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1.0 SUMMARY

This report summarizes the development and evaluation ofa pulsed laser wave height sensor

suitable for use orI an underway vessel operating in an elevated seaway. A prototype

measurement system based on an infi-ared wave surface range sensor, coupled with a vertical

accelerometer and pitch and roll sensors was evaluated while the system was mounted on the bow

of the USNS DENEBOLA (SL-7) en route from Bremerhaven, Germany to Savannah, Georgia

during October 1988. Figure 1 shows the sensor and DENEBOLA operating in sea state 4 on

October 23rd.

recommended

Data obtained during this w trial are discussed and provide the foundation for

future work.

The prototype system was evaluated from two points of view: (1) accuracy and reliability of

wave height measurements; and (2) ruggedness/sumivability under elevated sea state conditions.

The issue of wave field contamination from vessel-generated waves was considered analytically

during the initial design phase.

1.1 Measurement Reliability/Accuracv

System performance was evaluated in terms of three major subsystems: (1) the gyro and

pendulum pitch and roll sensors; (2) the vertical acceleration sensor and vertical bow

displacement calculations; and (3) the infrared wave surface range sensor. The pendulum pitch

and roll sensor data were found to contain a significant response to the vertical acceleration of%

the vessel. For larger accelerations, as much as a degree or two was added to the measured

pendulum pitch and roll angles when compared with the more accurate gyro sensor data. T’he

effects of the errors in angle measurements, while not significant for the encountered sea states,

willbe more severe for higher seas (larger vertical accelerations) and may compromise the

calculated wave heights when pitch and roll angles are more extreme.
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Wave Sensor

Figure 1
LENS DENEBOLA

1346 October 23, 1988
7.3 feet Significant Wave Height



The vertical accelerometer and bow displacement calculation algorithm performed well; no

significant errors related to data ~pling, filtering or integration were evident in the computed

bow displacement data.

The infrared laser wave sensor exhibited a response problem under certain sea state conditions.

As discussed in Section 5.3, the signal from this sensor would intermittently “hold” at a constant

value for intervals of a few seconds during conditions of high pitch motion. The onset of these

“data drop outs” occurred shortly after the minimums and maximums of the pitch signal.

Examination of the data indicates that the severity of the drop out problem is depdent on both

the amplitude and period of the pitch motion. A data reconstruction algorithm was developed

that appears to adequately interpolate through the data drop out intervals. By eliminating the

drop outs, the reconstructed time series, associated spectra, and computed statistics are consistent

with visual observations, model data and buoy measurements.

The “Recommendations” section of this report provides suggestions for further evaluation and

possibly limiting the effects of the data drop outs. Such possibilities: include (1) sensor

malfunction under the more extreme sea-states; (2) acquiring “raw” sensor data instead of data

which has been screened by the logic circuitry of the wave gauge; and (3) further investigating

whether the cause of the drop outs is “bow

temporarily mounted away from the bow.

The lack of ground truth information for the

splash” by obtaining data while the sensor is

prototype sea trials precludes a comprehensive

quantitative evaluation of overall performance of the wave height measurement system. In this

regard, the results of the sea trials must be considered somewhat inconclusive, particularly with

respect to t~e ability of the infrared laser to operate in the presence of vessel induced waves or

spray. The data drop outs limit the reliable performance envelope of the prototype. However,

revisions and improvements to the electronic signal rejection logic and data reconstruction

algorithms may overcome these limitations.
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An improved understanding of the drop out phenomena combined with a more rigorous ground

truth experiment will provide a definitive evaluation of the operational utility of the pulsed laser

wave height system for underway measurements.

1.2 System Ru~@ness/Survivability

The prototype system consists of three physically separated groups of components:

1. The wave gauge, vertical accelerometer and pendulum sensors were packaged in

an explosion proof housing mounted at the bow of the DENEBOLA. No damage

occurred to any of these sensors or their mountings during either leg of the

voyage. The system was installed but not operating during the eastward crossing,

and was operating continuously during the westward crossing. Elevated sea

states, including “green water” over the bow, were encountered during the

eastward crossing. Sea states were milder during the westward crossing.

2. The gyro-type angle sensors were installed in the wheel house. No problems were

experienced by these sensors throughout the sea trials.

3. The data acquisition computer system performed without any major problems.

The system operator’s notes report occasional questionable computer performance,

and a jammed printer ribbon, but these are deemed minor “inconveniences” rather

than ruggedness/survivability problems. The uninten-uptable power supply (UPS)

for the computer was not functional during the sea trials. The UPS was stored

in the wheelhouse near an open door during the eastward leg of the voyage and

may have been damaged by exposure to salt air during this time.
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2.0 BACKGROUND

An accurate analysis of full scale ship performance is dependent upon a reliable measure of the

encountered seaway. Researchers have repeatedly been frustrated by the lack of a reliable and

accurate sensor suitable for underway m~surements. As part of the SL-7 and the STEWART

J. CORT research programs, the Ship Structure Committee (SSC) and the US Coast Guard have

evaluated a variety of shipboard wave height sensors. Based upon the results of these

evaluations, Dalzell (Ref 1, 2) concluded that neither the Tucker pressure meter nor the OWHS

radar system were suikible for reliable measurements in an elevated seaway. The

recommendations presented in SSC Report #313 (Ref 3) indicated that the development of an

improved shipboard wave height measurement system was critical to future full scale vessel

research. Subsequently, the NNtRC (Ref 4) analyzed the system requirements and application

of a pulsed laser for underway measurements. The results of the NMRC work provided the

impetus and direction for the current shipboard wave height sensor development program.

A variety of problems have been encountered with previous shipboard wave measurement

systems. The Tucker wave meter has been used relatively successfully on stationary weather

ships; however, because of non-linearities related to vessel speed, it is not suitable for underway

measurements. Narrow beam radar altimeters have suffered structural damage when mounted

orI exposed bow locations. Moving the sensor to more protected locations compounds the

problem of removing the ship motion effects. Also, radar, microwave and sonic sensors are

relatively wide aperture sensors that loose definition of the individual encountered wave shape.

Previous investigators also reported considerable difficulty eliminating noise and drift errors from

the double integration of accelerometer data used to compensate for vessel motions.

3.0 PROGRAM OVERVIEW

The objective of this program was to develop, test and evaluate a pulsed laser wave height

system suitable for installation on the bow of an ocean-going vessel. The program consisted of

two phases as shown below:
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PHASE I

o Analyze Sources of Error

o Simulate System Performance

o Br=dboard System

o Br=dboard Sea Trial

o Develop Prototype Design

PHASE II

o Prototypes System Development

o Ocean Test

o Data Analysis

3.1 Phase I

The Phase I objectives were satisfied through a combination of analytical studies, computer

simulations and breadboard experiment. The primary issues considered during Phase I were the

effect of wave contamination, laser inclination, sensor stabilization and accelerometer integration

errors. The results of these investigations were used to configure a breadboard system

demonstration and refine the prototype system design. A complete discussion of the Phase I,

work is presented in the SAIC Phase I report (Ref 5). The significant conclusions derived from

Phase I are summarized below.

o Wave contamination is a potential problem for any shipboard sensor. At elevated

sea states, vessel generated waves may reduce the measurement accuracy.

o Based upon breadboard experiments, the pulsd laser sensor should operate

satisfactorily at inclinations up to 15 degrees from vertical.
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o For the vessel motions typical of the SL-7 in sea states s 7 a gimbaled sensor

platform is not required.

o The acceleration should be sampled at z 16 Hz and digitally integratd to

minimize integration errors and presene phase coherence.

The ptototype wave measurement system design developed during Phase I was built and tested

during Phase II. The system includes a pulsed laser wave height sensor combined with

appropriate vessel motion sensors and anal time computer data acquisition and display system.

An EMI pulsed laser wave height sensor mounted in a ruggwiized explosion proof housing was

selected for the prototyp. This sensor has been successfully used on fixed offshore platforms

since 1982. Selecting an existing and proven sensor sub-system minimized the development

effort required to validate the application of infrared laser technology to the shipboard wave

measurement requirement.

Upon completion of laboratory testing, the prototype system was installed cm the bow of the

USNS DENEBOLA (Figure 2) for test and evaluation during the October 1988 Atlantic

Crossings. The ruggedness of the wave sensor and installation were verified on the east bound

crossing when “green water” was taken over the bow. Data acquisition was successfully

conducted during the west bound trip.

Approximately 60 wave measurement data sets were acquired during the voyage from

Bremerhaven, Germany to Savannah, Georgia. Each data set included measurements of wave

height along with vessel motions. Visual observations of wind and wave conditions were also

recorded. Measured ground truth data was limited to a NOAA weather buoy locatd

approximately 250 miles east of Charleston, SC.
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Data obtained during the October sea-trials from the underway wave measurement system has

been analyzed relative to sub-system performance and overall wave measurement capability.

Because of the limited ground truth, and relatively mild conditions, the sea trial results are not

totally conclusive. As anticipated, wave spray adversely effect the laser beam. Data drop outs

from spray or excessive sensor inclinations are partially overcome with an adaptive data recovery

algorithm. The processed data with or without occasional drop outs compares favorably with

the observed wave conditions.

With additional work to minimize data dropouts and/or adaptively interpret between good data,

the pulsed infrared laser will provide a robust sensor for underway wave measurements in an

elevated seaway. The following sections of this report discuss the prototype wave measuring

system and the results of the October 1988 sea trials.

4.0 PROTOTYPE SYSTEM

The initial proof-of-concept “br~dboard” system design was tested in the Santa Barbara channel

as described in the SAIC “Phase I Report, Shipboard Wave Height Sensor” (T&f5). The Phase

I Report summarized the objectives and environment considerations for the system, and described

the breadboard system used to test the sensor and prmessing components of the to-be-built

prototype system. The results of the breadboard system trial were judged encouraging, within

the limitations of the low sea state in effect when the test was conducted.

The prototype system bl~k diagram is presented in Figure 3. This system can be divided into

four major subsystems: (1) a sensor subsystem containing the EMI infrared laser wave surface

range sensor, vertical accelerometer, and pendulum-type pitch and roll sensors; (2) separately

positioned gyro-type pitch and roll sensors; (3) an analog-to-digital conversion subsystem; and

(4) a PC/AT compatible computer system with attached monochrome display and hardcopy

printer. These subsystems are described in the following sections.
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4.1 Bow Mounted Sensors

Figure 4 shows the EMI wave gauge sensor assembly. The pitch/roll vertical accelerometer and

pendulum sensors were mounted inside the wave sensor an explosion proof steel housing. The

explosion proof housing was bolted to a steel mounting tray and the mounting tray was bolted

to a steel housing “box”. At installation, the housing box was welded to the bow plate of the

USNS DENEBOLA. The downward look angle of the wave sensor was variable by adjustment

of the bolts fastening the mounting tray to the housing box. The initial angle was set at 12

degrees and was not changed during the sea trials. The USNS DENEBOLA geometry

installation is shown in Figure 5.

A waterproof cable provided power to the EMI wave sensor and vertical accelerometer from DC

power supplies in the wheelhouse, and returned the sensor signals to the A/D conversion system

mounted on the backplane of the computer.

4.2 Gyro Pitch/Roll Sensors

The gyro pitch/roll sensors were mounted in the wheelhouse

signals from these sensors were cabled to the A/D converter.

4.3 A/D Conversion Svstem

in a vibration damped housing;

The analog sensor signals were converted to digital form by a 12 bit A/D converter mounted on

the backplane of the computer. Signal conversions were rapidly clocked and multiplexed by the

A/D subsystem so that inter-channel timing skew was minimized. The interval between A/D

scans was set to an operator-determind sample rate controlled by a software timing loop in the

data acquisition program. Scan intervals of 8 and 16 Hz were used during the sea trials.
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4.4 ComDuter Svstem and Software

The real time sensor data acquired by the A/D conversion system was processed by a computer

program running on the Everex 1700 PC/AT compatible computer system. This computer has

dual clock frequency capability, switchable to 8 or 12 MHz. The 12 MHz setting was used

during the sea trials.

The overall logic of the real time processing program is shown in Figure 6. As shown by this

figure, the processing sequence consisted of several steps: (1) A/D conversion and scaling to

physical units; (2) correction of measured acceleration and wave surface range to the vertical;

(3) double integration of the corrected acceleration to calculate bow displacement; (4) decimation

from the 8 or 16 Hz sample frequency to the 2 Hz processing frequency; (5) wave height com-

putation (wave range less bow elevation); (6) statistics computation (rein, max, mean, RMS, zero

crossing period and max peak-to-peak cycle); and (6) data display (raw time series, processed

time series, spectra, and statistics time histories). Appendix A lists the processing modules

which perform the functions described above and details the double integration/filtering scheme

(’TRANSFORM’ flowchart) used to compute bow displacement from vertical acceleration.

In addition to the real time processing and display sequence list&l above, at the operator’s

discretion both raw and/or processed data could be stored on the hard disc for subsequent re-

processing. A tabulation of data recorded during the October 1988 sea trials is found in

Appendix B; this appendix also describes the format of the data records.

5.0 PERFORMANCE EVALUATION

This section of the report discusses the performance of the prototype wave height measurement

system in terms of the three major subsystems: the angular position subsystems; the have

measurement subsystem; and the wave surface range measurement subsystem. The overall

performance of the system in terms of the accuracy and reliability of the under way wave height

measurementsk discussedinparagraph5.4.
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The data discussed in this section were obtained over the time period from 19-25 October, 1988

the USNS DENEBOLA (SL-’7), was en route from Bremerhaven, Germany to Savannah,

Georgia, crossing the Atlantic at a heading of about 230-265 degrees at speeds ranging from

under 10 knots to over 20 knots. Over 60 data files containing the raw sensor data were

recorded during the sea trials. Each fde contains the unprocessed output of the A/D converter

for the pendulum and gym pitch and roll sensors, the vertical accelerometer, and the EMI wave

gauge. These files are listed in Appendix B. A representative sample of the w trial data,

covering the range of pitch, roll, acceleration, and wave height measurements was reviewed

while preparing this section of the report. Selected records were re-processed from the recorded

raw data using a modified version of the real time software. As discussed below, the

modifications included: (1) a geometric correction for the tilt of the laser/accelerometer sensor;

and (2) an algorithm to detect “data drop-outs” in the wave gauge signal and to estimate the true

wave surface range during periods of missing range data.

5.1 Angle Measurement Subsvstem Performance

Pitch and roll angles were measured by two subsystems: (1) a gyro vertical reference unit

mounted in the wheel house; and (2) pendulum-type sensors mounted at the bow the EMI wave

gauge housing. Comparison time series and spectra are included for these two sensors at several

pitch and roll magnitudes, representative of the range of values encountered during the sea

trials.

The data presented in Table 1 and in Figures 7 through 11, summarizes the gyro/pendulum

sensor comparisons. Table 1 is a tabulation of the roll and pitch amplitudes and periods for five

data records. In Figures 7 through 11, a 128 second time series of the corresponding data is

plotted along with the associated frequency spectra (Hz).

Page 16



TABLE 1
CrYRO/PENDULUM PITCH ROLL SENSOR COMPARISON

RMS Double Significant
Amplitude Period Data File ID Reference Data

Sensor (degrees) (seconds) Plots

Roll gyro 0.6 15.7
Roll penal 0.6 4*7 131800
Pitch gyro 0.2 10.2 10/25/88 Figure 7
Pitch penal 0.1 3.9 13:21:51
Bow accel <0.05 g 7.2

Roll gyro 4.0 19.7
Roll penal 4.2 18.5 16220
Pitch gyro 0.5 16.0 10/23/88 Figure 8
Pitch penal 0.4 7.9 16:22:34
Bow accel 0.05 g 10.5

Roll gyro 1.5 15.3
Roll penal 3.4 9.3 083801
Pitch gyro 0.7 8.1 10/20/88 Figure 9
Pitch penal 1.4 7.1 14:54:47
Bow accel 0.15 g 7.4

Roll gyro 2.3 15.6
Roll penal 4.3 8.5 @16Hzo
Pitch gyro 1.1 8.0 10/20/88 Figure 10
Pitch penal 2.3 7.1 14:54:47
Bow accel 0.25 g 7.4

Roll gyro 1.3 15.5
Roll penal 2.6 8.8 17550
Pitch gyro 1.4 9.3 10/19/88 Figure 11
Pitch penal 2.1 8.3 17:55:31
Bow accel 0.20 g 8.3
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As shown by this table and Figures 7 through 11, there are several differences between the gyro

and pendulum sensor data:

1. For pitch angles above about 1 degree, both the pitch and roll pendulum RMS

double amplitudes are higher (by nearly a factor of two) than the gyro amplitudes.

2. The pendulum sensor data (especially roll) generally contains more high frequency

energy (and thus has lower significant periods) than does the gyro data.

The presented data indicate that the pendulum sensors were responding to translational

accelerations as well as the angular vessel attitude. The pitch spectra for both the gyro and

pendulum sensors have “shapes” that are similar to each other as well as to the acceleration

spectrum; spectral peaks among these sensors are well aligned on the frequency axis. Spectral

power, however, is significantly higher for the pendulum sensor, which also tends to have

somewhat more energy at higher frequencies. The additional energy in the pendulum spectrum

appears to be due to the vertical (heave) acceleration which adds energy at essentially the same

frequencies as the true pitch spectrum.

The data for the pendulum roll sensor clearly shows the vertical acceleration coupling.

Comparison of the gyro roll, pendulum roll and acceleration sensor spectra shows that the

acceleration energy has, in effect, been “added” to the pendulum roll spectrum. The higher

frequency content of the acceleration-induced “roll” results in the much lower significant periods

of the pendulum roll versus the more accurate gyro roll. The data in Figure 10 show this effect

particularly clearly. The comparison of measured data demonstrates that the gyro sensors

measure the angular attitude of the vessel more accurately than do the pendulum sensors even

at relatively low accelerations.
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Figures 12 and 13 show the corrected wave heights, vertical acceleration and vertical bow

displacement obtained using the pendulum angles and gyro angles respectively for geometric

correction. These figures include a 256 second time series and the corresponding spectra for

each parameter. For the low range of pitch and roll values encountered during the sea trials, the

differences are small. However, for higher sea states with correspondingly higher accelerations

and larger pitch and roll angle errors, the gyro sensors are clearly preferable.

5.2 Vertical Acceleration Sensor Subsvstem Performance

Vertical acceleration was measured by a Schaevitz Vertical Accelerometer.

displacement was computed from the vertical acceleration and gyro pitch

described below:

The vertical bow

and roll data as

1. Compute the true vertical component (AU)of the measured vertical acceleration

(AJ

define: rl= sin6cos ycosp+sinasinp

where: 6=

r2 = -sin 6 cos Y sin p + sin 6 cos p

ql = -cos y cos 6 sin (3

q2= rl(cos Osin@)

q3 = r2 (COS6 cos @)

vertical dip angle (from horizontal) = 78.0

sensor azimuth (from forward) = 0.0 deg

transverse tilt (from horizontal) = 4.1 deg

pitch angle (positive when bow is up)

roll angle (positive when starboard side is down)

then: AU = AZ (ql + q2 + q3)
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2. Remove the trend from the time series.

3. Band pass filter the series in the frequency domain by applying a rectangular

window (perfect filter) to the FFT

1 for frequency (f) between fl and

the data presented in this report, fl

coefficients. The window (W) has W(f) =

f2; W(f) = O for all other frequencies. For

=2 Hzandf2=30Hz.

4. Inverse-FFT the faltered FFT back to the time domain; then integrate the filtered

series using trapezoidal integration to’compute the velocity time series.

5. Repeat steps (2) through (4) on the velocity data; compute the vertical bow

displacement time series = g * (integrated velocity), where g = gravity

acceleration.

The acceleration measurement and vertical bow displacement computation functioned well for

the sea trial data. Integration accuracy on the order of 1 or 2 percent was obtained using

calibrated inputs at the frequencies of interest. Additionally, comparison of the acceleration time

series and bow displacement time series as illustrated in Figure 13 shows the expected phase

reversal but similar shape of the two traces with no indication of integration artifacts such as

excessive low frequency modulation or drift. Finally, using the acceleration significant periods

from the acceleration spectrum plots and the amplitudes on the time series plots, the amplitudes

on the bow displacement plots are found to be in good agreement with the expected values

derived from the approximation:

bow displacement = 1/2 g (acceleration) (period/4)2

5.3 Wave Surface Ran~e Sensor Performance Evaluation

The slant distance range to the wave surface was measured by an EMI infmed wave gauge.

This sensor measures the time for an infrared light pulse to be reflected from the sea surface
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back to the sensor. By transmitting a series of pulses, a continuous measure of the distance to

the wave surface is obtained. Electronic falters and signal processing circuits integral to the EMI

sensor minimizes the effect of spurious reflections from sunlight, rain and spray (Ref 6). l%e

optical system consists of a concentric transmitter/receiver and the transmitting lens collimates

the emitted radiation to a 0.6 degree beam width. At a range of 75 feet this results in a 1 ft

diameter illumination spot.

The EMI laser sensor operated without problem during the w trial. On the eastward crossing,

it survived “green water” submersion and the associatwl wave impact loads, thus demonstrating

its robustness. However, many of the EMI wave gauge data records contain periods of what are

termed “data drop outs” - periods of 1 to 3 seconds when the wave surface range values reported

by the sensor remain essentially constant. These data drop outs distort both the raw range data

statistics as well as the encountered wave height spectra and statistics.

Three questions relative to the wave range data are discussed below:

1.

2.

3.

What is the envelope of pitch conditions within which the EMI sensor data is

acceptable or recoverable?

What is the result of the distorted wave surface range time series on the calculated

wave height spectrum and statistics?

Can the distorted data be sufficiently recovered to provide usable wave height

information?

To answer these questions, approximately 20 percent of the data records, representing the full

range of sea states encountered during the ~ trials, were re-processed to: (1) compute drop out

statistics as a basis for comparison; (2) relate sea state conditions to drop out severity; and (3)

evaluate the effectiveness of algorithms which attempt to reconstruct the wave range data during

drop outs.
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5.3.1 Data Drop Out Detection Algorithm

Referring to Figure 14, the wave surface slant range data record is scanned and each point is

compared with the preceding point. If the difference in values is less than a preset limit

(currently 0.5 feet), a “sequential flat point” counter is incremented. If the counter reaches one

second or more, AND the difference between the last “flat” value and the f~st “flat” value is still

less than the point-to-point difference limit (0.5 feet), a potential drop out is flagged in the

algorithm logic. A “true” drop out is detected if the potential drop out is followed within a

preset time by local maximum or minimum of sufficient “height” above or below the drop out.

Details of the drop out detection and range data r&onstruction algorithm are presented in

Appendix C.

This peak detection algorithm is essentially empirical and to some extent arbitrary. It evolved

by means of trial and error in an attempt to duplicate the drop out “detection” performed by eye,

but with a consistent definition which could be applied to all data records. Comparison of the

raw uncorrected EMI wave gauge data against the reconstructed EMI data in Figures 15 through

18 indicates that the algorithm is generally in good agreement with visual judgments. It should

be noted, however, that the quantitative results, in terms of number of drop-outs and drop out

percentage are sensitive to the threshold parameters used by the algorithm. The “drop out

percentage” can vary by 10-20% depending on the choice of threshold values. Nonetheless, the

algorithm was applied consistently to the data presented in this report, and the results are

considered at least qualitatively correct.
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Table 2 and Figure 19 present the results of the drop out analysis of 15 data records

representative of the range of sea state conditions encountered during the sea trials. The data are

presented in two segments: records with pitch periods less than 9.5 seconds; and data with pitch

periods greater than 9.5 seconds. Figures 20 through 27 present the data, in order of increasing

drop out severity, for pitch periods under 9.5 seconds; Figures 28 through 34 present the data

for periods greater than 10 seconds. The wave height time series and spectra in all figures

represent “drop out reconstructed data”. Each of these figures show the raw wave range time

series and spectrum; the “drop out reconstructed” range time series and spectrum; and time

series ~d spectra for gyro pitch, vertical acceleration, bow displacement and wave height.

Figures 35 to 38 present, selected time series and spectra derived from the as-measured (non

“reconstructed”) data. These plots correspond to the plots of reconstructed data presented in

Figures 20, 30, 32 and 38. All angle data used in the processing of the presented data was

measured by the gyro sensors.

Within each segment, the Table 2 data entries are ordered by increasing “drop out percentage”,

defined as the ratio of the number of points in all detected data drop outs compared to the total

number of points (2048) in the data record. The table also lists the number of different data drop

out(#)segments in the record, and the gyro pitch double amplitude and period.

of the data record and the corresponding data figures are included for reference.

The filename

Although there is a fair amount of scatter in the drop out statistics due to the sensitivity to the

threshold used in the algorithm, a qualitative relationship of the drop out severity to the sea state,

specifically to the pitch amplitude and period, is evident. Drop out severity is generally

proportional to pitch amplitude. To a lesser degree, the number of drop outs is also a function

of pitch period. The drop out percentage at lower periods (higher frequency) is relatively greater

than for those same pitch amplitudes at longer periods. Figure 19, based on the data in Table

2, clearly shows this dependence.
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TABLE 2

DROP OUT DETECTION STATISTICS

Filename RMS Pitch
Double Significant Dropouts Reference

Amplitude Pitch # % Figure #
(deg] (seconds)

131800 0.1 10.2 3 2.6 20& 35

16220 0.5 16.0 13 7.6 21

13110 0.4 16.8 4 7.9 22

165800 0.4 14.9 8 8.6 23

17480 0.2 11.7 18 10.2 24

12050 0.8 13.4 17 12.1 25

12590 0.6 16.4 9 14.8 26

17180 0.1 14.6 21 16.6 27

134200 0.3 8.7 9 12.1 28

14030 0.7 8.8 25 20.5 29

083801 0.7 8.1 29 25.7 30& 36

08220 1.0 8.3 21 27.1 31

@16Hzo 1.1 8.0 22 34.1 32 &37

08380 0.8 8.5 38 46.1 33

17550 1.4 9.3 43 56.1 34& 38
I&

Examination of the unprocessed wave range data in Figures 20 through 34 shows that a

qualitative difference exists between the drop outs at lower pitch periods compared with higher

periods: At the lower periods, the wave range data drop outs occur shortly after both pitch

minimums (bow down) as well as pitch maximums (bow up); for the higher periods the data drop

outs occur only after pitch minimums.
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Three possibilities have been considered for the drop out behavior of the EMI sensor: (1)

inffared beam occlusion (absorption or dispersion) by “sheets of water” splashed up when the

bow starts down from its uppermost position, and/or thrown up by the bulbous bow.of the SL-7

when the bow starts to move upward from its lowermost position; (2) rates of change of wave

range greater than the rate of change threshold (20 centimeters in 50 milliseconds or 13.1

feet/second) set within the EMI sensor electronics; and (3) a malfunction in the EMI sensor. Of

the first two possibilities, beam occlusion is considered more likely than range rate threshold

exceedance since even for the most extreme pitch/bow movements, the range rate of change

(average rate over 1/4 of a cycle) is more than a factor of two below the 13.1 feetl second EM

threshold.

The third possibility for the data drop outs must be considered since it can neither be verified

nor ruled out by the data collected during the sea trials. It is possible that the EMI wave surface

range sensor data validity “decision” logic was malfunctioning or mis-calibrated. At last one

experimenter has reported that a malfunctioning EMI wave gauge (also experiencing data drop

outs) was returned to the factory and then performed correctly after factory repair which included

“optics realignment”.

5.3.2 Wave Surface Range Reconstmction Algorithm

In order to assess the impact of the wave range data drop outs on the calculated wave height

spectrum and statistics, an algorithm was devised to “reconstruct” the range data during drop

outs. The details of this algorithm are provided in Appendix C; the basic logic of the

reconstruction process was shown in Figure 14 and outlined below.

Refernng to Figure 14, the drop-out is assumed to occur near the bottom of an upward

(increasing range) portion of a range cycle, or near the top of a downward (decreasing range)

portion of the cycle. The reconstruction algorithm locates the point at the start of the drop out

and the point (local maximum or minimum) at the end of the drop out when it is assumed that

correct data is again being measured. To reconstruct the range data, the points between the start
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and the midpoint of the drop out are computed by lina interpolation between the range value

at the start of the drop out and the range value at the local rninimum/maximum after the drop

out. The points representing the “pak” of the range cycle (i.e., the points betwmn the midpoint

of the drop out and the following local minimum/maximum) are then computed by parabolic

interpolation using the three points at: (1) the start of the drop out; (2) the local

minimum/maximum following the drop out; and (3) the midpoint of the drop out which is

assumed to have the same range value as point (2).

As can be seen by Figures 15 through 18, the reconstruction algorithm appears to perform

qualitatively as expected. Comparing the uncorrected with the reconstructed data, it em be seen

that the reconstructed data has reasonable magnitude and phase relationships with the non-

compromised portions of the range data as well as with the pitch data. Occasionally, the

parabolic interpolation of the peak portion of the range cycle appears too steep, resulting in peak

over or under-shoot. This behavior can easily be remedied, for example, by adding some logic

to the algorithm to limit the difference between the height of the reconstructed “peak” and the

measured following local minimum/maximum.

The non-reconstructed (i.e. as measured) wave surface range data are presented in Figures 35

through 38 for comparison with the corresponding reconstmcted data presented earlier in Figures

20, 30, 32 and 34. The significantly lower wave heights computed using the reconstructed wave

range data are due to several factors:

1. Wave range peaks are missed; spurious large wave heights result when these

missing range peaks are subtracted from the (in-phase) bow displacement values.

2. Since they “hold” the range values at the top and bottom of the wave range

cycles, the drop outs cause the wave range to act as though the waves are out of

phase with the bow motion; in effect the wave heights are added to the bow

displacement when they should be subtracted, and vice-versa.
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3. The drop outs introduce spurious low frequency energy in the wave height

spectrum since this energy is “required” to produce the non-varying portions of

the qge record.

Except for the most severe drop out conditions, the recons~cted range data appear to eliminate

the problems listed above. .In the absence of “ground truth” information, the quantitative

accuracy of the reconstructed data can not be ascertained; however, the results are at least

reasonable and do not at all rule out the use of the reconstructed wave height data when the sa’

state conditions are within the limits cited below.

For some of the most severe drop out conditions, the drop out condition appm to persist for

more than one expected range cycle (see Figure 5 for example). In these cases, the reconstruc-

tion algorithm will not produce a reasonable approximation to the true wave surface range and

usable spectral wave height data may not be recoverai. In a few other cases, the range values

at which the drop outs occurred appear to be inconsistent with the range values of the rest of

the data record (see Figure 34 for example); in these cases rwonable range data also can not

be recovered.

5.4 Overall Performance

Overall performance of the undeway wave measurement system

data drop out reconstruction algorithm would be best evaluatwl

truth information. Unfortunately, with one exception, such

available. The sole exception consists of measured data from

including the application of the

by comparison against ground

information is essentially not

the NOAA data buoys off the

coasts of Georgia and South Carolina. The sea state was low, as the DENEBOLA approached

the US coastline and drop outs were not a severe problem.
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Table 3 compares data from the prototype shipboard wave measurement system with the data

processed by NOAA buoy #41002 located at 32.2 degrees North Latitude, 75.3 degrees West

longitude. On 25 October between about 11:30 and 15:00 hours, the USNS DENEBOLA passed

approximately 120-180 nautical miles to the southeast of the buoy. Although the buoy and

DENEBOLA were relatively distant, analysis of the comparable data recorded at NOAA Buoys

41001 (34.9N, 72.9W) and 41008 (30.7N, 81. lW) indicate relatively uniform wind conditions

and wave heights incrdng from the southwest (#41008) to the northeast (#41001). On this

basis, Buoy #41002 data are believed to be representative but slightly higher than the conditions

at DENEBOLA.

TABLE 3
COMPAFUSON WITH NOAA BUOY #41002 DATA

(BUOY LOCATION: 32.2N, 75.3W)

Denebola * Buoy Data
Time/File Data H(s) T(s) H(s) T(dom) T(avg)
(25-oct) Position (ft) (See) (ft) (See) (See)

11:32 32.2N, 77.4W 5.6 3.4 5.6 6.7 5.1
11300

11:58 32.2N, 77.5w 5.0 3.3 5.6 6.7 5.1
115500

13:21 32.2N, 78. lW 5.2 3.1 6.2 7.1 5.5
131800

14:25 32.2N, 78.6W 4.5 3.6 5.6 7.1 5.1
14250

15:09 32.2N, 78.8W 5.5 3.9 5.2 7.1 5.2
150200

* Denebola data are wave encounter statistics. Vessel was operating at 20 + knots
in head seas during this period.

The USNS DENEBOLA data are “encounter” spectra. For the October 25th records, the

DENEBOLA was traveling at over 20 knots in essentially head seas; thus the encountered wave

period would be lower than that measured by a stationary

motion brings the wave period data into good agreement.
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Additional “ground truth” information was provided in the form of visual observations made by

the sea trial personnel and the comparison of r~orded vessel motions. Although there appears

to be some uncertainty and confusion in the visual observations of wave height, the

measurements of vessel pitch and roll provide individual conflation of the wave data through

compti”son with results from Navy’s ship motion program. A cursory examination of SL-7 pitch

and roll data derived using the SMP84 program, visually observed wave direction information

and the measured wave height shows reasonable agreement to that measurd on the DENEBOLA.

Several of the EMI wave range spectra contain a small component of very low frequency energy.

Since the magnitude of this energy is relatively low, it is most noticeable in spectra obtained

during low sea states. Several sources of this energy are possible, including: (1) drop out

distortion; (2) “imperfect” compensation for bow displacement; and/or (3) bow wake effects.

The net effect of this low frequency energy on the wave height statistics is generally small, and

further evaluation has not been attempted within the scope of this report.

6.0 RECOMMENDATIONS

Based on the results of the October 1988 sea trials, several recommendations are warranted.

These are listed below in order of estimated importance. The first

considered critical prior to additional sea trial efforts.

1. Any future sea trials should include better ground truth

two recommendations are

information; for example,

sailing in close proximity to data buoys. The ground truth information should

also include wave height spectra, if possible.

2. Means should be provided to include visual recording (video camera, etc.) of the

wave field “seen” by the wave range sensor. The visual information should be

time-referenced to the measured data r~ords.
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3. An alternative mounting location for the wave surface range sensor, positioned

away from the bow “splash/spray” area should be considered. The sensor package

should be movable from the bow to this location during the sea trial. It should

be noted that this off-bow position is not intended as an “operational” position but

is instead intended as a temporary location to be used to investigate the effects of

bow spray and waves on data drop out.

4. To resolve the uncertainties relative to the EMI performance during the sea trials,

the gauge should be returned to the manufacturer with the following courses of

action: (1) if the gauge is found to have been malfunctioning, it should be

repaired and new sea trials conducted; and (2) the sensor should be modified to

defeat or bypass the data validity “decision” logic so that unmodified data are sent

to the data acquisition system. This data can then be subsequently analyzed in

order to determine if drop-out

processing algorithms.

5. Future sea trials should use the

severity can be reduced by improving the

gyro angle sensors instead of the pendulum

sensors so that accurate angles are measured under all sea states.

6. A tri-axial accelerometer should be used instead of the single axis vertical

accelerometer used for the USNS DENEBOLA sea trial. The lack of longitudinal

and transverse acceleration data precluded full calculation of the true vertical

acceleration component.

7. In an operational system, the existing A/D subsystem should be replaced by a

system which includes a buffered memory so that data acquisition and processing

can recur in parallel. In the existing system data acquisition and processing were

serialized with resulting time gaps while processing was performed. Such gaps

are not serious if the wave statistics are stationary, but they could compromise

results obtained during transitional conditions.
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8. Operational system software should include a capability to trigger data logging

when a sensor threshold is exceeded so that data of interest is not lost when M

o~rator is not monitoring the system.
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APPENDIX A

A.O DATA ACQUISITION AND PROCESSING SOFTWARE

Three computer programs have been developed in the course of the wave height m~surement
project. These programs are coded in QuickBASIC 4.0 (Microsoft Corporation) and run within
the QuickBASIC environment. Listings of these programs are provided under separate cover.

The three programs consist ofi

1. TEST-2K.BAS: This is the real-time data acquisition and processing program used to
acquire, display and log the sensor data during the - trial. Figure in the main text
contains a flow chart for this program. A more detailed fl~w chart of the
‘TRANSFORM’ module which ~rforms the double integration of acceleration to
compute bow displacement is included in Table A-1. Several subroutine modules are
contained within the code for this program; the function of these routines is described in
A-2.

2. EMINTERP.BAS: This program is a version of the red-time program modified to read
the raw data files stored on the disk by that program. EMINTERP is used to generate
time series plots of raw data sensors and spectral plots of the EMI wave surface range
sensor data records. It should NOT be used to plot any “processed” parameter data. The
float spot reconstruction algorithm describe din the main text and in Appendix C is
included in this program (see ‘INTERP’ subroutine). EMINTERP was used to create the
pitch and EMI sensor time series and the EMI sensor spectrum plots which appear in this
report.

3. TEMP.BAS: This program reads the raw data files stored on the disk by the real-time
program and generates time series plots of raw and/or processed data and spectral plots
of all sensors and parameters EXCEPT the EMI sensor. The flat spot reconstruction
algorithm described in the main text and in Appendix C is included in this program
(’INTERP’ subroutine). TEMP was used to create the parameter time series (pitch,
acceleration, bow displacement and wave height) and spectrum plots which appear in this
report.
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TABLE A-1

TRANSFORM FLOWCHART

!
BOW ACCEL. (lst Pass)

BOW VELOCITY (2ncl Pass)

+

-

INTEGRATE

E
BOW VELOCITY (2nd Pass)

~ BOW DISPLACEMENT (2nd Pass Thr.)
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RECORDED DATA FILES

The format of the data records stored on hte disk by the real time program is given in Table B-1.
See subroutine ‘READBACK’ in the EMINTERP.BAS or TEMP.BAS listing for an example of
BASIC code to read the raw sensor data back from disk.

A tabulation of data records logged during the sea trials is provided in Table B-2. NOTE: the
“UP_LIM” and “LO_LIM” columns of this list indicated the high frequency (UP_LIM = 1
second period) and low frequency (LO_LIM = 10, 20 or 50 second period) limits for faltering
of the acceleration FFT data during the double integration process (see Figure C-l). These
values affect the processed data and spectra in the disk data but have no effect on the raw data
(used for re-processing).
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TABLE B-1
DATA FILE FORMAT (2048 POINT RECOKIM)

HEADER

DATE$ 10CHARKTERS
TIME$ 8CHARM1’~
FR% SAMPLE WTE
MAXCYCLE% MAX NO.OF CYCLES
NIWS% ALWAYS OBUT RECORDS ACXUALLY CONTAJN 2048mJNTS
CYCLE% CURRENT CYCLE NUMBER
LOGFLAG% LOGGING FLAG USED (TYPICALLY4)
LLINP% LOWER FLTR LEVEL
ULINP% UPPERFLTR LEVEL
GAM% G~ ANGLE (TYPICALLYO)
SIG% SIGMA ANGLE (TYPICALLY79DEGREES)

~

A%(LJ) MW DATA. TYPICALLY6X 2K WrEGER WY.
I= SENSOR,J = #~INTS

SENSORS:

I= l...EMIDATA
I= 2...ACCELEROMETER
I= 3...ROLLGYRO DATA
I= 4...PITCHGYRO DATA
I= 5...ROLLPENDULUM DATA
I= 6...PlTCHPENDULUM DATA

KEEP(I,J) PROCESSEDDATA.TYPICALLY6 X DN% REAL ARMY, WHERE DN% = (2K(FR%/2)).
I=PROCESSEDDATA PARAMETER

PMLIMETERs:

I= 1...WAVE HEIGHT
I= 2...BOW DISPLACEMENT(HEAVE)
I= 3...ROLL
I= 4...PlTCH
I= 5...BOWVELOCITY
I= 6...BOWACCELERATION

PSDATA(l,J) POWER SPEC1’THJMDATA. TYPICALLY6X DN% REAL ARMY, WHERE DN% =
(2w(FR%/2)).I= RxvER SPECI-RAPA.RAMIZPER.

PARAMIZI%RS:

I= 1...WAVEHEIGHT
I= 2...BOWDISPL#iCEME~ (HEAVE)
I= 3...ROLL
I= 4...PlTcH
I= 5...BOWVELOCITY
I= 6...BOWACCELERATION
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1

;
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

25-oct
Zs-oct
25-oct
25-oct
2S-OIX
25-oct

25-W
24”oct

24-oct
24-oct
24-oct

24-oct
24-oct
24-oct
24-oct
24-oct
24-oct
24-oct
23-oct
23-oct
23-oct
23-oct
23-oct
23-oct
23”oct
23-oct
23-oct
22-oct
22-oct
22-oct
22-oct
22”oct
22-oct
22-oct
22-oct
22-oct

15:09.02
15:5230
1425:58
13:21:51
11:5830
1253:01

11:3240
2001:28

174&26
183735
191638

165703
144s:53
15:3926
161329
13:4443
11:1651
1203:27
20KKk39
1%03:47
1145:50
l&24S4
1903:58
lfi2234
1435:08
15:1419
13:4902
201645
191432
182409
lkOT32
1259.24
13:31:54
140414
ll:3&’44
lQ30.46

150200
1s0201
14250

131800
1155(K)
115501

113000

20010

17480
174801
174802

165XXI
14450

144501
144502
134200

11160
111601

2CKK)0
165800
165801
165802
165803
16220
14350

143501
134m

2013(K)
19140
test60
test50
12590

125901
125902

93500
10300

8

:
16
16
16
16
8
8
&
8
8
8
8
8

16
8
8
8
8
8
8
8
8
8
8
8

16
8

16
16
8
8
8

16
8

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

20
20
20
50
10
10 ‘
20
20
50
50
so
20
50
50
50
50
50
so
20
50
50
50
50
20
20
20
20
20
20
25
25
20
20
20
20
20

B-3



37
38

39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

“ 63
64

21-oct
Z1-oct
21-oct
21”oct
21-oct
21-oct
21-oct
21-oct
21”oct
21~oct
20-c)ct

20-oct
20-oct
20-oct
m-oct
19-oct
19-oct
19-oct
19-oct
19-oct
19-oct
19-oct
18-Ott
18-oct
18-Ott
20-oct
20-oct
21-oct

19184$
lTla20
175?36
182956
141420
125429
13:2649
1205:20
11:4953
094032
l&27s6

1403:55
103744
o&3&ol
05!15:10
1755;31
lCk1440
104701
11:1921
11:51:41
0&2252
Wk55:12
11:51:06
1(WW27
0$k4236
145447
15:3459
l(k3fi12

19180
17180

171801
171802

14140
12540

125401
12050
test40

18270

14030
10370

8380
83801
17550
10140

101401
101402
101403

8220
82201
11510

81(X130
189400

(@16hz0
@16hzl

video

8
8
8
8
8
8
8
8
8
8
8

8
8

8
8
8
8
8
8
8
8
8
8
4
8
16
16
32

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

“xl
20
20
20
20
20
20
20
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APPENDIX C

FLAT SPOT DETECTION/RECONSTRUCTION ALGORITHM

Refer to the main text (Sections 5. X.X and X.X.X) for a qualitative description of this
algorithm. Figure C-1 presents the detailed logic flow.
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In 1988 a full scale laser wave probe was developed and installed on an SL-7
containership. The probe was mounted on the bow and looked forward at an angle of 120
fo~ard of the vertical. The purpose of the probe was to measure the incident wave
amplitude. This was accomplished by subtracting from the absolute amplitude measured
by the probe the relevant ship motions. No corrections were made for the steady wave
system or the unsteady radiated and diffracted waves. After reviewing the results,
questions arose as to possible contamination by the steady and unsteady ship generated
waves in front of the bow. To begin to investigate these questions, model tests were
conducted in the Ship Hydrodynamics Laboratory using an existing model of the SL-7 and
a small test matrix.

The experimentswere des@ed forhead seas only with the model free to surge,
heave, and pitch. Wave amplitudes were measured in front of the model and off to one
side.

THE MODEL

An existing 1:80 scale model of an SL-7 class container ship was used for these
tests. The model was rigged with a pitch gimbal located at the LCG (2.76% aft of
midship). The model lines are shown in Figures 1 and 2. The model was ballasted to the
scale 30 foot draft and the pitch radius of gyration was adjusted to 0.251 L.

The model was tested

THE TEST SET-UP

free to surge using the Heave-Pitch-Surge (HPS)
dvnarnometer. The mmose of these tests was to measure the incident waves-at a point
c~osetothebow of the model simulating the laser footprint in the full scale tests. In &der
to maintain the relative position of the model and wave probe, measurements had to be
made in the mtiel reference frame. This requirement was met by installing a boom on the
lightweight carriage of the HPS dynamometer which would hold a capacitance wire wave

,, probe at the point in front of the model where the laser hit the smooth water line in the full
scale experiment. A sketch of this set-up is given in Figure 3.

A second wave probe was located on the towing carriage 6 feet off the model
centerline. This prolx was located directly almm of the mean position (with respect to
surge) of the dynamometer mounted wave prolx.

The HPS dynamometer allows the model freedom to both surge and drift.
Obviously, if the model drifts during the test, the desired speed through the water is not
achieved and the positional relationship ktween the wave probes is lost as well. Several
runs were made to determine the correct force settings to eliminate the drift while allowing
surge freedom.
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MODEL TESTS

The model was first run in regular head seas at speeds of 1.0 and 3.965 ftis
(corresponding to 5.30 and 21.00 knots full scale) for a range of l/L’s from 0.5- 1.4 at
two constant wave heights of 0.75 inches and 1.50 inches (5.0’ and 10.0’ full scale). The
waves were measured at a point 5.81 inches forward of the F.P. on the vessel centerline
and at the second probe 6 feet off center to starboard. Testing was also done in one
random sea spectra (7 time histories) at the 3.965 ftis speed. fie two
spectrum was used with full scale Hl~=l 1.32 feet and T1=9.7 seconds:

ITTc spectrum:

4

S(co)= + e-B’w

0)

A = 173 (Hi/3)2 f114

B = 691f114

where:

parameter ITT’C

During the initial testing we experienced a major mechanical failure on our
wavemaker (one ball nut blew out, destroying the ball screw it was riding on). The
replacement parts had a seven month delivery time causing us to miss the test window.

After the new ballscrews were installed, the wavemaker was recalibrated and a
check of the transverse wave shape was performed at midtank (150 feet from the
wavema.ker) with prolxs located at tank centerline, 6 feet off, and 10 feet off center. Plots
of wave height versus wave length for all three lwations is given in Figures 4 a and b.

The wave protxs were calibrated dynamically with fomard speed. Plots of these
calibrations are given in Figures 5 a and b.

The results of the cross tank and fonvard speed dynamic calibrations did show that
the data from the model would need comction for both position and speed.

With the wavemaker repaired and pro~s ready, the test matrix was completed The
3.965 ftis data showed excellent agreement with the data taken before the wavemaker
failed, however the 1 ft/s data seemed inconsistmm Calculation showed that this speed was
below the group velocity of the hull transversely generatedheflected waves which meant -
that the low speed data was contaminated due to wall reflections.

We determined that a model forward speed of 2.2 ftis (11.65 knots full scale)
would assure contamination free results at all W’s. The regular wave test matrix was then
rerun at 2.2 ft/s and the 1 ft/s data discarded.
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The data was acquired and analyzed using Tektronix 4052 computers with software
which allows processing of signals in both time and flequency domains. The data samples
were 1024 points typically scanned at a rate of 25 Hz. The input signal was digitally
filtered with a cut-off frequency of 6.4 Hz. This allows good reconsauction of signals of
less than 2 Hz which are typically found in seakeeping model tests. Time and frequency
domain results were both used in the analysis of the data with comparisons also being made
of the fmt harmonics in the frequency domain. The results show good agreement between
domains.

RJWJJ .TS

The final data is presented in graphic form in terms of wave height ratios (near

heightifar height) versus both W and frequency of encounter (regular waves only). All
regular wave data has been comected for forward speed effects and transverse location. It
can k seen from the graphs that the height of the waves in the near field is effected by the
presence of the hull. In most cases the near field wave amplitude is less than the far field
amplitude. At 2.2 ftis in the small waves there is a near field attenuation from 25% at the
lower frequencies of encounter (4.5 rad/s) decreasing to about 10% at the higher
frequencies (8.6 rad/s). For this speed in the large waves the attenuation is humped with
12% at 4.5 rad/s, 1-2% attenuation at 6 rad/s, and 12% 8.6 rad/s. For the 3.965 ft/s
fomard speed and small wave amplitudes there is about 12% attenuation at 5.2 rad/s, O%
at 7.5 rad/s, plus 870 at 9.5 rad/s, and plus 2% at 10.6 rad/s. For the large waves at this
speed, the cume again has a hump with 8% attenuation at 5.2 radh, plus 1~0 at 7 rad/s,
going back to an attenuation of 6% at 10.5 rad/$. Plots of the regular wave data comected
for both forward speed and tank lmation are given in Figures 6 through 13.

The results of these tests show distinctly different shapes &tween the small and
large wave graphs at both speeds. The height ratios for small waves increase with
increasing frequency of encounter while the large wave ratios show a distinct hump just
below the middle of the frequency of encounter range. This is clearly shown for the 2.2
ftis speed comparing Figures 7 and 9 and for the 3.965 ftis speed comparing Figures 11
and 13. In a linear system the wave amplitude ratios should be independent of incident -
wave amplitude. The fact that they are not indicates the presence of nonlinear behavior. To
properly quantify the nonlinearities, many more incident wave amplitudes would have to &
investigated. As shown in Figures 6-13 some repeat runs were made. At 3.965 ftis and
large incident wave amplitude, the tests were run twice for each w. These results indicate
that absolute repeatability on any given mn was in the range of M%. Random repeat
points for the other conditions were also within this band. Since the differences between
the large and small incident waves is greater than the repeatability band, the nonlinear
behavior is probably real and not due to experimental emor.

The causes of the nonlinear behavior are not known but may be related to a
hydraulic jump-like wave visually obsewed in front on the model during the test runs.
This jump-like wave may also have an influence on the full scale laser measurements.
When the model pitched up a small hydraulic jump-like wave was propagated fomard
towards the wave probe wire. This small wavelet never appeared to reach the probe and
moved back towards the bow on the down pitch. The small wavelet is probably caused by
the proximi~ of the bulb to the free smface on the up pitch. The small wavelet came within
one inch of the wave probe wire but may have had an influence which was not visible.
Since small waves are very subject to scale effects, it is not known whether or not the wave
would reach the laser footprint in full scale.
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In the random sea the model was run only at the 3.965 ftis foward speed and only
one sea state was tested. The transverse correction is wave length dependent and we did
not consider it practical to correct the mndom ~ data for transverse position, however, the
fomard speed correction was applied. The final data plot for the random sea testis given
as a ratioof near to farmean and significant wave height(corrected for foward speed)

veins time histoty number and is given in Figure 14. There is some variationin the

attenuationamong thetime histories which is to IX expected due to the random natureof the

process. The attenuationranges from 1.1096 and does not appear to favor either the ratio
of manor significmt heights.

CONCLUSIONS

The wave heights measured at the laser footprint are affscted by the presence of the
hull. Over most of the frequency range in the regular wave tests, the n~r field waves are
attenuated due to the presence of the ship. Typical attenuation is less than 10%. The
irregular wave tests also show an attenuation in the range of 5- 10% on significant wave
height.

It appears that this attenuation is somewhat wave amplitude dependent. At both the
high and low speeds the near field/far field ratios change slightly for the small or large
wave amplitudes with the small waves generally showing more attenuation than the large
incident waves. Since the nonlin~ritim are small, more testing must be done varying wave
amplitude and more repeatabilityy runs are required to detemnine precisely the nature of the
variation with the incident wave.
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Figure 4a
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Figure 5a

Forward Speed: 2.2 ft/s

2
0
k

2.4-

2.2

2,0

1.8 Actual height 2.0 inches

1.6

1.4
1

1.2 > Actual height 1.50 inches

1.o-

0.8-

0.6

0.4 % Actual height 0.75 inches

0.2

0.6 0.8 1.0 1.2 1.4

Frequency (Hz)

Figure 5b

Forward Speed: 3.965 ftls

0.8 1.0 1.2 1.4 1.6 1.8

Frequency (Hz)

D-9



:

Figure 6
2.2 ft/s with Small Waves
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Figure 8
2.2 WS with Large Waves
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3.965 ft/s with Small Waves
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Figure 13
3.965 ft/s with Large Waves
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Figure 14
3.965 ft/s in Random Seas
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