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CRACK ARREST TOUGHNESS OF STEEL WELDMENTS

Both small scale compact crack arrest (CCA) tests and large scale tests were performed to
evaluate crack arrest toughness in laboratory specimens and in structural situations, respectively.
The objective was to evaluate the application of crack arrest toughness determined in the
laboratory type specimen to a structural situation,

For a modern low carbon and low sulfur clean control rofled ship plate (ABS DH36), the full
thickness (20 mm) crack arrest toughness in the L-T orientation (Ka) exceeded 173 MPavm at
test temperatures just above the NDTT. Since the crack bifurcated at approximately 45° angles to
the L-T orientation, it suggests a lower crack arrest toughmess in that plane and possibly in the T-
1. orientation. For a multi-pass FCAW butt weld made normal to the rolling direction, Ka was 80
to 100 MPa/m in the temperature range 0° to 10°C, and greater than 172 MPavm at 10° C. A
major effort was employed in selecting crack starters for this full thickness specimen geomelry,
and guidelines in this regard were reported at an ASTM meeting. In large scale tests, cracks
initiated in the starter section either stopped before entering the main plate or deviated from the
intended crack path (butt weld). Thus, the selected successful crack starting procedure in the
crack starter tests in isolation, and supporting FEA, did not lead to straight running cracks in the
main plate. Additional small scale testing is required, both in the base metal and weld metal,
before planning a program on frther large scale tests.

R.C.NORTH
Rear Admiral, U. 8. Coast Guard
Chairman, Ship Structure Commiitee
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PREAMBLE

The body of the report is presented in two parts: Part | — Compact Crack Arrest Tests (Small
Scale Tests) comprises the work done at Fleet Technology Limited and Part || — Large Scale Tests
contains the findings of large scale tests done at Carleton University. Outlined below iswhat was
done, why and what happened as a resullt.

Measuring Crack Arrest Toughness

Tests that have been devel oped to measure crack arrest toughness can be divided into two
categories, small scale tests and large scaletests. In this program, the following selections were
made for the two types of tests.

» Compact Crack Arrest (CCA) Tests - Small Scale Tests

Given the relative high toughness of modern marine construction steels, it was anticipated that
valid crack arrest toughness data would not be obtainable using the ASTM E1221-96 procedure,
which requires plane strain conditions. Therefore, the procedure for non-plane strain crack arrest
testing proposed by Crosley and Ripling, that has some of the features of the E1221 method, was
selected.

It isimportant to note that historically, the success rate in obtaining valid crack arrest toughness
in these small scaletests has been low. The main difficulty isthe scatter in the crack initiation
stressintensity factor and its control in relation to the crack arrest toughness being measured.
Thus, asignificant proportion of the total project effort was employed in thistask. The test
materials were a DH 36 grade steel manufactured by controlled rolling practice and aweld metal
deposited using E71T-1 flux cored arc welding wire.

» Large Scale Tests

The specimen design was to simulate a short crack arrest event in a structural situation with
minimum effect of the stress wave reflections. Specimen selection was made following areview
of the literature and previous experience from an FTL/WIC effort. An outline of the various
types of testsis presented in Part 11 of the report. The double tension tests, under isothermal
conditions, provide the best way of obtaining crack arrest toughness measurement in a structural
situation. A short crack in an embrittled zone will encounter tougher test material in this design.
The crack isinitiated in a separately loaded starter plate with little influence on the main plate
load.

Itisarisky test, from the point of view of obtaining crack arrest toughness. Thisisbecauseitis
usually a‘go’ —‘no go’ test as the crack runsinto an increasing stress intensity factor (K) region.
By comparison in the CCA test, the crack runsinto adecreasing K field and thus the possibility
of arrest isenhanced. The determination of crack arrest toughnessin CCA testsis based on the
arrested crack length, whereas for example, in the large scale tests with temperature gradient, the
change in temperature becomes a variable as well and thereisless control of K at crack arrest.
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The latter approach of gradient test, leads to difficulty in designing atest matrix, where the
objective was to demonstrate that the crack arrest toughness determined by the CCA test can be
used to predict arrest/propagation in a structural situation.

Findings

>

1)

2)

3)

4)

5)

CCA Results

It was not possible to produce amode | brittle crack run and arrest event in the CCA
specimens at test temperatures of interest, i.e., above the NDTT, for the base material in the
L-T orientation. When sufficient driving forceis applied, theinitiated crack stops soon after
entering the base metal, or bifurcates, at approximately 45° anglesto the L-T orientation.
Inference is that the mode | crack arrest toughness of the DH 36 plate in the L-T orientation
exceeds 173 MPaQOm, the design capacity/limit of the small scale specimen.

The weld metal crack arrest toughness was 80 to 100 MPaOm in the temperature range O to
-10°C, and greater than 172 MPaOm at 10°C. Thiswas an unexpectedly largeincreasein
arrest toughness at 10°C that could not be inferred from standard Charpy or dynamic tear
(DT) tests conducted on the weld metal (Part 1). This behaviour indicates that crack arrest in
the weld metal could be dominated by the tougher regions of this heterogeneous material,
whereasit is known that the initiation toughness is controlled by the lowest toughness region
sampled by the crack front.

Results from instrumentation of the specimens gave average crack speeds in the range 700 to
900 ms™.

Assessment of the various crack starters. A major effort was expended on this task, asit was
acritical factor in increasing the success rate. The resultsindicated the importance of
matching the starter initiation toughness to the crack arrest toughness of the test material. As
the crack extends into adecreasing K field the starter initiation toughness needs to be greater
than the crack arrest toughness. For a successful test, tougher materials require larger
specimens and higher stored energy before crack initiation, and the crack starter should be
ableto delay triggering the crack run. Similarly, less tough materials need smaller specimens
and lower stored energy. A number of alternatives were evaluated.

The findings from the CCA test program were reported to the ASTM committee E08.07.05 in
apresentation at the fall meeting, November 1998. The implications of establishing a
standardized procedure for afull thickness specimen were highlighted. These were:

(@) Specimen size dependence on arrest toughness to be measured.

(b) Matching the selection of the starter toughness with arrest toughness.

(c) The need to experiment with these options before determining the specimen size to
measure specific crack arrest toughness with a reasonable success rate.
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Large Scale Test Results

>

1)

2)

3)

4)

Crack Arrest Starter Design and Tests

Several options were considered based on the information from the FEA of the starter plate
design, and initiation toughness values determined from the crack starters evaluated in the
CCA tests. Asproposed, the first option evaluated was the use of abrittle weld metal.
UTPDUR 400 hardfacing electrode, which is the replacement for Foxdur 500, was used to fill
the double V-groove that spanned the starter and part of the test section. Most of the | atter
was to contain the FCAW weld. Welding proceduretrialsled to cold cracking even with
300°C pre-heat, in combination with awarm blanket.

The second option, employing 10% lateral pre-compression of the FCAW test weld metal in
the starter section, using 25 mm diameter circular indentor, was proposed as the initiation
toughness of the flux cored arc weld metal was lower than that of E7024 weld metal.

After trials, 15% lateral pre-compression, using rollers, was employed to initiate and
propagate brittle cracks. The 15% thickness reduction was measured at the apex of the
compressed impression |eft by the 50 mm diameter roller. Testing resulted in brittle
propagation along an extreme edge just outside the compressed region, shown to be aresult
of theresidual stress distribution in the compressed zone.

As an dternative, side grooving was employed to help retain the crack path along the weld
centerline. As3D-FEA indicated that the stress intensity did not drop sufficiently to cause
arrest of the crack, asit extended beyond the groove, an alternative was to have the test plate
at ahigher temperature with respect to the starter of the double tension configuration in order
to achieve arrest in the test section, when performing the large scale test.

The above crack starter modifications required the starter to be maintained at alower
temperature. The transition temperature zone between the starter and main plate results due to
heat transfer, but was kept narrow by separate cooling of the two sections.

>

1)

2)

Large Scale Test Results

There was difficulty in reproducing the performance of the starter tests in conjunction with
the main (test) plate. After theinitial extension of afew millimeters along the side grooves,
the crack deviated and did not enter the main plate.

Modification of the starter |oading apparatus was carried out to bring it close to the loading
arrangement of the starter test apparatus albeit with the main plate. 1n these tests, the crack
entered the main plate, however, again it deviated consistently to the bottom plate of the
welded joint in contrast to the opposite direction in the previous tests.
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3)

4)

In the final test performed, with afurther modification to the starter loading arrangement, the
crack stopped in the starter plate and stayed in the groove. Further loading was curtailed
when indications of yielding took place asin thetest in (1) above.

Crack arrest toughness values could not be calculated from any of the larger scale tests.

CONCLUSIONS

>

1)

2)

3)

4)

1)

2)

3)

CCA Tests

Crack arrest toughness of the controlled rolled ship plate used wasin excess of 173 MPaOm
when following the Crosley and Ripling full thickness testing approach. Thiswasfor mode |
propagation in the L-T orientation. Bifurcation of the crack took place in one specimen
indicating lower arrest toughnessin planes at 45° to the main rolling direction.

Crack arrest toughness of the weld metal was 80 to 100 MPaQOm in the temperature range -10
to 0°C. It wasinferred to be greater than 172 MPaOm at 10°C.

Crack propagation eventsin instrumented specimens gave average crack speeds in the range
700t0 900 ms™.

A selection criterion for crack starter options was developed and was related to the anticipated
crack arrest toughness, and consequently, the CCA specimens size. A number of brittle weld
metals and strain age embrittlement strategy were evaluated for initiating a crack run.

Large Scale Tests

Lateral compression employed for the crack starter plates resulted in crack deviation from the
weld centerline due to residual stress distributions resulting from compression. The
aternative side grooving approach was effective in initiating and directing the crack
propagation along the intended path.

FEA of the double tension specimen indicated that the final crack length at arrest could be
estimated from the normal strain distribution measured across the weld under static
conditions.

The double tension tests, performed with the starter at alower temperature than the main
plate, provided two contrasting failure mechanisms. With a center-crack starter, as those used
for the starter tests, the crack propagated in two stages. In thefirst event, crack arrest took
place after afew (5 to 10) millimeters of extension along the side grooves. In the second
event, at ahigher load, the crack deviated from the groove and propagated along the top side
of the ligament connecting the starter to the main plate. Evaluation of the tests suggested that
symmetrical loading of the starter was not taking place resulting in the above behaviour.
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In the second series of tests, the crack starter was modified to an edge crack configuration to
account for the lower loads that could be applied with the modified starter section loading
arrangement. Thisresulted in crack deviation in the second run-arrest event, but the
propagation took place into the bottom side of the main plate.

4) Thedifficulty in reproducing the crack starter performance in the double tension testsled to
the unsuccessful outcome of the large scale test program. Thus, crack arrest toughnessin the
context of short propagating cracksin a structural situation could not be determined.

RECOMMENDATIONS FOR FUTURE WORK

In the current program, the limitations of the full thickness CCA specimen were highlighted. For
areasonable specimen size that can be categorized as a CCA test (W £ 300 mm), the maximum
arrest toughness that can be measured for modern ship plate (400 MPayield) is about 172
MPaOm. In case of thelow C, low S, TMCP materials the crack arrest toughnessinthe L-T
orientation at the temperatures of interest is expected to exceed thisvalue. However, thereisa
possibility of lower toughnessin an orientation that is different from L-T; i.e., T-L or 45°to L-T,
as demonstrated by bifurcation of the crack. It would be worthwhile to perform CCA testing of
the same base material in an orientation coincident with the bifurcated crack path and the T-L
orientation. This evaluation becomes important as new ships are built with these modern steels,
and in the regions of details, the principal stresses may not coincide with the ship long axis, and
the crack could take the least resistant path.

The weld metal indicated alarge increase in crack arrest toughness when the test temperature was
raised from 0to 10°C. A program that will investigate this, with the objective of determining an
upper limit of this toughness, is recommended. This could be a statistical analysis of initiation
toughness data with the objective of obtaining fracture toughness distributions using a
probabilistic approach.

Once the above investigations are compl ete, alarge scale test program needsto be initiated with
the same objective of the present program. The following factors from the lessons learned are of
worthy consideration for this phase of work.

When the weld metal was used as a crack starter, either as an embirittled chevron notch (in
CCA specimens) or under plane strain conditionsin the double tension test, crack
initiation was followed by arrest after relatively small extensions. This could be
associated with regions of high toughness adjacent to local brittle zones in a multi-pass
weld, consequently, progressively higher loads/strains needed at the new crack tip for
further extension. Thisled to crack deviation in the double tension tests. It would be
worthwhile to consider a homogeneous material instead of the test weld. Inthiscase, a
challenge would be to obtain good fusion between the test weld and the starter material.
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The apparatus of the large scale test set up used in this program needs to be re-assessed.
A major issue was crack deviation in the second stage of propagation in the starter plate
section, whereas, the starter by itself, when independently loaded in isolation, gave crack
runs along the potential crack path beyond the starter section. This could be associated
with change of the 2D stress state especially at the ‘throat’ asthe crack progresses beyond
the starter in these two configurations. A contribution may also come from the current
test set up where some degree of load transfer could exist between the starter and the
main plate.

It has become clear that conducting structural testsisrisky from the point of cost
effectiveness and this factor needsto be kept in mind aswell. To date, most large scale
tests have been conducted on steel base metals, and testing of the weld metal might have
introduced added complications. A rising load test with atemperature gradient may fall
into alower risk category compared to a double tension test.
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Crack Arrest in Ship Structures

The Charpy V-notch toughness examination of numerous steel plates from Liberty class vessels,
of which several suffered catastrophic failure by brittle crack propagation® strongly suggested
that fast propagating, and relatively long brittle fractures could be arrested if they encountered
steel plates possessing higher toughness (greater than 20 J (15 ft.Ibs.) at the temperature of
interest) in their path. Thisled to the practice of including welded crack arrestor platesin the U.S.
naval surface ship design. Essentially, the sheer and stringer strakes, and the lower turn of the
bilge areas are specified to be fabricated from HY 80 steel while the rest of the ship structureis
fabricated from standard ABS grades of ship structural steels or their equivalent. HY 80 stedl isan
extremely tough steel required to display at least 47 J (35 ft.Ibs.) Charpy absorbed energy at —
85°C (=120°F). At the design temperature, typically 0°C (32°F), this steel always displaysan
upper-shelf toughness behaviour.

The use of HY 80 steel for crack arrestor strakes can be considered as a success in that there is no
reported incidence of aship with HY 80 crack arrestor strakes breaking into two in the manner of
some Liberty class vessels. However, it isnot clear if the absence of such catastrophic failuresis
dueto the HY 80 steel strakes serving their intended purpose, or because there have been no long
brittle fractures that needed to be arrested due to the general improvement in the toughness of the
conventional ship structural steels, either by specification or by improved steel making practices.

In recent years, with the advancesin the field of fracture mechanics, attempts have been made to
provide afundamental basis for the design of crack arrestor platesin ships. Unfortunately, a
direct and ssimple application of these principles would indicate that crack arrestor plates should
not be effective in arresting long, propagating brittle cracks [Czyryca and Porr®]. For example,
these authors considered the case of a 30 m (100 feet) wide deck comprised of 26 m (84 feet) of
mild stedl in the center, and bounded by 2.5 m (8 feet) wide HY 80 steel strakesat eachend. A
brittle fracture is assumed to initiate and propagate in the mild steel section until it encountersthe
HY 80 stedl strakes at each end. Ignoring the possible role of stiffenersin crack arrest, and using
an experimentally obtained value of J;. for HY 80 steel, the authors estimated that the far field
stress must be below 15 MPa (2.1 ksi) to ensure stable, ductile crack extension inthe HY 80
strakes. The design stressis of course much higher, thusimplying that the HY 80 strakesin this
example would not be able to arrest the crack, contrary to experience and to the design practice
for US naval ships. One can consider the use of more frequent crack arrestor strakes, however,
once again ignoring apossible role of stiffenersin crack arrest and assuming the far field stressto
be 100 MPa (14 ksi), they estimate that 0.63 m (25”) wide HY 80 crack arrestor plates would need
to beincluded after every 2.54 m (100 inches) of the mild steel. Thisisclearly an uneconomic
and unrealistic fabrication scenario.

While the estimates made above could be improved by more rigorous fracture mechanics and
geometrical modeling®. it is doubtful that the main conclusions above would change. It has
therefore been suggested that principles of fracture mechanics are not applicable to long crack
arrest. An intuitive reason for this could be that after the propagating crack has achieved certain
length, the crack tips no longer know the length of crack behind them.
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In other words, the crack tip stress and strain states no longer depend on the crack length and
therefore the standard fracture mechanics expression for stress intensity factor losesits
significance. Thefact that the crack arrest temperature (CAT) in Robertson’ stestsis essentially
independent of applied stress until it isreduced to very low levels supports this contention and
points to the use of CAT as the design basis for long crack arrest®.

It is noteworthy that fracture mechanics concept based on experimentally measured plain strain
compact crack arrest toughness has been successfully applied in the nuclear industry. Here oneis
dealing with “short crack arrest” as a semi-élliptical surface crack is envisaged to propagate in the
through thickness direction, and then get arrested due to thermal gradient and increasing
toughness, before becoming a through thickness crack. Perhapsthe longest crack arrest situation
that has been rationalized on fracture mechanics basisis that of storage tanks. In this case, acrack
is assumed to propagate along the full length of avertical weld seam (2a= 2 to 3 m) and then get
arrested as it emerges into the base metal®. It isworth noting however that the base material
selection is still based on the concept of crack arrest temperature asinferred from the Pellini’ s nil-
ductility transition (NDT) temperature.

Another issue in the application of fracture mechanics concept to short crack arrest pertainsto the
need of dynamic versus static analysis. Sumpter® has consisdered this issue and concluded that
Kp (dynamic K for apropagating crack) will lie below K, (static K at the arrest crack length).
Thisisin the absence of reflected stress waves and is reasonabl e assumption in a structural
situation. Therefore a static stress analysis would give a conservative K. This suggests that it
would usually be conservative to predict crack arrest in a structure based on K, observed in small
scaletests. Thereis, however, acomplication when reflected stress waves are to be considered
for the possibility of re-initiation immediately following arrest®.

Based on this background, the objective of the current project was to determine the full thickness
crack arrest toughness of a marine structural steel and an appropriate weld metal for the same,
and then demonstrate its use /applicability/validity in short crack arrest situation. Such situations
arise due to brittle fractures in welds in the secondary structure that are required to get arrested
due to decrease in the stress/driving force (structural redundancy/stress redistribution) or due to
encountering atougher base material.
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