchor loads. On the other hand, a compliant

structure held by taut cables, such as a tension leg platform has a

high frequency natural period in the vertical direction. Second-

order wave forces at the sum frequencies of component waves can

resonate the structure in the vertical direction introducing large
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tendon loads which is important consideration for fatigue damage

evaluation. This phenomenon, known as springing load, is

proportional to the square of wave amplitude and, thus, has similar

characteristics as the wave drift load. The response probability is

expected to be similar in this case.

6. The deterministic design wave and the probabilistic short-term

procedures fail to adequately predict consistent maximum responses

in a structure’s lifetime for which a long-term statistical

distribution method is far more appropriate. Wave data for this

method, however, are rather lacking in many sites particularly on a

long term basis. In this case, a so-called ‘1OOO year wave scatter

diagram’ may be extrapolated by the method presented herein. This

provides a rational and consistent criterion of acceptability in the

form of a uniform chance that a given response level is exceeded in

the lifetime of the structure as opposed to the non-uniformity

present in the first two methods.

7* For short-term as well as long term prediction, a family of wave

spectra for a specified seastate has been advocated. Since the

shape of the energy density spectrum varies considerably based on

the environmental input, even for a. given energy level (or,

equivalently, given significant wave height), this method is more

reliable in predicting extreme responses. For a two-parameter

family, the wave height and the wave period were found to follow

log-normal probability law (for P < 0.99). Since the responses are

computed for a series of spectra, the upper and lower bounds as well

as standard deviation of short-term responses may be obtained.

8. For estimating short-term extreme values of the responses for design

consideration, various factors such as operation (or exposure) time,

frequency of encounter with seas, speed (in the case of a ship), and

risk parameter should be considered. In the long-term response

prediction, factors such as seas of various severities, a variety of

wave spectral shapes, various speeds (in case of a moving vehicle),

various headings to waves; and the expected number of cycles of the

response should be included in the prediction routine.
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9. For non-Gaussian waves, a popular method of obtaining the

distribution function for the time history of waves is to use a

series representation in the probability theory. A common series

available is the Gram-Charlier series. Several probability density

functions for nonlinear waves are known. The non-Gaussian nature of

nonlinear responses generally based on linear waves is characterized

by the eigenval ue-eigenvector approach. This is particularly true

for quadratic and linear plus quadratic response. Examples of such ~

responses are slow drift oscillations, drift force, springing force,

etc. Several probability density functions are derived in series

forms by this method. Once the initial distribution is known,

extreme values may be predicted from it.
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7.0 RECOMMENDATION FOR FUTURE HORKS

It is clear that no systematic procedure exists to handle nonlinear

problems in predicting extreme value responses by probabilistic means either

long term or short term. Only a few special cases may be treated at this time

and those too only after certain linearization or other approximations. Based

on the present review the following recommendations are made to further the “

state-of-the-art of the nonlinear extreme value analysis.

1. Various energy spectral models to describe random ocean waves are

known. They do an adequate job of describing the ocean waves at a

particular site

i.e., a suitable

the statistical

reasonably well.

spectrum at the

poor. Since the

for a given set of wave statistical parameters,

form of the spectral model may be chosen based on

parameters that match the energy distribution

However, the knowledge of the upper tail of the

high frequency end is less confident and often

extreme values (including higher moments of spectra

for such derivation) are highly dependent on this upper tail, care

must be taken to describe them accurately. Therefore, more research

work is needed to study this area in terms of reliable field data in

the area and the corresponding mathematical description.

2. Most of the probability methods start with the assumption of

Gaussian waves. However, waves are not necessarily Gaussian. In

fact, high waves which produce the extreme values are seldom

Gaussian. The distribution of nonlinear and non-Gaussian waves has

received some attention in the past several years. Several methods

have been presented here that deal with non-Gaussain waves and

excitation. The treatment of corresponding non-Gaussain responses

is relatively few. More theoretical and general statistical

description of non-Gaussian response behavior of more practical

marine structures should be developed. Such developments should

include cases of non-Gaussian random excitation of a linear system,

and Gaussian random excitation of a nonlinear system as well as a

combination of the two.
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3.

4.

5.

6.

7.

The

The interaction of waves and currents and the resulting influence on

the responses should be thoroughly investigated. The influence of

currents on the random wave loading both for Morison type loading

and of second-order drift forces is not known adequately.

The probability of simultaneous occurrence of waves (with parameter

Hs, Tz and 60) and current (with parameter U, 60 and profile with

depth) should be known.

The formulation of the long-term probability distribution for the

characteristic wave height and wave period is limited. More

knowledge of the actual distribution function for these parameters

is needed so that accurate long-term prediction of responses is

possible.

The probabilistic description of the water particle kinematics in

the free surface zone is limited. Further work is needed,

particularly through experiments with high waves, to collect data in

this area so that a better understanding of the free surface effect

on marine structures may be achieved in a probabilistic sense.

Most of the statistical treatments of nonlinear problems have been

centered around the wave exciting forces in the form of Morison

equation. While a few studies have been made regarding nonlinear

structural responses , more work is needed to determine the effect of

nonlinear forces on the structural responses (both linear and

nonlinear) and how they can be used to derive the extreme response

values.

above is a list of some of the general areas of nonlinear extreme

value analysis that are required in the future years to come so that the

state-of-the-art may be extended to the point where it may be incorporated in

the design of marine structures in a routine manner. These investigations are

complicated and will require considerable time to develop. Because of the

limited knowledge in this area this technique is not used routinely by

offshore design engineers for nonlinear systems. It is hoped that the
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strengths and limitations of various methods described here will enable the

design engineer to attempt to use these methods more often where appropriate.

However, additional work may be performed to make this report more

valuable to the designer. This will require performing several case studies

based on various approximate methods described here. Since many of the

simplified methods outlined do not need complicated numerical computation and

simple expressions have been

relatively straight-forward

above. Hypothetical but

parameters may be chosen for

will be kept

comparison of

be made in a

simple so that

included in many cases, such an analysis will be

compared to the work under Recommendations 1-7

practical structures along with their design

the design calculation purposes. The structures

the calculation process is not too involved and

various methods is not difficult. The design computations will

systematic manner and extreme values of the responses will be

predicted for each method chosen. Where the methods are not applicable

because of inherent assumptions it will be so stated. This then, may be used

as a cookbook by a designer in his own design. He may also be able to use his

engineering judgment regarding the choice of a suitable method and its effect

on the extreme value prediction. Any necessary correction to this value

because of his model may then be easier to make.

.

,
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