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SUMMARY

Marine Structures are employed in the exploration, production and
transportation of offshore minerals as well as for transportation of people
and products across nations and for the defense of the country. The
structures used for the production of oil and gas are generally located at a
particular site offshore while others are mobile. These structures are often
at the mercy of the harsh environment of the ocean in the form of waves, wind,
current and earthquake and must survive the severest storm encountered during
its lifetime,

Design of an offshore structure is based on the extreme responses
experienced by the components of the structure under the influence of the
environment faced by the structure in its lifetime, If the structural
components may be treated as a linear system, the derivation of the extreme
responses is relatively straightforward. However, most practical offshore
systems have nonlinear responses, and these design tools are not applicable.

The purpose of this report is to perform an extensive state-of-the-art
review of the available and emerging techniques for the determination of
extreme responses of a nonlinear marine structure and system. The contents of
this report may be categorized into two parts; one presents the nonlinear
characteristics of wave-induced forces and corresponding structural responses,
and the other discusses the extreme value analysis of nonlinear systems
relevant to offshore and marine structure design. The report reviews the
generic procedures for the nonlinear analysis of marine structures and
investigates the method in which they may be applied to the probability
analysis of extreme events.

Different types of nonlinear behavior of interest for various classes of
offshore structures have been studied. Nonlinearities in the analysis of
these structures appear at various stages, e.g., waves, material properties,
forcing function and motion response. The solutions of the dynamic problem
with time dependent loads fall into two main categories: deterministic and
nondeterministic (stochastic). Deterministic solutions include both the time
domain (time history analysis) and the frequency domain analysis. While the
time history analysis can retain most of the nonlinearities in a marine
system, frequency domain solutions are necessarily linearized., Review of




these various generic procedures for nonlinear analysis has been made.

In the case of probabilisitc method of obtaining extremes of a response
of an offshore structure, distinctions are made regarding short-term versus
long~term.

A short term means a period of time which is short enough to describe the
sea and the response as a stationary random process. This period of time is
on the order of 30 minutes to 3 hours. It is a general practice to assume
that the short-term statistical distribution of response amplitudes follows
the Rayleigh distribution function, Based on this function, the probabilities
of certain extremes over a given short term may be predicted. The waves are
assumed Gaussian for this purpose. For responses, the narrow bandedness and
linearity are inherent assumptions. However, the response (output) of a
nonlinear system is a non-Gaussian random process even though the waves
(input) is Gaussian. This fundamental principle has been addressed in the
report. The prediction of the statistical properties of marine systems with
strong nonlinear characteristics is not possible using a linear analysis. For
statistical analysis of nonlinear systems, the probabilistic prediction of
non-Gaussian random process is essential. This area has been discussed in the
report, and several non-Gaussian random processes have been included.

For extreme value statistics, a Tong-term (of the order of 20-100 years)
distribution of the response parameters is often required. The long-term non-
stationary random process is sometimes written as a sum of a large number of
short-term stationary process. The extreme values of a given probability
level are also obtained by order-statistics. This area is briefly reviewed.

Various available methods in the above areas have been summarized, and
their applicability, assumptions and limitations have been discussed. Based
on this discusssion, several conclusions and recommendations have been drawn.
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TABLE 1.1 - TYPES OF OFFSHORE STRUCTURES

MARINE AND
OFFSHORE STRUCTURES

FIXED! 2 FLOATINGZ »3 FLEXIBLE
Drilling Jackets Ships Catenary Cables
Production Platforms Barges Chains
0i1 Storage Tanks Semisubmersibles Risers
Caissons Buoys TLP Tendons

TLPs Marine Hoses
Articulated Buoyant Towers
Guyed Towers4

NOTES:

1. Fixed structures may be piled or gravity type.

2. Fixed or floating structures may be rigid or non-rigid, The non-
rigid structures will undergo small deflections or displacements
under environmental loads.

3. Floating structures are usually moored in place in operational mode.

4, Strictly speaking, guyed towers do not belong to this category; but
its analysis is similar to the others in this category.



1.0 INTRODUCTION

The marine and offshore structures and their components may be classified
into three broad categories: fixed structures, floating structures and
flexible structures. Table 1.1 shows these three classes of structures.

The fixed structures in the open ocean are held in place by their weight
or by piling. Generally, jacket type structures consisting of a large number
of tubular members in various planes are held in-place by piling. Many such
structures may be seen in the Gulf of Mexico. On the other hand, large-
volumed production structures made of concrete and steel that exist in the
North Sea are gravity-type structures. The weight of these structures
provides sufficient bearing pressure to overcome sliding or overturning due to
environmental loads, thus fixing their position.

There are two primary types of floating structures. One type is powered
to move from one location to another and is used to transport materials across
bodies of water. Examples of this type of .structures are ships and barges.
The other type of floating structures is mechanically connected to the ocean
bottom or moored in place for use in offshore operation such as in the
production, processing and storing of 0il., Such structures may be articulated
towers, semisubmersibles, tension leg platforms (TLPs), etc.

Fixed and floating structures may be rigid or non-rigid. Large struc-
tural components are considered rigid for the analysis of wave forces and
motions. Long members of small cross sections, e.g., in jacket platforms may
undergo deflections or displacements which are substantial and should be
considered non-rigid. An articulated tower may also experience natufa] period
vibrations in higher vibration modes than the rigid body motion. These
members are treated as non-rigid in the response calculation.

The third type of structures, namely, the flexible structures undergo
large deformations which must be taken into account when being analyzed. It
may be important to update the external forcing function on these structures
based on their displaced configuration. Examples of these structures are
risers, TLP tendons, catenary lines, hoses, etc.

Because of the nature of these flexible structures, the nonlinearities in
the design analyses appear in different phases and are sometimes typical of



the structures in question, On the other hand, certain types of
nonlinearities are common to most of these structures, depending on the
environment experienced by them.

This report discusses the common types of nonlinearities (Chapter 2)
encountered in the design of offshore structures. The types of nonlinearities
are arranged in the order in which they may enter into the analysis of a
structure, Applicability of these nonlinearities to the types of structures
included in Table 1,1 is discussed, Examples of the nonlinearities are
presented from which the importance of the nonlinear terms may be assessed.

The main thrust of the present report is the extreme value analysis of
nonlinear systems relevant to offshore or marine structures., This area is
relatively new, but progress in this area in the last several years has been
rapid and steady. Because of the complexity of the problem, the extreme value
analysis of nonlinear systems makes approximate assumptions in order to make
the mathematical problems tractable and fit one of the known extreme value
analysis methods. Chapter 3 discusses various probabilistic methods and
distribution functions used in predicting short- and Tlong-term extreme
response values for an offshore structure. Most of the nonlinear systems
which appeared in Chapter 2 are addressed here.

The applicability of the various approximate methods in nonlinear extreme
value analysis 1is discussed in Chapter 4. Some of the assumptions and
limitations of these techniques are summarized. Based on this evaluation,
consistent methodology applicable to the probabilistic approaches is provided
in Chapter 5. As will be clear from the discussions in the earlier chapters,
a single methodology may not be appropriate for evaluation of all systems.
Therefore, based on certain input parameters depending on the types of
nonlinearities, different methodologies and formulations are recommended.
Moreover, because of the cost and schedule constraints of this contract,
several recommendations are made for possible future work in this area.



2.0 TYPES OF NONLINEARITIES

The nonlinearities enter into an offshore structure analysis at various
phases. The first and foremost of these is the environment itself. In
describing the environmental conditions that influence the offshore
structures, nonlinear theories are often needed. For example, waves are often
nonlinear and require a mathematical series expression which depends on
various wave parameters (e.g. wave height) in a nonlinear fashion., In
describing the effect of the environment on the structure, the external
loading may become nonlinear, Examples of such nonlinearities are current
load, wind load and wave drag load. The response of the structure resulting
from the environmental loads may be nonlinear due to nonlinear damping, for
example.

Let us, at this point, explain what is understood about a nonlinear
system and how it differs from a linear system.

2.1 DEFINITION OF NONLINEAR SYSTEMS

Consider a nonlinear system, If y(t) is the response at a given time, t,
that is single valued and nonlinear due to an excitation x(t) at the same
time, t, then

y(t) = 9[x(t5] N (2.1)

where g(x) is a single valued nonlinear function of x. The system g(x) is
nonlinear if '

g(ay X] + 2y Xp) ¥ a1 g(xq) + a, g(xz) (2.2)

where a; and ap are arbitrary constants. This system is considered a "zero
memory" system, meaning that the response of the system does not depend on the
past value of the excitation. If the system is a constant parameter nonlinear
system and if the excitation x(t) represents a stationary random process, then
the response y(t) will also be a stationary random process. In this case, the
correlation function of the output, and between input and output are given by
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where R refers to the correlation at a time lag, 1, and E refers to the
expected value, Examples of zero memory nonlinear systems that are often
found in the offshore structure analysis are

® Square-lLaw System: y = x2
e (Cubic System: y = x3

e Square-Law System with Sign: y = |x|x

In this section, we shall describe the various types of nonlinearities
that are encountered in the marine and offshore structure design. The
subjects are introduced in the order mentioned at the beginning of this
section. First of all, nonlinearities encountered in describing the
environment will be described.® Then the external loading from these
environments that are nonlinear will be discussed. Finally, the responses
from external loadings that are nonlinear will be addressed. It should be
noted that the design extreme value analysis should properly account for these
nonlinearities.

2.2 NONLINEAR WAVES AND WAVE SIMULATION

In computing the wave loads on the components of an offshore structure, a
suitable wave theory must be chosen based on the wave parameters. Numerous
water wave theories have been developed which describe the kinematic and
dynamic properties of the water particles at or below the free surface of the
wave profile. Although the ocean waves are random in nature, the wave
theories describe wave profiles that are regular and periodic in nature.
There are three basic parameters that are used in describing all wave
theories: water depth, wave height and wave period.

The Tlinearity of waves is determined by the wave height or the wave
slope. The simplest and most commonly used wave theory is known as Airy
theory which is linear with the wave height (hence, also called the linear
theory). Because of the linearity of the Airy theory with the wave height,



the structural response obtained using this theory is often quite straight-
forward, even though not necessarily linear. This is the theory that is
almost exclusively used in the extreme value analysis of responses, and forms
the basis for the latter chapters.

The free surface boundary conditions are linearized in describing the
linear Airy wave theory. Therefore, it is not possible to accurately predict
the statistical and spectral properties of particle kinematics in the free
surface zone., Anastasiou, et al. (1982) derived the probability density
function of particle kinematics in the free surface region, which is correct
up to the second order., The wave loads in the free surface zone on a vertical
cylinder were computed to demonstrate the nonlinear properties of the particle
kinematics.

However, in many physical situations the linear theory is not adequate to
accurately describe waves. In this case one has to resort to other theories
to match or at least approach the physical data., Besides the linear theory,
other commonly used nonlinear theories in the design of offshore structures
are (1) Stokes higher order theory [Skelbreia and Hendricksen (1960)1, (2)
cnoidal theory [Weigel (1960)] and (3) stream function theory [Dean (1965),
(1970) 1.

To offer an example of the differences among theories, Airy linear theory
provides an expression for the horizontal water particle velocity as

- mH cosh ky
U= = ST ©0s (kx = wt) (2.5)
whereas Stokes second order nonlinear theory expresses the same parameter as

u = 1?' g?ih K cos (kx = ut) +-4-g- ( lr-IH- )2 Qﬁlﬁlcos 2(kx - wt) (2.6)

sinh 'kd
where H = wave height, T = wave period, d = water depth, y = vertical
coordinate of particle, k = wave number (= 2n/L, L = wave length),

x = horizontal coordinate of particle, w = wave frequency, ¢ = wave celerity,
and t = time. The first term on the right hand side of Eq. 2.6 corresponds to
the first order theory and is linear with the wave height. However, the
second term is proportional to the square of the wave height (or wave slope).

Similarly, the horizontal water particle velocity of an Nth order stream



function theory is given in a series form with terms up to N as follows:

nk cosh (2n-1)ky [X(2n=-1) cos(2n-1)kx + X(2n) sin(2n)kx] (2.7)
1

u=-
n

W™=

in which X(n) are the coefficients of the stream function. The statistical
distribution properties of nonlinear waves have received some attention in
"~ recent years which have been discussed in Chapter 3.

The applicability of the wave theories may be described by two
nondimensional parameters, d/gT2 and H/gT2 based on the three basic wave
parameters, d, H and T. This is described by the regions shown in Fig. 2.1.
The 1imits of validity of the various theories are based on how well the free
surface boundary conditions are satisfied, although there has been limited
experimental verification. For this reason, in using this chart, one need not
strictly adhere to the boundary lines in selecting a theory. In fact, the
linear theory has been shown to work quite well in predicting structure
responses well beyond its analytic limitations.

These wave theories are used in computing the response function of an
offshore structure. High order deterministic wave theories are used
extensively in the design of offshore structures despite their inability to
model the randomness of a wind generated sea. The extreme values of responses
(linear and nonlinear) are predicted invariably in linear random waves. For a
linear system this procedure is straight-forward with the use of a wave energy
spectrum model as will be described in the next chapter. For a nonlinear
response function, the solutions are often obtained in the time domain. This
requires the simulation of a time series from the energy spectrum model.

The random waves in the ocean cannot be described by a theoretical
model. They are generally described by their energy density spectrum. Often
a mathematical formula is used to describe the energy density spectrum of an
ocean wave. A commonly used form is the Pierson-Moskowitz spectrum given by

-5
S(w) = 1o & exp [-1.25 (a/uy) ™1 (2.8)
“o

in which S$(w) is one-sided (i.e. 0 < w < =) energy spectral density,
Hg = significant wave height and «y = peak frequency corresponding to the
energy spectral peak.
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While the above form of the energy density spectrum may be used as a
modified two parameter spectrum having Hg and wy as independent parameters,
the P-M spectrum is a one-parameter spectrum of a fully-developed sea in which
Hg 1s related to wg by the relationship

2
wy Hg

= 0.161 (2.9)

Thus, given a significant wave height, the peak frequency can be determined
and vise versa, Recently, Buckley (1986) analyzed ocean wave data obtained
from measurements at a platform in the Gulf of Mexico, NOAA data buoys, Navy
SOWM data and data from Canadian and Great Lakes waters. Based on the
significant wave height and peak period of this set of data, an empirical
boundary describing the 1imiting steepness was obtained as

w~ H
0_s . 0.306 (2.10)

which is about twice that prescribed by the P-M spectrum.

For a frequency domain analysis, these spectrum formulas (e.g., Eq. 2.8)
are used directly., A wave profile is simulated from such a spectrum for a
time domain analysis. One of the straight forward methods of simulation of
the time series is the linear superposition method of dividing the energy
density spectrum into several slices of width, Aw. Then the wave height
representing the energy under these slices is given by the formula

Hi(wi) =2V ZSzwis Aw | (2.11) -

where w; corresponds to the central frequency of the slice. The corresponding
period is given by

T, =-%f (2.12)
This, then, gives the component of the wave representing the frequency
interval, i, given by the wave height - period pair, (Hj, Tj). The phase
angle is assumed uniformly distributed over (0, 2n) and is chosen randomly.
Then the profile of the random wave is obtained by adding all the components

of the wave thus generated



H.
—%—cos(kix - uﬁt + wi) (2.13)

il =

n(X,t) =

i=1
where ky = 2n/L;, L; = wave length at a frequency wj and N = number of slices
made in the wave spectrum (typically 50-200).

The random wave profile produced by this method is Gaussian only in the
limit as N extends to infinity. In order to avoid this problem [Tucker, et
al. (1984)], Eq. 2.13 may be rewritten in terms of two coefficients, i, bj
(instead of ;) which are functions of the cosine and sine component of (kjx -
wit). These coefficients are then assumed to be randomly distributed in a
Gaussian form to ensure n to be Gaussian. It has been shown [Elgar, et al.,
(1985)] that the group statistics of the wave profiles by either of the two
methods produce similar results.

In a deterministic approach the maximum wave cycle in a random wave field
is often used to obtain the design response value. Such cycles are generally
highly nonlinear with sharper crests and require higher order wave theory
(e.g. stream function theory) to describe the wave cycle.

A method of simulation of nonlinear random seas was provided by Hudspeth
(1975), The method involves inverting the Fourier wave amplitude spectral
components by a Fast Fourier algorithm., Second order corrections are made to
the Tlinear random sea surface. These nonlinear components appear at
frequencies that are sums or differences of the linear frequencies and include
the product of the linear spectral components. The nonlinear random sea
surface is derived from a linear simulation. The kinematic field, i.e. water
particle velocity and acceleration are obtained by a digital linear filtering
technique.

2.3 WAVES PLUS CURRENT

When current 1is present along with the waves, the current is often
considered steady and its effect is linearly superimposed on the effect of the
waves on responses, It is sometimes found that the combined effect of waves
and current on the responses may be different from their individual effects
linearly superimposed because of wave-current interaction. This s
particularly true for a moving structure for which the motion may become quite
complex and nonlinear even for linear waves. In addition, however, when



current is in the direction of waves there are additional changes experienced
by the waves.

On encountering a current, the characteristics of a wave change. In
particular, in the presence of current the wave height and the wave length
experience modification, If the current 1is 1in the direction of wave
propagation, the wave slope decreases and its length increases. On the other
hand, if the current opposes the wave, the wave slope increases in magnitude
and the wave length shortens. These changes take place due to the interaction
between the waves and current,

In deepwater in the presence of a uniform current the wave number, k, is
related to the wave frequency, w, by the generalized dispersion relationship

4w2/g
[1+ (1+ 4Uuw/g)

K = (2.14)

1/2]2
where U may be positive (in the direction of wave propagation) or negative
(opposite to the wave direction). Note that the expression in Eq. 2.12
reduces to the deepwater dispersion relation (k = u@/g) in the absence of
current (U = 0). MWhen U is positive the value of k is smaller so that the
wave length is larger. Likewise when U is negative, the value of k increases
and the wave length is smaller than the no-current case,

The wave-current interactions in a random wave field show that the wave
energy density spectrum likewise undergoes profound changes. Under the action
of a steady current in deepwater, the wave energy spectrum takes the form

S*(u) = 4_S(w) (2.15)
Q +ig_m1/2 1+ (1 +3g_ml/2]2

When the current speed is negative there is a cut-off frequency in the surface
wave spectrum given by the condition 1 + 4Uw/g = 0 beyond which no waves
exist., Since the phase speed, ¢ (= wk), of gravity waves is a monotonically
decreasing function of wave number and frequency, the influence of current
will be predominant at the higher wave number range. Furthermore, the
contribution from the higher wave number range dominates the wave surface
slope whereas the current changes the surface slope pattern drastically. This
is demonstrated in Fig. 2.2 in which the ratio of $*(w)/S(w) is plotted versus
w for different values of steady current with and against the wave
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direction. It is seen that the effect of current at the low frequency is
small. At higher frequencies the effect of current increases energy level
when it opposes waves and decreases when it is with the waves., This is
further illustrated in Fig. 2.3 where S*(w) is shown versus w. The wave
energy density spectrum, S(w) represents a P-M spectrum for a wind speed of
U, = 20 miles/hr. The spectra of fluid particle velocity and acceleration at
mean water level are given by

s*(w) = o $*(w) (2.16)

and

sg*(w) = u? $%(w) | (2.17)

Figure 2.4 shows the effect of wave current interaction on the water particle
velocity spectrum, S$*,(w) for different current speeds of U = 43 ft/sec.

Spectra of water particle acceleration exhibit similar characteristics.

2.4 NONLINEAR FORCE

It is clear from the previous sections that nonlinear waves will produce
nonlinear responses even if the transfer mechanism is linear. On the other
hand, for a linear wave the responses are nonlinear if the transfer function
is nonlinear. Thus the responses of a marine structure will be nonlinear if
the exciting forces arising from (linear) waves are nonlinear. One of the
most common types of dynamic nonlinearity encountered in the exciting forces
is due to the drag force. The nonlinear steady drag force due to wind and
current is well-known., Extending this form to the case of waves, adding the
inertia component and taking into account of the reversal of force in a wave
cycle, an empirical formula was proposed about 25 years ago which is commonly
known as the Morison equation.,

2.4.1 Morison Equation

The Morison equation was developed by Morison, et. al., (1950) for
describing the horizontal forces on a vertical pile. It is written in terms
of the water particle velocity and acceleration components as

f=kyt +kplulu (2,18)
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in which

=
I

= p Cy ;} D2 (2.19)

and
kp =% # Cp D (2.20)

and f = hydrodynamic force per unit length of the vertical cylinder, p = mass
density of water, D = cylinder diameter, u and 4 = water particle velocity and
acceleration, and CM, Cp = inertia and drag force coefficients respectively.

This empirical force model has been the most widely used method in
determining forces on small diameter vertical cylindrical members in an
offshore structure. The computation depends on a knowledge of the water
particle kinematics and empirically determined coefficients. Extensive
research effort has been expended in the past in obtaining the values of the
force coefficients, Cy and Cp. In this area, the most noteworthy laboratory
results on Cy and Cp were produced by Sarpkaya [see Sarpkaya and Isaacson
(1981)] from his U-tube experiments. His data show that these coefficients
are functions of the Keulegan-Carpenter number (KC), Reynolds number (Re) and
roughness parameter of the cylinder. The Keulegan-Carpenter number is a
measure of the water particle orbital amplitude with respect to the cylinder
diameter and is defined as KC = uoT/D where u, is the amplitude of the water
particle velocity. Typical results for Cy and Cp from Sarpkaya's experiments
for different values of KC are shown in Fig. 2.5, His analysis shows that for
smooth cylinders, the value of Cp approaches 0.65 and Cm approaches 1.8 at
higher values of Re. In waves, these values from pure 2-D oscillatory flow
should probably be considered an upper limit. Limited correlation of these
data in waves has been made. One such correlation in a limited range of Re
was made by Chakrabarti (1981) in Fig. 2.6. Note that the correlation is
quite good except for Cy near KC = 10 and at higher values of KC where
Chakrabarti's data are sparse and need further verification.

The Morison equation has been used in the application of both regular
waves and random waves. In a design, the coefficients in the random waves are
often chosen from the regular wave tests and assumed constant with
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frequency. The coefficients have generally been derived in the laboratory in
oscillating motion or 1in regular waves. The data from ocean tests have
produced large scatter which does not validate the applicability of the
Morison equation. In a test with a vertical cylinder in a wave tank, Vugts
and Bouquet (1985) measured the forces and corresponding water particle
kinematics at a small section of the cylinder in random waves. Then they
considered these signals as output and input signals respectively, and applied
the measurements to a general transformation model consisting of linear and
nonlinear paths. They chose four models, one of which corresponded to the
Morison equation. The Morison equation was found to be the best suited,
giving a good match between the two signals. The inertia coefficient was
found to be reasonably constant for a given frequency spectra while the drag
coefficient decreased in value with frequency.

The Morison equation has been extended to inclined cylindrical members of
an offshore structure in terms of a normal velocity component, w, and a normal
acceleration component, ﬁ. In this case, the force is written as a vector
quantity

f=ky,wt kplw|w (2.21)

The force vector per unit length of cylinder may be decomposed into its three
components along 3 axes XYZ by writing

Ww=u i+ "yl + uz& : (2.22)
and
W= uxi + uyl + uz£ _ _ (2.23)

It has been shown through experiments [Sarpkaya (1984), Garrison (1985)] that
the coefficients Cy and Cp for an inclined cylinder may be obtained as those
values from the vertical cylinder tests.

The expression for the inclined cylinder, Eq. 2.21, is general enough
that the forces on a small cylinder in any plane may be obtained from it.
This formula is applicable to derive forces from various types of offshore
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structures and structure components, Some of these are jacket structure,
risers, tendons, articu]ated-tower, legs of semisubmersible and guyed tower.
It should be noted, however, that the applicability of Eq. 2.21 to a randomly
oriented cylinder needs further investigation.

The regions of applicability of the Morison equation and, in particular,
the areas of drag and inertia force predominance may be discussed in terms of
the chart in Fig. 2.7. The chart has been obtained by examining the ratio of
the maximum drag force, fDO’ to the maximum inertia force, fIO, for a cylinder
in linear waves. Note that

fD0 Cp
I0 T CM

where KC is the Keulegan-Carpenter number. Assuming Cp =1 and Cy = 2, the
percentage of drag to inertia may be established. The limits are stated in
terms of the KC number, and the diffraction parameter, kR = aD/L, R = cylinder
radius. According to this chart the nonlinear force due to the drag effect
tends to become important when KC becomes greater than 2. The wave force from
the Morison equation becomes mostly drag for KC > 90.

By virtue of the form of the drag term, the drag force component is
nonlinear in the time series even if the water particle velocity is
sinusoidal. On the other hand, the inertia term is linear if the sinusoidal
water particle velocity (e.g. by linear wave theory) is used for the (local)
acceleration. If the local horizontal acceleration is replaced by the total
horizontal acceleration including convective terms, the inertia term has a
nonlinear form., _ ' '

Du _ 2u 2,y 2u, , (2.25)

Dt Gt oxX 3y 3z
in which u, v and w are the components of the water particle velocity vector
in a rectangular Cartesian coordinate system. Wave force data reduced on the
basis of nonlinear (irregular) stream function theory dependent on the
measured wave profile and local measured forces have shown satisfactory
correlation with measured total forces [Chakrabarti (1980)1],

In addition to the extensions of the Morison equation stated above,
several modified forms of the formula are used in the offshore structure
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design. These have to do with combining different environmental effects into
the formula. The two most important of these are current and structure
motion. Current can be applicable to all three types of structures while the
structure motion is important only for a floating or flexible structure.

2.4.2 Fixed Cylinder in Waves and Current

When current is present with waves, the formula for a fixed structure is
written in terms of the total velocity including a steady current, U, and an
oscillatory component, u as

f=kyt+ky |uzU|l (uzU) (2.26)

where =U represents uniform current opposing the direction of wave propaga-
tion,

However, it is sometimes argued that a single drag coefficient does not
adequately express the total drag force in the presence of waves and
current. An alternate form of the Morison equation has been suggested

- 2
f=ky 0 +ky |uju + kp U (2.27)
where Eb is defined in terms of a steady drag coefficient, ﬁb as

X, = 21— o Ty D (2.28)

The Keulegan-Carpenter number and the Reynolds number in a wave-current
field are defined as

(ug £ UT
KC = 5 (2.29)
(uo tU)D
Re = (2.30)
Vv
where Ug = amplitude of u and v = kinematic viscosity of water.

It should be emphasized that the values of the hydrodynamic coefficients
in the wave-current field are expected to be different from those in waves
alone, Unfortunately, such data are Tlimited. Iwagaki, et al. (1983)
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presented values of Cy, Cp versus KC from a combined wave-current test. These
values shown in Fig. 2.8 are not much different from the wave alone data.

Because of the difficulty of generating waves on a steady current an
alternative and often considered equivalent approach is taken.  Sarpkaya
et al. (1984) had adopted one such method in his U-tube in which the cylinder
was moved steadily in an oscillating flow field., They used the relative
velocity model (Eq. 2.26) to derive Cy and Cp. Results obtained from such a
test on Cy and Cp are shown in Figs. 2.9-2.10. Reference may be made to
Sarpkaya's (1984) paper for other similar data.

Moe and Verley (1980) took a slightly different approach. They
oscillated a horizontal cylinder sinusoidally in a uniform current field and
measured forces on the cylinder. They used the three-term Morison equation,
similar to Eq. 2.27, with the exception that u is replaced by x, U by x and
ky by kp, where x is the amplitude of the oscillating cylinder and

kA = pCAwD2/4. . The coefficient, Cp, is defined as the added mass
coefficient for the oscillating cylinder and is related to Cy by Cy = 1 + Cp
for a buoyant cylinder. They derived the values of Cb ,and Fourier averaged
Cp and Cp. The coefficients Cp and Cp showed complex dependencies on the
amplitude parameter ; = xo/D and the reduced velocity,

VR = UTO/D (2.31)

where Tn = period of cylinder oscillation. The plot of Cb vs. x for various
values of Vp is shown in Fig. 2.11.

From the above tests it is obvious that the values of the hydrodynamic
coefficients are directly related to the form of the force equation used,
e.g., independent flow field or relative velocity model. The advantage of the
three-term Morison equation is that the steady drag force may be easily
separated from the oscillating part, e.g., in the analysis of a structural
dynamic problem. However, it seems simpler to use the relative velocity model
since it means choosing and working with one less coefficient.

2.4.3 Oscillating Cylinder in Waves

When a rigid structure is free to move in waves, the effect of the
structure motion can be combined with the wave effects to form
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fo=ky 0 -ky X+ kplulu - kj|2| (2.32)
where kp=gCanD2/4, kj =3 o Cy D, Cp = added mass coefficient and Cj = drag
coefficient due to structure motion defined separately from the fluid dynamic
drag. This form is known as the independent flow fields; a far field due to
the wave motion and relatively unaffected by the structure motion, and a near
field resulting from the structure motion. The values of Cy and Cp may be
obtained from wave experiments while the coefficients Cp and 06 are derived
from the experiments of an oscillating cylinder in otherwise calm water. The
values of the KC and Re numbers are obtained from the respective velocities
and periods.

When the forces are written 1in terms of the relative motion, single
coefficients for the inertia and drag are assumed to apply. Thus, the form of
the force term including the structure inertia due to its acceleration,

(m; term) is

F =k (0 - %)+ kD]u - % (u - %) (2.33)

This model is known as the relative velocity model. It requires fewer
coefficients than Eq. 2,32, and has been used extensively in the past, e.g.,
to evaluate the stochastitc dynamic response of offshore platforms, motions of
articulated towers, etc.” In this case, the Reynolds number and KC number are
defined in terms of the rélative velocity, Ve, as .

v.nl v D
ro’r Re = 10

KC = 5 "

(2.34)
where v.g = amplitude of v, and T, = combined period of v.. Note that v, need
not be sinusoidal even if u and X are,

It is sometimes convenient to separate the inertia coefficient from the
added mass coefficient, As an example, the diffraction-radiation theory
provides different values for the force and added mass coefficients, There-
fore, a third alternative form of the modified Morison equation is written in
terms of the relative velocity, and the acceleration terms are separated.
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f=ky 0 -k x+kplu=-2[(u-2) (2.35)

The question arises as to which is the more appropriate form of the
modified Morison equation for a structure moving in waves. Since there is a
variety of offshore structures, e.g., jacket platforms, articulated columns,
risers, tension leg platforms, that fall under this category in which the drag
effect is important, it is worthwhile to discuss the appropriate and useful
applications of Egqs. 2.32, 2,33 and 2.35. Because the original Morison
equation is empirical, it is not possible to justify its extension to other
cases and to discuss which one is more "correct". Obviously, coefficients
derived from one of these formulations can be justifiably used in the
application of that form only. However, experimental data in this area is
scarce. An attempt to investigate this area was made by Chakrabarti et al.
(1983-1984) through model testing. An articulated column was tested in three
modes with the same setup: (1) fixed in waves, (2) harmonically oscillated in
still water, and (3) free to move in the plane of the waves. The amplitude of
velocity of the structure was comparable to the water particle velocity. The
test showed that the relative velocity form of the Morison equation is
appropriate, even though the observations were limited. Considerable work is
needed to determine the appropriate values of Cy and Cp in the relative
velocity model in waves,

An experiment with a submerged articulated tower was performed recently
by Dahong, et al. (1982) in which the motions of the tower both in-line and
transverse to the direction of waves were measured. From these measurements
the values of Cy, Cp from a relative velocity model (Eq. 2.33) and 1ift
coefficient, C , were derived. The mean values of these coefficients versus
KC are presented in Fig. 2.12.

The region of applicability of the relative velocity and independent flow
fields model may be discussed in terms of reduced velocity, VR (defined by up
instead of U in Eq. 2.31) and an amplitude parameter, x . The limits of
applicability are given in Fig. 2.13. The x-axis is the reduced velocity, Vr
while the y-axis is the KC number based on the water particle velocity.

For compliant structures, e.g. articulated towers, KC, Vp and X are
relatively large. For conventional jackets, KC and Vp are large, but X is
small. In both cases the flow is quasi-steady and the periods of oscillation
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of the structure generally coincide with the periods of the incident waves.
The use of the relative velocity term in the computation of the drag force may
be appropriate in these cases.

Two other cases may be considered. High KC and small Vg values cor-
respond to a resonating drag dominated structure, i.e. a high-frequency
cylinder oscillation in a slowly oscillating external flow. Examples of this
case are vibrating structures at high resonant frequency such as riser cables,
TLP tendons, etc. Similarly, low KC and high Vp values mean a low frequency
cylinder oscillation in a high frequency flow oscillation. This second case
includes the slowly-oscillating drift motions of a moored structure, e.g.,
ships, semisubmersibles, TLP surge, floating caissons, etc. In these two
cases, the concept of relative velocity applied in Eqs. 2.33 and 2.35 is
highly suspect and the independent flow fields model, Eq. 2.32, is ap-
plicable. The main reason for this choice is that the two motions are quite
different and relatively independent of each other. Thus, the smaller motions
are capable of creating local wakes independent of the larger motions. The
relative velocity model accounts for their combined éffect, thus ignoring the
smaller motions. The two drag coefficients may be chosen from the two types
of test data, one from a fixed cylinder in waves and one from an oscillating
cylinder in still water (or alternately, oscillating water past a stationary
cylinder). The KC and Re numbers are computed from the individual velocities
for this purpose.

A simple technique may be employed in determining which of the two
models, relative velocity and independent flow field, is applicable in a
particular application. When the two flows are comparable, one influences the
other and the relative velocity model is applicable. The independent flow
fields model may be used when one of the velocities is large compared to the
other. The applicable coefficients are chosen based on the test results
obtained from the corresponding models.

2.4.4 Oscillating Cylinder in Waves and Current

For a structure free to oscillate in the presence of waves and current,
the Morison equation is modified as

f = kM d - kA X + kD lut U= %|(utVU-2y) (2.36)
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Other forms of Eq. 2.36 may be written as before and have been used in the
past. These forms are applicable to moving structures in waves and current
whose member sizes are such that the hydrodynamic drag force is significant.
Even though the equation is written to define a force term, in a motion
analysis, the terms from Eq. 2.36 appear on both sides of the equation of
motion. For example, the first term on the right hand side is a forcing
function., The second term is an inertia term and belongs to the left hand
side of the equation of motion. The third term includes both a force term and
a damping term coupled together, If this term is linearized, then the two
components may be uncoupled into two terms belonging to the two sides of the
equation. In a time domain analysis it is treated as a damping term.

Test results under this condition, however, are almost nonexistent.
Considerable work 1is needed to achieve insight into this most complex
problem. The force and the motion are dependent upon the water particie
kinematics as well as the velocity and acceleration of the structure itself,
Because of the lack of data in this area, the hydrodynamic coefficients for
the analysis of such problems are chosen from studies similar to those
described in the preceding sections,

2.5 STEADY DRIFT FORCE

The second-order theory for the steady drift force is based on the first-
order diffraction-radiation theory and is applicable to regular waves. The
regular wave results are then applied to wave groups and irregular waves. In
addition, a steady drift force develops from the drag force term at the free
surface as well as in current.

In the following section, the steady drift force due to viscous flow is
discussed. It is generally applicable to structures that have members in the
drag-dominated areas (refer to Fig. 2.7), e.g., in jacket structures, TLP
tendons, etc.

2.5,1 Steady Drift Force Due to Viscous Flow

The forces on a small vertical cylinder due to linear waves may be obtai-
ned from the Morison formula by substituting u(t) = up coswt in Eq. 2,18,
Then, noting that u(t) = -w uy sinut ,
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f=-ky wu, sin ut +k, ug |cos wt|cos ut (2.37)
This form of the wave force at a submerged location has a zero mean over one
wave cycle., If the cylinder is allowed to oscillate harmonically in waves
with a displacement amplitude of X, @t a phase angle of o« with respect to the
wave so that x(t) = x, cos(ut + a), then the relative velocity model
(Eq. 2.,33) gives

f=-ky oV sin(ut + ¢) + kp v2 lcos(ut + ¢)|cos(ut + ¢) (2.38)

in which the quantities V and ¢ are defined as

- 2 2 _ 1/2
v [uo + (mxo) 2 w Uy X, €OS o] (2.39)
and
-1 WX, sin a
¢ = tan""( U = wX_ COS a ) (2.40)
0 0

The expression in Eq. 2.38 also has a zero mean. Comparing Egs. 2.37 and
2,38, it is clear that for a moving structure in waves, u, should be replaced
by V and wt by wt'+ ¢. Hence, the subsequent derivations are done only for a
fixed cylinder.

Note that there are ‘two areas that will produce a non-zero mean viscous
drift force. When current is present along with waves, a mean drift force is
generated from the drag force at any elevation of the cylinder. Moreover, due
to the changing free surface of the waves at the cylinder, the force will
produce a mean drift at the still water level (SWL).

In the presence of current, U, the relative velocity drag force may be
broken up into two simpler expressions depending on the relative magnitude
between U and u,. For |U[| > u,,

1

fD = ikD [U2 + ?-ug (1 + cos 2ut) + 2 U u, cos wt] (2.41)

where the negative sign applies to the case of current opposite to the wave
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direction, and for |U| < u,

- 2 .1 2
fD = kD [u- + 7 Up (1 + cos 2ut) + 2 U u, cos wt] sgn(u + U)  (2.42)
in which sgn is a sign function and takes on values of tl depending on the
sign of u + U,
When normalized by kDuoz, the mean viscous drift force for unit submerged
length of a vertical cylinder is given by the following expressions. Defining

the quantity, ¢, as

pe=cos™ (<), O<y<n (2.43)
0
we have
" 1, U 2 1u]
k_z=t[7+(ﬁ_)] for L=L 51 (2.44)
b Y 0 0
and
?’
Dz=l{(u—)2(2¢-n)+4(u—)51’n lp+(¢--,:,-+%s1‘n 2¢)}for-|-u—|-<1
knut T Yo Yo Yo
D "o
(2.45)

where the bar denotes average value over a cycle. The numerical values of the
normalized force are presented in Fig. 2.14 as functions of U/ug in the range
of =-2.0 to 2.0. Note that the curve is asymmetric about U/u, and becomes
parabolic at higher values of U/u,. A few experimental data points at low
current values are also shown in this figure.

In order to obtain the expressions of the free surface force on a
vertical cylinder, use of the Morison equation is made. Current is not
included in this derivation since current is generally considered present up
to the still water level in the application of the Morison equation. The
force per unit length of the cylinder due to wave only is given by Eq. 2.18.
According to linear theory, the maximum velocity, ug is given as

= gkH cosh ky
Y% w cosh kd (2.46)
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TABLE 2.1

VALUES OF C; AS FUNCTION OF kH

kH Cy kH Cq

0.05 1,0003 0.10 1,0013
0,15 1.0030 . . 0.20 1,0053
0.25 1.0084 0.30 1.0120
0.35 1.0164 0.40 1.0215
0.45 1.0272 0.50 1,0337
0.55 1.0409 0.60 10487
0.65 1,0574 0.70 1.0667
0.75 1.0768 0.80 1.0877
0.85 1.0994 0.90 1.1118

0,95 1.1251 1.00 1.1392



in which g = acceleration due to gravity, k = wave number, H = wave height,
d = water depth and y = elevation from bottom. Assuming that the linear
. theory can be applied up to the free surface, the total force is obtained from
the integral

d+n

F=/[ fdy (2.47)
0

which provides

_ _, GH sinh k(d + n) . 1 gkH 2
F=ky = sshka sin wt + 5 ky( 25coshkd )
[ (d+n)+ sinh ZkZég : T’)\] [cos wt|cos wt (2.48)

The inertia part of the force has a zero mean. The drag force yields an
average value over one wave cycle.

= 3

2kD ;/k2 ) (ﬁgi [ sin% 2kd * Cl(kH) coth 2kd ] (2.49)
The numerical values of Cy are shown in Table 2.1 as functions of kH. Note
that Eq. 2.49 is due only to the free surface variation even though the
integration in Eq. 2.47 is carried out over the entire submerged length. The
mean value, however, is a function of the water depth,.

Since the linear theory is applicable for infinitesimal wave amplitudes
and is valid up to the SWL, use of the expressions for the water particle
kinematics up to the free surface of a finite wave 1is questionable.
Therefore, "stretching" formulas have been suggested in finite water depth by
which the water particle kinematics at the wave crest and the wave trough
assume the same values, If one of these stretching formulas is applied, the
water particle velocity is written as

d
_ gkl Sosh ky (g

2w cosh kd

u cos ut (2.50)

and U is expressed in terms of U, and o as done earlier, then the total force
up to the free surface is given by

= -k g1 ; 1 kH 2
F kM % (d + n) tanh kd sin ot + 5 kD(-Zw e Td )
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(d +n) 1+ EiﬂgE%EQ l|cos wt]cos ut (2.51)

The mean value of F is obtained on integration as before,

F . (kH)® 1 + .1 (2.52)
%, k2 I [ svr2xa * 2ka |

Thus, the mean force from the free surface effect of a small vertical cylinder
(where viscous effect is important) is a function of the cube of the wave
height as opposed to the square of it for the potential drift force, as will
be found in the following section.

Note that in deep water, W = gk and the expression in Eq. 2.49 approxi-

mates as
C

P - 1;“ (kH)3 (2.53)
ZkD g/k

However, the mean free surface force from Eq. 2.52 approaches zero as the
water depth approaches infinity. The mean drift force from Eq. 2.53 have been
plotted in Fig. 2.15. Note that the normalized force depends on kH
approximately as its cube [Chakrabarti (1984)].

2.5.2 Steady Drift Force Due to Potential Flow

For structures that are large, the force is mainly inertial and potential
theory is applicable. The steady drift force is second order and can be shown
to arise from the first-order potential. The contribution due to the steady
drift force from the potential flow about a floating body has four components
which are addressed in the following section.

2.5.2.1 Wave Elevation Drift Force

Consider the extension of pressures above the mean water level to the
instantaneous free surface at the body while the body is in motion. Then the
integration of this pressure around the object at the water line gives rise to
a steady second-order force whose component, Fi, in the horizontal direction
is given by
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FL=- %09 I & 0 dl (2.54)

in which the bar denotes mean value, g = acceleration due to gravity,
gy = first order wave amplitude at a point on the moving body, n, = direction
cosine, and WL = water line at the body surface.

For a fixed vertical cylinder that extends from the free surface to a
submerged point where there is no wave action, the body may be treated as two-
dimensional and the MacCamy~Fuchs theory is applicable. In this case, the
horizontal wave elevation drift force may be obtained in a closed form. The
time-independent steady force component may be written as

2 ®
_ 4 D n(n + 1) 1
F,- 29z ;|- (2.55)
1 22r)® ne0 (kR)2 * Rn(kR) Apyy (kR)
where D = cylinder diameter (= 2R), ¢ = dincident wave amplitude (= H/2),

k = wave number, and Ap(kR) = Jﬁz(kR) + Yﬁz(kR) » JnsYp = Bessel function of
order n of the first and second kind respectively, and prime denotes
derivative with respect to the arguments.

2.5.2.2 Velocity Head Drift Force

The second term of Bernoulli's equation provides a steady second-order
component when the first-order velocity potential including the diffraction-
radiation effect is used to compute the pressure. Then the steady horizontal
force component may be obtained from the integral

Fp=-70 /[ (v8)n ds (2.56)
S

in which s = surface of the body and v$ = first-order velocity vector.

For the fixed vertical cylinder in deep water, the horizontal velocity
head drift force may be calculated using the total velocity potential.

e ngcz D ; [ 1 - { n(n + ].) }2 1 (2.57)

2% (kR)> n=0 (kR)¢ An Anel

Combining Eqs. 2.55 and 2.57 we obtain the total steady force on the fixed
vertical cylinder.
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FitFhp 2 ° n(n+1) 2 1

= : [1
09z2D 12 (kR)3 n=0 kR)® ~ AnPne1

(2.58)

In intermediate water depths, this force is also a function of the depth.

Numerical values of the wave elevation drift force, Fi , and the velocity
head drift force, Fé » as well as the total steady force due to the total wave
potential 1in the presence of a fixed vertical cylinder are shown in
Fig. 2.16. These quantities are normalized with respect to pg;ZD and plotted
versus the diffraction parameter, kR. The numerical values correspond to
water depths ranging from d/R = 1 to reasonably deep water, d/R = 5. Note
that the quantity Fi is positive while Fé is negative over the range of kR
considered. Also, the nondimensional steady drift force (Fi + Fé ) approaches
a constant value of 1/3 in deep water at higher values of kR.

For a moving cylinder there are two other components due to the motion of
the body contributing to the total steady drift force.

2.5.2.3 Body Motion Drift Force

The first-order wave force on the body 1is computed at its mean
position. However, the body undergoes motion due to waves and assumes a
different orientation at the instant this force is calculated. Therefore, if
a Taylor series expansion about the mean body position is made, the second-
order steady horizontal farce term takes the following form:

»

r3=-pffs>i.3§-(v¢) n, ds ‘ (2.59)

where X = motion vector,

2.5.2.4 Rotational Inertia Drift Force

This term arises because the first-order forces due to the pressure are
always normal to the surface. As the vessel oscillates the direction of these
normals rotate. If the components of these normals in the directions of the
fixed coordinate system are considered, a nonlinear drift load develops.
Then, mathematically, the second order drift force contribution assumes the
form
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Fp=x.F . (2.60)

where F= force vector.

Thus, only the results based on the first-order velocity potential are
needed to obtain the steady second order force. The total steady drift force
is obtained by adding the four components

Fb =F, +F,+F; +F, (2.61)

in the direction of surge.

The preceding four contributions arise from the assumption that the fluid
flow 1is irrotational and the potential theory is applicable. In order to
determine whether the viscous effect is important, calculations may be made to
compute the viscous drag force on the moving body from the drag part of the
Morison equation. For a moving cylinder in surge, this calculation takes the
form

-
H

p = kp lu=-x| (u-x) (2.62)

in which x = surge velocity of the cylinder. When this term is extended up to
the free surface above the SWL, a steady component arises which is
proportional to the third power of the wave amplitude. A deep water
approximation of this exﬁression in the absence of motion gives

F= %?kn (gk) . (2.63)

which is comparable to Eq. 2.53 except for the constant C; (= 1 here) and
which may be written in a form similar to Eq. 2.58 as

pgz D

The effect of the viscous drift force on the cylinder in relation to the
drift force contribution from the potential flow is shown in Fig. 2.16. Con-
sider the radius of the cylinder to be 2 ft. and a wave height of 0.5 ft. for
all wave periods so that ¢/R = 0,125, The value of Cp is considered to be
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1.0, Then, the values of the viscous drift force are as shown in Fig. 2.16.
Note that, in general, the viscous drift force is small compared to the poten-
tial force for all values of kR and increases linearly with kR. At kR = 2,
the viscous effect is about 15 percent of the potential drift force. For
smaller diameter cylinders and higher waves the viscous effect can become more
predominant because of its third order dependence on the wave height.

For a general floating body, it is difficult to discuss the ranges of the
diffraction parameter, kR and viscosity parameter, H/D (or ¢/R) where the
viscous or the potential drift forces are predominant. However, a qualitative
assessment of their relative importance may be made by considering a fixed
vertical cylinder in deepwater., If Z is considered the ratio of the viscous
to the potential drift force, then the region may be constructed as shown in
Fig. 2.17 for different values of Z = 0.1, 1 and 10. The middle curve (Z = 1)
represents equal contribution from the viscous and potential drift forces.
For Z = 10, the potential drift may be neglected just as the viscous drift at
Z = 0.1,

An example of the effect of a nonlinear viscous term on the motion of a
TLP [Kobsyashi, et al. (1985)] is shown in Fig. 2.18. In this case, steady
drift force as a function of the wave period in regular waves is given. The
solid line represents the computed values based on potential theory. The
dotted line includes the effect of the viscous drift force from the relative
velocity model. The correlation of the experimental data is much better with
the latter results. Moreover, the contribution of the viscous drift force is
much larger than the potential drift force at higher periods (beyond 7.5
secs,) where the ocean waves have much higher energy. Note that for a
structure with small members in large waves, such as a compliant tower (where
Z is closer to 10), Fig. 2.17 shows the drift force to be primarily viscous.

In order to compute the steédy wave drift force due to wave groups and
irregular waves, the following procedure is used. The wave energy density
spectrum, S{w), where w = wave frequency, for the particular wave group or
irregular wave is determined. Then, the steady drift force, F, , due to the
wave group or the irregular wave is calculated using the regular wave steady
drift force Fb(w) resulting in the transfer function

T

L= 4 oD }E’l S(w) F, (u) du (2.65)
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in which w) and wy are the lower and upper frequency limits of the waves.

2.6 NONLINEAR MOTION RESPONSE

A floating structure is connected to the ocean floor in several different
ways. An articulated tower is connected to the seafloor via a universal joint
which allows certain degrees of freedom of the tower. A ship, barge or a
semisubmersible is attached to the seafloor by means of a catenary system
through a turntable so that it can weathervane. In this case the structure
has all six degrees of freedom. A tension leg platform is held in place by a
series of vertical tendons. It is free to surge but has limited heave and
pitch motion.,

In addition to the forcing function, the equation of motion typically
includes an inertia, a linear damping and a restoring force term. The inertia
term includes an added mass term. The added mass coefficient is obtained from
the linear diffraction/radiation theory for a large structure or from the
modified Morison equation for a small member, The limits of applicability in
terms of the diffraction parameter ka have been shown in Fig. 2.7. For ka >
0.5 the diffraction becomes important. The linear damping term generally
comes from the radiation theory as well. The restoring force term arises from
the structure geometry and the type of mooring system. This term is often
nonlinear, but may be linearized over the range of application if the motion
of the structure is small., The catenary system is described in Section 2.9.
The nonlinear viscous damping is often significant and, therefore, needs to be
introduced in the equation of motion of the system~ in the first-order -
analysis.

2.6.1 First=-Order Motions with Nonlinear Drag Damping

The problem of calculating exciting forces using the first-order theory
reduces to solving for the total velocity potential, &(x,y,z,t) which can be
written as the sum of an incident velocity potential, ¢;(x,y,z,t) and a scat-
tered velocity potential, &5(x,y,z,t). The incident velocity potential, ¢; is
known from the Airy wave theory. The total velocity potential, ¢, satisfies
Laplace's equation and the appropriate linearized boundary conditions at the
free surface, the ocean bottom and the cylinder surface, as well as the
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Sommerfeld radiation condition. The body surface condition states that the
normal velocity component on the surface is zero. In the boundary value
approach of the problem, on application of this condition, the numerical
problem in terms of the unknown scattered potential reduces to a two-
dimensional Fredholm integral equation in Green's function. The first-order
forces are computed at the mean equilibrium position of the cylinder on the
assumption that the motion is small. The first-order pressure on the
submerged surface of the cylinder at its equilibrium position is obtained from
the first term in Bernoulli's equation,

peod+golwf (2.66)

The added mass and damping coefficients associated with the motions of
the body are obtained for the body oscillating harmonically in still water.
The formulation of this problem is quite similar to the previous one for fixed
structures and uses the same Green's function. The integral equation is
modified by the body surface boundary condition which states that the normal
velocity component of the fluid at a point on the body is equal to the
velocity of the body at that point. In this case, the incident wave potential
is absent and the velocity potential for a particular motion of the body e.g.,
surge, sway, heave, pitch, roll and yaw, 05 (i =1,2, « « +, 6) replaces the
scattered potential in the earlier formulation., Once a particular 5 is
known, the in-phase and out-of-phase components of the reaction forces
constitute the added mass and damping coefficients for that degree of freedom.

Considering that the nonlinear damping is important,:the motion of the
system may be described by a set of six coupled differential equations of
second~order as follows:

g [(m,, +M.) x, +N: % + N2 % |
k=1 jk ik’ Tk ik Tk Jk7k "k

+Cux = Fje‘(”t Yo j=1,2,..6 (2.67)
in which Mjk = mass and moment of inertia matrix, Mjk = added mass
matrix, N}k = Tlinear damping matrix, Ngk = nonlinear damping matrix,

Cjk = restoring force matrix, and F;, @y, = exciting force vector and asso-
ciated phase angles, i = imaginary quantity and w = wave frequency. The dots
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represent derivatives of the displacements, x,, with respect to the time, t.
The quantities, Fj and aj are obtained from the linear diffraction theory
while Mjk and N}k are results of the corresponding radiation problem. The
restoring force matrix, Cjk is composed of the buoyancy change of the
structure and the spring constant in the system. The nonlinear damping
term, N%k is evaluated from the drag part of the Morison equation and depends
on a drag coefficient. This term is particularly important for a motion near
the natural period of the structure.

A1l terms in Eq. 2.67 are linear (on the assumption that the springs in
the mooring line are linear) except for the nonlinear damping term. For a
simplified solution of the equation of motion, Eq. 2.67, this term is
linearized with respect to time in the following way. The motions are assumed

harmonic
x, = X (~z1(“’t ¥ Bk) (2.68)
k K
in which X, = amplitude of motion not necessarily linear with the wave

amplitude and gy = 1its phase angle. Then the nonlinear damping term is
approximated as

|x

% = §%(mxk)i (2.69)

k'K k

The right hand side of Eq. 2.69 is the first term of the Fourier series
expansion of the left hand side. On substitution of Eqs. 2.68 and 2.69 in
Eq. 2.67 and elimination of time, t, the following matrix equation in
unknowns, Xg and By are obtained:

6

2 1. 8.2
kzl [-w (mjk+ Mjk) + '”(Njk * Njk wX ) + Cjk]
X el B = Fs el%, j=1,2,..6 (2.70)

The solution for X, and g are obtained by an iterative scheme in which Xg in
the term with Nﬁk is assumed zero initially to obtain the first estimate of X
and g, through a 6 x 6 matrix inversion. This value of Xy is then substituted
for X, in the term with N§k to compute the subsequent solution until a
numerical convergence i$ reached.
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Several different variations of the equation of motion are possible and
have been used in analyzing the motion of floating structures, When nonlinear
(drag) damping effects on the structure are considered small, the equations of
motion reduce to

6 - 1 _ i(wt + o)
kfl[( My * Mjk) X, * Njk R+ Cjk xk] = Fj e 3 (2.71)

which is a linear equation whose solution is obtained as Eq. 2.70 for Ngk = 0,

The correlation of the numerical results with experiments in wave tanks
on a variety of floating structures has shown that satisfactory agreement can
be obtained by the simplified theory. An example of such an experimental
correlation for a conventional barge is shown in Figs. 2.19 and 2,20. The
barge was tested in the head sea position in which the surge, heave and pitch
motions were significant, (Fig. 2.19) as well as in the beam sea position
where sway, heave and roll were important (Fig. 2.20). The cross marks
represent the linear theory results. The correlation is quite satisfactory
everywhere except near the natural period of the spring-mass system (e.g. in
roll). The theory seems to overpredict the motion in this area compared to
the experimental data, partly due to the low damping values near the natural
period from the linear theory.

In Figs. 2.19 and 2.20, the nonlinear solution obtained from Eq. 2.70 is
shown as the solid line., While the scatter in the experimental data may be
due to a different amount of nonlinear damping with different wave height
(while the theoretical curve is obtained for a given wave height) the
correlation is better with this added nonlinear damping term. Thus, the
nonlinear damping improves the solution near the natural period of the
structure in a particular mode of oscillation.

The coupled nonlinear equations describing the various degrees of motion
that include a significant relative-velocity-squared drag term cannot be
solved in the frequency domain while retaining their nonlinear character-
istics. The use of the independent flow fields model or the relative velocity
model in the equations of motion depends on the relative magnitudes of the
water particle velocity drag force versus the structure motion damping
force. If the two are comparable then the relative velocity model seems
appropriate. Otherwise, the independent flow fields model is applicable.
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In random waves the equation of motion is written as before except that
the added mass and damping coefficients are obtained from the convolution
integrals. This is required for a random seastate because these quantities
are functions of wave frequencies. Thus, the equation of motion including
only the linear damping term becomes

6 x - t &
kfl [(mjk + Mjk) X+ Im Njk (t - 1) % (1) dt + cjk xk] = Fj(t) (2.72)

where
*ay=2 2.73
Njk(t) =< fo N5y (w) cos ot dw (2.73)
and
* 1 . .
Mjk(w) = Mjk (w) to fo Njk (t) sin wt dt (2.74)

The quantities Mjk and Njk are the frequency dependent added mass and damping
coefficients, respectively, It is clear that this set of equation can only be
solved in a time domain analysis. The solution method is quite cumbersome and
requires considerable computer time.

2.7 LOW FREQUENCY OSCILLATION

The surface profile of a wunidirectional random seastate may be
represented as its short-term description by a large number, N, of sinusoidal
components having frequency, w, and random phase, e; (n = 1,2,....N), as
described by Eq. 2.13. The wave profile may be conveniently written in a
complex notation

N "~
n(t) =1 /25(w)dou_e " (2.75)
n n
n=1
where the quantity under the radical sign is the wave amplitude and Gn is a
complex Gaussian random variable with the following properties:
Y2172 1. "0 1=0- S0 =
E [|un |J=1; E [umun] 0; E [umun] 0 (2.76)
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where E refers to the expected value of the argument, m # n and asterisk
denotes conjugate,

The steady potential drift force in regular waves has been shown to
appear from the second-order terms of the first-order potential. Since an
irregular wave has multiple components of frequency, the interaction of two
wave components at two frequencies will give rise not only to a steady drift
force as before, but also oscillating drift force components at low as well as
high frequencies. This is illustrated by a simple example,

There are several contributions to the high and low order components.
One of them is the free surface component, Another one is considered in the
present example, The pressure at a submerged location of the TLP is given
from potential theory by Bernoulli's equation

p=po22+lo(ul+d (2.77)

where ¢ is the total potential due to the wave field in the presence of TLP, u
and v are the corresponding horizontal and vertical velocity components and p
is the mass density of water, By linear theory, the first term in Eq. 2.77 is
a first order pressure while the second term is second-order. Let us consider
only the incident wave field and also assume that it is composed of two
reqular wave components having frequencies w; and wp, Then, by Tlinear
superposition of Airy theory, the particle velocity components are

=
1]

u,cos wlt + u, cos w2t | (2.78)

V4 sin wlt * v, sin mzt - (2.79)

<
il

where (uy, vq) and (up, vp) are the velocity amplitude components at wy and wp
respectively. Then, the second-order pressure term, on expansion, reduced to

pp =z 0 lg (u)° +ul 4 v )
%-(ulz- v12) cos 2m1t +-% (u22 - v22) cos 2w2t +

(u1u2 - v1v2) cos(mi + mz)t +
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(ulu2 + v1v2) cos(m1 - w2)t] (2.80)

The above expression will produce a steady force, a component of force at
twice the frequency of the individual components, w; and wp, @ sum frequency
force and a difference frequency force.

Thus, while the energy of wave at the heave and pitch natural frequencies
as well as surge frequency is negligible, two individual frequencies within
the wave energy may be chosen such that their sum or their difference
approaches the high frequency (e.g., heave and pitch of a TLP) periods or the
low frequency (surge of a TLP) period. For example, a 6 second period will
produce a second harmonic at 3 seconds which may correspond to heave or pitch
natural period. Similarly, an 8 second and 4.8 second period would add to a 3
second period. A combination of 8 second and 8.7 second period will produce a
difference frequency corresponding to the surge natural period of 99.4
seconds,

The oscillating drift force is computed following the method outlined by
Pinkster (1980). In an irregular wave this force appears as a slowly-varying
force having the form

N N
F2(t) = mzl n*—};l - z;n{P(wm,wn) cos[(mm - wn)t - et ]
+ Q(mm,wn) S‘in[(wm - wn)t - ey toe ]} (2.81)

where N = number of wave components of frequencies 0, (n=1,2, « « «, N) in
the irregular wave, P (symmetric) is the in-phase component of the wave drift
force in a wave group of frequencies w, and w,, Q (asymmetric) 1is the
corresponding out-of-phase component of the drift force, and ¢, represents
wave amplitudes at frequencies w, and phase angles e,.

The force, Fy, in Eq. 2.73 may be similarly expressed as

N N _ .. i(wm-wn)t
= *
Fo(t) mfl nfl Aoouue (2.82)
where
A= (Po= 10 ) Y 25(e Jda /25w )dw (2.83)
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In the above expression for F,, real parts are assumed.,

For a linearly moored lightly damped system, the equation of horizontal
motions (to which the second-order force is sensitive) may be written as shown
in Eq. 2.71 where the right hand side is replaced by expressions of the form
of Eq. 2.82. The solution for this set of equations in the frequency domain
may be written as

N N : a A i( -m)t
X, =% % G%n u_u* e “n o (2.84)
' mel p=l
where
i o N T
6o = I Too W (2.85)
J=1
and T;% is given by
TH < L (ay = w))? (my M) + 3Gy = wg) NGy + Cyq07 (2.86)

Newman's (1974) approximate solution may be obtained from the above. For a
narrow-band spectrum, e.g., for a wave group, it may be assumed that «, and wy
are close to each other so that they may be replaced by their mean values
without appreciable error. Then

+ + w
Pau) =P | in 5 “n i 5 L P (2.87)
Qo0 ) =0 =0 (2.88)
and
N N
Fz(t) = mfl nf]_ %0 Sn Pmn coS[(wm - wn)t S S ] (2.89)

where Pmn js obtained from the regular wave steady drift force at a frequency
corresponding to the mean of the frequencies, wy and wy.

If it is further assumed that the only frequency that is of any large
consequence in determining the slowly-oscillating mooring line load is the
_ natural frequency, wy, of the system, then we can assume

35



O =0Ty (2.90)
and only the diagonal terms in Eq. 2.89 are relatively important which gives
F(t) = T-'p cos (ut) (2.91)
Since the slowly oscillating mooring line load occurs at or near the
natural frequency of the system in surge, a reasonable estimate of its
magnitude may be made from the following differential equation:
me + NjX + Ny [K[X + Kx = F(t) (2.92)
in which m = total mass of the cylinder including added mass, Ny = linear
damping coefficient, N, = nonlinear damping coefficient, K = spring constant
of the mooring line and F(t) is given by Eq. 2.91. This equation is similar
in form to Eq. 2.67 and an approximate solution is obtained in a similar
fashion by assuming x to be sinusoidal

X = Xg €0S (uN t + g) (2.93)

where x5 = amplitude of oscillation and ¢ = its phase angle. The solutions
for xp and e are

T
- P
X - (2.94)
0 2 \2 2 8 2,1/2 :
UK =y m™ + Ny + 3 Ny %617
and
ay )+ 5 ay Ny %]
tan ¢ = - 5 (2.95)
[K - wy m]
Once xg is known, the mooring line load amplitude is computed as
Fm = Kx0 (2.96)

2.8 HIGH FREQUENCY SPRINGING FORCE

When a floating structure, e.g., a TLP is restrained in the vertical
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direction by its tendons, the natural period in heave is small, being of the
order of 2-4 seconds. This gives rise to the problem of high frequency
oscillation of TLP in heave due to a high frequency second order force. The
general design approach for the TLP is not particularly different from any
other compliant offshore structures. What makes the dynamics of TLP unique
from other floating structures is its response to the high frequency wave
exciting forces. Besides the responses at the wave frequency, the platform is
subjected to a high frequency tension oscillation of the vertical tethers
(often called springing) and a low frequency drift oscillation in surge. The
overall damping of the system (including mechanical and hydrodynamic) is
extremely small for both the springing and drift oscillation so that they
produce a significant load in the tendons and significant motion in surge.

The second-order forces are obtained from the first- and second-order
velocity potentials and the complete Bernoulli's equation. The quadratic
transfer functions obtained from these expressions are used to derive the
difference frequency wave exciting force (drift force) and the sum frequency
second order force (springing force). Thus, generalizing Eq. 2.81

(2)z,,, " N 1
F (t) —151 jfl z; z;j{ P'ij cos [(w.i i wj)t - (e:.i t ej)]
+ Q1#j sin [l £ w))t = (g5 £ &5)] ) (2.97)

where Pfj and Q$J are the even and odd components of normalized forces due to
w; and Wys %4 and ¢y are the corresponding wave amplitudes, and N is the
number of wave components in the random wave simulation. It is clear from the

above expressions that in regular waves

F(2)-(t)

[}
o

(2.98)

and

F(2)1* ()

1l
M=

2.+ + .
;P55 cos Z(uﬁt - &) +Q;; sin Z(uﬁt - ei)} (2.99)

i=1

Thus, the low frequency force is absent while the high frequency force appears

at twice the regular wave frequency. Moreover, this force is nonlinear, being
a function of the square of the wave amplitudes, L5 (second-order). The
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amplitude and phase of the quadratic transfer function are

TH = LT + (0f;)21Y2 (2.100)
of.

;s = ~tan”} (P‘T‘ ) (2.101)
i

Based on this transfer function then, the tether forces in the high
frequency springing may be'simply obtained by solving a linearized equation of
motion in heave and pitch. A model test was performed on a vertical cylinder
in waves in which forces on the fixed cylinder were measured. The waves
generated in the tank were regular waves, wave groups and irregular waves.
The wave groups consisted of two regular waves whose sum frequencies
corresponded to the natural pitch frequency of a hypothetical TLP. An example
of the forces measured due to one of the wave groups is shown in Fig. 2.21.
The wave profile corresponds to waves of frequencies 0.44 HZ and 0.88 HZ. The
force has additional peaks present corresponding to second harmonics of the
above frequencies, and their sum frequency component at 1.32 HZ, These higher
order loads are small, being on the order of 3 to 5 percent of the first-order
loads. The correlation of the second-order fixed cylinder loads in regular
waves with the computed load approximated by the first-order potential is
shown in Fig. 2.22.

Numerous analyses and model tests have been performed on TLPs which
considered different aspects of platform motion and tether dynamics. One of
such analyses that included all three areas of response of the TLP was
performed by DeBoom, et al., (1984). They analyzed the motion and tether
forces for a TLP. The heave and pitch natural periods were almost
identical. In random waves, the added mass and damping terms were assumed to
be frequency dependent as outlined in Eqs. 2.72. The solution was obtained by
a finite difference scheme. DeBoom, et al. (1984) compared results from such
an analytical solution with the measured high frequency tether forces in
regular waves in a test with a four column TLP model. The correlation is
shown in Fig. 2.23. The fore and aft tether forces were found to be almost
180° out of phase., From this, it is concluded that most of the high frequency
contribution came from the pitching motion of the TLP. The springing force
appeared at the higher (twice for regular waves) frequencies and was nonlinear
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(Eq. 2.99) so that the corresponding motion was also nonlinear. While the
fore and aft tether forces are the same theoretically, the measurement showed
different values. The force being second-order is difficult to measure
accurately and hence the discrepancy and somewhat poor correlation.

The springing forces on a large scale (1:16) TLP model were measured in a
test in the CBI tank [Petrauskas and Liu (1987)] with a four-legged TLP hull
connected to the sea floor with four vertical tendons. The springing forces
arised from the resonant pitch periods of about 3 seconds. Regular waves at
twice the pitch period amplified the resonant springing force in the tendon.
The amplification of the force at the tendon due to a random wave is clearly
shown 1in Fig. 2.24. The tendon load at the wave frequencies 1is almost
negligible compared to the resonant load at twice the wave frequencies. The
corresponding correlation of the regular wave (averaged) springing load in the
tendons is shown in Fig. 2,25, The computed results for different damping
values show the importance of the knowledge of damping in determining the
springing force.

2.8.1 Damping at lLow and High Frequency Responses

The resonant response of a mooring structure, e.g., a TLP, is limited by
the amount of damping present in the system. The TLP system experiences
damping from two natural sources, e.g., material and hydrodynamic. Sometimes,
mechanical dampers [Katayama (1984)] or other active damper systems are
introduced externally. The material damping appears from the tendons and
their attachments to the TLP as well as to the bottom. The subsea template
also provides some damping. The hydrodynamic damping appears in the form of
the radiation damping as well as nonlinear viscous damping. Additionally, a
slow drift of the structure in the presence of waves produces an added damping
force which may be called wave drift damping (or wave damping). For the surge
motion of a slender body, the contribution of the quadratic viscous damping
was found to be small by Nakamura, et al., (1986). However, for the yaw
motion, it was important.

The contributions from the material and radiation damping are nearly
equal, In an example problem, Nordgren (1986) considered the material damping
factor to be 0.1 while the radiation damping for the dominant pitch response
was 0,13, The heave response at a natural period of 2.5 seconds was small
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compared to the pitch response at a natural period of 3.0 seconds. However,
the drag-induced damping in the high frequency resonance modes in heave, roll
and pitch motions of a TLP is rather negligible because the amplitude of
platform motion is extremely small,

Chakrabarti (1984) presented the low-frequency hydrodynamic coefficients
in surge and sway for several floating vessels including a semisubmersible and
a vertical cylinder. The results from the vertical cylinder showed that the
radiation damping in surge is negligible (less than 0,02 percent) and most of
the still water damping is linear viscous damping (about 1 percent), The wave
damping factor in regular waves was proportional to the square of the wave
amplitude and was equally important.

The heave damping factor obtained from the pluck test of a TLP model
discussed earlier [Petrauskas and Lju (1987)] was found to range from 0,1l
percent to 1.6 percent. The corresponding prototype values should be even
smaller if they are assumed to be dependent on the Reynolds number.

The wave damping at the low frequency in surge of a TLP may be treated
analytically in the following way [see Hearn, et al. (1987) for details].
Since the period of slow drift oscillation is an order of magnitude higher
than the wave period, the problem may be assumed to be equivalent to computing
the added resistance of the TLP advancing at a slow forward speed during half
the drift cycle in regular waves. This approach was taken by Hearn et al.
(1987) in computing wave damping coefficient in slow drift of a
semisubmersible. Once the added resistances for different forward speeds and
wave frequencies are known, the wave drift damping coefficients' quadratic
transfer function may be computed from the velocity derivative of the added
resistance as the forward speed approaches zero,

aRN(U) . _
byy = —7— |u'= 0 (2.102)

where byy
and Ry = added resistance in waves. A comparison of the computed wave damping
coefficients with the model test results on a SEDCO 700 semisubmersible has
been made by Hearn, et al. (1987). This is reproduced in Fig. 2.26. Note
that near a wave frequency of w = 1.1 rad/sec., the damping is large whereas

wave drift damping coefficient, U = forward speed from slow drift

at lower frequencies, it is quite small., This observation is, however, only
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valid for the particular geometry but is made to illustrate that the wave
drift damping could be quite significant in surge drift oscillation
computation,

As mentioned earlier, the surge natural period for a typical TLP is long,
being of the order of 100 seconds. Qi, et al. (1986) tested a four-legged TLP
model at a scale of 1:64 for low frequency hydrodynamic coefficients in
surge, The measured surge period of the model was about 12.5 seconds (100
second prototype). The natural period in waves was slightly higher due to
additional added mass. The damping was computed in still water and in regular
and random waves. The pontoon geometry was changed from circular section to
rectangular section of the same cross-sectional area.

The still water linear damping was obtained from a pluck test using the
transient equation of motion. The damping factor in surge was found to be a
function of the initial displacement, possibly due to the presence of viscous
damping. As expected, rectangular pontoons provided higher damping values.
From the information presented by Qi, et al., the damping factor was
approximately estimated as follows:

Damping Factor
Circular pontoon 0.03 - 0,06
Rectangular pontoon 0.03 - 0.09

In regular waves, the damping increased for the rectangular pontoon whereas
the damping showed a slight decrease in value for circular section. The
radiation damping component was dependent on the wave frequency.

2.9 MATERIAL PROPERTIES

Often the nonlinearities are encountered in the properties of the
material involved in the offshore structure system. This is particularly true
for the flexible members of an offshore structure, Examples of these
components that exhibit nonlinear behavior are risers, mooring lines, etc.

2.9.1 Catenary System

The type of nonlinearities encountered in a catenary type mooring system
is illustrated here. Consider a mooring system that 1is composed of two
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different 1ine materials with a clump weight attached to their intersection.
The clump weight may be considered acting positive upwards in which case it is
replaced by a buoy. The two elements of the line may have different weight
and elastic properties. In a mooring system it is often customary to use a
cable element at the upper part and a chain element at the lower part of the
catenary. A clump weight is also often used at the junction. Thus, the upper
part of the catenary reacts to the smaller waves and behaves as a soft system
while the lower part is provided to make the system stiff in response to
occasional big waves.

Given these conditions, Fig. 2.27 demonstrates the four possible
conditions where both parts .of the line assume a catenary shape, The
gquantities in the figure and in the subsequent analysis are defined as
follows: Q = length of lower element lying on seafloor; B = weight of clump or
buoyancy of buoy at the intersection of two elements; {a;, by} = coordinates
of element intersection; {ay, by} = coordinates of upper element at surface
vessel; y; = angle Tower element makes with horizontal at anchor; y, = angle
upper element makes with horizontal at surface vessel. The four possibilities
of Fig. 2.27 can be broken down into two cases. Either the line touches the
seafloor or it does not., If these two situations can be analyzed, then the
only problem remaining is to choose the proper Tocation for the intersection
{ay, by} such that the summation of forces at the intersection is zero. See
Fig. 2.28.

Turning first to the situation described by Fig. 2.29a, the following
assumptions are made: the lines are uniform and supported at two points and
the line can only carry loads along its axis. Then, the summation of forces on
a small element, aAs (Fig. 2.29a) in the horizontal and vertical directions
must equate to zero. This gives rise to the following differential equation
for the catenary:

d2

A5

gl (g1 (2.103)

o

X

where w = weight per unit length, which may be reduced to a first order
differential equation by substituting

. W
k = F; (2.104)
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p =4 (2.105)
Thus

B -k (14 p2)l2 (2.106)
The form of the solution of Eq. 2.103 is

y = g cosh (kx +C)) +C, (2.107)

Equation 2.107 must be solved in terms of boundary conditions. Since
there are three unknowns, k, C;, and Cp, there must be three boundary cond-
itions. In this development these are line length, &; scope, s. = B, - Ays
and elevation, e = By - A,. Using these boundary conditions the following

Y
equation can be derived:

(2.108)

[ - 2] _ |, sinh u 2
el (s
C

_ Ks
where u == .

Equation 2.108 is solved by a computer program using standard numerical

technique such as the Newton Rhapson method. When u is known, Cy and Cp can
be derived from Eq. 2.107.

The above analysis gives the classical catenary solution. It will
depart, however, from the classical theory if stretch is added to the
analysis. Throughout the 1line, the horizontal component of tension is
constant. The vertical component is constantly changing as the slope of the
line changes. Thus, the tension in the line is a function of position which
will change with the stretch in the line. It is assumed that the stretch can
be added to the initial 1line length and the weight per unit length can be
modified uniformly which is considered a valid assumption,

Employing Hooke's law for elastic deformation
des
ds = T (2.109)
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where d§ = incremental deformation; Fy = load; ds = incremental length, A =
cross-sectional area of cable; and E = Young's modulus.

On substitution of various quantities on the right hand side, the form of

§ becomes
Fx Bx 1 :
5 = xp fA 7 [1 + cosh 2(kx + C4)] dx (2.110)
X

After & is determined from Eq. 2.110 it is added to the initial Tline
length and a new line length, 2, is used in Eq. 2.108. This procedure is
repeated until the tension in the line balances the stretch in the line.

Turning to the situation described in Fig. 2.29b, part of the mooring
line now lies on the seafloor. For simplicity, assume that {A,, Ayt = {Q,
0}. At this point, the slope of the line is zero; therefore, Eq. 2.107 can be
rewritten in the form

y = 1/k cosh k(x -~ Q) - 1/k (2.111)

The length s is determined such that

v
1}

1/k sinh_k(By - Q) (2.112)

-

and

o
1]

Q +s ' (2.113)

Upon substitution of the coordinates of the surface vessel {B,, By} into
Eq. 2.111, two simultaneous equations with two unknowns are derived.

By = 1/k cosk k(By = Q) - 1/k (2.114)

£ =0Q+ 1/k sinh k(B, - Q) (2.115)

Upon solution of this set of simultaneous equations for k and Q, Cy and
Co can be easily derived and the catenary equation defined. Stretch may then
be added to the line in a fashion similar to the prior situation with the
slight change that no integration is required for the line 1lying on the
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bottom. In this part of the line, the tension is constant and equal to
Fy = w/ke Therefore,

FXQ
51 =R (2.116)
Fx Bx 1
8 =1 ({ 7 [1 + cosh 2(kx + C;)Jdx (2.117)
and the total stretch, &, equals
8 = 61 + 62 (2.118)

This total stretch is added to the initial Tine length and a new line
length, %, is substituted into the pair of simultaneous equations. This
process is repeated until convergence is achieved.

It is clear from the above analysis that this type of system will produce
a nonlinear spring constant in thé-mooring line, making the motion analysis of
a floating moored system nonlinear. Such a system is quite prevalent in
offshore operations. Examples of application of such systems are moored
storage tankers, pipelay barges, single point mooring systems, floating
production systems, and guyed towers.

A typically moored tanker system with catenary chains is shown in
Fig. 2.30 where four chains have been used on a turntable. Figure 2,31 gives
an example of the load-elongation characteristic of the catenary chain model
used in a wave tank model test. The solid line is the theoretical curve
obtained from the above equations while the symbols represent actual data
obtained from the simulation of the catenary in the test setup.

2.9.2 Flexible Structures

The material stiffness of the components of a flexible structure
contributes to the dynamic characteristics of the structure. The application
of such an element in the marine field may be seen in the marine risers, OTEC
cold-water pipes, and members or conductors in a production platform. Various
end conditions for a flexible member are possible, e.g9., fixed-fixed, fixed-
free, pinned-free, etc. The basic horizontal equation of motion of such a
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flexible cylindrical member including its internal forces, surface and body
forces may be written in the x-y coordinate system as

2 ? ? 2

] X o X ax -X
[ EI(y) =5 ] = Toly) = = wly) 5= + m (y) —5 = f(y,t) (2.119)
3y 3y &7 oy o XU gt

The first term on the left hand side in Eq. 2.119 is the horizontal reaction
from the flexural rigidity, the second and third terms arise from the
effective tension, Ty, and buoyant weight, w, respectively. The final term is
the inertia of the riser accelerating in the horizontal direction. The right
hand term represents the external forcing function,

For static riser problems, the value of the last term is zero and the
right hand side of Eq. 2.119 is replaced by the time independent drag term due
to a constant current profile as

£ly) =4 o Cyly) Dly) UWly) (2.120)

where p = mass density of water, Cp = drag coefficient and U(y) = horizontal
current velocity as a function of the vertical coordinate, y.

For a dynamic riser analysis, the right-hand side of Eq. 2.119 may
include the wave inertia and drag forces. In this case, the right hand side
is given as a forcing function, f(y,t) which may be expressed by the modified
Morison equation (including relative velocity, e.g., Eq. 2.35)., An added mass
effect from Eq. 2.35 is included in the last term of the left hand side of Eq.
2.119, '

The solution of Eq. 2.119 for the static or dynamic case requires
additional constraints or boundary conditions, e.g., deflection and rotation
at the two ends or the top horizontal offset for a marine riser. The
solutions are achieved in one of several available numerical techniques, e.g.,
direct or indirect finite difference or finite element methods. A frequency
domain analysis is possible only after the linearization of all the nonlinear
terms, and may not be suitable in many riser applications.
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3.0 PROBABILISTIC METHODS FOR EXTREME VALUES

The design and performance of an offshore structure depends largely upon
the response of the structure to the environmental loading such as waves. The
response analyses outlined in Chapter 2 are generally applicable to regular
waves. However, the extreme responses of a structure in random ocean waves
should be known for the adequate design of the offshore structure. The
extreme response chosen for the design of a structure should meet, as a
minimum, the following c¢riteria:

e LIFETIME RESPONSE
The expected maximum response during its lifetime should be known to
ensure the integrity of the structure.

¢ OPERATIONAL RESPONSE
The responses of the structure under its normal operating conditions must
be known to ensure the intended operability of the structure,

¢ FATIGUE DAMAGE
The accumulated responses of the structure during its entire lifetime
must be known to assess the cumulative damagé of the structure over this
period.

The design criterion of a structure is governed by the failure of its
structural members due to the environment it is exbosed to during- its -
lifetime. This failure may be caused by the maximum instantaneous stress
experienced by the member due to a given environment. Alternatively, it may
fail due to fatigue damage resulting from an accumulated number of cycles at
varying stress levels. Thus, the design value should be an upper bound to
these quantities,

The primary concern of this report is to discuss available computational
methods of the extreme event due to the environmental loading. The design of
an offshore structure is based on either a deterministic or a probabilistic
approach, In a deterministic method, the response analyses described in
Chapter 2 for a given wave and wave theory may be applied. The probabilistic
method of design may include a short-term prediction or a long-term
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prediction. The short-term response statistics are obtained on the basis of
one particular seastate. This seastate is specified by an energy spectral
model having a given significant wave height and a characteristic period. On
the other hand, the long-term prediction method includes all seastates which
the structure is expected to encounter during its design lifetime.

For fixed structures, for example, steel piled and concrete gravity
structures, a deterministic method of extreme value prediction is normally
used. However, in fatigue assessment, a long term probabilistic method is
often used for these cases. For an extreme value analysis of floating
structures, a probabilistic method is common, but only for the short-term
seas. The operational mode o% floating structures is generally analyzed on
the basis of long-term prediction,

A short-coming of the deterministic and probabilistic extreme value
predictions based on short-term statistics 1is in the choice of the
environment, It is not always obvious which set of environmental conditions
will produce the largest responses. On the other hand, the 1long-term
environmental data over the entire service life of a structure, e.g., in the
form of a wave scatter diagram is scarce. Therefore, the reliability of the
choice of 1long term data on which the responses are based may be
questionable, The extrapolation of a few (typically, 2-5) years' direct
measurements of data to the structure's 1lifetime and beyond introduces
uncertainties in the subjective evaluation. Sometimes, hindcast methods are
used to obtain similar information.

For Gaussian response processes, the probability of system failure may be
related to the excitation process statistics. This relationship is well
established and straight-forward to perform. Unfortunately, however, small
nonlinearities are invariably present in the response of a real system. This
nonlinearity, however small, may cause significant departures of the response
characteristics from the Gaussian form in the extreme "tails" of the response
distributions. Since the extreme responses are derived from the tail end of
the response distribution, such derivations have a very profound effect on the
probability of the system failure. It is thus of vital importance to develop
methods of predicting the distribution of the response in the nonlinear
case, The general nonlinear problem is largely unsolved. Some limited
information on the response characteristics may be obtained from the
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perturbation methods and equivalent linearization techniques. Distribution
functions of some nonlinear problems may be obtained by the series method in
probability theory.

Tickell (1978) presented a review of the state-of-the-art on the
probabilistic approach to the problem of fluid 1loading on an offshore
structure, Linear random wave theory is generally used to describe the water
particle kinematics., While it represents a versatile model for the random
sea, it has certain limitations. For example, the spectra of the particle
kinematics and their derivatives become increasingly large at the high
frequencies (tail end of the spectra) where wave energy is generally small.
This is particularly enhanced in the free surface zone. The higher moments
of the spectra, m,, which depend on the nth power of frequency, likewise "blow
up" due to this divergence of spectra at the high frequencies. These moments
are often needed for the computation of the distribution functions. Moreover,
the linear process of describing a surface cannot account for the vertical or
horizontal asymmetry seen in steep storm waves,

For a particular seastate characterized by the random wave parameters,
Hg, T, and 6g, where H, = significant wave height, T, = zero-crossing period
and 6y = angle of mean wave direction, the short term response of the
structure may be obtained by the spectral and probabilistic techniques, For a
Tinear system, this procedure is straight forward. In this case, since the
waves are assumed to be a stationary Gaussian random process, so will be the
responses for which all the statistical properties are known. Thus, the
spectral analysis technique may be used to determine the statistics of the
linear system, For structures whose responses are linear with respect to the
excitation force, once the force distribution function 1is known, the
probability distributions of response normalized with respect to standard
deviation will have the same form,

The prediction of the effect of nonlinearities either due to the
environmental loading or due to nonlinear structural behavior for an offshore
structure in random seas is not straightforward and a general procedure is not
known. For a linear system subject to Gaussian excitation, the response is
also Gaussian, However, if the system contains nonlinear elements, the
response will no longer be Gaussian. In this case, the solutions for the
probabilistic responses may be obtained only in special types of
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nonlinearities. Often approximations are necessary before a probabilistic
theory may be applied to the nonlinear responses. One of the methods of
prediction is the nonlinear transformation of random variables.

3.1 SOME COMMON TYPES OF PROBABILITY DISTRIBUTION FUNCTIONS

The probability density function (pdf) henceforth denoted by p, is
defined as the fraction of a designated period of time that a particular event
is expected to occur, The probability distribution or the cumulative
distribution function (CDF), denoted by P, is the fraction of the time period
that this event is not exceeded. The probability of exceedance, denoted by Q,
is the fraction of time the event is exceeded. Thus, P is related to Q by the
relation, Q =1 - P,

3.1.1 Normal or Gaussian Distribution

The probability density of a normal or Guassian distribution of a random
variable, x, is given by

1 (x = Ux)z
exp [ - ——— | (3.1)

T 0 20x

p(x) =

where u, 1s the mean value of x, and o, is its standard deviation., This
formula applies to the entire range of x from -« to +« , From Eq. 3.1, it
is clear that p(x) is symmetric about the mean value of x and has a maximum at
uee It drops off fast in the shape of a bell. The value of oy determines the
width of the bell. If Eq. 3.1 is integrated between o, about u,, it will
give a value of about 0.68. Thus a range of to, about the center of the bell-
shaped curve contains 68 percent of the area of population, a +2q, covers 95
percent while a £30, gives 99.7 percent of a normal population.

The expression for the cumulative probability, P, is not known in closed
form, and the values of P are obtained from Eq. 3.1 by integration

X
P(x) = [ p(x) dx (3.2)

-
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The plots of the probability density, p, and the probability distribution
function, P, for a zero mean (n, = 0) and unit variance (o) are shown in Fig,
3.1, The shaded area in the density curve is represented by the value of the
cumulative probability, P, on the distribution curve,

If the variable x is transformed to a quantity z by

7 = X (3.3)

then this transformation 1is called normalization and 2z is called ‘the
“standard" normal distribution, because it has a zero mean (uz = 0) and
standard deviation of unity (o, = 1). The symbols that are commonly used to
represent the probability density and cumulative probability of the standard
normal are ¢(z) and ¢(z) respectively, which are given by

2
_z/
¢(z) = ; e 2 (3.4)
Y m
and
z

o(z) = [ ¢(z) dz (3.5)

The values of @(z) are tabulated in many textbooks on mathematical statistics
[e.g., Tobias and Trindade (1986)].

3.1.2 Rayleigh Distribution

Unlike the Gaussian distribution, the Rayleigh distribution applies to a
random variable, x, which is always positive (0 < x < «) , The probability
density function for the Rayleigh distribution is given in terms of the mean
value of x, Mys aS

2
p(x) =S exp [ -7 (=) ] (3.6)
2y X
X
This function may be integrated in a closed form using Eq. 3.2 to obtain the

expression for P(x).
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= T o X 32
P(X)—].—EXP[-T(H—X') ] (3.7)

The probability density and the cumulative probability of Rayleigh
distribution are shown in Fig 3.2. The mean value of x in these plots is
taken as one (ux = 1). In other words, the plots represent the independent
variable as normalized with respect to uy.

3.1.3 Gumbel Distribution

The Gumbel distribution is given by the formula
P(x) = exp [- exp {- a(x = B)}] (3.8)

This first asymptotic (Type I) distribution is not bounded and grows without
limit, albeit in a logarithmic scale. A reduced variate is introduced as

_y = OL(X - 8) (3.9)
The quantities o and 8 are the slope and the mode defined as

a = E(ON)/UN (3.10)
and

B =Xy - E(yN)/a (3.11)

where E(oy) and E(yy) are the expected value of the dispersion of N values and
the expected value of the reduced variate, respectively, oy is the standard
deviation, and ih is the mean of the variables, x; (i=1,2, « « « N)o The
Gumbel distribution for a slope, o« = 1, and mode, B = 3, is plotted in
Fig. 3.3.

The reduced variate is related to the probability value as
y = =In [-1n P] (3.12)

obtained from the formula given in Eq. 3.24.
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The expected values E(c¢) and E(y) are functions of the total number of
observations. Their asymptotic values for an infinite number of observations
are

E(¢) = n/V 6 (3.13)
and
= 0.5772 (3.14)

m
—
<
~—r
i

which may be used for large but finite number of observations. The curve for
the extreme values is then given by

B+ Yyla

Xy t oy vV 6/ (y - 0.5772) (3.15)

*
1l

It

3.1.4 Weibull Distribution

The Weibull distribution function is given as

P(x) = 1 - exp [- (252 )¢ ] (3.16)

The quantity k is called the shape parameter and is generally assigned a value
between 0.75 and 2,0. The parameters A and B are determined from observed
data by the least-square method.

An alternate form of the Weibull distribution is given by
P(x) =1 -exp [- B x™ (3.17)

The probability density is obtained by differentiating the above equation with
respect to the variable, x

p(x) =m B x™1 exp [- B x™] (3.18)

If Eq. 3.17 is rearranged, it may be written as a linear equation

1

In [In T

lJ=1nB+milnx (3.19)
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where 1n B is the intercept and m is the slope. The values of B and m may be
determined by fitting data.

The Weibull cumulative probability distribution for wave height may be
written as

A"
p(H) =1 -¢ ™ (3.20)

where A and m are constants. The probability density function is written as

A=)
p(H) = Am( HH )m H'le rms (3.21)
rms

Taking the logarithm twice and rearranging terms
n 1”'T"‘l‘(”7 =Tn A +min g (3.22)
- PUH rms ]

which is the equation of a straight line of intercept 1n A and slope m. The
parameters A and m are determined by the empirical fitting of data. For A =1
and m = 2, the expressions reduce to the Rayleigh distribution,

3.1.5 Frechet Distribution

A distribution function of the Frechet type was proposed by Thom (1973)
for annual maxima of extréme wave heights

P(x) = exp [- ('% )1 (3.23)
This equation may be written as a linear equation
In[-=1nPl=-kInx+kInA (3.24)
in which -k is the slope and kInA is the intercept of the 1ine. An example of

the Frechet distribution for a slope of 2 and an intercept of 1 is shown in
Fig. 3.4. The probability density is obtained as
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plx) = % (¥ )¢

exp [ - ( %-)'k ] (3.25)

This type of Frechet distribution 1is known as Fisher-Tippett Type II
distribution, The Type II distribution is related to the Type I (Gumbel)
distribution by an exponential transformation. Thus, 1n P will provide a Type
I distribution. The parameters for the Type I distribution are simpler and
more efficient to compute, from which the Type II parameters may be obtained
by a transformation.

Analyzing the significant wave height data from Ocean Station Vessel
(0SV), Thom (1973) obtained the significant wave height distribution function
as

H
P(Hg) = exp [ - ()00 ] (3.26)
S

in which the scale parameter of the wave distribution is related to the scale
parameter of the wind distribution by

by = 0.455 b, (3.27)

where by is in feet of wave height and b, is in mph of wind velocity. The
scale of wind is obtained from OSV data as

by = [373.8 T+ 542.414/2 - 23,3 (3.28)

in which'Uhax = maximum of the monthly mean wind speed in a year in mph.
These values of the wind speed have been charted for all oceans by Thom

(1973). The quantile for the significant wave is then obtained as

H(P) = exp [In b = 2 1n Tn (§)] (3.29)

The extreme waves may be derived from Hg on the assumption of Rayleigh
distribution for the short-term waves,

EXAMPLE: For a North Sea location 55N-5E find the maximum wave height for a
probability level of 0.98.
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The maximum monthly mean wind speed, nﬁax , for the above North Sea
location is 19 knots or 21.8 mph (9.8 m/s). This value is obtained from the

figures provided by Thom (1973)., Then

[373.8 x 21.8 + 542.4]1/2 - 23,3
70 mph (31.3 m/s)

=
1]

Using Eq. 3.27
bg = 0.455 x 70 = 31.9 ft. (9.75 m)
The probability distribution of H; based on this value of bg 1s shown 1in

Fig. 3.5, The significant wave height, H, for a probability level of 0.98 is
computed from Eq. 3.29

1 1
H (0.98) = exp [ 1n 31.9 - =1n In ( 455 ) |
= 61 ft. (18.6m)
Hiay = 1.8 x 61 = 110 ft. (33.6m)

where a factor of 1.8 has been used considering 900-1000 waves in the record
to achieve the maximum wave height,

3.1.6 Cumulants and Gram-Charlier Series

The nth cumulant of a random process x is defined as

14"

en

Kn®

Din M(6)] |4 _ (3.30)
1

=B

where M(8) is the characteristic function. Note that the probability density
function p(x) and M(8) are a Fourier transform pair

1

2

M(8) = iex

i“— A

p(x) e dx (3.31)
The quantity, ky, can be shown to be the mean value of x, u say , while kp is
the variance, o say. The importance of the cumulants lies in the fact that
the probability density function of a general non-Gaussian random process can
be written in the form of a series, the coefficients of which are functions of
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the cumulants. One of the common forms of these series is called the Gram-
Charlier series given by

2 k
po) = i e M 1 f () -3
m o (o]
k
+7}1_- (—f[-) (z4 - 62% + 3) + aeeed} (3.32)
[a)
where
z =224 (3.33)

Besides ky and k, defined above, two other quantities of importance are
the skewness, defined as k3 / g5 and the kurtosis, given as kg / A+ Fora
Guassian random process

k, =0 for n>2 (3.34)
Thus, for a random process if higher cumulants are evaluated, e.q., k3 and kg,
they provide a measure of the deviation of the process from the Gaussian
process.

3.2 DISTRIBUTION OF SHORT-TERM WAVE PARAMETERS

3.2.1 Wave Elevation Distribution

The sea surface elevation is assumed to follow a Gaussian distribution
with a zero mean. Therefore, for the sea surface elevation, n (where y is
assumed to be zero)

?
p(n) = —L e 29, (3.35)
2n o

where o, = v M and mg is the area under the wave energy spectral density
curve,
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3.2.2 Wave Height Distribution

For a narrow-band Gaussian ocean wave whose components are in random
phase uniformly distribution over +n, the wave height follows Rayleigh
distribution given by its probability density function,

2H %
P(H) = ——exp ( - —— ) (3.36)
Hrms Hrms

where H = individual wave heights in a wave record and H.;g = root-mean-square
wave height.

Based on this distribution the most probable maxima in a given number of
waves can be determined. According to Cartwright and Longuet-Higgins (1956)
the largest expected value is related to the rms value in terms of the number
of zero upcrossings, N, by the formula

Hoag = 7 TN (14 ot ) H (3.37)

max rms

where the Gamma function, G = 0.5772. For example, in 1000 waves the most
probable maximum is related to the significant wave height, Hg by

H
where
HS = 1,416 Hrms

nax = 1486 Hg

This constitutes the short-term extreme value prediction for wave
heights. If the input waves are assumed to be Rayleigh distributed, then the
Tinear responses may be shown to be Rayleigh distributed as well. In this
case the extreme value of the response is computed from this distribution as
above. This analysis is called the short-term extreme value analysis for a
linear system.

3.2.3 Wide Band Spectrum

The extreme values of a short-term stationary random process having an
arbitrary bandwidth spectrum have been predicted by Ochi (1973). The most
probable extreme value as well as the extreme value at a prescribed
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probability level have been derived, the latter of which was recommended for
the design of offshore structures., Selected points on a scalar random process
are illustrated in Fig. 3.6. In evaluating the extreme value, it is clear
that only the maxima of the random process with positive values (or minima
with negative values) need be considered, It should be noted that the
presence of several maxima between consecutive zero crossings indicate a broad
band spectrum for the random process.

The probability density function of the maxima, x, is given by

(=2)
Y My e 1 X 12
p(x) = exp { - —%
1+7/1- &2 [ e { 2¢ ( /g )

f?ﬁ; /'ﬁa
v 1- ¢ x
+{1-9(- - ) 1] 0<x<e (3,38)
f?ﬁ'b

in which the spectral moments are given by

mo= [« S(w) du (3.39)
0
e = spectral width parameter defined as
2 m§
e =1 - (3.40)
Mgy
and ¢ is referred to as the standard normal distribution given by
u2
1 M7
o(u) = [ e ©du (3.41)
VY 21 -=

If the variable x 1is nondimensionalized by dividing by v Mg then the
probability density function of

X = X (3.42)

g
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becomes

px) = —= [ exp {55 ) +
1+vV1=-¢2 20 E:E
TG
[T&Z%e 2 {1-0 (-5} 0 <K<

(3.43)

If the random process is assumed to have a narrow-band spectrum (e = 0) then

Eq. 3.43 reduces to

-2
- X
2

p(x) =X e 0<X < w (3.44)

which is the form of the Rayleigh distribution. Similarly, for a wide-band
spectrum (e = 1),

p(x) = \/%_e-

which is the truncated (at x = 0) normal (Gaussian) distribution. Figure 3.7

2

no 1

(3.45)

shows the probability density function for various values of e.

The cumulative distribution functions of x and x are derived by
integration as follows:

P(x) = 2 [-3(1-/T=Z )+ (~E—)
1+ /1 - €2 e v My

T e -3 (=) {1-e (LI X )y

Iy AL
(3.46)
and
P(R) = —P (-3 (1-7TT )+ e (X))



In order to derive extreme values, let us consider that there are N
observations of the type of Fig. 3.6. Let i} be the observed maxima of these
N records in nondimensional form, We first arrange E} in ascending order of
values zj. Let o be a small probability level that zy be exceeded. Then
for € < 0,9, a simple formula for the extreme value may be obtained as

) 1/2
oy = [ 2 (= 22Ny 7 for ¢ < 0.9  (3.48)
1+/T-¢ ¢

This formula is valid when o is small, on the order of 0.10 or less. For ¢
0 (narrow band process)

_ N
=v 2 1n = (3.49)

u

Figure 3.8 shows the relationship in Eq. 3.48 for various values of ¢ when a
0.01, Note that the dimensional values, XN» Mmay be obtained by multiplying
by V’EQ} It is interesting to compare the extreme value for the narrow-band
spectrum with the corresponding most probable extreme value, Eﬁ .

EN =y 21in N for e = 0 (3.50)

Thus for small q, EN is considerably larger. This should be expected because
for a large value of N, the probability of exceeding Eh,may be shown to be
quite high

limP [ gy>Ty ]=1-¢el=0.63 (3.51)

N-)ao

The most probable extreme value for 0 < € < 0,9 is

1/2
AR CETEE / (3.52)

EN =[21n
1+ /1 < ¢Z

which reduces to Eq. 3.50 for e = O,
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Expressing N as a function of time, Tp, in seconds the extreme value for
a narrow-band process is obtained as

T ,m
- R 2 1/2
CN =2 1n [ {m)—a r—n'a' } ] / for small a (3.53)

This value is plotted in Fig. 3.9 for o = 0,01 and for different values of
zero crossing frequency, (Jm27m0) as a function of time. The corresponding
most probable value is

y=[2m {T\]_ (3.54)

3.2.4 Nonlinear Gaussian Waves

The statistical prediction of wave *heights assume the waves to be
Gaussian. In this case, Rayleigh distribution is applicable (for narrow-
banded waves), For nonlinear waves, the distribution is not Gaussian.
Longuet~Higgins (1980) suggests that the Rayleigh distribution may still be
valid as long as the rms value of the linear Gaussian waves are adjusted by a
factor of 0,925 in the distribution.

Forristall presented a two-parameter Weibull distribution to fit wave
data from the Gulf of Mexico given by

P(g) = exp( -_gf ) (3.55)

where £ is nondimensional wave amplitude (half the trough-to-crest height) and ‘
a and B are empirical parameters, The values of o and B were found to be a =
2.126 and B = 1.052 by fitting the wave data.

Longuet-Higgins (1952) derived Rayleigh distribution for narrow-banded
surface seas of sinusoidal components as the distribution function for the
wave amplitudes

= '32
P(a) = exp ( =7 ) (3.56)
da

where a denotes the rms wave amplitude, For linear waves when the
individual wave crests are approximately sinusoidal, the zeroth moment is
related to a by
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l1—2
In this case, the distribution function may also be written as
_a2
P(a) = exp( o ) (3.58)
0

However, for nonlinear waves where crests are narrower and higher than troughs
as_well as for finite bandwidth, the relationship in Eq. 3.58 is not valid.
In the latter case, for example,

—2
2_=1- 0.734+2 (3.59)
mO
where
i
e A (3.60)
W mo

where Hp is the second moment of the spectrum about the mean frequency, w .
For a P-M spectrum, the correction factor becomes 0.931. Using

1
3 = 0.925 (2m0)’2 (3.61)

Longuet~Higgins showed that the same Gulf of Mexico data was fitted by the
Rayleigh distribution as good as the Weibull distribution.

3.2.5 Nonlinear Non-Gaussian Waves

It has already been noted that the response (output) of a nonlinear
system is a non-Gaussian random process even though the waves (input) are
Gaussian. Therefore, even though linearization technique works quite well for
many nonlinear systems, marine systems with strong nonlinear characteristics,
e.g., tension leg platform, may require the probabilistic prediction of non-
Gaussian random processes. In recent years, several prediction methods have
been made available in the Titerature that deal with this subject applicable
to ocean structure,.

The deep-water waves have been shown to follow Gaussian distribution from
measurement at sea as well as in the laboratory, A correlation of the
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probability density of time history of random laboratory waves in deep water
is shown in Fig. 3,10, Note that the wave follows a Bretschneider spectral
model. On the other hand, the wave profile becomes highly nonlinear in
shallow water due to the bottom effect, showing excessively high crests and
shallow troughs. This is illustrated in Fig. 3.11. Thus, the histogram in
this case will not be symmetric with respect to the mean value but rather
skewed to the positive side which will increase with the increase in the
severity of the sea.

Bitner (1980) obtained an expression for the probability density function
of the crest-to-trough wave height for non-normal waves. She assumed that the
wave profile is a quasinormal random process and narrow-banded about a central
frequency., The time-varying sine, x¢(t), and cosine, x.(t), components of the
central frequency, however, are considered nearly normal. MWritten in terms of
a combined parameter, kg, of the sine and cosine components, the probability
density for height H becomes

(H) i ( He ) I ' W1y (
p(H) = exp( - 1+ - + k 3.62)
10% 802 102462 3262 8 4
where
kg = (ny* = 3) + (" = 3) + (0 %)% 1)
= ﬂ14 + n24 + n12n22 -7 (3.63)
and
np = (xe = %)y (3.64)
g .
g

The quantity, kg, is determined numerically from n; and ny. The mean wave
height, H , has a form

F=vZme [ 1-gr] (3.66)
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This density function is compared with the Rayleigh density function in Fig.
3.12.

In the derivation of non-Gaussian wave probability distribution,
assumptions are made that the waves are narrow-banded and the nonlinearity is
weak, For strong nonlinearity, the problem is extremely complicated.

In obtaining the Rayleigh distribution for the wave heights, the
magnitudes of the statistical properties of wave height are assumed to be
simply twice those of the wave amplitudes. However, more appropriately as
shown above, the magnitude of the crest-to-trough heights should be determined
disregarding this assumption which is often invalid, In this case, the height
is taken as the sum of an upper-envelope value and a lower-envelope value for
the profile that are separated by half the average period. Tayfun (1981) used
this concept to determine the probability density function of the average of
the two envelope values [namely, a = (a; + a,) / 2] separated by T/2 where T
= wave period. It 1is given as an integral of the Jjoint probability
distribution p (2a - Eé, Eé ; T/2) and p(T), where p(T) is the period
probability density function, The joint density function between a;, and aj
is written as

— - -2, =2
a.a a.a,r (a,“+ a,%)
- = 152 172 1 2
p (34, @, ; 1) = I ( Jexp [ - —— ] (3.67)
1* 7 (1-r%) %1 .r 2(1 - r)
- - a4
where a;, a, (>0) = dimensionless amplitudes = — , (i =1, 2),
Mo
a, = A(t) ay = A(t + 1) (3.68)
r{t) = ¥p2 + AZ (3.69)
o(t) = -':ILT- [ S(w) cos(w - wo)'r do (3.70)
0 o
M) = 2=~ | S(w) sinv - u)t du (3.71)
00

The computation of this expression is very complex, and Tayfun suggested the
following simplification on the assumption of narrow-bandedness around the
mean frequency, w . Then
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()
p{1)

0, and (3.72)
r(x) = 1 - 3 (@) (3.73)

The probability density function of a, then becomes

2a

pla) =2 p(22-a,,a,;

d (3.74)
0 ) a2

eli=

This density function is plotted in Fig. 3.13 along with the Rayleigh density
function and observed data. It is noted that this density function has a
higher maximum value than Rayleigh.

There are several distribution functions available to represent the non-
Gaussian random phenomena, e.g., observed in the wave profiles in finite water
depth., These generally have series representation and are obtained either
from the probability theory or nonlinear wave theory. Examples of non-
Gaussian probability theory distributions are Gram-Charlier series, Edgeworth
series and Longuet-Higgins series. The nonlinear wave theory uses, for
example, Stokes' wave series. These have been derived by Ochi (1986). Here,
only the essential results will be given.

The Gram-Charlier theory starts with the normal probability density
function and writes a series in terms of the derivatives of the standardized
(by subtracting mean and dividing by standard deviation) normal density
function. This gives rise to the Hermite polynomials. The non-Gaussian
density function then has the form for a random variable with zero mean and a

variance of 02 as follows:

=«
(x) = —— e 20 : CH (5 (3.75)
P Y 2no n=0 nn ‘o )

and the coefficients, C, have the following values:

Co=1,C,=C,=0, Cy=np C, =t =
i 2 T L T 1
2
A A A Aq 2
- _6 3 - 374
etz T (3.76)
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and so on, where H, is the Hermite polynomial of order n, x is the value of a
standardized normal variable

k., k.
Ay = ey = L (3.77)
J J o
and kj are the cumulants having the following properties
E[(x - w2 =k, = of (3.78)
3
E[(x - w)?] = k, + 3,2 (3.80)
4 2
571
E[(x = u)?] = kg + 10kk, (3.81)
E[(x - w)®] = k. + 15k,k, + 10k,2 + 15,3 (3.82)
H 6 4°2 3 2 .

and so on, Note that the quantity, Ay in Eq. 3.77 is called the skewness,
and Ay is equal to the kurtosis minus 3,

It has been shown by Ochi (1986) that the Edgeworth and the Longuet-
Higgins series reduce to the same form, In fact, the normalized Longuet-
Higgins series in terms of non-zero standardized values of

Z[ = (x - u) / o] may be obtained by replacing x/¢ by Z on both sides of
Eq. 3.75.

It is interesting to note that the first term of the series reduces to
the Gaussian density function (since Hy = 1). In order to examine the effects
of various terms in the series on the density function as well as their
correlation with a measured severe wave (Hg = 2.05m) record in shallow water
(d = 1.4m), an example from Ochi and Wang (1984) is reproduced in Fig. 3.14.
It is found that the higher order terms introduce negative density values
(albeit small) at large negative value of the variable, x. Ochi and Wang
concluded from this and many other such correlation that the second term is
the most dominant in the non-Gaussian distribution and the first three terms
best describe the non-Gaussian waves.
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Knowing the initial distributions of the wave profile, the distribution
of the peaks and troughs (including their extreme values) and the wave heights
may be determined. In this respect, it should be emphasized that for
nonlinear waves, e.g., shown in Fig. 3.13, the probability functions for peaks
and troughs are different and should be derived separately. The variance of
peaks is obtained from the variance of x as

6/ 7+ 2/ 2 Ay 2
o, = ( ) o (3.83)
X 6V - 2/ 7 Ay X _

For the variance of troughs, the term inside the parenthesis is inversed. The
probability density function of peaks, £,, is obtained from the expression

[ <

- dg f lX | D(€+ s X ) dx

ple,) = ——= — (3.84)
] Ix | p(0, x ) dx

-

where p(x, x') is the joint probability density function of displacement and
velocity. The non-Gaussian density function of displacement is known from Eq.
3.75 having a variance given by Eq. 3.83. The velocity, x', is assumed to be
Gaussian with zero.mean and variance obtained from a given wave spectrum. The
displacement and ve]ocitj'are assumed to be statistically independent. The
probability density function of wave heights (peak-to-trough) can be derived
from the convolution inteéra] of the individual density functions of peaks and
troughs.

The Tinearization technique or the perturbation technique are appropriate
only when the nonlinearity in the system is weak. This allows the response of
the system to be expressed as a Gaussian system, The above examples of
nonlinear waves show that the response of a nonlinear system will not be
Gaussian. For a stronger nonlinear system, the Fokker-Planck equation may be
applied. In this case, no restriction is applied to the degree of
nonlinearity in the system. For a white-noise spectrum, the probability
density function is obtained for a non-Gaussian response. Among others, such
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an analysis was carried out by Ochi and Malakar (1984), They applied this
technique to a single degree of freedom system having the following nonlinear
equation

X + g(X) + h(x) = f(t) (3.85)

where f(t) is the excitation force function for unit (total) mass of the
system. The damping per unit mass is expressed as

g(x) = ax + g|X|x (3.86)
the first term of which is linear while the second term is the viscous drag
term. The restoring force per unit mass is written as

hix) = wNzx + rx3 (3.87)

including a linear spring and cubic spring term; wy is the natural frequency
vk/m .

The Fokker-Planck equation for this nonlinear system may be derived as

¢ 2 p(x, x) +2 [ {g(x) + h(x)} pl ')]+’rsaz (x, X) =0 (3.88)
X 2 plx, x) + [ {g(x x)} p(x, x -2-—-3-);(-2PX:X* (3.

X ™
where p(x, Xx) = joint probability density function of x and x , X
displacement from the mean, x = vertical velocity deviation from the mean,
and S§ = white-noise spectrum of force, f. This equation 1is solved
numerically.

Once the joint density function, p(x, X) , is known, the probability
density function, p(x), may be derived following the previously described
method (Eq. 3.84) by applying least square fitting technique. The other
quantities, e.g. density function of peaks, trough, etc., may then be obtained
as before.

Note that the method is limited by the use of a white-noise spectrum,
Therefore, it is desirable to find a white-noise spectrum which is equivalent
to the excitation spectrum. Ochi (1986) suggests equating the variances of an
equivalent linear system obtained by superposition and Fokker-Planck equation
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methods and obtaining the equivalent white-noise spectrum. An example of the
probability density function of the peak-to-trough surge motion of a TLP
having nonlinear damping and restoring characteristics in a sea of H = 9.15m
is shown in Fig. 3.15. The corresponding Rayleigh distribution on a linear
system assumption is shown as dotted line,

According to the probability theory [Cramer (1970)1, the characteristic
function, ¢(x) can be defined as the expected value of e'*% . Thus, ¢(x) can
be written as the Fourier transform of the probability distribution function
of the random variable z, i.e., P(z) as follows

¢(x) = T eixcP(c) dg (3.89)

-t

It can be shown that the right hand side may be expanded in a power series of
e'*% to give

[] : 1 : 2 1 : r
ix ix (ix
e e G e i
. . \2 N -
ix) (ix) ix)
exp {)\lj'r!—'.' AZ'T!—+ essas T )\r‘j?!_'.' .u-n.} (3.90)

where e and Ar are the rth order moment and cumulant respectively. If

¢(x)

It

represents rth order moment about the mean, then the first eight cumulants
are related explicitly to these moments as follows

A, = 0
A = “2
Aq = 1
3
A, = Hy - 3u22

3

>

15u4u2 - 10u32 + 30 ¥y

>

= ]J7 = 21115112 - 35“4“3 —+210u UZZ 4

> >

00 N Oy G bW NN
|
=
o

2 2
28u5u2 - 56u5u3 - 35u4 + 420u4u2 + 560u3 by = 630u2
For a Gaussian distribution

Hop = - g (3.92)
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Mops1 = 0 s r>l (3.93)

and

Ay = 1y

Ap = 0, r>2 (3.94)
for all r.

The values of moments and cumulants offer a quantitative measure to
determine if a process 1is Gaussian or not. For a non-Gaussian process,
higher-order approximations are necessary requiring higher moments and
cumuiants. Longuet-Higgins showed that Edgeworth's form of the type A Gram-
Charlier series [Kendall and Stuart (1963)] is a good approximation for
nonlinear waves, In terms of the Hermite polynomial of degree r defined as

ror(r-1) t72 r(r-1) (r-2) (r-3) t*

HF = t = 1! 2 + 2! 22 = essse (3.95)

where t is the normalized wave elevation, t =z /v u, , the distribution
function of ¢ is given by Longuet-Higgins (1963) as

2
t
P(c) = (2wk2)"' A e Ly ¢ Gk + Dy kZH) + aeen]  (3.96)

where kr = A / Azr/z « The full Edgeworth's form up to eight terms has been

given by Huang and Long (1980) as

g
1 1
(ZTI'kZ) e [1 +-6-kH +-21-k -1-2-0-
kg * 10k32 ky + 35Kk,kq
y 03 4 71 43
770 6" 5040

k + 56k5H3 + 35k4

0370 Hg + seuse] (3.97)

P(z)

Hy

+

The series up to the sixth term reduces to Longuet-Higgins' series (Eq. 3.96)
for k. = 0, r > 5, Huang and Long (1980) showed with the laboratory
experimental data that additional terms make the approximation worse.
Moreover, even for highly non-Gaussian waves for which the skewness, K3,

approaches one, the four-term approximation in Eq. 3.97 does a good job in
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predicting the wave elevation distribution, This is illustrated in Fig. 3.16.
Another interesting feature evidenced in this figure is that a gentle hump
appears near the mean amplitude of waves given by 1.4\f§§ « This indicates
that the amplitudes of waves have a preferred range of height rather than
appearing completely random. Note that the Gram-Charlier expansion introduces
a slightly negative density value at large negative surface elevation as
discussed earlier,

If the wave field 1is described by denumerably many independent pure
sinusoidal components, by the central limit theorem, the probability density
function of the surface profile becomes Gaussian., The sinusoidal components,
however, satisfy only the first-order wave theory and are applicable for wave
slopes, ka, approaching zero (k = wave number, a = wave amplitude).

For many real wave fields, the value of ka is finite and higher-order
nonlinear theories for individual wave components are applicable. One of the
most obvious effects of nonlinearity in waves appears as sharper peaks and
shallower troughs. In this case, the waves are no longer symmetric with
respect to the mean water line and, consequently, the surface elevation will
no longer be Gaussian,

We have already discussed the non-Gaussian distribution using Edgeworth's
form of the type A Gram-Charlier series, It was shown that for steep waves,
the probability density;ﬁfunction becomes negative for large trough values.
The other disadvantage of this distribution is that it requires the values of
skewness (k3) and flatness (kg) which are extremely difficult to compute.

For nonlinear waves, Tayfun (1980) obtained the probability density
function of deep water second-order waves., He used the standard technique of
transformation of a pair of random variables and the computation of marginal
probability density function from the Jjoint density function (mapping
approach).

Huang, et al. (1983) presented the probability density function for waves
to third order. They used a perturbation scheme on the assumption of small
wave steepness. The third-order approximation for the probability density
function for the surface profile is given by
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-H2

n
J 2 2
9 o7k 1
p(n) =&—— [2 + — ] (3.98)
7 /R 8 N 3
where
R =1+ %—ozkznz ' (3.99)
3 = N[1-20kn+ oA2 (B a2 - 2) ] (3.100)
N =1+ o%k? (3.101)
Ho= N [ = ok(n = 1) + o%? (B30 - 2n) ] (3.102)

and n is the normalized surface elevation given by

n=2o—2= (3.103)

2k to third order. The probability density function depends on o

as well as ok (slope parameter),

where 7z =o¢

Note that ok is proportional to the significant slope, s = o/)\ where ¢ is
the rms value and A is wave length corresponding to the peak frequency. The
probability density of surface profile for s = 0, 0,01, 0.02, 0,03, 0.04 and
0.05 is plotted in Fig.-3.17. The density values are always non-negative
unTike the Gram-Charlier approximation.

Moreover, a hump is evident for high s values (larger skewness) for n
between 1 and 2. This hump appears because of the constant term in the third-
order Stokes' wave profile and has been found earlier in experimental data in
Fig. 3.16.

A third-order approximation for the density function can be derived in
finite water depth following similar a procedure. In this case, the
expression for p{(n) is similar but more involved.

- 2 2,2
S
2.2 h J ok
pn) =e 2| J [lﬂl_ - 295 /i___ ) -5 =} (3.104)
[ Ry 2N R s 7e ]
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where the subscript s stands for shallow water and

N, = (1 + okPs2s,) /2 (3.105)
Sp = coth kd | (3.106)
5, = %——2—:‘1’2: ":d (3.107)
2Tt siniz @ sin:4 kd ' 8 51:h6 kd (3.108)
Sy =1+ (1+m)2 (3.109)
He = N {n = ok [(Sy+S))n? - 5]

+ ofk 25y + 5,000 - F s nd - 25y (Sp - S;)n] |} (3.110)
hg = Sq = ok (2505; + 25) = & S,)n (3.111)
T,= {1 - 20k (5g+ 50+ o%2 [6(s, + 5,)% - § 5,07

- 202k280(50 +8) b N (3.112)
T, =25 (S5 +5)) -85S, (3.113)
Ry = 1 + okHgh, (3.114)

In this case, additional dependence on the depth parameter, kd is clear. One
should note, however, that the Stokes' higher order waves have limited
applications in shallow water, '

The non-Gaussian response characteristics of an offshore structure may be
linked to the nonlinearity in the wave kinematics, as discussed earlier, as
well as the free-surface fluctuations of the water at the structure free-board
and the nonlinearity in the force due to the presence of the drag effect. The
first of these make the waves non-Gaussian. The effect of the free-surface
fluctuations is that the loading on the structure is intermittent near the
mean sea level and 1is therefore no longer Gaussian. Thus conventional
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spectral analysis is no longer sufficient to fully define the response. The
spectral analysis indicates only the variance. Higher order moments of the
response must be known for a complete probabilistic description of the
response in terms of its mean, variance, skewness and kurtosis coefficients.
The nonlinear forces make the response non-Gaussian,

Kanegaonkar and Haldar (1987) analyzed the dynamic response of an
offshore platform of the jacket type. The equation of motion was written in a
matrix form for a Tumped mass system. The nonlinearity was introduced in the
relative-velocity drag term which was linearized in terms of a relative
velocity rms value, The analysis considers the free-surface fluctuations and
their effects on the spectral and probabilistic analysis.

Near the mean water level where the structure is intermittently 1loaded,
the horizontal water particle velocity is given as

u = ul(n - y) (3.116)
where u is the effective velocity, u = velocity by the Stokes' wave theory
and H = Heaviside unit-step function., Assuming that the effective velocity is
stationary, Tung (1975) showed that the approximate spectral density function
of velocity is

c 2 .
Saw) = (32 [ ez(8) + 2(8) 1%(w) (3.117)
n
where
B = {}- (3.118)
n
2(B) = = exp(- 62 ) (3.119)
4 ?Tl' _2- )
and
Z(B) = T 2(B)ds (3.120)
B

Also, the acceleration spectra
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Se(w) = W S*(w) (3.121)

Based on this effective velocity, u ,» the equation of motion is modified and
the spectral density of the displacement is obtained in terms of S (w) and

(m) , the frequency transfer function and modified and 11near1zed Morison
equat1on. These then were used to express the first four moments (mean,
variance, skewness and kurtosis) of the load which are necessary for the
probabilistic analysis. The derivation is shown by Kanegaonkar and Haldar
(1987).

The unknown non-Gaussian distribution for the displacement response can
be assumed to be a mixture of a set of distributions, P;, each one having a
weighing factor, w;, associated with each so that

I
Iowy =1 and wi >0 (3.122)

The distribution, P;s 1s chosen such that it has the same mean and variance as

the net distribution, Py. The response distribution, P,, is assumed to be of

X
the form

Px = wlP1 + w2P2 (3.123)
where P; = standard normal and P, = shifted exponential distribution given by

its density function

X-(!)

p,(x) =lBexp (2 (3.124)

For this distribution, mean = «a + B, variance = 82 , Skewness = 2.0 and
kurtosis = 6.0. Through numerical examples, it was shown that if the surface
fluctuations are included in the analysis, the high seastates yielded w; =
0.3. On the other hand, at Tow seastates as well as without fluctuations, the
displacement of the jacket structure at its deck was Gaussian

(w1 =1, w, = 0) . The non-Gaussian distributions showed significant
deviations from the Gaussian at the upper tails with much higher probability
of exceedance values for the same displacements. The rms values were slightly
reduced., The skewness and kurtosis were near zero at lower significant wave
heights and increased in value as the height increased.

76



3.2.6 Wave Period Distribution

The probability functions for evaluating the statistical properites of
the ocean wave periods have been derived by Longuet-Higgins (1975), Cavanie et
al. (1976) and Arhan, et al. (1976). They derived the joint probability
density function of wave height and period. Once the joint density function
and the individual density function of one of the variables, namely the wave
height, is known, the density function for the other single variable, namely
the wave period, is simply the marginal probability density function of the
joint distribution. Longuet-Higgins derived the density function of the zero
crossing period while Cavanie, Arhan, et al. (1976) obtained the density
function of the crest period (between the maxima).

Defining a nondimensional period having a mean of zero-crossing period,

T, as

n=l=T (3.125)

vl
where v is a measure of spectrum width defined as
2
msm, - m
T " (3.126)
™

Then the Longuet-Higgins probability density of nondimensional period is given
by

p(n) = 1 377 (3.127)

) 2(1 + o)

The probability density is symmetric about the mean period having a bell-
shaped curve similar to a normal distribution.

It is noted from the definition of n, that the period T becomes negative
for n < '(1/v) . Therefore, in order to 1imit the probability density to the
positive periods, n should be truncated at n = -(1/U) . In this case, the
probability density function of n becomes [Ochi (1982)]
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1+\.>2 1

p(n) = - ;1)- <n<e  (3.128)

— 77372
(1+71+2) (*rm)

In dimensional form, the density function of T is

. 2 =2
p(T) = —112 (v1) 0<T<a (3.129)
1+ 17 D5+ (-1

The Longuet-Higgins formulation is based on a narrow-band spectrum. On
the other hand, Arhan, et al., obtained an expression for a wide band spectrum
in terms of the parameter, e. The probability density function for the time
interval between two maxima is given in terms of dimensionless period is

3.2

- a BT
p(T) = [(Tz ) az) 7 R a482] 3/2 -z £ T < & (3-130)

where 7 =T / Tﬁ , T is the expected time between two successive positive

m
maxima given by

v 2 m
T o= (=) ()12 (3.131)
1471 -2 2
o =% (1+71-¢&d) | (3.132)
£
6 = (3.133)
1l - 52

Note that for ¢ = 0, o =1 and 8 = 0, and the probability density function
does not exist. A comparison of this relationship with that derived by
Longuet-Higgins was made by Goda (1978) assuming v = n. The correlation
showed that at least for small correlation coefficient values (e between 0.5
and 0.7) between H and T, there is little difference between the two forms.
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3.2.7 Wave Height-Period Distribution

While it is important in a statistical analysis to know the wave height
distribution and maximum wave heights, in a response analysis the joint
distribution of the wave heights and periods is often needed, The statistical
description of the sea surface is usually divided into short-term and long-
term statistics. The short-term seastates are wusually assumed to be
stationary even though the seas are often expected to vary over a few hour
period. For a varying seastate at a given location, the probability
distribution of the height and period of the highest wave has been derived by
Krogstad (1985), Consider a wave record over a time period, TR during a
constant seastate, s, where the individual wave height and period are denoted
by {(Hj, T3)s 1 =1, « + o N}, and Hp,, is the maximum of all the heights.
The CDF of H; with the seastate, s is given by

P(Hy < H) = F(H,s) (3.134)

If the wave heights are independent

P(Hpay < H) = F(H,s)N (3.135)
Assuming .
_ 1 ‘}mz
T o= 1 me (3.136)
the maximum wave height in a time interval [0,TR] is
P(H o < K) = F(H,s)TR/Tz (3.137)

If s varies over [O,TR], then the interval is partitioned into subintervals
over which the seastate is constant and in the limit
TR 4
P(Hpax < H | [0,Tp1) = exp { IO log F [H, s(1)] T;%?T } (3.138)

The conditional probability distribution for the period of the maximum
wave is identical to the conditional probability distribution of the wave
period for that particular seastate and wave height, p(T|H,s). The
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conditional probability distribution of Tmax for given Hp., for the whole time
interval which is partitioned into subintervals is given by

p(T|H = Hmax) = p(T|H = Hoax > Si) X p(Hmax occurred in 1) (3.139)

N
ne2Z
—

which reduces to the following form for max (aIj) » 0
TR
d
fo ar 109 F [H,s(1)] p(T[H,s(x)] d1/T ()

P(TIH =H ) = T (3.140)

é H% log F[H,s(t)] dT/TZ(T)

If the distribution of the seastate is known and is equal to P(s) where [P(s)

ds = 1 for an observation time, Tp, then
1
P(Hoax < H) = exp { Tp [ P(s) T, log [F(H,s)] ds ] (3.141)

and
[ P(s) o Tog F(H,s) p(T|H,s) ds/T (s)

P(TlH d
| P(s) o7 109 F(H.s) ds/T_(s)

H) = (3.142)

max

Now we vrequire the short-term distribution functions F(H,s) and
p(T|H,s). Assuming F as a function of H only, Forristall (1978) gives

F(H,s) = 1 - exp {~(4H/Hg)%/ B} (3.143)

This is a two parameter Weibull distribution. It corresponds to the Rayleigh
distribution for « = 2 and B = 8, However, for extreme value analysis, it is
the upper tail (H > Hg) distribution of wave height that is important, not the
overall distribution, Thus, we are interested in the values of o and g that
fit the upper tail.

Considering the normalized variable

4H
X = —anaX (3.144)

H
S

where ﬁs is an estimate of Hg, x 1s modified by
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x = (4 /R) (log Ny/log N)1/2 (3.145)

max

where NO is fixed and N = TR/TZ' Then x has a CDF of

N

F(x) = [ 1 -exp (x%8) ]°

(3.146)

The parameters o« and g are computed from a plot of Tog [-log (1 - F1/Npy]
vs. log(x). Based on the Norwegian'Sea wave rider data, these values are
obtained as shown in Table 3.1. Note that these values are quite different
from the Rayleigh distribution parameters, « = 2, and g = 8.

The joint height-period distribution in a record was obtained by Wooding
(1955), Longuet-Higgins (1975), Ezraty, et al. (1978) and Chen, et al.
(1979). Both Longuet-Higgins and Ezraty, et al. assumed a narrow-band,
Gaussian model. Longuet-Higgins' formula is easy to apply and shows symmetric
distribution in the wave period. On the other hand, Ezraty, et al. showed a
complex distribution form which is difficult to apply. They found an
asymmetric distribution with respect to period, but the distribution is a
function of the spectral width parameter, e, depending on occasionally
unstable fourth-spectral moment, my., The conditional probability distribution
of the wave period following Chen, et al. (1979) is assumed to be normal,
N(p,oz) where

pn=CT - (3.147)
and

_ s
O_CO'TZ_H
max

(3.148)

The values of Cu and C, were found to be functions of TZ only as shown in

Table 3.2, These values are shown as functions of Tp in Table 3.3.

The numerically computed expectation of Hg,, coincides with the
asymptotic relation derived by Forristall (1978)

/M) = 0.25 (BlogN) Y @ [1 + 0.5722/ (alogh)] (3.149)

E(Hmax s
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SITE
LOCATION

Utsira
Halten

Tromsoflaket

BEST FIT VALUE OF a AND g

TABLE 3.1

FROM OFFSHORE NORWAY WAVE DATA

wn

>5

>5

>5

NO. OF

RECORDS

230

405

384

2,37

2,50

2.38

|m

12.5

15,6

12,9



TABLE 3.2

VALUES OF C“ AND CU VERSUS T,

IN THE EMPIRICAL DISTRIBUTION OF WAVE PERIOD

T,(s)

10

12

CORRESPONDING TO MAXIMUM HEIGHT

1,50

1.41

1,32

1.30

1.20

0.50

0.39

0.30

0.25

0.23



TABLE 3.3

VALUES OF Cu AND C VERSUS Tp
IN THE EMPIRICAL DISTRIBUTION WAVE PERIOD
CORRESPONDING TO MAXIMUM HEIGHT

Tp(s) C, C,
6 1.05 0.26
8 0.94 0.21

10 0.89 0.19

12 0.85 0.20

14 0.82 0.22

16 ’ 0.76 0.26

18 0.70 0.30



Note that this expression reduces to Eq. 3,37 for o = 2 and 8 = 8. An example
of the joint distribution of Hpax @nd Tymax 75 shown in Fig. 3.18 for given H¢
and T,.

The distribution in Fig. 3.18 shows that it is symmetric around the mean
period, Tz. However, field data have shown that the joint distribution is
generally asymmetric [cf. Chakrabarti and Cooley (1977)]. Longuet-Higgins
(1983) revised his earlier derivation by introducing an asymmetric joint
distribution of wave amplitudes and periods. This revised distribution also
depends on the first three moments of wave spectrum (mg, m; and mp) which are
simpler to use.

Defining nondimensional wave amplitude and period as

£ = —m2 ,n=T (3.150)
(@) 7 F |

where T = 21rm0/rn1 , we can write the joint probability density function
, 2 i+ -h2/8) 0
P(Ea n) 2 e

vy T VN

(3.151)

and L(v) is defined as a normalization factor to account for positive n

L(v) = 2 (3.152)

1+ "1+ W )
Note that for small v, L =1 +-% v2 and at v=0 , the distribution is
symmetric about the mean period, independent of the normalized wave
amplitude, Joint density plots for low and high v values are shown in Fig.
3.19. Note that at v = 0,1, it is almost symmetric about n = 1, while at v =

0.6, it is not.

The density function of the wave amplitude may be obtained by integration
with respect to the period n over its positive range

2
p(e) = 2ee™ L(v) ¢(2) (3.153)
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FIGURE 3.18 JOINT DISTRIBUTION FUNCTION OF Hpayx AND Typay FOR Hg = 8m, T, =
9s, AND A TIME INTERVAL OF 12 HOURS
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FIGURE 3.19

WAVE HEIGHT-PERIOD JOINT DENSITY PLOT FOR NARROW AND WIDE-BAND
SPECTRAL WIDTH PARAMETERS [LONGUET—HIGGINS (1983)]



where ¢ 1is the well known error function. Thus, the density 1is almost
Rayleigh differing by the factor L¢C%) which is small for small v. The
density of the period n may be similarly obtained by integration with respect
to £ over its positive range,

p(n) = EL—E [1-(1-1)% 83/ (3.154)
wn

The conditional distribution of n for a fixed value of £ may be found as

pne) = Bt (3.155)

Lindgren and Rychlik (1982) derived approximate expressions for the joint
distribution functions of crest-to-trough heights and periods of a stationary
random process irrespective of its covariance or spectral structure. The
process, however, was assumed Gaussian with mean zero. They compared their
solutions with the approximate theory of Cavanie', et al. (1976), who
considered only the positive maxima, thus excluding the shorter waves., It
works for relatively narrow-band spectra (e < 0.7) and agrees with an
approximation of an exact model process shown by Lindgren and Rychiik. The
Tatter method requires time-consuming numerical integration, but can handle
many practical cases including low-frequency noise and bimodal spectra.
Another approximation based on a simplified model has also been developed by
Lindgren and Rychlik and is simpler to use and is similar to the Cavanie'
approximation in accuracy, but includes shorter waves.

Nolte (1979) derived the joint probability density function including an
additional order of approximation for the wave period which provided better
agreement with the measured data [Nolte and Hsu (1979)].

Truncating the joint probability density function at n = -‘% in order
to avoid negative period, Ochi (1982) showed

p(E, n) = : L ogexp |

1 - (- ¢/v) V7x

2 2
- E_ilzi_ﬂ_l ] (3.156)

3.2.8 Extreme Wave Height - Steepness Distribution

The extremely high waves 1in deep water are responsible for capsizing
smaller vessels as well as for damaging marine structures with their slamming

83



loads. Thus, the estimates of the encounter probabilities of occurrence of
these waves are very important from the design point of view. These waves are
invariably asymmetric. In describing these individual waves, one would
require additional parameters besides wave height and wave period. Myrhaug
and Kjeldsen (1984, 1987) presented the following three additional parameters
to describe their steepness and asymmetry:

(1) Crest front steepness, €

n
< (3.157)

E::_
g 1
(?;)T T
where ne = crest elevation measured from MWL, and T' = time between crest and
Zero-upcrossing.

(2) Vertical asymmetry factor, A

™

where T" = time between crest and zero-downcrossing so that T. = T' + T°,

(3) Horizontal asymmetry factor, u

n
- C
b= (3.159)

Thus, the estimation of the probability of occurrence of steep waves
should include these parameters. Myrhaug and Kjeldsen (1987) derived the
joint distribution of crest-front steepness and wave height. The joint
probability density distribution for this purpose may be written as the
product of the marginal density distribution of wave height and the
conditional distribution of wave steepness:

p(e, h) = p(e|h) p(h) (3.160)
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where h = H/Hrma and ¢ = e/ermS normalized height and crest steepness
respectively, p(h) is marginal probability density of h and p(e|h) is the

conditional density distribution of e and h .

Based on the measured wave data on the Norwegian continental shelf, the
Wiebull distribution was found to be suitable for p(ﬁ) . For the conditional
distribution, both Weibull and log-normal distribution were found to work
equally well,

The Weibull probability density function for a parameter, x, is given by
X x +Px
px) = —=——— [ - )" | (3.161)
X

where g, and p, are the Weibull parameters. For By = 2, one obtains Rayleigh
distribution.

The log-normal probability density distribution is given by

2
p(x) = —L— exp[ HRX 'zex) ],x>0 (3.162)
v 2n VX 2vx

where 6, and vx2 denote the mean value and variance of 1n y, respectively,

-

The rms values, €rms @nd Hppe used in the normalization were obtained by
fitting data as

= 2.8582 v m " (3.163)

Hrms - 0
and
My
€rns = 0:0202 + 32,4k ; « = (3.164)
g 7 mo

Thus, « is related to a steepness parameter, k = H/ 49?;2 .

Use of Weibull distribution as the marginal distribution of h from data
gave

of = 1.05 and g = 2.39 (3.165)
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The Weibull distribution fitted to the conditional distribution of =

~

given h for the Norwegian shelf data, yielded the following functional
relationships

. 2 .
pa(h) =
€ 0.36 tan~! [2.80(h - 1.9)] + 1.38  for h > 1.9 (3.166)
B.(N) = 0,56 tan™t [3.57(h - 1.7)] + 2.28 (3.167)

£

On the other hand, the log-normal distribution fitted to the conditional
distribution of the same data gave the following relationships for the
parameters 6 and 72 .

. 2 .
0.024 - 1.065h + 0.585 h  for h < 1.7
6.(h) =
€ 0.32 tan~! [3.14(h - 1.7)1-0.096  for h > 1.7 (3.168)
v.2 = -0.21 tan"! [2.0(h - 1.4)] + 0.325 (3.169)

€

Both these models fit the data reasonably well. However, the log-normal
distribution seemed to do better at the higher values of g and h « The
estimates of the probability of occurrence of extremely steep waves were
significantly higher for the log-normal conditional distribution,

3.3 SHORT-TERM RESPONSE PREDICTION

The short term is defined as the period of time in which the ocean waves
may be considered stationary and ergodic., Thus, a given wave record and a
corresponding energy density spectrum is needed to describe the short-term
probabilistic properties of the sea of a particular severity level., The
severity level may be described by the mean wind speed or the characteristic
wave height (H;) and wave period (T,). The duration of a short-term sea is
typically a few hours whereas the wave record is typically on the order of
30 mins. long.
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The short-term response analysis is then based on the short-term waves.
If a frequency domain analysis is possible, then only the wave energy density
spectrum is required, In the case of a numerical time domain analysis, a time
history of the short-term waves is needed. It has already been shown how the
time history may be generated from a wave spectrum. If a time domain analysis
is performed where a frequency domain solution is not possible, then the
amplitudes of the response time history may be fitted to a distribution
function to generate the short-term distribution of the response. This method
may be used in the short-term prediction of a nonlinear system. It is,
however, time consuming.

For a linear system in which the response is linearly related to the
waves, a spectral analysis provides all the necessary information regarding
the responses, as will be shown shortly. For a nonlinear system,
approximations are often made in bofh frequency and time domain analysis. The
approximation chosen depends on the extent and complexity of the nonlinearity
in the system, The majority of the work on nonlinear problems deals with the
short-term responses and the statistics related to the short-term responses.

Section 3.2 is the longest section of Chapter 3 as most of the available
techniques on handling nonlinear problems in offshore mechanics are reviewed
in this section. In some cases, brief derivations of the equations for the
statistical probabilities are shown, While a few distribution (or density)
functions for the response time history are shown, the important aspect
addressed here is the probability distribution of the amplitude of response.
0f course, once the distribution is known, the distribution of the maximum
response amplitude at a chosen probability level may be easily determined.
Methods of projecting this short-term response to a long-term response,
corresponding to the design life of the structure under consideration, are
briefly outlined in the following section,

3.3.1 Linear Systems

The inertia force on an object including the forces obtained by the
Tinear wave diffraction theory is a linear force. The inertia part of
Morison's equation can be written for a vertical cylinder per unit length as

£1(t) = ky (t) | (3.170)
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where U (t) is the water particle acceleration. Under linear wave theory

i(t) = - 9k LOSLKS sin (kx - ut) (3.171)
or
0(t) = gk SN XS n(t + T/4) (3.172)

where T is the wave period and T/4 in this case represents a phase lead of
90°, i.e. the acceleration is zero at the wave crest. Therefore,

_ cosh ks
fr(t) = ky 9k Zoshxa oo (t) (3.173)

Then writing the covariance of f; in terms of the covariance of n and taking
the Fourier transform of both sides

Se (u) = H§ (w) $({w) (3.174)
I I
where
HfI = ky gk %%%%-Eg (3.175)

The significant amplitude of the force is obtained from the area under
the response spectrum curve.

fo =2 V] SfI!wiaw (3.176)

Assuming a mean period of 9 seconds and a short-term period (TR) of 2.5 hours,
the probable maximum value of the force amplitude (for 1000 waves) is

fmax = 1.86 fS (3.177)

In usual extreme value analysis, the maxima (or minima) are assumed to be
uncorrelated and statistically independent, This may be a crude approxi-
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mation. If the random process under investigation is Gaussian and narrow
banded, then one may work with the derived process, namely, the envelope of
the narrow-band process. The neighboring maxima of an envelope process are
generally not as well correlated as those of the underlying process.
Moreover, the extreme values of the envelope process may be taken as an upper
estimate of the extreme values of the base process. Naess (1982) developed
analytical formulas for the envelope process of a narrow band Gaussian
system, Assuming that the random variable under investigation is given by
x(t) for a time interval, Tps the expected maximum value of x(t) is given by
Elmax x(t)] < my (n +-%) (3.178)

where G denotes the Euler's constant, G = 0.5772, and n is obtained from the
solution of

2 an(xn N) (3.179)

=
1}

where N = number of maxima in x(t), and

S
I

2V TI /T2 (1+/ T )} (3.180)

e = spectral width parameter, p = correlation coefficient defined as

2
h (3.181)
p = .
Mo™2
and the spectral moments, m,, are defined by
m =] o S(v) do n=0,1,2, .. (3.182)
0

It was shown through numerical examples that the introduction of statistical
dependence between neighboring maxima (through p) into the extreme value
prediction generally leads to a decrease of the resulting extreme value
estimates.
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3.3.2 Nonlinear Systems

When the response function has a nonlinear relationship with the wave
amplitude, the system is called nonlinear. Thus, when drag is present in a
system, it constitutes a nonlinear system, The same is true for nonlinear
damping for a moving body. 1In these cases, approximate methods are employed
in predicting extreme response values., One of these approximations is a
series representation of the nonlinear term so that only a few terms in the
series require consideration, depending on the extent of nonlinearity. If
only the first term of the series is retained, then the system is called
linearized,

3.3.2.1 Wave Drag

In the case where drag is important and cannot be ignored, the conversion
of the wave spectrum to the response spectrum is not straight forward. In
this case, a linearization technique is often used for the drag force.

Since the drag force is proportional to the square of the velocity, the
linear approximation of the normalized drag force is written as

[x(t)|x(t) = Clx(t) (3.183)
where x(t) = u(t)/o, and ¢, is the rms value of the velocity profile.

Assuming that u(t) 1is normally distributed with zero mean and standard
deviation, o,s the most accurate linear estimate of |ulu gives

c, =72 (3.188)
Similarly, the cubic approximation

Ix|x = Cix + C3x3 (3.185)
will yield

¢ =V 2, g/ & (3.186)
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The quintic approximation

3 5

[x|x = Cix + Cax” + Cpx (3.187)

will give

Cy = %"_% s C3= %"_% » Cg=- %‘U’l_% (3.188)

In terms of the dimensionless quantity, x = u/g,, the linear approximation
does a fair job for |x| < 2; that is, if the velocity is within +20,. Since
according to normal theory this happens 95% of the time, the 1inear approxima-
tion will do a good job of estimating the spectral density most of the time,

The cubic approximation is quite an improvement over the linear expres-
sion, yielding results accurate to more than 3c,. The quintic approximation
is only slightly better than cubic producing results accurate to nearly 4c,.

3.3.2.2 Wave-Plus-Current Drag

When current is present and drag is not negligible compared to inertia,
then the relationship between the wave force and wave profile 1is further
complicated by the presence of current, U. If the current is considered
uniform and flows in the same direction as the wave (or opposing it, in which
case U is negative) then'fhe drag force per unit length of a vertical cylinder
is written in terms ,of the relative velocity between current and water
particle velocity. .

fD(t) = kp lu(t) - U|Lu(t) - U] (3.189)

In Eq. 3.189 the current is in the opposite direction of the wave. In
the presence of current, the mean value of the relative velocity is not zero
as before, In this case, the 1linearization 1is more complicated, If we

approximate v|v| as

viv| = Co * Cqv (3.190)
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where v = u(t) - U, u, is the mean value of v, and o,~ is its variance about

the mean, then

Co= (o2 -y [2e(v) -11-2u o ¢ (v (3.191)
and

Ci=2u, (20 (y) -11-40, ¢(v) (3.192)
where the mean value u, = -U and v = -U/qy is the strength of the current.

The quantity, ¢(x), is written as

-x2/2
(3.193)

o(x) = £

T

whereas o(x) is given by its integral and known as the error function

x)= [ Sl )
o(x) = dt = P(t) dt 3.194
‘e J7m L ( )

3.3.2.3 Structural Dynamics Response

When a structure responds to waves, the motion of the structure results
in a relative velocity between the wave velocity and the structure velocity.
The modified form of the Morison equation is used in analyzing structural
dynamic response in random waves.

In many cases, the structural motions are small compared to the water
particle motion. Assuming that the response velocity is small compared to the
water particle velocity, the nonlinear drag term is expressed in a Taylor
series, and higher order terms in.structural velocity are neglected.

(u = x) = |ulu - 2]ulx (3.195)

lu - x

Further the term involving absolute values of u are replaced by their
polynomial approximations

3
[ulu = V277 o, U +-% Y 27n-%— (3.196)

u
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lul = /8% o, + « /2] (3.197)

u

The parameter, «, is introduced in Eq. 3.197 which indicates a small
fluctuation in damping about its time average. On using these approximations,
the solution may be obtained by a perturbation method,

A second method, known as an equivalent damping method, transforms the
equation of motion to its fundamental resonance mode and uses the
approximations of the wave drag force 6ut11ned above, including a time varying
damping in a series form, An equivalent constant damping is obtained as a
first approximation by replacing the time varying terms with equivalent
constant term. The equivalence is obtained in terms of work done over a
cycle, To a first approximation, the resonant response as well as the
nonresonant response are considered to be Gaussian,

The linear and cubic estimates of the spectral density of the wave drag
force on a cylinder of unit diameter and unit length are shown in Fig, 3.20.
For this example, the random wave 1is chosen as having He = 24m and
T, = 14 sec. The spectrum 1is computed at the surface and 40m below the
surface. It is seen that the cubic representation of the drag force provides
more energy at about 3 times the predominant frequency. This gives rise to
the super-harmonic response of the structure at higher frequencies in waves.

Eatock Taylor and Rajagopalan (1981) compared the method of equivalent
linearization for the nonlinear term with the complete nonlinear time history
simulation. They found that the response spectra produced by the
Tinearization technique may be underestimated, particularly in high waves.
Inclusion of the cubic term significantly improves the estimation.

Dao and Penzien (1982) investigated the effect of linearizing the drag
force through an example where a single degree of freedom system was subjected
to a harmonic excitation. They considered the forcing function for the second
order linear differential equation to be nonlinear and composed of the
modified relative velocity model of the Morison equation. Three different
cases were considered; (1) the coupled relative velocity form of the nonlinear
drag term, (2) the uncoupled nonlinear drag term and, (3) the linearized form
of the drag term,
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In the second case, the drag term was uncoupled, assuming that the water
particle velocity is much larger than the structure velocity, e.g., for a
jacket structure. Then the approximation takes the form given by Eq. 3.195.
The quantity |uu is replaced by a Fourier series by writing u = up cos «t and
using

|cos wt| cos wt T a cos mut, m=1, 3,5, s« ¢ & (3.198)

m
where
-8/[mn(m? - 4)] form=1, 5, 9, « « »
a_ = (3.199)
8/[m1r(m2 4)] form=3,7,11, . . »

Also, |u| is replaced by its temporal average,

ERLN

lul = uglcos wt| = v < ugy (3.200)

Thus, the nonlinear terms are linearized and the equation of motion can be
solved for x(t) in a series form as functions of mut.

In the third case, linearization is achieved by writing

lu - x| (u-x)= Cl(u - X) (3.201)

where C; minimizes the error in a least square sense. The value of C; is
given by

Cvy vy ]
c, = R (3.202)
1 [v 2]
R
If VR (= u - X) is assumed harmonic, then
C1 = 1,20 o (3.203)

R
where o, 1is the rms value of VR Once this linearization is introduced in
the equation of motion, the expression for x(t) may be obtained in terms of

g, which may be solved by an iterative technique,

YR
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The numerical results for a single degree of freedom system in regular
waves showed that the first two solutions are quite close while the linearized
solution produces large error. The analysis was then extended to random
waves, For random waves, the extreme values of the response were found to
closely follow the Gumbel Type I distribution given by Eq. 3.8. This was true
irrespective of the method of representation of the drag force. In random
waves, the mean square values produced by the three methods are similar, while
the mean extreme value determined by the linearized method can be as low as
65% of the maxima for large values of Hg/D (> 20).

Dunwoody and Vandiver (1981) predicted the dynamic response of offshore
structures to the random wave excitation, The response included the effect of
the separated flow drag force in terms of the relative velocity formulation,
The equation of motion had the form similar to Eq. 2.67 with the nonlinear
damping replaced by the relative velocity terms. The drag term of the Morison
formula was approximated by a cubic polynomial in the relative velocity
between the fluid and the structure. Thus, following an approach similar to
that developed by Borgman (1969) the relative velocity drag is written as

|VR|VR = Cqvr + C3VR3 (3.204)

where vp = u - X,

The coefficients C; and C3 have the values

2
and
_,2 1
C3 = /-? = (3.206)
R

which are equivalent to Borgman's expressions with oy, as the rms value of
VR  The correlation between the nonlinear term and the approximation in
Eq. 3.204 is quite good over a large range of o, (up to about 3) as shown in
Fig. 3.21. The cubic term is handled through the convolution integral (see
next section) similar to Borgman except for the relative velocity form. The
solution 1is obtained by iteration due to this coupling. The linear and
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nonlinear components of the hydrodynamic force spectra for a single degree of
freedom of c¢ylinder motion in a random fluid field are shown in Fig. 3.22.
Note that at the low frequency, the drag contribution is large. The quantity
a is the ratio of the fluid added mass to the sum of the cylinder mass and the
added mass, while o is the rms value of the cylinder velocity. The linear
term is proportional to the fluid velocity spectrum only.

Sigbjdrnsson and M&réh (1982) analyzed the effect of the second term of
the series (cubic approximation) representing a nonlinear drag term that
includes the three-term convolution of the autospectral density of waves. The
main peak of the wave force spectral density appears at the modal frequency.
From the series expression, Eq. 3.204, it is evident that superharmonics may
appear in the load spectral density in frequency bands near 3, 5, 7, « o« s,
respectively times the modal frequency of a single peaked wave spectral
density. Inciusion of the lowest superharmonics made the 1load spectral
density bimodal. This method was applied to the example of a jacket-type
fixed tower which was permitted to deflect.

A JONSWAP type wave spectrum was chosen for this purpose, as shown in
Fige 3.23, having a significant height of He = 15m, a modal frequency of
wg = 0.35 rad/sec. and a peakedness parameter of y = 3.78. The autospectral
density of drag forces acting on a 0,5m diameter vertical pile at different
elevations is given in Fig. 3.24, The computation includes two terms of the
series approximation for the drag force. No secondary peak is visible close to
the free surface. This is because the linear contribution of the drag force
is large and overshadows the convolution contribution. 1In deeper waters the
secondary peaks become clearly visible because of the slower depth attenuation
of the cubic contribution compared to the linear one. The auto spectral
density of the total load on the pile (including inertia) shown in Fig. 3,25
has the same general trend as the drag force spectral density. This is a
result of drag force dominance in this case. However, a certain amount of
reduction is seen in the relative size of the secondary peak because of the
presence of the inertia forces.

Table 3.4 shows the mean square (ms) force contributions due to the
inertia forces and the linearized and nonlinear (second-order) drag forces,
respectively, for different water elevations (depths). The nonlinear drag is
obtained from the three-fold convolution contribution of the energy density
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TABLE 3.4

MEAN SQUARE WAVE FORCE COMPONENTS
FOR VERTICAL PILES FOR A JONSWAP SEASTATE
SIGNIFICANT WAVE HEIGHT = 15m; MODAL FREQUENCY = 0.35 rad/s
[SIGBJORNSSON, ET AL. (1982)]

LINEAR NONLINEAR

DEPTH DIAMETER INERTIA DRAG DRAG

(m) (m) FORCE FORCE FORCE
0 0.5 29.6 60,4 10.0
5.0 96.3 3.2 0.5
10 0.5 20.1 68.5 11.4
5.0 96.2 3.3 0.5
50 0.% 37.0 54,0 9.0
5.0. 98.3 1.4 0.2
100 0.5 58.8 35,3 5.9

5.0 99.3 0.6 0.1
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spectrum (second term of the series approximations of the nonlinear drag
force). The results are given for two different pile diameters. The
contribution due to the nonlinear term is not significant for the inertia
dominated pile, D = 5m, as can be expected. In fact, even the linear drag
term is of secondary importance compared to inertia, For the drag dominated
pile, D = 0.5m, the nonlinear term is only about 15% of the linear drag term.

These examples 1indicate that the stochastic linearization method
represents the mean squared wave forces quite reasonably for engineering
purposes.  However, the “super harmonics" present in the drag forces may
produce secondary spectral peaks which may be extremely important in the
evaluation of dynamic structural responses.

Let us illustrate this by the following example of a structural
response, Assume a jacket structure in 300m water depth having a fundamental
natural frequency, wy = 1.05 rad/sec., and a corresponding modal damping
factor, ¢z = 0.027. The displacement of the deck of the structure due to the
JONSWAP wave of Fig. 3.22 was investigated by Sigbjarnsson and Morch (1982)
in terms of a single degree of freedom linear equation of motion, but with
nonlinear excitation derived earlier. Assuming that for a fixed offshore
platform in severe seas, the water particle velocity is much larger than the
structure velocity, or in other words, E[[u]|] > E [
of motion of the platform is '

x|] , the matrix equation

mx + C|U|% + Kx = F(t) (3.207)
The displacement spectrum is obtained from
T* _
S, (w) = H(w) S(w) H' (w) (3.208)
where
, 2 ]-1

Hw) = [ K - oM+ uC v £ o (3.209)

where the superscript, T, refers to transform and a star refers to the complex

conjugate, The autospectral density of the deck displacement is shown in
Fig. 3.26. The secondary peak in the loading spectra, being in resonance with
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the fundamental natural frequency of the platform, produces a sharp secondary
peak in the displacement spectra. Thus, in designing fixed platforms, the
fundamental natural frequency of the platform should be matched against the
superharmonic frequencies of the drag force contribution to investigate the
possibility of amplification, If such possibilities exist, then these terms
may have to be included in the analysis of the response. Of course, the
higher order terms may make the analysis extremely complicated and time
consuming. A time domain simulation would, of course, include these effects
explicitly.

For fixed platforms that respond statically, the extreme value analysis
1s carried out 1in the wusual way by computing the short-term force
distributions on the platform and quasi-static structural and foundation
analysis.  However, deepwater platforms may be excited at the lower wave
frequencies of about 3 to 4 secs. and the super-harmonic loads discussed
above. In this case, the dynamic response of the structure should be
accounted for in terms of the dynamic inertia forces. The degree of dynamic
response will depend on the frequency content of the exciting force from
random waves and the structural and hydrodynamic damping. Thus, to account
for the dynamic inertial loads, the regular wave static solutions are
corrected by the dynamic amplification factors (DAF) computed by random wave
analysis. Larrabee (1982) provided a method of selection of the dynamic
amplification factor. The method is based on selecting a given probability
Tevel (of exceedance) over a given duration of seastate for both the dynamic
response and static response and then defining DAF as the ratio between the
two.

3.3.2.4 General Linearization Technique

The technique of equivalent linearization for the specific cases outlined
in the earlier section is often used as an approximation method of solution of
nonlinear problems. A general method may be described to approximate the
nonlinear term as a linear one such that the mean square error between the two
terms is a minimum. Thus, for a nonlinear damping term of the form |>2|°"1 X,
we write

R RN (3.210)
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Then the form of Cl becomes

2 ort2 -1

¢, = /7w (G2 of (3.211)
where Og is the root mean square velocity. In the above expression, C; is not
dimensionless but has a dimension dependent upon the value of a. Note that «
= 2 gives

¢, =v8gq (3.212)

1 T X *
For the linear approximation, the drag force becomes

, 8
fp(t) = kp ¥ = o u(t) (3.213)

In this case, the drag term may be treated as a linear system in constructing
a transfer function and calculating the response spectrum wusing the
appropriate equation, e.g. Eq. 3.174,

Roberts (1977, 1978) obtained an approximation to the stationary joint
density function of the displacement and velocity response for oscillators
with nonlinear damping and excitation by white noise. An approximate one-
dimensional (Markov envelope) equation to the resulting Fokker-Planck equation
was obtained. The results were compared with digital simulation, as well as
perturbation and equivalent linearization methods. The stiffness was con-
sidered Tinear and the damping nonlinear, taking the form

f(x) = x(1 + ¢[x|™) - (3.214)
An example of this correlation is shown in Fig. 3.27 in which the quantity
02/002 is plotted versus e* for n = 2, The quantity e¢* is a non-dimensional
nonlinearity parameter

g% = ¢ mo"ao" (3.215)

in which e = nonlinearity parameter, wy = natural frequency, o = standard
deviation of the nonlinear response and oy = standard deviation of the linear
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response (i.e., for ¢ = 0), The figure shows that the equivalent
linearization (EL theory) result is very close to the Markov envelope (ME
theory) result over the entire range of e* shown. The digital simulation for
the damping ratio values of zg = 0.05 and 0.50 are also shown. For a low
damping factor, the simulation results are in excellent agreement with the ME
theory. At the higher damping factor, the correlation is less satisfactory,
but still close. The perturbation solution matches others only when e* is
small (< 0.05), i.e., for small nonlinear damping compared to the linear term.

3.3.2.5 Nonlinear Response Spectra

The drag force per unit length of a vertical cylinder is given by the
second term of Eq. 2.18, In order to compute the response spectra due to the
drag force, the covariance of both sides of this expression is taken. In this
case, the covariance function of the drag force has a highly nonlinear
relationship with the covariance function of the water particle velocity.

Re (%) = ko, VIR, (1)/oy] (3.216)

where 1 = time, cﬁ the variance of the velocity spectrum given by

o, = Z Su(w) dw (3.217)

2

and R,(t) is the covariance of the velocity, u. Substituting r = Ru(r)/cu,

y(r) is a function defined by the formula

2

v(r) = [(4r° + 2) sin"r + 6r (1 - r2) 1274 . (3.218)

y(r) can be expanded in a power series in r as follows:

4r3 r5 r7

w(r)=%(8r+—-3—+T5-+7ﬁ-+....) (3.219)

The spectral density for fp is the Fourier transform of the covariance
function., Hence

Se (W) = [ Re (1) e-tut 4o (3.220)
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or,
S. (w) = k24 [ ¥ [R (1)/e2] 1O 4r (3.221)
f Du 7 u u :

In terms of the series expansion of ¥(r),

3 5
® R. (1) 4R7(t) R (1) I
Se (w) = k204 ] l-[ 8 + Y + +... )8 TOT gy
f D% ! F g I [
u u u (3.222)

This yields the following expression for the drag force spectral density in
terms of the velocity spectral density.

2
koo 8S. (w)
Se (0) = =4[ — a 5 S, (@) * S (0) *5 () + ... ]
D o 30
u u (3.223)

in which the asterisk means convolution. Note that a product in the time
domain appears as a convolution integral in the frequency domain. Thus

1 < e 1] ] n " ) 1
— [ Su(w )Su(w -w ) dw Su(w - w')dw
(3.224)

or the triple convolution of Su(m) with itself. The other higher order terms
in the series, Eq. 3.223 may be similarly written,

The discussion 1in the previous paragraph suggests a reasonable
approximation for SfD, namely, the linearization of y(r) by

o(r) = &0 | (3.225)

m

Then

S (w) (3.226)
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It is found [Borgman (1969)] that the maximum error introduced by the linear
approximation of y(r) is of the order of 15%. If the first two nonlinear
terms are introduced, then the error is reduced to about 1%.

When current 1is present along with the waves, the drag force is
represented in terms of the relative velocity. The presence of current alters
the energy density of waves which, in deep water, has been represented by Eq.
2.15, Under the deep water assumption, an expression for the drag force
spectrum due to relative velocity is shown by Tung and Huang (1972, 1973). To
the first order of approximation, the spectrum of the Morison force may be
shown to have the form '

Se(0) = 16 k3 o2 Lo(v) + [v] o()I% Si(u) + kG Sp (w) (3.227)

where recall that vy is defined as the strength of the current (y = U/°u)

2

and % is the variance of the fluid particle velocity spectrum. The asterisk

indicates that the spectrum has been modified by current. The rms force
magnitude may be written as

of = 021 - efrenyt/e (3.228)
where
ELF1 = 2 ky o> [y o(v) + (1 + v2) o(y)] : (3.229)

and

Y 4642 + 3)] (3.230)

2 1
ELF2] = 7 k& of [4 + KE(y
in which the quantity K is defined as
2
) 2kD0u

K = —= (3.231)
M %

In the absence of current (y = U/g, = 0), the expression for E[f2] reduces to
that given by Borgman (1965),

E[f2] = kM2 a2 + 3 kB o (3.232)
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Note that the linear combination of the Gaussian inertia force and non-
Gaussian drag force is non-Gaussian.

The parameter, K, is a measure of the relative importance of the drag to
inertia components of the fluid force. It, therefore, serves as an indicator
of the degree of closeness of the force by Morison equation, f(t), to a
Gaussian process. Thus, the larger the value of K, the more important is the
drag force compared to the inertia force, and the more the force deviates from
Gaussian., In the presence of current, a similar conclusion may be drawn with
the o, replaced by o,. The effect of current on the non-Gaussian property of
f(t) is more pronounced when current is negative. The expression for the
probability density function of f'(t) = f(t)/p was derived by Tung (1974) and
is given by

1 1 f' 2
p(f') = v 2/K Zn Koy { [ exp[-5( Koy +s%)
1 K 12 ® 1 f' 2 \2
—K(s+1—)]ds+fexp[-7(m-s)
-y (s-£F s (3.233)
in which ky, = kny/p, Yy is the current strength parameter already defined, and
M M

s is a dummy variable., The probability density function for the force time
history in the absence of current may be obtained from the above expression by
setting vy = 0 in Eq. 3.233. The integrals for the density function cannot be
solved in a closed form and are computed numerically, as is the distribution
function. This distribution, Eq. 3,233, can be obtained in terms of four

parameters given as the coefficient of variation, C force parameter, K,

u!
correlation

2
o

coefficient, p { = -

—<= ) and acceleration frequency, w =-35 ). The
u-u a

numerical values can only be obtained by solving the equation on a computer.
Note that the expression in Eq. 3.233 can be written in a nondimensional form
in terms of f = f/kM a5 The probability density function for the (initial)
distribution of f(t) normalized by ky U has been provided by Borgman (1972)

assuming that f(t) is Gaussian. A similar expression has been given by Vinje
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(1980) for f(t) which includes a non-zero mean velocity, e.g., from current
[similar to Eq. 3.233]. An asymptotic form of the distribution applicable to
large values of the maxima was derived by Vinje (1980) and was found to match
the numerical results of the distribution.

The probability density and distribution function for the force resulting
from a current of U = +3 fps (0,915 m/s) as well as for U = O are plotted in
Figs. 3.28-3.31. It is clear from the figures that the distribution is non-
Gaussian for non-zero current, The effect of the interaction in modifying the
velocity and acceleration spectra is shown to be quite important. For the no-
current case, the Gaussian approximation holds, the difference being only due
to numerical error.

The density function in Eq. 3.233 is an indicator of the non-Gaussian
property of the total force including inertia and drag. However, it does not
provide the information on the extreme force maxima which is the quantity
required for the design of an offshore structure.

3.3.2.6 Statistics of Narrow-Band Morison Force

For the wave force derived from the Morison equation the distribution of
the peak values of the force may be obtained by the method of nonlinear
transformation of random variables in the following ways:

1. If the sea surface is assumed to be Gaussian, the force model
becomes non-Gaussian and wide banded. In this case, the
distribution can only be obtained numerically on a computer [Tickell
(1977)1.

2. If, on the other 'hand, the force model 1is assumed to be an
approximate narrow-band model for the Gaussian variables, a
distribution function for peak forces may be derived analytically
[Borgman (1972)].

3. If either drag or inertia is disregarded then an analytical
expression may be obtained even for a wide-band model [Tickell
(1977)1.
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Gaussian models for ocean waves involve superposition of numerous linear
waves, For a Gaussian sea, all of the probability properties of the sea
surface may be predicted. In the Gaussian model, the energy density spectrum
completely determines the probabilities of all wave properties especially if
the spectrum is assumed to be narrow banded. A statistical model for the wave
forces faces mathematical complexities if the waves are of appreciable
amplitude causing nonlinearities to be introduced. Because of this
difficulty, statistical treatments are frequently based on linear theory, If
the Morison force with its nonlinearities is assumed to be narrow banded, then
the probabilities of the extreme values for the force may be derived in a
straight-forward manner.

A simple deterministic wmodel of the short-crested directional sea
condition is

-}

n(x,y,t) = nfl a, cos(knx cos 6+ kny sin 6 - wnt + ¢n) (3.234)
where the subscript n represents the nth linear wave, a, is the amplitude of
the nth wave, k,, ®, and ¢, are its wave number, frequency and phase,
respectively. Assuming that waves are coming from directions covering an area
given by the angle -w < & < w, an integral representation is

=
n(x,y,t) = / [ a(w,0) cos [ kx cose + ky sine - wt + y(w,8) ] dé dw
0 -m (3.235)

On the assumption that both the amplitude and phase of the component
waves are random with arbitrary probability laws, Borgman (1972) presented a
stationary, second-order stochastic process for predicting the sea surface.
The Gaussian model is a useful, though somewhat restricted model which assumes
that the amplitude is related to the energy content, and phase is independent
and random but uniformly distributed over the interval (=my W) Thus,
dividing the two dimensional plane (w, 6), into small cells of width Aw and
A8,

nlx,y,t) = £ [ 2 S(f,8) aw a01t/2

all cells
(Aw, AB)

cos (kx cos® — Ky siné - at + ¢)
(3.236)
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where w and 6 assume values at the midpoints of the cells. This expression

may be used to derive wave profile from a directional sea given by the energy

density S(f,e) and is thus a generalization of Eqs. 2.11-2,13. Alternatively
®

n(x,y,t) = [ [ [25(f,8) du de]ll2 cos(kx cose + ky sine - wt + y)

0 - (3.237)

The Gaussian model implicitly assumes symmetry about the still water level,
It fails to encompass the crest-trough inequality. For the latter case, a
- general second-order stochastic model with multivariate probability law
similar to those described in Sections 3.2.2 and 3.2,4 is needed for the sea
surface. In the general second-order model, the spectrum is not adequate to
describe the probabilistic properties. It is just one of many characterizing
functions of the wave; bispectrum is another.

A more detailed probabilistic structure can be obtained if the Gaussian
model is restricted to unidirectional waves (6 = 0) and a narrow spectral
density. Then

1/2

n(x,t) = ]; [25(w) dw] cos (kx - wt + y) (3.238)

Recall that for a narrow-band model, the Rayleigh probability law applies for
the wave amplitudes, a-

1 - exp (-32/203) ifasz0
P(a) = { (3.239)

0 ifa<?

where op is the rms value of the wave profile. The corresponding density
function is

a/ooz exp (-a2/2002) for a >0
p(a) = (3.240)
for a <0
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2

The mean-square amplitude, s is given by
2 _ 2

If linear wave theory is applied to the Morison equation, then the
inertia and drag force amplitudes are written as

fI = ClH (3.242)
and

-*'
1}

b = CoH (3.243)

where C; and C, are known functions of Cy, Cp, d, D and T. Assuming these
parameters to be constant, one obtains

p(f) dfy = p(fy) dfy = p(H) dH (3.244)

The probability density function for the inertia and drag force amplitudes are
then obtatned assuming that the wave heights follow Rayleigh distribution

f
ek
p(fy) = T2 ° I. (3.245)
Ir
and
f
I
&)
p(fy) = T ° r (3.246)
r
where
fr - 2,2 (3.247)
Ir C1 Hrms
_ 2
fo = Colns (3.248)

r

The cumulative distributions are written as
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- (=) 2
P(f)=1-e 'r (3.249)
f
=)
P(fy) =1-e °r (3.250)

Thus, the inertia force peaks follow Rayleigh distribution while the drag
force amplitudes follow exponential distribution.

Similar expressions may be obtained for the inertia and drag force peaks
if the wave heights are assumed to follow two-parameter Wiebull distribution.

The wave force on a one-foot section of a vertical cylinder as a function
of time is written as

f=ky u+ kp lulu (3.251)
where ky = Cy o nD2/4 and kp = Cp p D/2. A number of simplifications in the
statistical theory for forces are possible if as before the wave spectrum is
assumed to be quite narrow and concentrated around a single frequency. Using
the linear theory to describe water particle kinematics, the force from Eq.
3.130 may be written equivalently as

2 2

Kp Up €0s™8 + ky wuy sin@ if |o| < n/2
f={ (3.252)
2 2 . -
- kp ug cose + ky wiy siné if n/2 < |8] < =

where @

kx - wt and ug = mH g?ﬁh kd .

Since the important quantities of interest for extreme value prediction
are the peak forces in the profile, the maximum force is given by

2 ' (ka)2 ka
kn us + if <1
D "0 EkD ZED UO
fq = { (3.253)
0 k,,w
. M
kaUO 1fm>1

We note here that for a narrow-band spectrum the wave height, H, is Rayleigh
distributed. Hence, uy and GO given by linear theory are also Rayleigh
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distributed. Thus, fy in Eq. 3.253 is a Tinear combination of a first power
and square of a Rayleigh random variable. The probability lTaw of f from that
of H may be obtained by converting the probability of non-exceedance of f, to
that of H.

~

The cumulative probability of maximum force amplitudes, f, for the
inertia dominated and drag-inertia regions is given by

52 2,
l'exp(-—r—z—’) 'ifT<1
(f)r‘ms kM w
P(f) = { (3.254)
AH _2 Y
4 ff_ - f 2k f
1-exp{- D21 ] 1'f7p-2—>1
4-1'ED Hr‘ms kM w
The probability density
A =2 2k . f
2f f . D
rms rms M
p(f) = { (3.255)
. 4 £ T, - T, 2k, f
exp(- ) if > 1
T K 4 7. He ko Lol
D rms D 'rms M

where ?b = %D/Hz, T& = fI/H, and fI and %D are the inertia and drag force

amplitudes. Note that for the inertia dominated case (the upper expression),
a Rayleigh distribution is obtained. For the drag-dominated case, the
distribution is exponential.

Any normal stochastic process can be completely described by its mean and
convariance functions, but an appropriate description of a non-normal
stochastic process requires more information. These will yield the mean and
the variance of the offshore structural response. A major shortcoming of this
approach is that it essentially ignores the fact that the structural response
is usually not a normal (Gaussian) process. For example, the knowledge of
response kurtosis allows a substantial improvement over the usual prediction
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for a normal process (with a given variance and power spectral density).
Since kurtosis is a fourth moment property, it is a natural next step beyond
variance.

Hu and lLutes (1987) obtained expressions for computing fourth order
cumulant function for the force which provides the value of the kurtosis of
the response through numerical evaluation. In the frequency domain, the non-
normality may be described by a three-dimensional spectral density function.

3.3.2.7 Statistics of Wide-Band Morison Force

Tickell (1977) derived a general multivariate distribution of wave loads
including the nonlinear drag force from the linear Gaussian long-crested
random seas. Probability distributions of the peak loads were developed.
These distributions showed the general behavior of a wide-band process in
contrast to simpler distributions which resulted from the narrow-band
assumptions., The probability density function of force time history, F(t), is
written in an integral form as follows:

(F) = g ; [ -5 i + v ) 1d (3.256)
P 7o, o 0 SPLlogl—gty ¥ .
Mt - RS

and computed numerically. The quantities ¥ and y, are defined as
¥ = / ED u (3.257)
Yy = ky U (3.258)

and their standard deviations are computed from the second and fourth moments

of F as
E[F2] = o2 +3 o (3.259)
) ¥
4 4 2 4 8
= +
E[F™] 30‘142 18 0“”2 0¢1+ 105 Uq"l (3.260)
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This basic force distribution theory has been compared with data obtained
from an offshore platform in the Southern North Sea. The cumulative distribu-
tion function of the vertical bending stress in a bracing member of the
platform is shown in Fig. 3.32 along with the Gaussian CDF, A measured
kurtosis (= E[F4]/E2[F2]) of 6.9 indicates a strong deviation from the
Gaussian distribution as demonstrated in the figure. For a mean zero Gaussian
distribution the corresponding kurtosis is 3.0.

-

While this formulation indicates the importance of the non-Gaussian
formulation for the nonlinear loads, it is not useful in the practical design
where the distribution of the peak forces is needed. The cumulative peak
distribution may be estimated from the expected number of peaks above a
certain force level. However, it involves higher moments of the spectrum
(e.g. sixth moment of the velocity spectrum) which are inaccurate because
representation of the tail of the wave spectrum (e.g. P-M spectrum) is often
inaccurate. If the time history of the force is assumed to be a narrow-band
process, the distribution requires the fourth moment of the velocity
spectrum. If, in addition, the force and its first time derivative are
assumed to be independent, then the distribution may be obtained from the
second and fourth derivatives of force only. This results in a narrow-band
non-Gaussian force amplitude distribution. The theoretical and observed
distribution of the stress range of the prototype data discussed earlier and
the tip displacement range from a laboratory test on a vertical cantilever
under random wave input are shown in Figs, 3.33 and 3,34, The ranges are
defined as the highest peak to the lowest trough between successive zero
crossings in a record. The Rayleigh distribution 1is also shown in the
figures. In each case, an improved estimate of the range is achieved by use
of the non-Gaussian distribution.

For a narrow-band model, the probability distribution of the peak
force, f, which is normalized by the standard deviation of force is given by

( K2+ 1) fexp|[ - %-(%-Kz +1) 2]
for f < K'l(%-K2 +1)7L/2

p(f) =

for f > k™1 (— K2 + 1)'1/2 (3.261)
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. ¥
where f =-Jl, fO = peak force, of = standard deviation of force, and K is

g
defined as fthe drag-inertia parameter. The drag-inertia parameter is the

ratio of the drag force amplitude to the inertia force amplitude given by

2
4 C, o 2k 0
K=— D U __Du (3.262)
w CM D w, K.ge
M%u
where oy = W0, Wy = Z€ro upcrossing frequency of the water particle

velocity, and o, = corresponding standard deviation.
u

If the inertia force predominates, then K + 0 and from Eq. 3.261

p(F) = F exp ( —-% ) (3.263)
which is the Rayleigh distribution describing the probability distribution of
a narrow band process, On the other hand when drag forces dominate, K + = and
Eq. 3.261 reduces to

p(f) = i;§ exp ( —-K;E f) (3.264)

which is the equation of an exponential distribution. . The cumulative
probability distribution of peak forces is obtained by integration of p(%).
The probability of non-exceedance of the normalized peak forces for different
values of K, namely K = 0, K » «» and K = 0,5 has been plotted in Fig. 3.35.

For a wide-band model, the peak distribution of force, f, is expressed 1in
terms of the joint probability density of force and its first and second
derivatives (obtained by differentiating Morison equation)

0 . e e a
[ | f,(f, #=0, f) df df

(3.265)

o

[ f, (f, f=0, f) of

First, a multivariate Gaussian distribution for the velocity and its
derijvatives is constructed. Then, it is transformed into the force variable
and its derivative to form p(f, f, ?) using the Morison equation [Tickell
(1977)]. A simple closed form expression for the general force case does not
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seem possible. The individual probability densities for drag-dominated and
inertia-dominated 1imits are obtained respectively as

p(fy) = (1 - &)1/2 113-T§T exp [ - 153 171 ]

-~

2
43 ( l-¢ )1/2 f ]

erf [ - =
E2 |f|172
2 \1/2 &3 v 3 2
+ (222 =y exp [ - 5 ] ] (3.266)
| f| 2¢
where ¢ = spectral width parameter for the water particle velocity, and
erf = error function,
A1 2.1/2 2 £2
p(f) =5 (1 - )7/ fexp [ -5 ]
erf [ - ( l-:EEE W25 —Zyy exp [ - 72 1 (3.267)
2¢ (2n) E;?

where e = spectral width parameter for the water particle acceleration. The
last relationship is the Rice's distribution.

In the above expression, if € + 0, then the expressions for the wide band
peak distributions for both drag- and inertia-dominated areas reduce to the
corresponding narrow-band solutions (Eqs. 3.263-3,264), The results from the
wide-band model (for a value of e = 0.7) for K = 0 (inertia dominated,
Eq. 3.267) and K + « (drag-dominated region, Eq. 3.266) are plotted in
Fig. 3.35.

It may be observed that the effect of nonlinear drag forces is most
pronounced in the upper tails of the distribution function, Thus, the
probability of exceedance of large peaks increases with increasing value of
the drag-inertia parameter, K. Moreover, at least for K = 0 and K + «, the
narrow band model yields results that are close to and higher than the wide-
band model. These results suggest that these models may be conservatively
used in predicting extreme responses.

If the spectral width parameter is nonzero (e > 0), the prediction of the
extreme value is expected to be different from the case of ¢ = 0, It can be
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shown that for the inertia dominated region, the limiting relative magnitude
is given by (4 1n N)"1 In(l - ez) whereas the drag-dominated 1imit can be
written as (2 In N)'1 n(l - ez). Therefore, if the number of force peaks, N,
is large, the deviation is small. For example, if we choose N = 1000 and
e = 0,7, the reduction in the expected extreme values is 2.4% for the inertia-
dominated case and 4.9% for the drag-dominated regions.

A slightly different approach in the extreme value analysis was adopted
by Moe (1979). Instead of expressing the probability density of force maxima,
Moe derived expressions for the expected rate of occurrence of force maxima at
any intensity on a cylindrical member of a structure. The expected number of
peaks per unit time exceeding a prescribed value of the force maxima can be
found from these expressions by integration. On the assumption that the sea
surface is not necessarily a Gaussian process but a non-narrow-band stochastic
process, the expressions are obtained for the inertia and drag force as well
as for the Morison formula. The expected number of extremes per unit time per
unit increment of the loading level, f, is given in terms of the extreme rate
density, u(f).

Knowing u(f), other statistical quantities may be readily computed. The
probability density function for extremes is given as

o(f) = . u(f) (3.260)
fO u(f) df
The probability of F>f (a defined value) is
- 0
ffo u(f) df

PLF > fyl = ——— (3.269)
5 u(f) df
The expected extreme value is
. fg f u(f) df
E(f) = (3.270)

[g w(f) of

For the purpose of these derivations, several definitions for the
frequencies are required. These are the expected frequencies of the wave
profile, its derivative, the particle velocity, the particle acceleration and
its derivative. They are defined as follows:
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w = 0,/ Opgs wy = 0y/ 03 w3 = 03/0,

w = ch/on; m'2 o;;/o,h _ (3.271)

in which r is the decay factor depending on the water depth and rn(t) refers
to the decayed vertical amplitude of the water particle orbit. In deepwater
(w2 = kg), we have wi = wy and wé = wy.

Note that by Airy theory,

= cosh k
r = Wré (3.272)

s 5, (a) (3.273)

5,(0)

2 4
5,(0) = 1% w5 () (3.274)

The peak rate density of the wave height for a sea surface of any
bandwidth, €(0 < ¢ < 1) is given by

(l.\' A2
2 H

[ ——exp (- —5—)
4'"' ¥ mo L4 2'" 8 € mo

u(ﬁ) =

2
2\1/2 H H

€) -E-——"eXP("'gTO)

2

{1-0 -8 (L2121} (3.275)

+ (1 -

3
o

where €2 = 1 - m%/(m0 m4) =1 - (wi/wé)2 and &(x) is the cumulative distri-
bution function for a Gaussian variable.

The short-term rate density for the inertia force maxima is given by
w3 f £

u(f) = WL T2 exp ( - T 2.2 ) (3.276)
M "a M "a

Note that for a narrow-band process Wy = W = wi and the above expression

corresponds to a Rayleigh distribution, The short-term rate density for the
integrated total inertia force on a cylinder has the same form as Eq. 3.276 if
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kMZ °a2 is replaced by the corresponding integral representation for the total
force.

The rate density for the short-term drag force was derived by Moe (1979)
for the deepwater case assuming relatively narrow-banded waves. In this case
the total drag force on the pile may be approximated by

Fp(t) = 0.5 kp g[n(t)[n(t) (3.277)

and the rate density of the drag force maxima has the form

. F
].I(FD) = -2'_’179—%? exp ( - g—rD——a-z ) (3.278)
P n D ™n

When the wave amplitude is such that both inertia and drag components are
important in the Morison formula then both terms are needed. This criterion
is established from the parameter

kw  « Cm

N ='2FR'D'= 'Zr—CED (3.279)

Note that ny has a unit of length as opposed to K in Eq. 3,262 which is a
dimensionless parameter. Thus, ng may be thought of as a measure of wave
amplitude which determines the importance of the drag force compared to the
inertia force. For small values of n < ng, inertia is predominant while drag
becomes significant for large values of n > ng. Once the expected rate
density of force maxima for a given amplitude is known, the expected number of
peaks for this Timiting value of force may be determined by integration of the
density function, For a point at the surface, we have r = 1 and ng = 1.5D to
3.0D, depending on the cylinder roughness. For % > ngy (which means both terms
are important in the Morison formula)

.oey f - fo/2
u(f) = E-?—'E-[-)—Ez' exp ( - W )s f>» fo (3.280)
u u
and
”S kM2
fo = g (3.281)
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EXAMPLE

Consider an ITTC wave spectrum model

2
S(w) = gg-5-exp (- —% ) (3.282)

in which « = 0,008l and B = 3.11/H52. Since higher order moments of the
spectra are required in considering a distribution of peak forces, and since
the higher order moments of this type of spectra are divergent, an upper cut-
off frequency must be specified in these cases., A cut-off frequency of
Weyt = 14257 (period = 5 sec.) was chosen to limit oz Then

oy = 3.75m, o, = 1.69 m/sec. and o, = 0.943 m/sec2

Assuming the pile diameter D = 1m, pg = 1026 kg/m3, Cp =1, and Cy = 1.5, we
have kp = 513 and ky = 1209, wy = 0.4507 rad/sec and wy, = 0.5580 rad/sec. The
force, fy, is obtained as fp = 444 N/m. Then from Eq. 3.280 the force at the
surface per unit length has the rate density

W(F) = 0.8888 exp ( - D222 (3.283)
and the drag force- has thg rate density (Eq. 3.278)
(F.) = 20747 onp | o ) (3.284)
mFp! = 70770 #*P 1 " 70770 ‘ .

Thus the number of peaks in the surface process is 0.0717/sec- and in the
velocity process 0.,0848/sec. The expected number of peaks per unit time
exceeding a given limiting value of f and FD is found by integration.

M(f') = 0.0786 e-T'/2930 (3.285)
M(Fp') = 0.0717 e~Fp /70770 (3.286)
For example, about 37% (e'l) of the peaks will exceed 2930 N/m (at the

surface) and 70770N (total drag force), respectively. These functions are
shown graphically in Fig. 3.36.
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3.3.2.8 Statistics of Wave-Current Force

When current is added to the waves, the velocity is given by the relative
velocity between the two and the force has a non-zero mean, The extreme value
analysis for this case may be obtained by the above analysis if further
simplifying assumptions are made. Moe and Crandall (1978) derived the extreme
statistics of the wave-current force based on the extreme rate density, u(f).

3.3.2.8.1 Narrow-Band Gaussian Wave and Small Current

The assumption of narrow bandedness imp]iei that wy, wp, etc. (Eq. 3.271)
are nearly equal, The amplitude or envelope n(t) of a narrow-band Gaussian
process is distributed according to the Rayleigh distribution

p(a) = ;DZ exp { - ;2/20n2 } (3.287)
n
In the presence of a small steady current, U

U+ % Fow cos [kx - wt + v(t)] (3.288)

=
"

~

nor miz sin [kx - wt + y(t)] (3.289)

o
1

where a(t) and y(t) are slowly varying. Then

p(f) df = p(n) dn (3.290)
and
- 22
f f A
Zzz g rrzl AR
M "1 "u M "1 "u
PO = ) exp { - IF - fg/2 - 20y VP IF - Y22 6 o) ),
2 7, 172 » > 17
2 ky o, [1 + (ky V/Lf - £41)77 7]
(3.291)
where
2 2
oy ky
fo = Z%, (3.292)
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correct to the first order in U/o,. For U =10

. exp {- (? - f0/2]/(2 Kp dﬁ)} -
p(f) = 5 f> fo (3.293)
2 kD s}

which is the same as that given by Borgman (1972), Also, note the similarity
between Eqs. 3.293 and 3.280.

Now consider surface elevation, n(t) not necessarily a narrow-band
process. Asymptotic estimates of extreme force statistics may be obtained in
this case, If the joint probability density function for the force f(t) per
unit length on a cylinder and its time derivative, f is p(f, f ), the peak
rate density is given by

W) = - [ g I fp(f, ) of ]
f=1 (3.294)

The asymptotic approximation of p(f, f ) is

p(f,f) = ’B_""TTeXp f- L Ur-fyr2 - 20 (kyN)V/2 + 12/(4u1)1)

Zkpo, - (3.295)

where f; = —=——, The peak rate density u(f) is

L exp {- [F - £,/2 - 20k, £11/27 /(Zkgou )}
e o, °L1+ (kyV /f)1/2]

(3.296)

Comparing the two expressions in Eqs. 3.291 and 3.296, the former is
valid for any ? > 0 but is restricted to narrow-band waves. The latter has no
band width restriction but is only valid for large % asymptotically. Both
results are restricted to small currents, i.e. U/ou <1, When U = 0, the only
difference is wy vs. wj. This suggests that the frequency of larger extremes
is determined by the frequency w, of the velocity, u(t), process rather than
by the frequency, w; of the surface elevation, n(t), process.
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EXAMPLE

Let us investigate the large-force behavior of u(%) for a cylindrical
pile 1.3m (4.3 ft.) in diameter for a P-M spectrum seastate for wind speed of
30 m/s (67.1 mph) in the absence of current. The spectrum is truncated at a
frequency of 0,98 rad/s. The result is calculated at a section where
o = 1.8m/s (5.9 ft/s), o, =0.90 m/s® (3.0 ft/s?), fy = 68 kgf/m
(4.6 1b/ft), and 2chu2 = 450 kgf/m (310 1b/ft). The extreme rate density is
shown in Fig. 3.37 from Eq. 3.296 by setting U = 0. The peak rate density,
u(f), has an exponential decay here.

Grigoriu (1984) considered the extremes of the modified Morison force in
the presence of current by two different methods. In the first case the
extremes were predicted based on the assumption of Gaussian force through
linearization. The corresponding Gaussian approximation for the drag force
will have the form
?-2

LI Ty ¢ (Tp) ] exp { - -%}-- N eJ?b?Z 1 (3.297)

i

pﬁ?D) = [

in which N is the number of peaks defined as N = 2nTp/w, where wy is defined
in Eq. 3.271 and T s the duration of the storm under consideration, In the
second case the actual distribution of force was considered. Expressions for
extreme value density functions were obtained for the drag force alone and for
the drag-inertia force combination from the Morison formula. The probability
density function of the peak drag force (in the presence of current) is given
in terms of the nondimensional force

ooy
fD SR— (3.298)
°f
D
where f = peak drag force amplitudes, us = mean value of the peak drag force
and o = corresponding standard deviation. The dependence of current 1is

introduced in the expression of the density function in terms of « which is
the inverse of y. Thus, a can be defined as:

°u
@ =g (3.299)
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where U = current velocity. Thus, « + 0 when U is dominant (y + «) and a +» =
as current approaches zero. (y + 0). The probability densities for the exact
and approximate expressions were used to determine the mean and standard
deviations of the peak drag force by numerical integrations. The mean and
standard deviation of the peak drag forces from the exact and approximate
methods are normalized by U2 and shown in Fig. 3.38 versus N for o« = 0,5, The
figure shows that the Gaussian hypothesis yields approximations which
significantly underestimate the mean and standard deviations of the peak drag
force, For example, these values from the exact formula are 10.4 U2 and 0.86
U2, respectively, while the corresponding values from the approximate formula
are 6,0 U2 and 0.26 U2 for N = 10,000 and a = 0.5.

3.3.2.8.2 Finite Current

Naess (1983) developed a general method of investigating extreme values
of a compound stochastic process. The method relies upon the mean upcrossing
frequency, fz(f) at a level &£ of a process, e€.g., force, f(t). In the extreme
situations these upcrossings are rare events. Such upcrossings are assumed to
be statistically independent which is at 1least conservative. The zero
crossing frequency is derived in the following way.

By the Poisson probability law, the probability that f(t) stays below a
level £ during a time interval of length, TR, is given by

PLF(t) < €] = exp {- Fi(F)Tp} (3.300)

Thus, if fz is known for all large values of & the probability distribution
function of max {f(t)} is known.

The general procedure of obtaining the zero upcrossing frequency, fg(f)
is applied to the forcing function computed by the Morison formula. The
problem is to obtain the upcrossing frequency of the forcing function, f(t).
The fluid velocity, u(t), is assumed to be a stationary Gaussian process and
is differentiable. The quantities u(t) and u(t) are independent random
variables., In the presence of a current U, the mean value of u(t), is given
by E[fu(t)] = U, Normalizing the velocity and acceleration terms as

it) = Qgil and H(t) = 4Ll (3.301)
u
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and the forcing function f(t) by

f(t)

,='F'—"'

T(t
(t) o

Eq. 3.251 is written in a nondimensional form as

T(t) = ha(t), a(t)]

i(t) + 3 K[ [U(e)

The variables, u(t) and u(t) are two stationary Gaussian
variance

ELd, (£)] = 0

and

E[T(t)] = —=
u

Ys y»>0

+—

The mean upcrossing frequency fg

well-known formula of Rice.

(3.302)

(3.303)

processes of unit

(3.304)

(3.305)

fz(f) of f(t) 1is determined by the

Using the law of marginal distribution and transformation of variables,

the probability density of mean upcrossing frequency may be written as an

integral of the product of conditional probability density function between

U and u and the probability density function, pg. The expression for fE is

+ _ T ¢dd 1 3-T42
f.=/ exp {- » ( )"} exp
£ lex (2m)23 275
where
W= ELF|d =0, T = ul = -uy(u - v) + Kuy|u]i
and
-— . . — ~ 2 2
o= Var[Flu=u,u=ul="3 (1-9)

{~ 3 [i+ (u - )%} du

(3.306)

(3.307)

(3.308)



ge

where wy = °G/°u’ and the correlation coefficent, p = S ﬂ". Alternately,
uu

© - 1 ——2 - - N -
fi= e | LF%eT(Va+;¢(§)]em{-%m+(u-ﬂﬁ}w
-0 m o . (30309)

where
i=5-5Kulu (3.310)

This equation for the zero upcrossing frequency can be solved numerically. An

asymptotic relation for f; valid for all current speeds is obtained by Vinje
(1980)
o2 -t (E.1) v, 1 } (3.311)
g T 7n P 1 -X K= 2/~ 27,2 .

Note that Borgman considered the case of U = 0 while Moe and Crandall (1977)
investigated the case of Yy <1 .,

For a long time interval (i.e., large &), the probability distribution
function of the largest value of f(t) is obtained assuming a time interval
length, TR and defining

T = il max {f(t)} : (3.312)

as
P=(n) = Prob {f < n}
= Prob {max[f(t) < un}
~exp { -fF T} (3.313)
P un R *
The expected value of the maximum force is obtained from
Gel(TR)

_ 2
ELmax {f(t)}] = KE[F] = 2K [ 8y(Tp)" + U 6,(Tp) MEE ]

+0[(2n @ TR)“3/2 ] (3.314)
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where G = Euler's constant (= 0.5772),

9=-;-§exp{--u-;-+i2-} (3.315)
and

o (Tg) = [ (n+1) tnaTy +v?- f%-]l/z, n=0,1  (3.316)

Note that as Tp + « the variance of the maximum values of f(t) approach
242
m“K=/6.

It may be similarly derived that the component of the drag force has the
expected extreme values given by

we T waT
E[max {fD(t)}] = U[(ZZH _SH_R)]./Z + U]Z + 2KG [1 + U(29,n .'2‘. R)-I/Z]
w,T
+ 0 [(an 220732 (3.317)

o

which has the same asymptotic variance as the total force.

EXAMPLE: Consider a pile of diameter D = 1lm and a seastate given by the
significant height, Hg = 6m and zero upcrossing period T, = 8 sec.
Assume Cy/Cp = 1 and U = 1,

For this case, o, = 1.21 m/sec and oy = 1.70m/sec2. Then

u

U -1
Wy = — = 1.4 sec
(o}
u
and
2kDoﬁ
K = k., o =11
M-u

The mean upcrossing frequencies f; are plotted versus the load level, £
in Fig. 3,39 along with the upcrossing frequencies fE(fD) of the drag force
component. The expected largest values of the total force, f(t) and drag
force, fp(t) are shown as functions of time interval, Tp, in Fig. 3.40, The
expected values of the inertia force, fI(t) is a Gaussian process. Since
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loading is high and mainly in the drag regime, the extreme value analysis can
be performed on the drag force component alone with reasonable results. On
the other hand, a term by term extreme value analysis of the Morison equation
(centerline, Fig. 3.40) substantially overpredicts the expected value.

3.3.2.9 Statistics of Nonlinearly Damped Systems

If the excitation for a single or multi-degree of freedom system is
assumed Gaussian and the damping in the system is linear, the prediction of
extreme values of the response of the system is straightforward by computing
the response spectra first., This has already been demonstrated. However, if
the damping is nonlinear, then the prediction formula is difficult to obtain
in general, The problem of the response of a nonlinearly damped system
subject to a Gaussian excitation has been addressed by Brouwers (1982) and
approximate expressions for the probability distributions for small damping
have been derived.

The derivation is based on the fact that if damping is small in a system,
the response near resonance is finite (unlike an undamped system) but still
extremely large compared to the response away from the resonance. This is, of
course, true if the natural frequency falls near the center of the excitation
spectrum, For a natural frequency far in the tails of the excitation spectrum
where there is very little energy the response will be small even if the
damping is small. The overall solution in the former case is dominated by the
response near resonance,

Therefore, for small damping the response is narrow banded (but non-
Gaussian for nonlinear damping) over a small band of frequencies. The
excitation spectrum over this band may be considered constant., An example of
this scenario is shown in Fig. 3.41. The frequency, wy corresponds to the
natural frequency of the system and the relative magnitudes of the width and
height of the response spectrum is indicated in the figure., In this case, the
input spectrum may be treated as a white noise for which solutions have been
obtained by Roberts (1977). Because of the narrow bandedness of the solution,
it may be represented by a sinusoidal wave of slowly and randomly varying
amplitude and phase. An exact solution for the joint probability density of
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the amplitude and phase has been obtained by Roberts (1977). Brouwers (1982)
provided an alternate method of solution for these density functions for
amplitude and phase in integral form.

The equation of motion of a single degree of freedom system involving
nonlinear damping is written as

mx + g(X) + mmgx = f(t) (3.318)
where m = mass of the system, wy = undamped natural frequency, x = displace-
ment response, g(Xx) = damping force as an odd function of X, and f(t) = sta-

tionary Gaussian excitation with zero-mean. If the damping term is assumed to

have the form

X (3.319)

then a simplified expression for the integral representation of the
probability density function may be obtained. Note that for a = 0, Coulomb
friction is represented. If a = 1, the damping is linear viscous while if
a =2, it is the usual fluid dynamic drag. The probability density for the
response maxima (amplitude a) is

(a+ 1) T (57 ) a A P
p(a) = 7 7 7 - exp [ - { ] 7 } ]
2 Oa T ( o+ 1 ) 203 r ('E_i_r )
(3.320)

where I' is the gamma function tabulated in mathematical handbooks. For a = 2,
the expression for p reduces to that for a Rayleigh distribution. The
variance of the response may be computed from

2 _ r a j 1 ) n/2 (o +1) S(wo) r (= ; 2 ) a E 1
Ua B 2 P a+ 2 } (3.321)
2 0?1 (=27 ) swnr (252
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The probability density function is plotted in Fig. 3.42 for o« = 0, 1 and 2.

The expected extreme response may be obtained from the probability
density of the largest amplitude

n
plag,,) = 1 Qﬂaéil bas-a (3.322)
max
by an asymptotic approximation.
2 1 Q
o (=2t ) 1y - -
_ o+ 1 1/2 a+ 1 o - at+ 1l
Ela_..) = o, { - T ) 1 K {1+—FTxan«]
o+ 1
2
G-2anT )
-1 + 1
[ 1 +-%—:~T K &N K + ( o F 1 g ) K
(o - 1)% 2 2
-k Mk + 0 («°) ] (3.323)
(e + 1)
where G js Euler's constant (= 0,57722) and
=1 3.324
<IN (3.324)

The expected extreme values of the response for different values of a and
Targe N (= 1000 and 2000) are tabulated in Table 3.5. The extreme value is
seen to decrease as a increases, -

If an equivalent linearization technique as shown in Section 3.3.2.4 is
employed then the mean square displacement has the form

3/2 2
o 2 1 { T 5 (mo) } a + 1

4 ouf 2 (25 ) m

(3.325)

The ratio of the mean square displacement between the general solution and
linear approximation has the form
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TABLE 3.5

RATIO OF THE EXPECTED EXTREME RESPONSE OF NONLINEAR
AND LINEARIZED SYSTEM TO THE ROOT MEAN SQUARE RESPONSE
VS. THE NONLINEARITY PARAMETER o
[BROUMERS (1982)]

N 0 1 2 3 4
1000 5,60 3,87 3,26 2,95 2.76
Elal/o
2000 6,05 4,05 3,37 3,02 3,83
oeq2/02 0.85 1.0 0.96 0.89 0.82
1000 0.64 1.0 1.16 1.24 1.27
El:g:leq/Em

2000 0.62 1.0 1,18 1,27 1.30

2.63

2.68

0.75

1.28

1.31



2 potl (3.326)

) (a+1)T (£52)

These values for a =0, 1, ... 5 are shown in Table 3.5. In all cases (except
a = 1, linear case), the equivalent linearization method underpredicts the
mean square value which increases with dincreasing nonlinearity, i.e.,
increasing o,

For an equivalent Tlinear representation of the damping force which is
considered small, the probability density of maxima reduces to a Rayleigh
distribution whose extreme value formula is known as

= -1/2 1 2
Elapaxdeq =V 2 %q 0 ' N {145y anN+0 (anN) ] (3.327)
A comparison for the expected extreme values between this solution and the
general solution is shown in Table 3.5, The linearized solution overpredicts
the extreme response in all cases (except for a < 1). Thus, this simplified
method may be applied as a conservative method in this case.

An example problem was provided by Brouwers (1982). For certain types of
offshore structures the response is governed by resonance. (If the response
at resonance is not important, on the other hand, the nonlinear damping term
is of no consequence in the analysis.) The riser of a Single Anchor Leg
Storage (SALS) system qu oil production (Fig. 3.43) may fall in this cate-
gory. Consider a 4m diameter riser in 140m water depth. The riser responds
predominantly in the first mode at a natural frequency of 1.4 rad/sec. which
is well in the center of typical wave spectra. The second natural frequenéy'
of 5.5 rad/sec is outside the range of energy spectra. Assuming a small
damping, Brouwers (1982) obtained the distribution for extreme amplitudes by
the present approximate method as well as by numerical time domain solution,
The results for a = 0, (Coulomb friction) and 2 (quadratic damping) are shown
in Fig. 3.44. Note that the approximate solutions in both cases are quite
satisfactory.

Roberts (1987) considered a class of nonlinear motion response problems
which have a linear-plus-quadratic damping and linear-plus-cubic stiffness,
with a softening spring characteristic. Thus, the problem involved a second-
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order equation of motion of a moored floating system having drag-type damping
and hawser lines. A generalized method of stochastic averaging was applied to
deduce expressions for various response statistics., A modification of the
Markov process allowed use of a non-white spectrum shape. The excitation was
assumed to be a stationary process with zero mean.

The cumulative distribution based on this modified theory is compared in
Fig. 3.45 with the experimental data on roll peak amplitudes of a ship model
in a random beam sea. The results from the previous theory [Roberts (1982)]
are also shown on the figure. The modified theory seems to match the
experimental data well,

3.3.2.10 Statistics of Drift Force Response

In order to predict the maximum values of the slow drift responses of a
moored vessel, the statistical distribution of the slow drift response must be
known. In this case, the exciting forces are non-Gaussian. In addition, the
mooring system generally has nonlinear restoring properties, but that
nonlinearity has not been discussed in this section.

For an infinitely narrow-banded wave spectrum, the slow drift response
follows an exponential distribution [Stansberg (1983)]. However, for a wave
force spectrum of finite bandwidth, the statistical distribution of the
second-order wave force differs from an exponential distribution [Langley
(1984)].

The second-order force may he expressed in regular waves in terms of a
reflection coefficient

F = C(w) (% )2 = c(w) (3.328)

Thus, the force is proportional to the square of the wave amplitude, and the
reflection coefficient, C(w), is a function of the wave frequency, w. A
random sea is written as a superposition of linear wave components
N
n(t) = nfl (an cosut + b s1nwnt) (3.329)
This process may be equivalently written in terms of a single wave component
with time varying amplitude and frequency
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n(t) = a(t) cos [ut + o(t)] (3.330)

where
a(t) = (A2 + B2)1/2 (3.331)
8(t) = tan~! (B/A) (3.332)
N _ —_
A= nfl {a, cos (mn - w)t + b, s1‘n(mn - w)t} (3.333)
N ) _ _
B = nfl {an s1n(wn - w)t + bn cos(wn - w)t} (3.334)

and @ is a central frequency, e.g., the mean frequency of the spectrum. The
time varying amplitude, a(t) is known as the envelope of n(t). The time
varying frequency is given as w + & where dot represents derivation and 8 is
variation about the mean frequency. With this definition, then, the second
order force due to a random sea may be approximately written as

Fp(t) = C(w + 8) [a(t)1? (3.335)

The joint probability density function, p(a, 8) may be written as

2 s2

Pa:8) = —Z—exp { -3 [&® (S +—25) ]} (3.336)
/2_1T Un O'u On Uu

where o is the rms surface elevation and Oy = 4 o 3 op is the rms surface
velocity and q is a measure of the spectral width given in terms of the
moments of the spectrum

(3.337)

Thus, q + 0 represents a narrow banded spectrum.

The joint density function, p(Fz,é) may be obtained by transforming from
(a,8) to (Fy,8)

p(F,,8) = 2 exp { -4 [ —2 (L)
2 Y 87 o 2 o [C(w + é)]3/? H C(w+8) o2 ¢ 2
n u n u

(3.338)
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The density function of the second-order force Fp can be found by integrating
p(F,,8) over 6. Nondimensionalizing F, and & as

- 2 e
F2 =—5 6 = — (3.339)
o qw
n
- - o
where w is chosen such that o = mi ==
n
- F = 3/2 1 Fy 2 " -
p(F,) = Y5+ _i {€;(9)] exp { - 5-[ = (1+8% ]1)dé (3.340)
¢, ()
where
C1(8) = Cluj + qujd) (3.341)

In the 1imiting case of q = 0, the expression may be integrated analytically

F
F = - 3.342

which is the exponential distribution.

The probability density function of 8 is given by integration over the
envelope, and

«? :
: 1 8= - . _
p(e) = % (—=+—%) 32 (3.343)
20 "o o g
.nou n u
Letting r = f%— » the probability density function of the modulus of r is
obtained as 1
7| 2 . 2.-1/2
P(Ir]) = 2 Io p(r)dr = |r] [r® + q7] (3.344)

For q = 0.3 (a typical North Sea wave spectrum bandwidth), & will exceed
0.4wi 20% of the time for which the exponential form for narrow band spectrum
will be inaccurate,
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The probability density function of ?é is shown for w; = 0.38 and q = 0
to 0.5 in Fig. 3.46. This illustration shows that even for a slightly wide
band spectrum, the second order slow drift force may not follow exponential
distribution, Note that the distribution described here refers to the
marginal probability density function of the process (force time history)
which does not say anything about the distribution of the force maxima.

3.3.2.11 Statistics of Low Frequency Motion

Pinkster and Wichers (1987) examined the statistical properties of the
slow-drift motions of floating moored structures through time-domain
simulation as well as from model tests. They derived the expression of
optimum duration of simulation so that the convergence in the statistical
properties 1is achieved. They assumed a band width limited white noise
spectrum for the drift force with an exponential distribution. Then the surge
drift motions become normally distributed about its mean value.

It was shown using experimental data that as long as linear mooring
systems are used, the assumption of normal distribution of the surge motion is
quite valid., The troughs and peaks likewise follow Rayleigh distribution, On
the other hand, for a nonlinearly moored system, the deviation of the surge
motion distribution from the normal distribution is significant (Fig. 3.47).
Likewise, the amplitudes of motion do not follow Rayleigh.

It was also found that the duration has a significant effect on the
statistical properties of the slow drift motion. Longer duration reduced
statistical variance, Typical 1length of 18-20 cycles of surge period
oscillation may not be enough to achieve stability. About 5 times this
duration (i.e., 90-100 cycles) are needed for a small variance 1in the
statistical results.

It is clear from Eqs. 2.89 and 2.84 for forces and motions, that they may
be written in a general matrix form as

x(t) = uTHu* (3.345)

. S . j .
where H is the Tatr1qugven by the tensor notations Hﬁn or Gmn y U is the
vector given by u, e and u* is its conjugate. The matrix, H, is complex
Hermitian,
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He = HT (3.346)
so that a diagonal matrix A may be obtained where
H = RTAR* (3.347)

The properites of R and A are as follows:
(1) A contains the eigenvalues of H which are real,
(2) The rows of R* contain the eigen vectors of H.
(3) RTR* =1
(4) The eigenvalues xj, and eigen vectors, Vis satisfy the relationship

v.TH = A v.T (3.348)

Substituting these relationships in Eq. 3.345, the second-order quantity,
x(t), becomes

N 2
x(t) =z A | X, | (3.349)

where the vector X has the form

X = Ru (3.350)

Since u is a complex Gaussian random variable and X is a linear combination of
the components of u, X is also a complex Gaussian random variable at a given
time and from Eq. 2.76.

24 _ .. - * s
ECIX;191 = 15 EDX; X0 = 05 ELX; X, 7] =0, i (3.351)
Then, writing
z: = A; |Xs] 2 (3.352)
J J 17 *

the second-order quantity x(t) is a sum of independent random variables, Zje
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The following is according to Naess (1986) and Langley (1987). The real
and imaginary parts of Xj are independent Gaussian random variables each
having a mean squared value of 1/2 (Eq. 3.35). Under these conditions, it can
be shown that |Xj| has a Rayleigh distribution [see Stansberg (1983)].
Similarly, |XJ-|2 has an exponential distribution with a mean value of unity.
Then the probability density function is given by

(2,) = 75l (3.353)
p(z.) = e .

J | Kj |

This equation is valid for positive Z; if Aj > 0 and negative Z; if Aj < 0.

The characteristic function, Mj(e) of Z; is defined as the expected value of

e'l BZj

Mi(6) = [el %257 - J e162; plzg) dz; = (1 - 1xje)'1 (3.354)

From this and the relationship in Eq. 3.352, the characteristic function of x
is given by

M(e) = E [e™1 =g (1- i2;6)7! (3.355)
The probability density function of x, p(x) is a Fourier transform of M(9),
p(x) = 5= | €71 %M(e) do (3.356)

Substituting the value of M(8), the integral s evaluated by contour
integration [Naess (1986)]

M . =X
g L e /A. x>0
=1 % J
p(x) = { "\ 7 x
L J e /a x<0 (3.357)
jeme1 T A ] J
where the eigenvalues have been ordered such that A:;, j = 1,2,....M are
positive and Aj, J =M+ 1, «i...,N are negative. The quantities ¥ are
given by
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k) -1

a-x
A

=
1]
nha=

1
J (3.358)

“H

Langley (1987) has shown through numerical computation that the value of
N, the number of frequency components, should be in the neighborhood of 200,
Vinje (1983) and Naess (1986) used N = 8 in their computation with a slightly
different approach through matrix inversion which is too small for convergence
of results,

In Langley's (1987) method of pdf for second-order forces and motions,
the cumulants may be evaluated from the eigenvalues, xj, as

kn =(n=-1)! D A; (3.359)
J

Langley considered an example of a half-submerged circular horizontal
cylinder of 10m radius in long-crested beam seas. Only the sway motion of the
cylinder was considered, The incident wave field was given by an ISSC
spectrum. Fig. 3.48 shows the probability density function of the force. The
force is highly non-Gaussian having a skewness of 1,96 and a kurtosis value of
5.87. The pdf of the sway motion for a damping factor of 0.005 is shown in
Fig. 3.49. It compares quite well with the corresponding Gaussian distribution
having the same mean and variance. However, it should be cautioned that at
the tail of the pdf, the agreement is poor so that the extreme value
prediction is expected to be quite different with an assumed Gaussian
distribution.

The total second-order response includes a linear and a second-order
term. Naess (1986) derived expressions for pdf of the pure quadratic response
term. On the other hand, Vinje (1976) derived the pdf of a weakly nonlinear
response from Taylor expansions of cumulants. Kato et al, (1987) obtained a
total second-order response probability based on the approximate theory of
continuous distribution. The total second-order response process of a moored
floating structure was obtained in a closed form by the difference of two
random variables which yield the Gamma distribution. In this case, the pdf of
the second-order response, x, was obtained as
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my=1 -X
1 ' (mi) T (my +r) my=r-1 m, +r /0%
px)=C T - 1 1+1x1 Gt o
r=0 (m1 -r) T (r ) a
for x 50
and
My=1 X
2 ' (m,) T (m, + r) M,=-r=1.m +r /o
- 2 2 2 1,71 20
p(x) = C rio T(m, -r) T (r+1) (-x) 3 e 72
for x < 0
where
B, + 8 V.
a1 2, n=d(i=12,
26162
and
C = 1
M~ M2
(28)) * (28, ° 1 (m) T (m))

The parameters, 31 , and degrees of freedom, 31 , are given by

2
~ 2
ei-[zx1j+2cj/4)z|x1.j|
D)
v = —( 1) s i = 1,25 3 = 1,2,00e.
T A%, + b
(2 45+ <

and T is a Gamma function, A (i = 1,2,40e.,n) are the eigenvalues while Mj
(3 = 1,2,...ny) and X2; (i = 1,2,....,np) are the positive and negative
. are the coefficients of 1{near Gaussian random

eigenvalues (n = np + ny), Cj

variables, The summation in Eqs. 3.364 and 3.365 is on j.

From the statistical properties of the Gamma distribution, the first- and

second-order cumulants are given by

K1 =z Aj = 2m161 - 2m262
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K2 =21 Aj + I c‘j = 4m191 + 4m262 (3.367)
where K; is the mean value E(x) and Ko, the variance V(x) of the second-order

response,

The pdf of the slowly varying sway motion of a moored floating
rectangular cylinder obtained from the above formulation is given in Fig.
3.50. The Gaussian distribution as well as the pdf from Naess formulation is
also shown. The latter matches well with Kato, et al., (1987).

Fig. 3.51 compares the probability distribution of a pure second-order
response with that of the total response including the first-order term, The
asymmetry of the total second-order response is higher,

3.4 SHORT-TERM RESPONSE MEASUREMENTS

Many offshore structural models have been tested in the CBI wave tank,
These tests involved both fixed and floating structures and included random
waves generated in the tank,

Waves are generated in the test tank using a pneumatic type wave maker.
The wave maker consists of a low pressure blower connected to a large open
bottom plenum chamber that is partially submerged in the tank. A flapper
valve between the plenum and the blower controls the pressure in the plenum
chamber. By changing the position of the flapper, the inlet or the outlet of
the blower can be connected alternately to the plenum, causing the water level
in the chamber to alternately rise and fall, The cyclic motion of the water
in the plenum chamber generates the waves in the tank.

The position of the flapper valve is controlled by a hydraulic servo
system, The system accepts both a flapper position feedback signal from a
transducer at the flapper and a reference signal, and operates a hydraulic
cylinder to cause the flapper position to match the reference. The amplitude
and frequency of the generated waves are directly related to the amplitude and
frequency of the reference signal.

The method of random wave generation is similar to that described in
section 2.2. Random waves are created through the summation of a large
number, e.g, 200, of sinewave components of various amplitudes and random
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phases. By tailoring the amplitudes of the frequency components, a desired
ocean wave spectrum can be modeled. The wave reference signal is initially
calculated and stored as a digital time series. To generate the analog
reference required by the servocontroller, the stored time trace is output one
point at a time through a digital to analog converter under the control of a
dedicated microcomputer. By generating waves from a stored time series,
identical waves can be repeated for any number of tests.

The results on the responses of structures tested in the tank in random
waves are presented in this section. The structures that are considered for
this presentation are fixed vertical and inclined cylinders, articulated
towers, barges, tankers and semisubmersibles., For the fixed structures, the
wave loads were measured whereas for the moving structures, the loads and
motions were recorded. The short-term distribution of these quantities are
presented and compared with theoretical distribution function. Where appro-
priate, discussions have been presented in correlating the measured distribu-
tion with the theoretical techniques presented in the earlier sections.

3.4.1 Random Wave Load Tests

A series of tests were conducted with circular cylinders of various
diameters fixed in waves. A small section of the cylinders was instrumented
to measure two component local forces. The cylinder was orientated to measure
the inline and transverse or 1ift forces on them, The instrumented sections
were placed under water so that they were never exposed in air during the
passing of waves. The orientations of the cylinders were changed from the
vertical to inclined in a few test setups. In some cases, currents were
generated along with the random waves. This section provides results of the
waves generated, kinematics measured at the instrumented sections and forces
on these sections.

3.4,1.1 Vertical Cylinder

In a test series in the CBI tank with a 3 inch diameter fixed vertical
cylinder, forces due to random waves on two 1 ft. smooth sections of the
cylinder were measured. Two random waves were chosen having broad band
spectra with a bandwidth parameter, ¢ of about 0.70 but different frequency
distribution. A plot of one of the wave spectrum is shown in Fig. 3.52. A
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small portion of the measured wave profile and in-line and transverse forces
on the two instrumental sections is shown in Fig. 3.53.

Correlations are made of the measured in-line force spectra with the
theoretically computed spectra. The hydrodynamic coefficients are considered
constant over the frequency range of the wave spectrum and are chosen based on
an equivalent KC number. In this regard it should be noted that it does not
seem appropriate to assign values of Cy and Cp based on individual waves in
the spectrum depending on a small frequency band. In fact, an attempt to
derive the KC number on this basis by dividing the spectrum into several small
frequency bands of equal width showed that the method is rather impractical
and produced values that are not realistic. An equivalent KC number may be
defined in several different ways. An equivalent KC number may be obtained,
for example, based on the rms value of the water particle velocity and a mean
zero-crossing period obtained from the moments of the wave spectrum.
Calculation for one of the measured wave spectra showed that o, = 0.388
ft/sec. and T; = 2,2 sec, so that the equivalent KC number is computed as

ou‘T'Z
KCeq = -p— = 3.4 (3.368)

From Fig. 2.6, this value of KC gives a mean Cy = 2.2 (£0.35) and a mean
CD = 008 (-.t005)o

Correlation of force spectra is based on Borgman's (1972) method with the
drag force spectra approximated by its Tinearized term. The values of Cy and
Cp chosen for all measured force spectrum correlations are

1.90
0.10

Cm
Cp

These values correspond to a KC value near the equivalent KC number of 3.4,
but are chosen strictly to give a good fit of the computed force spectra to
the measured. While the chosen Cy and Cp values are within the range shown in
Fig. 2.6 for KCeq = 3,4, these values are low and fall near the lower limit of
the variation at this KC value. The correlations of the force spectra are
shown in Fig. 3.54 Note that the correlation is good in general. Thus, it
has been possible to obtain good correlation with constant Cy and Cp values
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over the frequency range of the wave spectrum, Moreover, these values
correspond to an equivalent KC number based on the rms velocity and mean
period of the wave spectrum, albeit at their Tow end of the range, in these
cases,

The transverse force on the cylinder due to these random waves has been
generally small, A measured transverse force spectrum is given in Fig.
3,55, Note that the peak frequency of the spectrum (wp) is at about twice the
frequency of the peak of the wave (or in-line force) spectrum. Thus, the
transverse force, while irregular in nature, has frequencies that are
generally twice the component frequencies of the random waves.

3.4.1,2 Inclined Cylinder

Similar tests were conducted with a 6 inch diameter inclined cylinder
near an inclined plane boundary. The slope of the boundary was changed from
00 to 40° and 70° with respect to the horizontal., Similarly, the uniform gap
between the cylinder and the boundary was varied from 0.25 inches to 2.5
inches and 4,5 inches, Several random waves were generated past the cylinder
for each boundary gap and each slope. The random waves were modeled after the
Bretschneider spectrum and were three minutes in duration.

A sample spectrum from the wave generated in the tank 4is shown in
Fig. 3.56. A small portion of the corresponding measured wave profile, water
particle velocity and in-line and normal forces on the instrumented section is
shown in Fig., 3.57, The data are presented from the smallest cylinder-
boundary gap of 0.25 ins. The velocity and load in the in-1ine (X) direction
follow the wave profile reasonably well with one-to-one peaks. However, the
normal load (in the Y direction) has twice as many peaks as the wave. The
additional peaks are due to the second harmonic component in the force.
Moreover, the downward force is much larger than the upward force. At the
larger gaps, the normal force frequencies follow the wave frequencies and the
asymmetry in the profile disappears. A sample calculation was made of the
linearized drag force spectra. For the wave spectrum chosen, we obtain the
rms velocity, o, = 0.2 ft/sec. and the mean zero-crossing period, T; = 2.0
sec, Then, an equivalent KC number is computed as
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KC =-4Z=0,8 (3.369)

For this KC value, the drag coefficient from Sarpkaya's (1981) data is
Cp = 1.0, The drag force spectra computed with these values was on the order
of 1% of the inertia force spectra. Since the drag force contribution is
insignificant, for the subsequent calculations Cp 1is taken as zero.
Therefore, the computation of the force spectrum is rather straightforward.
The correlations for the in-line force spectra for all gaps and the three
slopes of 0°, 40° and 70° are shown in Figs. 3.58 - 3.60, respectively, Note
that the correlation is good in all cases,

The normal force on the cylinder due to random waves was generally small
in all cases except for the smallest gap of 0,25 ins, This is evident from
the measured normal force spectra given in Fig. 3.61 for gaps of 4.5 and 0.25
in. Note that there are two distinct peaks in the spectrum for the 0.25 in.
gap; one at the peak frequency of the wave and in-line force and one at twice
this frequency. There is a third peak at a low frequency corresponding to the
set-down shown in Fig. 3.57. The correlation of the linear part is made using
the above procedure, The spectra due to second harmonic is computed from the
transfer function measured in regular waves [Chakrabarti and Libby (1987)] and
the following relationship

Sp(2f) = 8S2(f) [RAO(f)12(af) (3.370)
where RAO = transfer function and af = frequency increment in the estimate of
S(f). This formula is similar in form to that used in the drift force
spectrum computation [Rye, et al, (1975)]. The shape of the two spectra in
Fig. 3.61 is similar. However, the correlation may only be termed fair.

3.4,1.3 Force Distributions

It has been shown by several investigators earlier [Goda (1985)] that
even for a relatively broad band wave spectrum (e < 0.7) Rayleigh distribution
provides a good approximation to the individual wave heights defined by the
zero-upcrossing method. If the wave heights follow Rayleigh distribution and
responses due to waves are linear with the wave heights then it is straight-
forward to show that the response amplitudes also follow the Rayleigh
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distribution. Thus, if the forces measured on the cylinder are strictly
inertial then these random force amplitudes may be described by the Rayleigh
distribution function.

From the earlier force correlation it is found that the drag force
contribution in the total force is quite small. For the vertical cylinder
tests, the cummulative distribution of the wave heights and in-line force
double amplitudes (heights) are shown in Figs. 3.62 and 3,63, respectively.
It is found that the forces follow the Rayleigh distribution function as good
as or better than the wave heights. The wave heights show some departure at
the high end of the distribution function, The 1in-line response has a
somewhat similar trend. While the overall correlation seems satisfactory in
both cases, this deviation at the upper tail may be important from the point
of view of the extreme value analysis.

The transverse force, on the other hand, while small in magnitude, shows
a significant departure from the Rayleigh distribution. Note that the 1ift
force has a form

f (t) =3¢ oD [u(t)1? = clu(t)]? (3.371)

i.e., the 1ift force is proportional to the velocity squared. In the above
expression, the value of C is assumed to be constant with time, This
assumption 1is not strictly correct because the 1ift force is irregular.
However, if the most predominant 1ift force frequency is twice the wave
frequency, this assumption is reasonable. This form is similar to the wave
drift force profile., Langley (1984) showed that for a wave drift force, the
asymptotic initial distribution of the drift force profile for a narrow band
spectrum follows an exponential distribution. For a wider band spectrum, the
distribution is sharper depending on the value of q. Borgman (1972) has shown
that on a narrow band assumption, the drag force amplitudes follow an
exponential distribution, The 1ift force due to regular waves may be
approximated by the formula

fo=k ul

L | Uy cos 2wt (3.372)
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where k| = 1/2 C_ p D. In this form, the other frequencies in the irregular
1ift force profile are ignored as small. Then, the maximum 1ift force 1in
regular waves is given by

(3.373)

Following a method similar to Borgman's (1972) for the drag force amplitudes,
the 1ift force amplitudes may be expected to follow the exponential
distribution at least on a narrow band spectrum assumption. This distribution
may then be given by

¢ -
¢ L L
p(fL) =1 - exp [- — 5 ] =1 - exp [- -(T'-y— ] (3.374)
kL u L' rms
rms
where fL = amplitudes of fE and uppe = rms value of the water particle

velocity and (f|)pms = KL Urms * The correlation between the measured 1ift
force amplitudes and the exponential distribution is shown in Fig. 3.64. From
this correlation it is seen that at least at the low end of KC number (< 10)
the 1ift forces do not follow the exponential distribution well, especially at
the intermediate range of the independent variable. On examining the 1ift
force profile, it 1is found that the frequency contents of the 1ift force
correspond to the wave and the inline force frequencies as well as twice these
frequencies, Thus, the distribution of the 1ift force amplitudes is between
the Rayleigh distribution and the exponential distribution function and may
have to be obtained as a distribution of a polynomial series in the powers of
velocity.

The forces measured on the instrumented section of the inclined cylinder
in the in-1ine (X) and normal (Y) directions with respect to the cylinder axis
are mostly inertial. Therefore the random force amplitudes are described by
the Rayleigh distribution function. At the smallest gap, however, the normal
force had Tlarger force components at twice the frequencies of the wave
frequencies and may not be expected to follow the Rayleigh distribution
function well., The normal force is expected to be a mixed distribution. When
the second harmonic is small, e.g., for larger gaps, the distribution will be
closer to the Rayleigh distribution.
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The cummulative distribution of the wave heights, in-line and normal
force amplitudes for random wave runs with a 0° slope and gaps of 2.5 in. and
0.25 in, are presented in Figs. 3.65 and 3.66, respectively. The wave heights
and in-line forces are found to follow the Rayleigh distribution reasonably
well even though the departure from the theoretical curve 1is not
insignificant. Part of this deviation may be due to a large bandwidth, The
normal force for the larger cylinder/boundary gap of 4.5 ins. has a similar
correlation, However, the normal force at the 0.25 in. gap compares poorly
with the Rayleigh distribution. The distribution of the measured force
amplitudes rises more sharply than the Rayleigh curve and corresponds more
nearly to the exponential distribution. It is possible that the correction
required for a larger band width may improve this correlation as shown by
Langley (1984) for the initial drift force distribution,

Additional test runs were recently made with a 2.5 inch diameter vertical
cylinder with a 1 ft. instrumental section submerged 1 ft. below the still
water level (SWL). Besides the wave profile, the velocity components at the
center of the instrumented section (18 inches below SWL) were measured. Two
random waves having similar significant wave heights (Hs = 8.4 - 8.5 inches)
but slightly different peak frequency (Fig. 3.67) were chosen, The
probability density of the wave elevation and horizontal velocity for these
runs is compared with the Gaussian distribution on the top of Figs. 3.68 and
3.69. The probability density of the inline load and the cumulative
distribution of its amplitudes are shown in the middle along with Gaussian and
Rayleigh probability respectively. The transverse (or 1ift) force is
correlated with the exponential distribution at the bottom of the figures.
The wave and the velocity profiles follow Gaussian distribution even though
there is some random departure in the case of the velocity. The inline force
seems to be asymmetric and skewed to the right in both cases. This trend is
definitely comparable to the distributions derived for linear-plus-quadratic
terms by Kato, et al. (1987) in Fig. 3.51.

The transverse force probability density function is generally symmetric
and sharply peaked compared to the Gaussian density function, This is,
however, expected as there are numerous small peaks due to higher harmonics
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present in the 1lift force which provides a bias towards 1its mean value,
Because of the presence of multiple harmonics, correlation with the
exponential distribution is not satisfactory.

Additional test runs were made in the presence of uniform current., 1In
these cases, the horizontal particle velocity was measured as well at the
center of the instrumented section. The random wave run was repeated with an
inline and an opposing current having a strength of y = 1.0. The horizontal
velocity and the inline load histograms are correlated with the Gaussian
distribution in Fig. 3.70. The top plots represent waves without current
while the bottom ones correspond to the inline and opposing current
respectively with the waves. The horizontal velocity and inline loads follow
the Gaussian distribution in the absence of current, While current is
present, the distribution represents a non-zero mean, positive or negative
depending on the direction of current., Moreover, there is a small tendency of
the histograms to be skewed towards the zero value with respect to the mean.
This skewness is more pronounced for the inline load in the opposing current,

The distributions of the transverse forces are shown in Fig. 3.71. The
left-hand sides show the correlation of the force histograms with the Gaussian
distribution while the right-hand side plots represent the cumulative
probability distribution of the force amplitudes with the theoretical Rayleigh
distribution function, The departure from the Rayleigh distribution is quite
evident and is more pronounced in the adverse current case, Similarly, the
force profiles are more peaked compared to the Gaussian distribution,
particularly for the opposing current case. The transvere force, however, has
a zero mean in all cases,

3.4.2 Response of an Articulated Tower

An articulated tower was tested in random waves in which the inline
oscillation angle of the tower at the bottom as well as the horizontal load at
the universal joint were measured (Fig. 3.72). The random wave represented a
modified P-M spectrum. The tower was subjected to a steady load from the
simulated wind. The histograms of the wave elevation, horizontal U-joint load
and tower oscillation are compared with the Gaussian distribution in Fig.
3.73. Note the non-zero mean values in the latter two cases due to the
applied steady load, The amplitudes of these measurements are compared with
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the Rayleigh distribution in the same figure. The correlation of the tower
oscillation with the Gaussian and Rayleigh distributions is reasonably good.
The horizontal 1load, however, show some deviation. The dimensions of the
buoyant tower relative to the wave were such that some drag dependence of the
load may be expected.

3.4.3 Response of a Moored Tanker

A tanker model moored by catenary anchored lines was tested in the wave
tank, The tanker model represented a 100,000 dwt displacement tanker class,
and the mooring arrangement was similar to the one shown in Fig. 2.30. The
load-elongation characteristics of the catenary system are shown in Fig.
2.31., During the test in random waves, the surge of the tanker as well as the
line tension in the forward mooring line were measured, The tanker was
ballasted at 50 percent and was subjected to a steady wind load. One run also
included a steady current load.

The results for the line tension and tanker surge are presented here.
These data are digitally filtered to remove the high frequency oscillations
corresponding to the wave frequencies so that the responses correspond to the
lTow-frequency oscillation only, The histograms and cumulative distribution of
amplitudes of the line tension and tanker surge are correlated with the
Gaussian and Rayleigh distribution respectively in Figs. 3.74 and 3.75, These
runs correspond to two different random waves and wind; the second one having
steady current as well, The distributions are somewhat asymmetric about the
non-zero mean value, but otherwise, close to the Gaussian distribution
function,

3.4.4 Response of a Barge

A conventional barge model was tested in the CBI wave tank. The barge
was 12,5 ft, long, 3.25 ft. wide and had a draft of 0.42 ft. It was moored in
head seas by a linear spring fore and aft such that it had a natural period in
surge of approximately 30 seconds. The details of the barge characteristics
have been reported by Chakrabarti (1982). The mooring line load and surge
motion of the barge were measured in random waves.

The data was filtered as before to remove the high frequency oscillations
using a high pass filter with a cut-off frequency of 0,2 Hz. The results are
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presented in Figs. 3,76 and 3.77. There are two limitations that can be
stated regarding this set of data. First of all, the length of data runs was
Timited (five minutes of model time), It has been shown by Pinkster, et al.
(1987) that the statistical parameters should be unstable for short duration
of runs., Moreover, the number of components used to generate waves were also
small., These limitations are evidenced in Figs. 3.76 and 3.77. While the
individual measurements correspond to each other, any trend in the histogram
data is lacking.

3.4.5 Response of a Semisubmersible

A model of a semisubmersible pipelay barge design was tested in the CBI
wave tank, The major dimensions of the semisubmersible were 8,1 ft, long and
2,8 ft, wide. The barge was composed of twin hulls and six legs supporting a
box superstructure, It was ballasted at the legs to a draft of 0,78 ft, The
model was moored to two fixed points by linear springs. The springs on the
fore and aft sides of the model were identical with a spring constant of 0,49
1bs/ft. each. The spring constants were chosen so that the translational
natural period of the moored system was about 30 sec. The mooring lines were
instrumented with Toad cells., In addition to the wave elevations, the dynamic
pressure in the free-stream flow, one foot below the still water level, was
also recorded,

The results for these measurements are shown in Fig. 3.78 for a P-M wave
spectrum and in Fig. 3.79 for a JONSWAP wave spectrum. The data for the line
load was likewise filtered as before to retain only the low-frequency loads.
Thus, the correlations with the Gaussian distribution in Figs. 3.78 and 3,79
correspond to the high-frequency wave as well as corresponding dynamic
pressure and low-frequency line load. Note that the line loads are biased
towards positive values and show poor correlation with Gaussian,

3.5 LONG-TERM RESPONSE PREDICTION

The long-term refers to the desired lifetime of a marine system or an
ocean structure. During this period of time, the structure experiences a
large number of seas from very small to very large. Each of these individual
seastates is a short-term phenomenon and may be treated as a linear or
nonlinear excitation depending on its size. Similarly, the responses may be
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linear or nonlinear depending on the type and size of them, Thus, it is
understood that long-term response statistics would include both linear and
nonlinear response parameters. In long-term statistics, a few statistical
parameters representing individual short-term seas, whether Tlinear or
nonlinear, are required. Thus, the long-term statistics involve parameters
obtained from both linear and nonlinear analysis, even though many of the
severe seas will produce parameters involving a nonlinear system.

There are two types of information useful in the study of the long-term
statistics of waves. One is the sea severity. The severity of sea is
generally expressed in terms of the significant wave height or significant
wave height coupled with the associated zero-crossing or modal wave periods.
In this case, the probability distribution of H¢ or the joint distribution of
He and T; (or Tg) is needed. The other type of information is the Tong-term
probability of individual wave heights.

Unlike individual waves in the short-term record, no theoretical method
is available to derive the probability distribution of the significant wave
heights or the joint distribution of Hg and TZ + These distributions are
obtained from actual measurements in the oceans at frequent intervals over a
reasonable period of time (e.g., several years). The distributions of these
significant wave heights have been compared with known distribution functions
in order to examine their suitability. 0f the available distribution
functions, e.g., described in Section 3,1, the common ones considered most
often are the Weibull and log-normal distribution, Correlations have shown
[Ochi (1982)] that the Wiebull distribution is poor at small H¢ values while
log-normal underestimates H¢, at the large values of Hg. The log-normal
distribution seems to be slightly better, in general, and has cértain
advantages, as well,

The zero-crossing wave periods have also been found to follow log-normal
distribution quite well, Since both height and period individually follow
log-normal distribution, it may be shown [Ochi (1978)] that their combined
statistical properties follow bivariate log-normal probability law.

A Tong-term probability defines events and extreme value statistics for a
period on the order of 20-100 years, as opposed to a few hours for the short-
term probability. The concept of extreme waves is associated with that of
design waves for an offshore structure, In order to obtain a long-term
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probability of wave heights, the wave height data at a particular site are
collected over the period of a few years. The wave heights are plotted on a
suitable probability distribution paper so that the distribution of the data
appears as a straight line. Then the straight line is extended to the desired
return period to obtain the extreme wave height.

If information is available for numerous short-term statistics of the
wave heights then the long-term probability of wave heights may be obtained by
the following simple method of order statistics. The short-term wave heights
are ranked in the order of higher wave heights. If there are N short-term
wave heights over a long-term period such that T, is the long-term period and

T¢ is the short-term period, then

T
N = T (3.375)

Ty is also termed the return period or recurrence interval of the maximum
wave, The probability distribution of the wave height is given by

- m
and the probability of exceeding a given height 1is

QM) =1 - o (3.377)

-

In order to obtain the total probability, this figure should be multiplied by
the short-term probab%]ity. The Tong-term probability could seldom be
obtained by the above method because of lack of Tlong-term wave data.
Therefore, one has to rely on a theoretical probability distribution
function. There are several such formulas available as discussed in
Section 3,1, Suitability of these formulas to a particular instance may be
established with Timited field data that may be available., Since little or no
data are usually available at the upper tail of the probability distribution,
fitting different distributions and choosing the most suitable one is always a
difficult task.
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3.,5.1 Bivariate Short- and Long-Term Distribution

3.5.1.1 Short Term

Because of the variability of wave spectral shape, Ochi (1978) advocated
use of a family of wave spectra for given significant wave height and peak
frequency., Using the two-parameter spectral model of modified P-M, he showed
that in the short term (P(e) < 0,99), the significant wave height and peak
frequency follow 1log-normal distribution. The statistical properties of
combined wave height and wave period then follow a bivariate log-normal
probability distribution. The conditional distribution of the peak frequency,
wg, for a given significant wave height, He, is written as

1
- p O'_I_

In Tp, = p
0 T |H
exp [ _ 1 0''s

7 ] (3.378)
v TO Y1 - p% T0

P(Tole) =
0

where the probability of Ty refers to a given Hg, 0y = 2n / T0 p =
correlation coefficient between wave height and period, p and o refer to mean
and standard deviation and

o

T
0

n = pr p==(InH_ = u, ) (3.379)

T0|HS TO GHS 5 HS

Analyzing the recorded North Atlantic wave data, Ochi (1978) obtained the
expressions for the most probable as well as the upper and lower values of the
peak period. The most probable peak period is given by

(o] .
.
+ 0 3_9-(1n Hg - uHS) -V T o ] (3.380)

0 He 0

To(m) = exp [ u;

while the upper and lTower values of the peak period for a given confidence, vy,
is written as
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o]
T
0 o a2

He

TO(Y) = exP [ I-IT0+

where the confidence level, y (= @) is a standard normal for the argument x,

o(x) = =L [ o t/2 4 (3.382)
71 -
In particular, the values of x are

X ‘ &
1.96 0.95
1.44 0.85
1.15 0.75
0.67 0.50

If x is set equal to 1 in Eq. 3.381, then the most probable value of Ty (Eq.
3.380) is obtained. From the mean North Atlantic data the peak period for
various confidence coefficients are shown as functions of the significant wave
heights. The equations for the peak frequency for the various confidence
values are given in Table 3,6,

An example of how this family of spectra may be used to predict the
extreme responses, the formulas for the most probable extreme value and the
design extreme value are considered as follows. The design extreme value of a
response amplitude, 9n » 18 given in

o T ‘FF' '
= S 0
yn(R) =2 1n { TICIL ﬁ; } ¥ M (2.383)
in which R = risk factor, Tg = largest duration of sea in secs., and N =

number of encounters with a specified sea in the structure's lifetime. For
the most probable value, 3;, in the above equation, R=1, and N = 1,

Ochi (1978) presented results of a numerical analysis on a semi-
submersible in which the transverse forces in a beam sea are computed, The
extreme values of the transverse forces for various seastates are shown in
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Fig. 3.80. The most probable as well as upper and lower extreme values for
the modified P-M spectra are given in the figure. In the computation, the
beam seas are assumed to be exposed a quarter of the assumed 20 year life,

3.5.1.2 Long Term

In contrast to the short-term prediction, the long-term prediction
experiences all waves encountered by the structure, large and small. This is
important from the standpoint of the fatigue 1ife of the structure. The long-
term predictions also deal with the extreme of the response in the lifetime of
the structure. 1In order to evaluate the long-term extreme response, the long-
term wave statistics must be known, This may be accomplished in the form of
the frequency of occurrences of all possible seastates or the long-term joint
probability distribution of wave height and wave period.

The frequency of occurrence for the seastates in the North Atlantic was
obtained by Ochi (1978) and is shown in Table 3.7. The product of this and
the short-term probability of a family of seastates may be obtained as the
long-term probability. The short-term probability will depend on whether the
system is linear or nonlinear., The probability function for the nonlinear
system depends on the type of nonlinearity, some of which have already been
covered in Chapter 3.

The short-term distribution of a narrow-banded Gaussian response
variable, x, follows the Rayleigh distribution function

Ps(x) = 1 - exp(=x/ /'F)z (3.384)

where v E varies linearly with wave amplitude, and is estimated from wave
spectra and transfer functions by means of <the 1linear superposition
principle. Thus, the statistical short-term distribution of a response
variable is completely defined by one single parameter, E, for given structure
size, heading angle, forward speed and seastate (T, HS )e For nonlinear
systems, E will not vary linearly with H, but a single response value may be
obtained for a given seastate. In this case, Rayleigh distribution function
is not appropriate, and additional parameters may be needed to describe the
probability.
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TABLE 3.6

MODAL FREQUENCIES FOR THE (MEAN) NORTH ATLANTIC WAVE SPECTRA

AS FUNCTIONS OF SIGNIFICANT WAVE HEIGHT [OCHI (1978)]

Lower wy

Most Probable

Upper wy

NOTE: wy in rps

H. in meters

S

0.95
0.85
0.75
0.50

0,50
0.75
0.85
0.95

VALUE OF ug

0.048 (8.75
0.054 (8.44
0.061 (8.07
0.069 (7.77

0.079 (7.63

0.099 (6.87
0.111 (6.67
0.119 (6.65
0.134 (6.41
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FREQUENCY OF OCCURRENCE OF VARIOUS SEASTATES

SIGNIFICANT

WAVE

HEIGHT
(m)
<1

1-2

2 -3

3 -4

4 -5

5-6

6 - 7

7 -8

TABLE 3.7

IN THE (MEAN) NORTH ATLANTIC [OCHI (1978)]

FREQUENCY
OF
OCCURRENCE
0,0503
0,2665
0.,2603
0.1757
0.1014
0.0589
0.0346

0.0120

SIGNIFICANT
WAVE
HEIGHT
(m)
9 - 10
10 - 11
11 - 12
12 - 13
13 - 14
15 - 16
16 - 17
> 17

FREQUENCY
OF
OCCURRENCE

0.0079
0.0054
0.0029
0.0016
0.00074
0.00045
0.00012

0.00009
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The Tong-term non-stationary response process is written as a sum of a
large number of short-term stationary processes. Therefore,

P (x) = [ P (x)p( /E) d/E | - (3.385)
0

where P, is the long-term probability.

The 1long-term distribution of Y E is sometimes assumed log-normal.
Likewise, the long-term distribution of response amplitudes is assumed log-
normal [Jasper, et al. (1956)].

Nordenstrom, et al. (1973) obtained a long-term distribution from data
from seven different ships by formal integration of the above equation. They
grouped the measured v E values (of longitudinal bending moments) into five
Beaufort groups and found that the long-term distribution of Y E within each
group was approximately a normal distribution. The integration was carried
out separately for each Beaufort group and the final long-term distribution of
amplitudes was obtained as a weighted sum of 1long-term distributions for
Beaufort groups.

Lewis (1973) made a similar analysis for ship bending stress. The actual
stress (trough to peak) in any record were Rayleigh distributed. The total
weather system was divided into n weather groups. In each weather group, the
mean square values of stress, Y E from many records were normally
distributed. '

Nordenstrom (1973) investigated a distribution function which was in-
between the normal and log-normal, but closer to the normal one and was
capable of describing the entire range of Y E . This function was found as
the Weibull distribution function

P(VE) =1-exp [ -(/E/a)"] (3.386)

where a and m are parameters. Note that m = 1 gives exponential distribution
while m = 2 yields the Rayleigh distribution, The Weibull distribution was
based on 1577 full scale recordings of longitudinal stress amidships on seven
ships, as well as other published data. The resulting long-term distribution
of amplitudes was found to be another Weibull distribution
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P(x) =1 -exp [ (52 1 (3.387)
where the parameters b and k are functions of m. A method of obtaining this
Weibull distribution and the values of the parameters involved has been
described by Nordenstrom.

The Tong-term response depends at Teast on the following quantities each
having an assigned weighting factor: (a) sea severities, (b) spectral shape,
and (c) number of cycles in the response due to a seastate. Considering these
factors, the long-term probability density function is given by

§ § Ng Py P; P(x)
p (x) = == NP (3.388)
i 3J
where p(x) = short-term response probability density function

- 21

N¢ = number of short-term responses = ?;-V m2/m0

Pj = weighting factor for sea condition (state)

Pj = weight factor for wave spectrum shape

The total number of response expected for the lifetime of the structure is
given by

N = f § Ng P; pjTL (3.389)

where TL is Tifetime in seconds.

Ochi (1978) wutilized the above approach in computing the Tlong-term
response of the semisubmersible loads in beam sea. Two different methods
produced two probability functions from which the extreme values are shown in
Fig. 3.81. Note that the extreme values estimated by the two methods of long-
term prediction agree quite well.

3.5.2 Time and Frequency Domain Long-Term Predictions

When the long-term probability density function for a response is not
known, whereas the long-term distribution of waves is given in a tabular form
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in terms of probability level for the pair of wave parameters, H, and T,, then
the short-term response due to long or short-crested waves are computed
first., It is then extended to a long-term distribution based on the available
wave data. This method is applicable in the frequency domain for a linear
system [e.q., Fukuda (1968)].,

Assuming that the response, e.g., the bending moment of a ship addressed
by Fukuda is a linear function of the regular wave amplitude, the short-term
distribution of the bending moment in a short-term sea follows the Rayleigh
distribution. The standard deviation, ¢, of the bending moment in a short-
crested wave of constant heading is given by

sz = f1T f; [H(w, & - 90)12 S(w, 6) dw de (3.390)

-
where & = angle between wave component and mean wave direction, 6g = ship
heading angle with respect to the mean wave direction, and the transfer
function, H, corresponds to the heading angle, 63. The directional sea may be
assumed to be given by the cosine square law
%S(m) cos’e, - -’2'- <8 4%
S(w, 8) = { (3.391)
0, elsewhere

-

Then, the variance due to a short-crested sea is given by

¥

T/2 ® 2

[H{w, 6 = 90)]2 S(w) cos e'dm de  (3.392)

2 _ 2
°m _?{

/2 0
where S(w) is a theoretical or measured spectral energy density. It should be
noted here that for the long-term response prediction the shape of the
response spectrum is not important; only the variance of the short-term
response is needed.

Once the short-term response parameter, o, for a linear system is known,
the probability of exceedance of the variable M (e.g., the amplitude of the
bending moment) beyond a given My, 1s given by

M2
q(M > Ml) =exp [ - 5 ] (3.393)

20'm
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Assuming that the probability density function of ¢ is given by p;(¢), the
long-term probability of exceedance is obtained from the integral
0 M2
1
QM>M)= [ exp]|[ - ] p(o)do (3.394)
L 1
0 20
which is evaluated by replacing the integral by a summation.

Let Pij denote the long-term frequency of occurrence of a short term wave
given by the significant wave height, H;, and the average period, Tj. Also,
let 9% jk denote the short term response parameter for this wave and for a wave
angle of 6, where k is the kth equal interval between -w/2 and w/2, Then the
probability for all waves at this heading angle, ©, is given by

2

ild Z%jk
If it is assumed that the long-term probability is uniformly distributed for

heading angles between 0 and 2w, then the total probability is obtained from

_ 1
QM > Ml) = Ng E Qk (M > Ml) (3.396)
where Ng is the total number of intervals of heading angle between -n/2 to
/2. Usually a 10-15° increment of heading angle is sufficient for response

calculation for the short-crested waves.

The above method is applicable only to linear systems, i.e., systems in
which the response function is related to the excitation, e.g., waves, in a
linear fashion such that if the wave amplitude is doubled the response
amplitude also increases by a factor of two. When this relationship between
the wave and the response does not exist, a more elaborate time domain
analysis, sometimes termed total system analysis, may be used. It should be
noted that this method is extremely time consuming and is prohibitive to use
routinely in the design of a structure, It may be used as a benchmark for
other more efficient albeit approximate methods.

The time domain analysis is applied to the short-term response
prediction. For a given wave energy density spectrum, e.g., given by the
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parameters, H; and Tj, a time history of the wave is generated by one of the
methods such as outlined in Chapters 2 and 3,

From the relationship between the response and the regular wave (e.g.,
wave force given by the Morison equation in terms of the water particle
velocity and acceleration), the time history of the response due to the short-
term wave (His Tj) may be computed. The method of computation may include a
finite-difference or a finite-element scheme and may involve one of the
analysis methods outlined in Chapter 2.  Considering the variability of the
spectral shape for a given (H;, Tj), it has been proposed by Ochi (1978) and
Hoffman and Walden (1977) that a family of wave energy density spectra be used
in place of a single spectral model. In this case, several time histories of
the response are generated, one for each spectral shape. Similarly, if the
wave direction is an important consideration for the response, then a response
time history for each increment of wave direction is needed,

From these short-term time histories, a histogram of the extreme values
may be constructed. This then will provide the probability density function
of the response from which the expected value and variance of the response may
be computed, It is sometimes possible to consistently fit a known theoretical
distribution through these histograms. In this case, the subsequent analysis
is much simpler as illustrated by the Rayleigh .distribution for a linear
system earlier. Once all the short-term parameters for all possible wave
conditions are known by this method, the long term prediction of the response
may be carried out by the ordinary statistical method outlined earlier,

3.5.3 Extrapolation of Wave Scatter Diagram to Longer Duration

In order to cover all wave conditions over the entire service life of a
structure and obtain statistically reliable response predictions, particularly
the extremes, one should choose a period much longer than the period of wave
measurements, generally encountered in literature. Thus, extrapolation of the
measured wave scatter diagram is needed. Inglis, et al. (1985) showed that it
is desirable for the aforementioned reasons to consider a scatter diagram of
the sea states that is at least ten times the service life of the structure.
This will provide a much better value for the average occurrence of various
sea states. '
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A simple method is outlined below to extrapolate a wave scatter diagram
to a period that is long compared to the structure's service life, It can be
achieved in the following steps [Inglis, et al. (1985)].

1.

Plot the cumulative probability distribution of the significant wave
height, P(HS) for the available observations on Weibull scales.

Determine the parameters A, B and C of the three parameter Weibull
distribution

H.- A

P(H) = 1 - exp (- =p— )"

(3.397)
which fits the data.

Calculate P(Hg) for a range of values of Hg in excess of the largest
Hg in the observations using the above Weibull distribution,

Assuming one observation every 3 hours, the total number of
observations in 1000 years is 2921940, The number of occurrences in
1000 years, smaller than or equal to Hg* is

N(Hg < Hg*) = 2921940 P(Hg < Hg*) (3.398)
The number of occurrences of each Hg* value chosen is

N(HS*) = Nl(Hs < (HS* + §)) - NZ(Hs < (Hs* - §)) (3.399)

where ¢ is half the difference between two adjacent H * values. Sum
all numbers of occurrences N(Hs*) for H* values exceeding the

highest Hg in the actual observations; this sum is Nr.

The number of occurrences N(Hs*) are associated with an estimated
mean wave period, T,, such as, assuming a constant wave steepness.

The number of actual observations for each (HS, TZ) pair is finally
scaled up by the factor
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2921940 - N

Na

T

(3.400)

where N, is the actual number of observations, This gives the total
number of observations in 1000 years to the required total of
2921940,

3.6 Extreme Value Statistics

The extreme value is defined as the largest value expected to occur in a
certain specified period of time. Since the specified time may be
equivalently expressed in terms of number of observations of the variable
under investigation, extreme value may refer to a specified number of
observations, This specified time may be a short-term interval, e.g., within
a wave record of 30 min. duration, which is considered statistically
invariant. Alternately, it could be long term in terms of the lifetime of the
structure. The distribution function, P(e) of the short-term wave heights, as
a random variable, is called the initial cumulative distribution for extreme-
value statistics. Similarly, the corresponding density function is the
initial probability density function. On the other hand, the extreme wave
height as a random variable in N observations has a different probability law.

If the initial probability distribution is known, e.g., Rayleigh
distribution of wave heights in a short-term sea, then the extreme value is
straightforward to compute by the order statistics. On the other hand, the
extreme values may be estimated without the precise knowledge of initial
distribution if the measured data or maxima are available, In the latter
case, an asymptotic extreme-value distribution is obtained.

As mentioned earlier, the probability distribution of extremes is
different from the initial distribution. Thus, the probability density
function of extreme wave heights, y, is

q(y,) = n [p(x) [P(x)"'llx -y (3.401)
n
and the cumulative distribution is
_ n
y,) = [ [P()T ] y, (3.402)
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From the above two equations, the probable extreme wave height, Sﬂl , 18
derived as

g aly,) =0 (3.403)
which gives
p' (y,) Ply,) *+ (n - 1) [ply,)2% = 0 (3.404)

Assuming P to follow Rayleigh distribution, Longuet-Higgins (1952) showed that

2 2 2
Y y y
2 2" [nexp ( - 2" )] - [exp ( - 2" ] -1]=0 (3.405)
Xrms Xrms Xrms

Neglecting second term as small for large N, y, is solved as
§h =/ 2Tnn X (3.406)

which is equivalent to Eq. 3.70.

In the previous discussions, the maxima were assumed to be statistically
independent which render the derivation simple. On the other hand, for a
narrow-band spectrum, the maxima changes slowly through envelope process and
are, therefore, highly correlated, The statistical dependence of maxima may
be included through the concept of Markov chain condition. In this method,
the magnitude of a maximum point depends on the immediately previous one, but
not any other prior ones. In this case, the joint probability distribution of
two successive maxima is needed. This is illustrated and derived by Ochi
(1982).

In the approximate method, measured or observed maxima over a certain
period (e.g., a number of years) are ranked and fitted with known probability
distribution curve. 1If the fit is good, the distribution function is used to
obtain extremes. In case the match is poor, the ranked data are plotted on a
probability paper as
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(3.407)

S

1-P(x) =

and extended for extremes over a certain return period. However, this method
may not be satisfactory as it relies on highest waves whose measurement may
not be very reliable. An alternative scheme of representation by fitting the
entire data by a least squares method has been discussed by Ochi and Whalen
(1980).
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TYPE OF
NONLINEARITY

Relative
Velocity Drag

Relative
Velocity Drag

Relative
Velocity Drag

NONLINEAR TERM

TABLE 4.1 CONT'D

POLYNOMIAL APPROXIMATION

lu - | (u - %)

lu - X|{u - X}

lu = X|(u - x)

NOTE: u = u(t) and X

— — 3 _

2 1 ,2u _ 2
/;GUU"'-B-/;E-U‘ ['/-Tr—cru

S T
- e 1x
u
cfu - x); ¢ =2 /_z:a sV, =y
> T VR! R
2 7 .

Ug ) a cos mwt + 2V F'UO X

a Fourier Coefficients

m

b 2

REMARKS

Linear and
Cubic Term§
for Small x

VR is
Harmonic

u is
Harmonic

SOURCE

Eatock Taylor,
et al. (1982)

Dao & Panzien
(1982)

Dao & Penzien
(1982)

x(t) are random functions of time, t, and the current U is steady.



4.0 EVALUATION OF PROBABILISTIC APPROACHES

Several different methods have been described in the previous chapter
(Chapter 3) in handling nonlinear problems in the prediction of extreme
response values, These methods are evaluated here regarding their assumptions
and limitations. Limiting values of their application are prescribed wherever
possibie.

4,1 DISCUSSION OF LINEARTZATION TECHNIQUE

One of the common methods of handling the stochastic description of
nonlinear responses is to linearize the nonlinear terms. Sometimes it is
convenient to retain the first few terms of the polynomial approximation thus
maintaining some of the nonlinearities in the system. In the linear case the
probabilistic description of the responses is simple and straightforward
specially if the sea surface is assumed to be a Gaussian random variable.
When higher order terms of the polynomial series are retained the problem is
somewhat more complex but is still solvable in a number of cases.

Different methods of 1linearization have already been presented in
Section 3. Let us discuss the 1limits of applicability of these various
tinearized terms. The often used polynomial approximations of several common
nonlinear terms are summerized in Table 4,1, The nonlinear terms in the table
relate to the drag term of the Morison formula or its modified form including
damping and relative velocity terms. As such, they have wide applications in
the analysis of marine and offshore structures for both the evaluation of
exciting forces and corresponding responses.

On small members of a jacket structure, or on structures with flat
surfaces and sharp corners where flow experiences separation the wave drag or
wave-current drag is important. On moving structures, e.g. most of the
floating structures that experience resonance the hydrodynamic damping term
may be significant. On moving members, e.g., risers, tendons, catenary lines,
the relative velocity drag term should be included.

On large floating structures moored with soft springs, e.g., single-point
mooring system, catenary anchored ships and semisubmersibles, slow-drift
oscillation occurs in certain degrees of freedom, e.g., surge. In this case,
nonlinearity appears from the nonlinear exciting forces (drift force) as well
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as nonlinear mooring line characteristics. Floating structures that are
tethered with taut vertical lines, e.g., TLP, experiences springing force in
their tendons that are nonlinear. In this case, the damping is small and any
contribution from the nonlinear damping term may be important.

The most common form of nonlinearity that is often linearized for
convenience in the analysis is the nonlinear drag term found in the Morison
equation, The nonlinear wave drag term and the corresponding linear, cubic
and quintic approximations are shown in Fig. 4.1, The independent variable in
these plots is taken as the nondimensional quantity, u/c,. The nonlinear term
is quadratic. According to this figure, the linear approximation seems to be
reasonable for velocities of up to about two standard deviations. The cubic
term is good for u =~ 3¢, while the quintic term is close for the velocity up
to about 4 standard deviations. In the spectral estimate of the load, the
cubic term has been shown to give rise to a triple convolution of the velocity
spectrum, Similarly, the quintic term will yield a fifth convolution integral
and, thus, will require more time-consuming computations.

The Tlinear approximation of the hydrodynamic damping will provide a
similar plot as for the linear term in Fig. 4.1. In fact a similar higher
order polynomial approximation may be written for the hydrodynamic damping
term. The nonlinear damping term of this form may be handled in an equation
of motion by several approximate methods of solution, e.g., the Rayleigh-Ritz
averaging technique,

A general damping term may be written in terms of the power of the
absolute velocity where' a = 0 refers to the Coutomb friction. a = 1
corresponds to linear damping term while o = 2 is the velocity-squared term.
Plots are presented in Figs. 4.2-4.3 showing the correlations ‘between the
nonlinear and linearized damping terms for o« = 2 and 3, For a = 0, the
1
corresponds to the 1linear term and is, thus, exact. The region of
correlations for a = 2 and 3 is similar,

nonlinear term takes on positive or negative constant values. a

When current is present in waves the drag force is written in terms of
the relative velocity between the waves and current. In this case, the
linearization involves a constant term plus a linear term and depends on the
strength of the current given by y (= U/g,) 1in addition to the two
coefficients in the two terms. The correlation of the nonlinear drag term and
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its Tinearization is shown in Figs. 4.4-4.6 for different values of vy (= 0.1,
0.5 and 1.0, respectively)., Note that the correlation of the linear term
becomes poorer as the strength of the current increases.

If the structure is allowed to move, the drag force on the structure is
given in terms of the relative velocity between the structure motion and the
water particle. In this case, the linearization is achieved [Eatock Tayor, et
al. (1982)] in terms of the relative velocity, u - x , as shown in Table
4,1, The correlation between the nonlinear relative velocity drag term and
the linearization for different structural motion amplitudes i/ou = 0.1, 0.2
and 0.3 are shown in Figs. 4,7, 4,8 and 4,9, respectively. In all cases the
correlation seems to be good for u/o, values of about 2,

4,2 DISCUSSION OF NONLINEAR EXCITATION STATISTICS

The linearization of nonlinear systems is only possible when the non-
linearity in the system is relatively small. In Chapter 5, the limits of
arguments of nonlinear systems for which linearization technique is applicable
without serious errors will be discussed. For predominantly nonlinear
systems, this simplified technique is not useful. In these cases, one of the
methods outlined for non-Gaussian systems is applicable.

The non-Gaussian random waves found, for example, in shallow waters have
several available representations of distribution functions. These take the
form of a series either in the probability theory or in the nonlinear wave
theory. When waves are nonlinear with sharper peaks than throughs, the series
expression in Eq. 3.62 provides one representation for the probability density
for the wave heights. This expression is easy to apply, but assumes narrow-
banded waves of weak nonlinearity. Another representation of the wave
amplitudes (half the crest-to-trough height) is given by the integral repre-
sentation of Eq. 3.74. In this case, computation of the probability density
is more involved in terms of the joint probability of crests and troughs.
Both these distributions show that the density value is higher than Rayleigh
and occurs slightly ahead of the Rayleigh distribution.

The non-Gaussian probability theory for waves provided the distribution
functions represented by the Gram-Charlier series, Edgeworth series and
Longuet-Higgins series. These series representations can be extended to any
number of terms with added complexity for each additional term. However, the
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representation does not necessarily improve with added terms, but in fact may
deteriorate. For example, the first three terms of the Gram-Charlier series
best describes the non-Gaussian waves. Another limitation of this function is
that it produces negative density values at large negative wave troughs. The
Edgeworth and Longuet-Higgins series suffer from the same drawback. Moreover,
the skewness and flatness required by the Edgeworth series are difficult to
compute, For the Edgeworth series, approximations up to four terms are
sufficient., Another interesting feature of the series is the presence of a
second hump indicating a preferred range in the density function near the mean
wave amplitude,

For a strong nonlinear system, The Fokker-Planck equation may be applied
in which case the degree of nonlinearity may be left as arbitrary. For a
single degree of freedom motion system, the equation may be written in terms
of a joint probability density function of displacement and velocity (Eq.
3.88). Once the numerical solution is known, the probability density of
displacement is obtained. For a practical multi degree of freedom system,
however, this procedure is quite involved and time consuming. Moreover, it
uses a white noise spectrum as the input for the excitation force.

The probability density functions for nonlinear third-order Stokes waves
in deep water as well as in finite water depth are known. For these waves,
the probability density values are always positive. The expressions are
obtained (Egs. 3.98 and 3.104) in a closed form in terms of nondimensional
surface elevation. This function shows that the non-Gaussian nature of the
distribution increases with the increasing value of a slope parameter. For
higher slope parameters, the maximum density values increase, and the
distribution becomes more and more skewed, For zero slope, it reduces to the -
Gaussian distribution.

4,3 DISCUSSION OF NONLINEAR RESPONSE STATISTICS

There are basically three types of nonlinearities that are encountered in
the analysis and design of an offshore structure. These nonlinearities are
grouped according to the stages at which they appear: (1) nonlinear waves,
(2) nonlinear external forces and (3) nonlinear responses.
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The incident waves based on nonlinear wave theories are non-Gaussian.
Theories are available to describe the non-Gaussian characteristics of these
waves, some of which are included in Chapter 3 and discussed in Section 4.2,
However, they have found limited use thus far in the extreme value analysis.
While some attempts have been made in developing nonlinear wave spectra, these
have not found applications in the extreme value analysis.

The nonlinear external forces may appear in the form of drag forces
exerted on the structural member or may be due to the time varying wetted
height of structure. The general form for the nonlinear drag forces is
included in the Morison formula (including inertia and drag force) and its
several modifications, Some of these modifications discussed in Section 2 are
wave-plus-current effect, relative velocity model, etc. The nonlinear drift
force appears from the wetted-free surface and convective-inertia terms. The
exciting force for TLP springing has the same origin.

The nonlinear responses may arise from the responses at frequencies other
than the imposed wave frequencies (e.g., second-order frequencies, low
frequency drift, etc.) or nonlinear damping or restoring force in a dynamic
offshore structure system, The latter case arises from the material
properties or geometric nonlinearities of the components present in the
offshore structure system. Two of these, namely the catenary system and
flexible structures, are included in Section 2.

Some attempts have been made in examining the extreme value analysis in
all these areas of nonlinearities. Because of the complex nature of the
nonlinear problem, it may be solved numerically using time domain simulation
on a computer which is time-consuming and difficult to use in a design case.
The other approach in obtaining the probability distribution of the extreme
values has been to make simplified assumptions so that the solution may be
obtained in a closed-form or a semi-closed form expression., These approaches
are discussed in Chapter 3 and summarized by'nonlinear categories in Table
4,2. As can be seen from the table, the sea surface has been invariably
chosen as Gaussian,

For the nonlinear drag force, a polynomial approximation developed by
Borgman is popular. The second term of the force spectral estimate gives rise
to a triple convolution integral of the velocity spectra. Similarly, the
third term may be shown to yield a quintic convolution integral and so on.
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NONLINEAR

TERM

1. Nonlinear
Drag

2. Nonlinear
Drag

3. Morison
Formula

4. Morison
Formula

5. Morison
Formula

6. Morison
Formula

SEA

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

TABLE 4.2

SUMMARY OF METHODS OF NONLINEAR RESPONSE PREDICTION

APPROXIMATION

Polynomial;
Linear Wave Theory

Polynomial; Kine-
matics are unidir-
ectional & Gaussian
& water particle
velocity substan-
tially larger than
structure velocity

Narrow Band
Spectrum

Wide Band Speétrum

Force is narrow
banded; but non-
Gaussian

Any band width, but

m%kﬁ
force >-7T—f
Kp

METHOD OF SOLUTION

REMARKS SOURCE

Triple Convolution
of Velocity Spectra

Triple Convolution
Velocity Spectra

»

Transformation from
the distribution of
wave height, H, to

force amplitude, fy

Moments of the velo-
city spectrum upto
6th order are needed
for computation

2nd & 4th derivatives
of force only
required for compu-
tation

Extreme value is
based on peak rate
density whose expres-
sions are derived

May be extended Borgman (1972)
with mathematical

complexity

Sigbjdrnsson
& Mirch (1982)

Effect of super-
harmonics in load
spectrum shown

on displacement
response of a
fixed platform

Two expressions Borgman (1972)
for the inertia
(Rayleigh) & drag
predominance (ex-
ponential) are
obtained

From joint dis- Tickell (1977)
tribution function
of force and its
second derivative
Force & its Ist Tickell (1977)
time derivative
are statistically
independent
Separate expres- Moe (1979)
sions for inertia,

drag & Morison force



NONLINEAR
TERM

?l

10,

11,

12.

13,

Morison
Formula

Wave-Plus
Current
Drag

Wave-Plus
Current
Drag

Wave-Plus
Current
Drag

Wave-Plus
Current
Drag

Wave-Plus
Current
Drag

Relative
Velocity
Drag

SEA

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

APPROXIMATION

Statistically in-
dependent mean up-
crossing frequency

Polynomial; deep
water

Narrow Band
Small current;
Y=U/ou<1

Wide band but large
extreme force

Gaussian force

Exact form

Cubic Polynomial;
relative velocity
term is assumed to
be Gaussian with
zero mean

TABLE 4.2 CONT'D

METHOD OF SOLUTION

REMARKS SOURCE

Numerical solution

First approximation
to the relative
velocity

Based on extreme
rate density related
to pdf

Based on extreme
rate density related
to pdf

Linearized method

Numerical solution

Triple convolution

of relative velocity
spectra; simplified
by Gaussian closure
approach; iterative

method of solution due

to relative velocity

Expressions for Naess (1983)
total force as

well as drag force

Effect of current Tung & Huang
on wave in deep (1972-1973)
water accounted for

Moe & Crandall
(1978)

Expressions for
the probability
density given

Moe & Crandall
(1978)

Expressions for
the peak rate
density given
Mean & standard Grigoriu {1984)
deviation of peak
drag force
Presented actual Grigoriu {1984)
distribution of

force

Dunwoody &
Vandiver (1981)

Finite wave

height effect
ignored as is
almost always done



NONLINEAR
TERM

14,

15,

16,

17.

18.

19.

Nonlinear
Damping

Noniinear
Damping

Slow
Drift

Linear &
Quadratic
Damping &
Linear &
Cubic

Stiffness

Low Fre-
quency
Force and
Motion

Total
Second-
Order
Response

SEA

Zero-Mean
Gaussian

Gaussian

Zero=-Mean
Gaussfan

Zero-Mean
Gaussian

Zero-Mean
Gaussian

Zero-Mean
Gaussian

APPROXIMATION

One dimensional
equation

Small damping and
very narrow band
spectrum

Wide band

Stochastic
averaging

Ordered
Eigenvalue
Series

Continuous dis-
tribution; Series
representation

TABLE 4.2 CONT'D

METHOD OF SOLUTION

REMARKS

Markov envelope
method

Asymptotic approxi-
mation for expected
extreme

From joint pdf of
force and derivative
of phase function.
For narrow band,
reduces to exponen-
tial function

Generalized Markov
process

Characteristic
function and contour
integration

Gamma distribution

Excited by white
noise; correlated
with digital
simulation

General form of
damping is used

Initial distribu-
tion describes
the 2nd order
force time
history

Non-white spec~
trum shape;
Experimental
correlation

Square of
response vector
assumed to have
exponential
distribution

Positive and
Negative Eigen-
values are used
in the Series

SOURCE

Roberts (1977)

8rouwers (1982)

Langley (1984)

Roberts (1987)

Langley (1987)

Kato (1987)






Therefore, in principle, as many terms of the polynomial expression as desired
may be added. The complexity and computer time consumption for the evalution
of the integrals are enormous., In general, the inclusion of the second term
of the approximation provides a reasonable estimate unless the drag
contribution is extremely high. An example in Fig. 3.25 shows that for a near
surface KC number of 94 based on the significant wave height and modal
frequency and the relative drag contribution parameter, K, of about 117, the
second term contributes about 16% of the first term and about 10% of the
maximum total force.

There 1is another effect of these higher order terms on offshore
structures (e.q., Jjackets) whose modal frequencies of vibration are at
frequencies higher than the wave frequency. Since these higher components
appear at higher harmonics of the load spectrum and since damping is small at
the natural frequency of the jacket structures, the responses (eeg., stress,
displacement, etc.) are amplified at these frequencies. An example of this
phenomenon is shown in Fig. 3.26. The responses at the second harmonic are of
the same order of magnitudes as those at the first harmonic.

Besides the Gaussian assumption if the wave heights are assumed to follow
Rayleigh distribution (narrow band assumption) then the distribution of the
maximum forces for the Morison formula may be readily obtained from that of
the wave height [Borgman (1972)]. Another approach was taken by Tickell
(1977) in which force spectrum, instead, was assumed to be narrow banded. For
a wide-band spectrum, expressioné are obtained for the 1imiting cases of all
drag or all inertia situation. These solutions are compared in Fig. 3.26 with
the corresponding numerical solution and are found to be acceptable in these
areas. A general numerical procedure was developed by Naess (1983) for the
prediction of extreme forces by the Morison formula. The expressions for the
expected extreme values are given for the compound inertia and drag terms and
are obtained in terms of the level up-crossing frequency.

For the wave-plus-current drag or the relative velocity drag, a similar
polynomial approximation as for the wave drag is possible, In these cases, a
force spectrum may be obtained including inertia and drag term of the modified
Morison equation. This was shown by Tung and Huang (1972-1973) and Grigoriu
(1984) for the wave-current drag and by Dunwoody and Vandiver (1981) for the
relative velocity drag, 1In the first case of waves, the current influences
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the incident wave as well through the kinematic interaction. Only Tlinear
terms of the polynomial were used in these analyses. The extreme rate density
method was used by Moe and Crandall (1978) to obtain expression of extreme
forces in the presence of small current for both narrow-band and wide-band
Gaussian sea. In the latter case, the expressions for the extreme forces were
approximated by an asymptotic formulation. An exact form was solved
numerically by Grigoriu (1984) for the wave-plus-current drag.

The case of nonlinear damping in the differential equation of motion for
an offshore structure has been considered in an approximate way by Brouwers
(1982) on the assumption that the damping is small and the motion response is
extremely narrow-banded in the area of the natural frequency of the
structure., In this case, any motion of consequence is from the resonance at
the natural frequency of the structure. If the excitation is considered to be
a white noise having nearly equal amount of energy at all frequencies over the
narrow band of interest, then a method of solution was developed by Roberts
(1977) based on the Markov envelope method. For a spectrum model used for
ocean waves this procedure is adaptable. Most ocean structures are inherently
designed to have natural periods away from the wave periods. In these cases,
the responses are generally some combination of resonance plus mass (or
stiffness) controlled response. When both of these separate responses are
significant, this method is not applicable. However, in cases where the
resonance response is much higher than the wave excited response, e.g., the
oscillating surge drift motion of a ship or the high frequency springing load
on a TLP tendon, the method of Brouwers and Roberts is suitable. In a recent
work by Roberts (1987), the limitation of white noise spectrum was waived by
modifying the Markov process and using a generalized stochastic averaging.
The revised theory produced higher values of cumulative probability compared
to Rayleigh distribution as well as the earlier results., The new theory
seemed to match the experimental data on ship roll well,

The stow drift force is nonlinear being proportional to the square of the
wave height. For a narrow-band spectrum the initial distribution of the force
reduces to an exponential distribution function., However, Langley (1984)
obtained an expression for a wide-band spectrum which is markedly different
from the exponential distribution.
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In a recent important study by Pinkster and Wichers (1987) through
numerical and experimental simulation of slow drift oscillation, e.g., surge
motion, it was found that as long as the mooring system is linear, the low
frequency surge motion follows Gaussian distribution quite well. However, for
a nonlinear mooring characteristic, the deviation from the normal distribution
is large. The expressions for the probability density function for the
second-order forces and motions have been given by Langley (1987). It is
obtained by contour integral and expressed in terms of eigenvalues of the
matrix equation of motion as a series expression. The number of terms which
is equal to the number of wave components in the irregular wave should be
large (about 200) according to Langley. The non-Gaussian characteristics of
the nonlinear force is given by high values of skewness (~2) and kurtosis
(»>5)., However, the motion probability density of an example problem showed
that it is close to Gaussian.

The total second-order response including the first and second-order
terms has been investigated by Kato, et al, (1987), and an expression for the
pdf of this response is given, It is expressed as a series of Gamma functions
and eigenvalues. Numerical examples showed that the addition of linear term
makes the pdf of the response more skewed.
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5.0 CONSISTENT METHODOLOGY

The response of an offshore structure to random wave excitation is
usually computed in two distinct stages., First, the excitation force on the
structure due to the wave kinematics around the structure is computed. Then
the responses of the structure such as displacements, stresses, etc. due to
the application of this excitation force are obtained. If the responses are
linear with respect to the wave amplitudes, then the relationship between the
force and the wave and that between the response and the force must be
1iﬁear. The nonlinearities in this analysis may enter in either one of these
two steps. The excitation may be nonlinear from higher order effects in the
wave loading, e.g., the drag force, the drift force, etc. On the other hand,
the responses may be nonlinear even if forces are linear due to nonlinear
damping or restoring force etc.

It is clear from the discussion in the previous sections that one
consistent methodology for all types of nonlinearities that appear in
predicting the responses of an offshore structure cannot be prescribed. In
fact most of the probabilistic methods available today that are used in
predicting extreme values of a nonlinear system are based on simplified
assumptions that are dependent upon the type and characteristic of
nonlinearity.

Let us discuss the type of nonlinear problems in offshore applications
that have been dealt with using the extreme value analysis. The most common
nonlinearity that appears in the marine structure design is in the calculation
of the exciting forces, This takes the form of the nonlinear drag force,
e.g., in the Morison formula. There are several variations of the Morison
formula in terms of the presence of current or structure motion. Some of
these areas are also investigated in predicting extreme response values.
Other areas include nonlinear damping and slow drift oscillation.

In a1l these formulations, the sea has been invariably assumed to be zero
mean Gaussian., If the sea surface is high which usually produces the extreme
responses then the crests are higher than the troughs and sea surface in all
likelihood will not have a zero mean nor will it follow a Gaussian
distribution. In these cases, the non-Gaussian properties of the waves should
be known. The non-Gaussian distribution is usually represented in a series
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form based on a nonlinear wave theory, e.g., Stokes' higher order theory or
probability theory, e.g., Gram-Charlier series. These theories show that the
waves generally have a non-zero negative mean and higher skewed density than
Gaussian. The distribution of wave heights similarly have higher density than
Rayleigh. However, the effect of non-Gaussian sea on a nonlinear response 1is
generally not known. On the other hand, probability distribution of several
specific nonlinear non-Gaussian responses of marine structures has been
presented.

Because of the above limitations and various simplified approximations
involved in nonlinear extreme value analysis a cookbook method for an engineer
to follow is not possible at this stage of the development. The state-of-the-
art is such that various simplified methods may be recommended. None of these
techniques may be applicable to a particular problem in which case several
methods should be tried to find the differences in the results. Then an
engineering judgment should be used in choosing the appropriate extreme
values.,

5.1 EXTREME VALUE PREDICTION FOR NONLINEAR SYSTEMS

A simple flow chart for the evaluation of the extreme responses of a
marine structure is shown in Table 5.1. Depending on the type of the extreme
value that is sought for in the design, the computation may be stopped at the
short-term level or continued to obtain long-term statistics or extreme and a
fatigue analysis. The process is similar whether the response is a linear or
a nonlinear function of the environmental input variable, which is the waves
in our case.

For a linear system, the rms value of the response defines the short-term
statistics of the response. This may then be extended directly to the long-
term statistics if the 1long-term probability of the short-term waves is
known, For a nonlinear system, the rms value of the response is generally
only one of the parameters that determines the response statistics. Other
statistical parameters are needed to complete the description of the short-
term extremes of the response., Therefore, in the long-term response analysis
the appropriate statistical dependence of the short-term response must be
included along with the long term wave statistics.
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TABLE 5.1

FLOW CHART FOR EXTREME RESPONSE VALUE ANALYSIS

STRUCTURE SHORT-TERM
RESPONSE WAVE
FORMULA PARAMETERS
NONL INEAR WAVE SPECTRUM
RESPONSE MODEL AND
STATISTICAL
l PARAMETERS
. —¥
RESPONSE WAVE SCATTER
SPECTRUM DIAGRAM
AND SHORT TERM
STATISTICS
¥V 4
¥ ] ¥
LLONG-TERM STATISTICS OF FATIGUE
RMS RESPONSE LLONG-TERM ANALYSIS

RESPONSE




TABLE 5.2
RANGE OF APPLICABILITY OF
LINEAR APPROXIMATION OF COMMON NONLINEAR TERMS

NONLINEAR TERM PARAMETER VELOCITY

Wave Drag u < 2q,
Wave Current Drag vy = 0.1 v < 20y
y = 0.5 v < 2.50,

vy = 1.0 10 < v < 3cv

Relative Velocity Drag °v/°u = 0.1 vV < 20y
= 0,2 v < 20,

= 0-3 v £ ZUV



Different approximation methods that are available and are described in
Chapters 3 and 4 are summarized here in a logical order. In the extreme value
analysis for the design of a marine structure, the random waves are
customarily assumed to have a Gaussian distribution. A suitable spectrum
model, e.g., P-M, JONSWAP, etc., is chosen as the wave model to represent the
seastates for a Tlong-term prediction depending on the sea severity.
Sometimes, more than one spectrum model is suitable. For example, the lower
waves may follow a P-M model while the JONSWAP model may be suitable for the
higher seastates. Once the wave environmental model is chosen, the next step
in the prediction is computation of the environmental forces on the offshore
structure,

If the forces are linear, then the forces may be obtained in the form of
a force spectrum. For a Tlinearized approximation of a nonlinear system a
similar approach may be taken. One of the most common forms of nonlinear
forces is given by the Morison equation representing a drag and an finertia
force, The values of the velocity for which the linear approximation may be
used with reasonable accuracy have been given in Table 5.2, If current is
present with waves, the validity of a linear approximation is measured in
terms of the strength of the current as well, These Timiting values are also
given in the table.

Higher order terms in the force spectrum may be estimated based on the
series expansion of the nonlinear terms. These higher terms in the estimate
are time-consuming to compute but may become significant if the nonlinearity
of the force term is large, The extreme values are difficult to obtain from
these spectrum extimates without knowing the distribution of the force maxima
which is not generally Rayleigh.

However, the additional terms in the spectrum produce peaks in the
spectrum in the higher frequency range which may coincide with the natural
frequency of vibration of the structure under investigation. In this case, if
the structural damping is small, the response may be peaked at this frequency
leading to a narrow band spectrum. This response spectrum may then be treated
as Rayleigh distributed so that the response extremes may be easily
determined.
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If the force spectrum is narrow banded, then the distribution of the
force extremes may be given in terms of inertia or drag dominance. For the
inertia-dominated region, the force maxima are distributed according to the
Rayleigh distribution. For the drag-dominated area, the distribution is
exponential.

For a wide-band wave force model, similar separate expressions for the
drag-dominated and inertia-dominated areas are known but now in terms of an
additional parameter, e. These expressions are, however, only valid for the
limiting values of the drag-inertia parameter, K, namely, K = 0 and K + =,
The comparison between the two cases shows that the narrow-band assumption
overpredicts for the same probability level at both the limiting values of K,

The extreme value analysis for a wide-band spectrum was also provided in
terms of the expected rate of occurrence of force maxima., These expressions
use the appropriate frequencies corresponding to kinematics involved in the
process. The expected number of peaks per time unit are obtained from these
expressions by integration,

Similar analysis have been made for wave-current force. The latter was
derived on the assumption of large force. Separate expressions for narrow-
band and wide-band process have been given. 1In this case the modified form of
the Morison equation is used. However, current is assumed small in the sense
that only the terms in the first order in U/c, are retained. Thus, the
expressions are valid for current of the order of 10-20% of the rms water
particle velocity.

The expression for the expected extreme value for the component of the
drag force in the presence of a finite current is shown in Eq{ 3,317, The
extreme value depends on a time interval, TRe

If a dynamic system is nonlinearly damped, the simplest solution for the
extreme responses is to derive the solution of an equivalent linearly damped
system, The damping is particularly important near the natural frequency.
Moreover, if the damping is small then the response may be treated as an
extremely narrow-band process. Then, the input spectrum over this area of
response may be treated as a white noise process for which the solution is
known, The Markov process is a powerful tool for these derivations and a
generalized method has been derived to waive the requirement of white noise.
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5.2 A CONSISTENT LINEARIZATION METHOD

A common technique of handling these problems is a 1linearization
technique in which the nonlinear problem is linearized by one of many means,
e.g., the Fourier averaging, least square error technique, Taylor series
expansion, etc, |

Table 4,2 includes the polynomial approximations of various forms of
nonlinear terms that appear in the structure response calculations. These may
be'genera1ized in the following way. Let

f = f(x) ) (5.1)

be a nonlinear function of x. Let x be a variable that follows a zero mean
normal (Gaussian) probability law, Thus, x could be such quantities as the
wave profile, velocity profile, relative velocity profile, etc. The problem
is to compute a polynomial approximation of f(x) given by

n

f(x) = ¢ Cnx (5.2)
n
such that the quantity
Q= [ [f(x) -2 Cnxn]2 L exp [- x2 /20x2] dx (5.3)
- n Y 27 Oy

is minimized. The last part of the integrand is the Gaussian formulation,
The values of C, (n =1, 2, . « «) may be obtained by differentiating Q with
respect to C, and setting the result equal to zero. Thus, depending on the
number of terms desired in the polynomial, an equal number of equations in the
unknowns C, may be obtained. The values of C, are then obtained by setting up
a matrix equation and its inversion, For example if

f(x) = |x]|x (5.4)

and only one term in the polynomial (1linearized) is desired then

Cl = ‘/—% % (5.5)
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This is then a generalized method that can be used for any nonlinear function
f(x) as long as the function f(x) is explicitly known as a function of x where
x is an independent variable, Many of the nonlinear response terms for a
marine structure have already been worked out and the results are tabulated in
Table 4.1.

Once the problem is linearized then the usual procedure of a short-term
Gaussian process is applicable. For example, in the case of wave drag

f(u) = kplulu (5.6)

Once the right hand side is linearized thrdugh the formulation in Eq. 5.3, we
have

f(u) =kn ¥ =0 U (5.7)

Since u(t) is assumed to follow Gaussian distribution with a zero mean so
would the force f(u), Thus, the amplitudes of force, f, will follow Rayleigh
distribution for which extreme values may be predicted. This linearization
will apply only for small nonlinearity.

The adequacy of assuming Gaussian response statistics of a linearized
nonlinear problem depends on the type of nonlinearity and the sea severity.
The ranges of the values of u for which this linearization is reasonably valid
along with all the other nonlinear terms included in Table 4.1 are summarized
for convenience in Table 5,1,

5.3 RESPONSE SPECTRUM COMPUTATION

In some cases of nonlinearity, more exact solution is possible by
spectral or stochastic averaging technique, This may provide nonlinear
relationship between the wave spectrum and force spectrum depending on the
area of nonlinearity. In a few cases, a probabilistic description of the
response 1is also possible, However, because of simplification of the
structure, etc. in these analyses, the practical application is quite limited.

For a linear system the response may be related to the waves by a
relationship of the type
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x(t) = H(w)n(t) (5.8)

where x = response function, n = wave profile, t = time, and H = a function of
the frequency, w, This relationship can be directly converted from the time
to the frequency domain through the autocovariance method. Thus, taking the
lagged product of both sides and integrating

-] -]

[ x(t) x(t + 1) dt = H(w) | n(t)n(t + 1) dt (5.9)
0 0

or

2
RX(T) H* (w) Rn(T) (5.10)

Then the Fourier transform of both sides provides the wellknown relationship
between the wave spectrum and the response spectrum for a linear system

[e -]

R.(1) AT
X
0

H2 () jm R (1) e %7 dr (5.11)
0 n

or

5, () = H2(w) S () (5.12)
Here, H(w) is called the transfer function between the wave profile and the
response, Since the wave profile is assumed to follow the Gaussian distri-
bution and wave height, the Rayleigh distribution and since the transformation
is linear, the response amplitudes also follow the Rayleigh distribution from
which the extreme values are easy to determine.

This approach may be extended to nonlinear systems as well, if the
nonlinear functional relationship is expressed in a polynomial form as shown
in the previous section., Let us take the example of drag force related to the
water particle velocity

f = kplulu (5.13)
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In this case, after the autocorrelation function for the force is
written, the right hand side is expanded in a series form the first three
terms of which take the form

Re(2) = Hy(F) R, (2) + Hy(f) Ru3(t) + Ha(f) Ru5(r) Fuu (5.14)

where Hy(f) = 8/7kp2a 2, Hy(f) = 4 kp2/(3 mo,2) and H3(f) = kpZ/(15m0,%).

By taking the Fourier transform of both sides, the drag force spectrum
may be related to the velocity spectrum. Note that the powers of the
autocorrelation function appear in the frequency domain as the convolution
integral. Thus,

J RUB(T) eindT = [ [ S(w) S(w' - ") S(w - 0') do' du" (5.15)

0 00

This integral is easy to evaluate numerically even though it is time
consuming, Thus, in principle as many terms in the series in Eq. 5.14 may be
included in the evaluation of S¢(w) even though in the practical sense
anything beyond the second term may be prohibitive in terms of execution time
requirements of a computer.

Moreover, even though the response spectrum is known and its significant
value may be calculated, the computation of the extreme value 1is not
straightforward. Since the relationship is nonlinear the force amplitudes do
not necessarily follow Rayleigh distribution even though the velocity
amplitudes do. Therefore, it is difficult to predict the extreme values for
the force. ‘

The importance of this analysis, however, may be stated in the following
way. Let us examine Eq. 5.14., If the first term on the right hand side
produces the first harmonic frequency of the force, the second term will have
a peak at the third harmonic, the third term at the fifth harmonic and so
on. These higher order terms will generally be reduced in magnitude in
succession. However, many fixed structures have natural frequencies of
vibrational modes at frequencies much higher than the wave frequency range.
One of these vibrational modes may coincide with this higher frequency in the
force spectrum in whi;h case an amplification of the response, e.g., stresses,
etc. may be generated. Moreover, if the structural and hydrodynamic damping
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are small in this region the response, e.g., stress or displacement, will
appear as a narrow-band spectrum in this frequency range. The response then
may follow Rayleigh distribution even if the force does not. The extreme
values may be derived for the responses due to this nonlinear excitation.

5.4 RESPONSE PROBABILITY DENSITY FUNCTION

Consider two random processes, x(t) and y(t), where x{(t) is an excitation
and y(t) is the corresponding response. If x(t) is Gaussian while y(t) is not
there is strong indication that the physical system is nonlinear. Unlike
linear systems, no general methodology exists for nonlinear system analysis.

For a class of nonlinear systems, however, a consistent method exists for
deriving the initial distribution of the response if the excitation is assumed
Gaussian, While the initial distribution of the response does not provide
information regarding the extreme values, it may give some insight into the
nonlinear nature of the response and a degree of departure from the linear
system, Thus, it may help provide and evaluate the validity of an approximate
method of the extreme value analysis of the nonlinear system. The following
analysis is according to Bendat (1985),

Let us consider that the excitation function, x(t), is a statidnary
ergodi¢ random process with zero mean value such that at any time, t, the
random variable x = x(t) has the first-order Gaussian probability density

function
p(x) = —L— exp | -—2"2 ) (5.16)
oy ¥ 27 20X

where the mean value, uys and the variance, o, of x are given by

Hy = E[x]=0 : (5.17)
og - E[x%] (5.18)

For the pair of random variables x; = x(t) and x5 = x(t + 1), the joint
probability density function is given by the second-order Gaussian form
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1 -1 2 2
pxy,x,) = 7 { exp — - [xp -2 x x4+ % 1}
2n Oy V1= p2 ZGX (1 - p%) (5.19)
where p is the correlation coefficient between X1 and X9
., ) E[Xl,XZJ _ E[xl X2] (5 20)
XX - 2 ¢
v E[xf] E[xé] o,
The auto correlation function
Rxx(r) = E[x(t) x(t + 7)] = E[x1 x2] (5.21)
R._(0) = E[x(t) x(t)] = E(x2] = E[x2] = o2 (5.22)
XX 1 2 X *
Hence
Ro.(1) R_.(1)
- _ XX _ XX
p(1) = pXX(T) N ) % (5.23)
XX o,

The expected value of the response and its moments can be obtained from g(x)
and p(x) as follows:

E(y) = Elg(x)]1 =/ =~ g(x) p(x) dx | (5.24)
(") = L) = ] ") plx) ox (5.25)
0% = EY°D - (EDyD)* | (5.26)
If the response y = g(x) is a zero memory nonlinear system that is

single-valued and one-to-one, the response probability density function p,(y)
for the response y(t) is given by

(5.27)

expressed in terms of y. If each value of y = g(x) corresponds to n values of
X which are equally likely, then

pp(y) = TH5%8) | (5.28)
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Whenever p(x) is Gaussian and g(x) is nonlinear, the resulting p,(y) will be

non-Gaussian,

Example: Two Slope Systems

A nonlinear mooring line may be approximated, sometimes, by two
straight lines of two different slopes (often within the range of
its application in an offshore system), Let us consider the example

of the nonlinear two slope system given by

y = g(x) = x for x < A
= A+ b(x - A) x > A
where g(x) is an odd function, g(x) = g(-x). Then
dy _
a% =1 for |x| > A
= b |x| > A
Note that (dy/dx) is discontinuous at |x| = A.
The response probability density function is obtained from
P,(y) = p(x) = p(y) for y <A (5.29)
-l {p A+ Ly - MY} y> A (5.30)
=% { p[-A + [y + Al/b] } y < -A (5.31)
If it 1is assumed that the excitation follows the normal (Gaussian)
distribution with unit variance (o, = 1)
p(x) = 21— exp (-x%/2) (5.32)
v 2n

then the response probability density function is given by
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p,y(y) = lzn exp (-y%/2) ly| <A (5.33)
2
- - 1 - exp | = L - ARl y> A (5.38)
2
= -(A - [(y + A)/b]
= - = exp { -; } y < -A (5.35)

It is clear from the above expressions (Eqs. 5.33-5.35) that there is a
discontinuity of the response density function at y = A. Depending on the
case of clipping for 0 < b < 1 or hardening for b > 1, the quantity pp(A+) is
either greater than or less than py(A-).

Example: Square-Law System

The second-order wave force, e.g., the wave drift force follows a
square law with respect to the waves., Let us consider a response

y = 9x) = x2
Then

%% =g'(x)=2x and x=t7/y (5.36)

The response probability density function

_2p(x) op(y)
Poly) = =15 I

fory > 0 (5.37)

with po(y) = 0 for y > 0 and pp(0) = «. If p(x) has a Gaussian distribution,
then

p( VY ) = —E— exp (-y/20x2) for y > 0 (5.38)
Ox 14 217
Hence
Pyly) = ———exp (- y/2crx2) fory >0 (5.39)
oy /2y
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This is the form of an exponential distribution. Note that

ELy"] = elx®1 =1, 3,5, . .. (2n-1) o2 (5.40)
w, = Ely] = 5, (5.41)
Ryy(0) = E[y21 = 3 o, (5.42)
qyz = 20 (5.43)

Example: Cubic System

The load-elongation characteristics of a mooring system may often
expressed by the cubic law. A nonlinear cubic system is given by

Y = 32 and x = y1/3 (5.44)

Then the response probability density function is given by

1/3
(y) = 2 - ply ") 5,45
Pyt 2 3y (5.45)

Assuming a Gaussian distribution for p(x)

p,(y) = 1 exp (-y?/3/25 2) 5.46
2 3 oy y2/3 v 2n X ( )

In this case, pp(-y) = pp(y) and p,(0) approaches infinity. Note that

E[yl = E[x] = 0 (5.47)

=
n

ECy?] = E[x%1 = 15 o ®

~
—~
(=)
~—
il

(5.48)
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Example: Square-Law System with Sign
The wave drag force is expressed as the square law with sign in

terms of the water particle velocity. A nonlinear square-law system
with sign is defined as

y = g(x) = |x]x

i.e.
y = x2 for x < 0
= X2 for x < 0
Then
x=+7y for y > 0
= -y -y for y < 0
Also
v
=g X) = 2x for x > 0
= -2x ‘ X <0 -
Hence, the response probability density function
~
pz(y)=H§: -2l y) fory > 0
27y
Py for y < 0
29/ -y
Then po(y) = pa(-y) and pp(0) tends to infinity. Also
n, = E[yl = E[|x|[x] =0 (5.49)

y
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Ry (0) = E[y%] = Elx"] = 3¢," (5.50)

The above theory provides a simple method in obtaining the initial
distribution of a nonlinear system subjected to Gaussian excitation. As
mentioned before, an initial distribution (distribution of the profile values)
does not indicate the extreme values for the system. But it may aid in
examining the nonlinear system against any approximation used in deriving the
extreme value of the nonlinear system,

5.5 RESPONSE EXTREMES BY ORDER STATISTICS

The extreme value of the maxima of a Gaussian (linear) response may be
derived by applying order statistics. The extreme value defined in this
respect is the largest value of the maxima that will occur in N observations
in a short interval of time (of the order of a few hours).

If the value of the bandwidth parameter, e, for a random variable is
known, then the probability density function of the variable may be
estimated. For example, if the spectrum of the response, e.g., the force
spectrum derived in a previous section, is known, the bandwidth parameter, e,
may be estimated from its moments. The distribution function for the broad
band spectrum (varying between truncated normal, € = 1, and Rayleigh, e = 0)
is then known from Eq. 3.67.

For a random sample, X1s X235 o o o5 Xy of size N which are the observed
maxima of a random process, the samples may be ordered in ascending values,
Z1> Tps « « o5 Ty Where gy is the largest. Each one of Ci will have its own
probability density function different from that of x; (Eq. 3.63). For
exampte, for a given probability level, «, such that

PLzy > gyl = @ (5.52)
we can obtain the relationship

Plg)N=1-a (5.53)
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where P(EN) is given by Eq. 3.67 for ?i = EN' The problem then is to
compute for a given value of a. This is a difficult task from an equation
of the type of Eq. 5.53.

However, considerable simplification may be made if the following two
assumptions are made:

e o is small being of the order of 0.1 or less
o N is large
e ¢<0,9

A1l these assumptions are reasonable from practical standpoint since most

response spectra will 1ie in the range of 0 < € < 0.9 and the extreme values

will generally be sought from large number of observations with the cumulative
probability of 99% or more,

Under the above assumptions the error functions in Eq. 3.67 reduce to
either zero or one and the extreme value, oNe is derived as

o= [2an (Lol 2Ny 1/2

z (5.54)
N 1+V1-¢2¢

Note that Eq. 5.54 is a "peak factor" applicable to a Gaussian process. Note
also that ZN is normalized so that the extreme value of the amplitude of the
response (as a random process) is obtained by multiplying this value by v My

The number of observations, N, is difficult to work with, but it can be
related directly to the time length, Tp. For practical purposes, it is more
meaningful to express the extreme value as a function of Tp.

- T [m
zy = [ 2en {—(?%)T ﬁg"} /2 (5.55)

where Tp 1S given in seconds.
R

Ochi (1973) worked out examples for extreme values from data from a wave
basin, The examples include various random waves generated in the tank and
the recorded pitching motion of a ship model in random seas. The results are
summarized in Table 5.3, The predicted values are based on the moments of the
spectrum computed from the recorded data. The most probable extreme
value, Eﬁ, corresponds to the value at which the probability density is
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RESPONSE

Waves
Waves
Waves
Pitching Angle
Pitching Angle

Bow Acceleration

SEA

STATE (knots)

L= N

SPEED

10
15
10

TEST

TIME

{min)
27.5
24.8
32.9
23.5
24.8

37.4

BAND
WIDTH
PARAMETER

(€)
0.513
0.616
0.598
0.378
0.350
0.231

TABLE 5.3
COMPARISON OF PREDICTED AND OBSERVED EXTREME VALUES

FROM MODEL TESTS

[OCHI {1973)]

OBSERVED EST.

177
282
213
160
233
360

NO. OF
MAXIMA

186
308
220
172
211
326

EXTREME VALUE (DOUBLE AMPLITUDES)

OBSERVED

22.3
32.0
48.7
18.9
11.2
1.78

EN
20.6
33.3
45,1
16.3
12.1

1.75

PREDICTED,
=00 a=0los
24,8  26.0
39.6  41.3
54,2 5646
19.7  20.6
14,4 15,1
2,07  2.16

o0
28.4
45.0
61.9
22.5
16.5

2.35

.01

UNIT

ft
ft
ft
deg
deg
deg



TABLE 5.4

SHORT AND LONG TERM MOTION RESPONSE EXTREMES

Short term most probable
maximum in 10 year seastate

Long term maximum with a 10%
probability of being exceeded
at least once in 1 year

WAVE FREQUENCY
SWAY ONLY

9,1m

9,8m

COMBINED WAVE
AND LOW
FREQUENCY SWAY

11.5m

12.9m



maximum, The extreme values are obtained for three different probability of
exceedance values of o= 0,1, 0.05 and 0.01,

The agreement between the predicted most probable extreme values and the
observed extreme values is satisfactory. But the probability of exceeding
this value 1is quite high (about 0.63 for € = 0 ). Therefore, for design
purposes the extreme values corresponding to o« = 0,01 or so are more
appropriate. These values are about 25-40% higher than the most probable
values.,

5,6 LONG-TERM RESPONSE PREDICTIONS FOR NONLINEAR SYSTEMS

There is no universally applicable theory for describing the response
behavior of general nonlinear systems either spectrally in the frequency
domain or probabilistically in the amplitude domain. Under certain
conditions, however, solutions may be obtained in a few cases. Two such cases
discussed earlier are second-order drift force along with associated Tow
frequency motion and Morison type force. The short- and long-term predictions
of two such examples are provided here [Inglis, et al. (1985)].

EXAMPLE 1 - LOW FREQUENCY MOTION RESPONSE

It has been shown [Pinkster (1980)] that the time-domain description of
the second-order force on a floating structure due to a wave group having
frequency components, w; (i

1, 2, . « « N) is given by

N N
i=1 j=1
N N
I ozi oty Qisosin {{w; = w;)t + (e; - €:)} +
jo1 j=1 7 3 137 LI P75
high frequency terms (5.55)

where Pij and Qij are the in-phase and out-of-phase components of the time
independent transfer functions. The mean second-order force is found by

setting w; = ©3

=
el
o
1
K M=

2
L5 P(mi,wi) (5.56)
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which may be generated as

F2(t) = 2 fO S(w) P(w,w) dw (5.57)

where S(w) do = %-cz and ¢ is the wave amplitude.

The spectral density of the Tow frequency components of the force is
computed from the square of the transfer function as

SF(m) =8 fw S(w+ w') S(w') T2 (o0 + ', o) dw' (5.58)
0
where
o+ u'ye') = Po(u+ o',u') + 0%(u + o',0') (5.59)

and T = amplitude of the quadratic transfer function.

The motion response spectrum may be obtained from the force spectrum if
the system is considered to be a single degree of freedom system having linear
damping. For a catenary moored system, this approximation usually provides a
good estimate of the motion. Assuming that the system is 1ightly damped, as
the case is for a low frequency oscillation, thé motion response spectrum
becomes quite narrow-banded acting as an effective filter, Thus, even though
the force spectrum follows a non-Gaussian process, force being proportional to
the square of the wave amplitude, the probability distribution of the resonant
response is almost independent of the probability distribution of the
excitation, Thus, for a linear transfer function between force and motion,
the motion response can be well represented by a Gaussian process. The motion
response spectrum describes the short term probability of the low frequency
motion response. If the high ffequency and the low frequency responses are
assumed to be statistically independent, the two response spectra can be added
together. Once the short-term response is known it can be combined with the
wave scatter diagram to generate the long-term response.

The short-term estimates are made in terms of a storm with a 10 year
return period having a significant wave height, H = 14.2m and a mean zero
crossing period, T, = 13,6 sec. The long-term response may be estimated for a
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return period of 10 years. On the other hand, the maximum response may be
determined which is experienced (at least) once during a given period (say,
1 year) with a given probability level,

The cumulative probability of a response exceeding a particular value, M,
is Q(M). Then the probability of not exceeding this value is 1 - Q(M).
Assuming a period of L years (e.g., the lifetime of the structure) and the
number of peaks, N, in a year, the probability of not exceeding the prescribed
value M in L years is (1 - Q(M))N*L. If it is assumed that this value M will
be‘exceeded once in L years, the probability Ql(M) is given by

0y (M) =1 - (1~ qm)VL. (5.60)

An acceptabie probability of exceeding the design value of M is chosen as
10%. The short-term most probable value for a 10 year storm and the long term
response for a 10% probability of being exceeded once a year are shown in
Table 5.4.

In the above example, the difference between the short- and long-term
response extremes is quite small, However, the long-term extreme is obtained
on the basis of exceedance in one year as opposed to the 10 year storm for the
short-term response,

EXAMPLE 2 - EXTREME FORCE BY MORISON FORMULA

The Morison formula describing force on a vertical cylindrical member of
an offshore structure is given by '

fo=ky U+ ky |ufu (5.61)

M

where ky = Cy p n02/4, kn = 1/2 Ch p D, u = horizontal water particle velocity
and U = horizontal acceleration. In order to derive a force spectrum, Eq.
5.61 is statistically linearized as

f = ky U+ /87 ky o, u (5.62)
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where o, = standard deviation of the water particle velocity. Thus, once the
seastate is known, gy is known and force is strictly linear with the wave
height, A transfer function for force may be determined which, however, will
depend on the seastate under consideration.

For a short-term response prediction, the transfer function can be used
directly without any difficulty similar to any linear system. However, for a
long-term prediction method, the transfer function has to be modified with
each seastate, An example of the difference in the transfer function is shown
in Fig. 5.1, In order to overcome this problem, a further approximation is
made by choosing one seastate to obtain the transfer function which jis then
used to derive of for all seastates.

Using the narrow band solution, the probability density function of the
normalized force amplitude, T, is given by

3 2 K1, _
p(f) = (7K +1) Texp ( - e ¥ ) for T < h
(5.63)
3.2 1/2 3.2 1/2
_ K® + 1) K° + 1) _ 7 _
o® =g exp ( - 3 (T-—=))forF>n
(5.64)
where
1
h = (5.65)
K(%_Kz + 1)172
and _ fo |
f=— (5.66
Of

Thus, the peak force amplitude distribution depends on of and K.

The standard deviation for the force using the Morison equation is

2
Of

4 2 2

- 3 kD2 o, + Ky o (5.67)

whereas the linear approximation gives

189



o INERTIA LOAD ONLY
1 YR. SEASTATE
LINEARIZED
o 10 YR. SEASTATE TOTAL
LOA
100 YR. SEASTATE P

+

[{+]
o

E 0 "//—3\

E (o] 'X/ / \\\

= -// P O

el ¥y N

2 ST 17 T\

- i d o T N\

Z / \

w © A

i o \

EB N // °\

n © 7 \

prd °)

< /’

£l
8 &

00 03 06 09 12 15 18 21 24
w, rad/sec

FIGURE 5,1  TRANSFER FUNCTIONS FOR THE MORISON FORCE FOR DIFFERENT
SEASTATES [INGLIS, ET AL. (1985)]



FORCE
CALCULATIONS

Short Term

10 Year
Sea-State

Hg = 14.2 m,
Tz = 13,6 sec.

Long Term

TABLE 5.5

EXTREME VALUE FORCES ACTING ON 1 m

ELEMENT OF PILE AT 13 m BELOW SEA LEVEL

BY MORISON FORMULA

PEAK
PROBABILITY
DISTRIBUTION

Gaussian Response

Non-Gaussian Response
K= 1.11

Linearization in each
sea state

Single transfer function
linearization in l-year
sea state

Single transfer function
linearized in 10 year
sea state

Single transfer function
linearized in 100 year
sea state

Linearization in each
sea state

MOST PROBABLE EXTREME FORCE
3.7 x RMS

7.7 x RMS

Non-Gaussian
K = 0.00579 * Hg * T

z
Non-Gaussian

K = 0,00579 * H * T,
Non-Gaussian

K = 0.00579 * Hs * TZ
Non-Gaussian

K = 0.,00578 * Hg * T

Gaussian
(Rice distribution)

(kN)
5.7

11.9

14.3

12.8

14.4

16.0

7.0
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Then the error in the estimate of K given by the ratio of drag to inertia
force components is of the order of 8%. Note that K is a function of He. In
the present example the dependence of K to T, is found to be linear in T,
given by

where Kg = 0.00579, These formulations were used to predict Tong-term extreme
force, The results are given in Table 5.5. In the example, both the
nonlinear peak distribution for a narrow-band non-Gaussian process and the
linear exponential (Rice) distribution for a general wide-band Gaussian
process have been used, The short-term prediction is based on a 10 year storm
while the long-term prediction assumed a 10% probability of exceeding once in
a year. The factors for the extremes for the short-term prediction are used
as 7.7 times the standard deviation for the non-Gaussian process and 3.7 times
the standard deviation for the Gaussian process [Brouwers and Verbeek
(1983)]. From the table it 1is seen the non-Gaussian response more than
doubles the extreme value prediction. The long-term predictions in this case
are higher than the short-term ones by about 20%.
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6.0 CONCLUDING REMARKS

The nonlinear analysis for various responses of an offshore structure and
the extreme value prediction of those responses are reviewed in this report.
Different classes of offshore structures are introduced and the applicability
of the nonlinear systems to these structures 1is discussed wherever
appropriate, Because of the complexity of determining the probabilistic
properties of a general class of nonlinear responses, only approximate
solutions in the extreme value analysis is possible. Various methods of
approximating nonlinear systems and the limitations in their application in an
offshore structure design are discussed, Nonlinear problems leading to the
non-Gaussian distribution and the extent of their departure from a Gaussian
distribution are investigated, Based on these solutions, techniques of
predicting extreme values of both linear and nonlinear responses for marine
structures that are consistent within the particular methods are given,

The discussions dincluded in this report warrant the following
conclusions:

1. For a nonlinear system, the response parameter is nonlinearly
related to the wave elevation through nonlinear elements in the wave
force excitation or in the structure's system characteristics. In
either case, the response becomes non-Gaussian, No consistent
method exists -for such a system, In a few special cases, the
solutions may be found by approximations or modification of the
analysis procedure., Sometimes the respbnse characteristics of the
system act as a linear filter, e.g., for a lightly damped system
even when force excitation is nonlinear in wave elevation, Examples
of such possible systems is the finely-tuned springing of a TLP
tendon. Thus, even if force probability distribution is non-
Gaussian the response is nearly Gaussian.

2. The structural response time history for a single degree of freedom
system is similar between uncoupled, coupled and linearized drag
forces. In the Tlatter case, the error is about 20% for large
H/D > 20. For random waves, the mean square values are similar, but
the tinearized method produces considerably lower (60% at H¢/D > 20)
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extreme values of response. The nonlinear drag also alters the
spectral distribution of wave forces providing an increased energy
at higher frequencies. This may increase the resonant response
compared to a linearized analysis.

The expected extreme responses of members of offshore structures by
the nonlinear drag forces exceed significantly those predicted by
equivalent 1linear methods, particularly when drag forces are
predominant. Nonlinear effects can be expected to be important in
fatigue damage computed when for a significant portion of the life
of the structure the drag forces constitute a significant part of
the total force. Typical example of such members are the small
diameter members of jacket structures in water near the free
surface, conductors and risers in areas of severe wave action, For
extreme value analysis, the effect of drag nonlinearity may be
important even for larger members.

If a linearized method is applied in a complex numerical analysis,
the effect of the nonlinear probability distribution not taken into
account in the analysis should be corrected. While this is not an
easy task, in a limited number of cases, a reasonable correction
factor may be achieved by the comparison of results presented in the
report. For example, Fig. 3.47 shows the amount of deviation in the
probability of exceedance of a low-frequency surge motion from
Gaussian, Care should be exercised in using these data, however, as
they are limited. '

The surge periods of a large compliant structure (for example,
catenary anqhored) is very long, of the order of one minute. The
second-order wave forces based on difference frequencies of
component waves excite the structure at its natural frequency giving
rise to large anchor 1loads. On the other hand, a compliant
structure held by taut cables, such as a tension leg platform has a
high frequency natural period in the vertical direction. Second-
order wave forces at the sum frequencies of component waves can
resonate the structure in the vertical direction introducing large
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tendon Tloads which is important consideration for fatigue damage
evaluation. This phenomenon, known as springing Tload, is
proportional to the square of wave amplitude and, thus, has similar
characteristics as the wave drift load. The response probability is
expected to be similar in this case.

The deterministic design wave and the probabilistic short-term
procedures fail to adequately predict consistent maximum responses
in a structure's 1lifetime for which a long-term statistical
distribution method is far mofe appropriate. Wave data for this
method, however, are rather lacking in many sites particularly on a
long term basis. In this case, a so-called ‘1000 year wave scatter
diagram' may be extrapolated by the method presented herein. This
provides a rational and consistent criterion of acceptability in the
form of a uniform chance that a given response level is exceeded in
the lifetime of the structure as opposed to the non-uniformity
present in the first two methods.

For short-term as well as long term prediction, a family of wave
spectra for a specified seastate has been advocated. Since the
shape of the energy density spectrum varies considerably based on
the environmental input, even for a- given energy 1level (or,
equivalently, given significant wave height), this method is more
reliable in predicting extreme responses. For a two-parameter
family, the wave height and the wave period were found to follow
log-normal probability law (for P < 0.99). Since the responses are _
computed for a series of spectra, the upper and lower bounds as well
as standard deviation of short-term responses may be obtained.

For estimating short-term extreme values of the responses for design
consideration, various factors such as operation (or exposure) time,
frequency of encounter with seas, speed (in the case of a ship), and
risk parameter should be considereds In the long-term response
prediction, factors such as seas of various severities, a variety of
wave spectral shapes, various speeds (in case of a moving vehicle),
various headings to waves, and the expected number of cycles of the
response should be included in the prediction routine,
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For non-Gaussian waves, a popular method of obtaining the
distribution function for the time history of waves is to use a
series represe