SERIAL NO. SSC-44

COPY NO. 25

Magee

PROGRESS REPORT

ON

THE EFFECTS OF WIDTH AND THICKNESS ON STRENGTH, ENERGY ABSORPTION AND TRANSITION TEMPERATURE FOR INTERNALLY NOTCHED FLAT STEEL PLATES

BY.

SAMUEL T. CARPENTER, WENDELL P. ROOP, A. W. ZELL, E. KASTEN

SWARTHMORE COLLEGE Under Bureau of Ships Contract NObs-45521 (Index No. NS011-043)

Transmitted through NATIONAL RESEARCH COUNCIL'S

COMMITTEE ON SHIP STEEL

Advisory to

SHIP STRUCTURE COMMITTEE under

1. . . J

Bureau of Ships, Navy Department Contract NObs-50148 (Index No. NS731-036)

Division of Engineering and Industrial Research National Research Council Washington, D. C. November 15, 1951

NATIONAL RESEARCH COUNCIL

2101 CONSTITUTION AVENUE, WASHINGTON 25, D. C.

COMMITTEE ON SHIP STEEL

OF THE

DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

November 15, 1951

Chief, Bureau of Ships Code 343 Navy Department Washington 25, D. C.

Dear Sir:

Attached is Report Serial No. SSC-44 entitled "The Effects of Width and Thickness on Strength, Energy Absorption and Transition Temperature for Internally Notched Flat Steel Plates." This report has been submitted by the contractor as a Progress Report of the work done on Research Project SR-118 under Contract NObs-45521, Index No. NSOL1-043 between the Bureau of Ships, Navy Department and Swarthmore College.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Steel, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Navy Department and the National Academy of Sciences.

Very truly yours,

Peter E. Kyle

Peter E. Kyle, Chairman Committee on Ship Steel

Advisory to the SHIP STRUCTURE COMMITTEE, a committee representing the combined research activities of the member agencies -Bureau of Ships, Dept. of Navy; Military Sea Transportation Service, Dept. of Navy; United States Coast Guard, Treasury Dept.; Maritime Administration, Dept. of Commerce, American Bureau of Shipping.

PREFACE

The Navy Department through the Bureau of Ships is distributing this report for the SHIP STRUCTURE COMMITTEE to those agencies and individuals who were actively associated with the research work. This report represents results of part of the research program conducted under the Ship Structure Committee's directive to "investigate the design and methods of construction of welded steel merchant vessels" .

The distribution of this report is as follows: · · · · · · · · ·

Copy No.	1 -	Chi	ef,	Bureau	of	Ships	s, I	∛ avy	De	partmer	17
Copy No.	2 -	N.	₩.	Rubey,	Nati	lonal	Rea	searc	h	Council	L

••	Ship Structure Committee
Copy No	. 3 - Rear Admiral K. K. Cowart, USCG - Chairman
Copy No.	. 4 - Rear Admiral R. L. Hicks, USN, (Ret.), Maritime Administration
Copy No	5 - Rear Admiral E. W. Sylvester, USN, Bureau of Ships
Copy No	. 6 - Captain W. N. Mansfield, USNR, Military Sea Trans. Serv.
Copy No	• 7 - D. P. Brown, American Bureau of Shipping

Ship Structure Subcommittee

Copy No. 8 - Capt. E.A. Wright, USN, Bureau of Ships - Chairman Copy No. 9 - Comdr. E.A. Grantham, USN, Military Sea Transportation Serv. Copy No. 10 - Condr. D. B. Henderson, USCG, U.S. Coast Guard Headquarters Copy No. 11 - Lt. Comdr. M.N.P. Hinkamp, USN, Bureau of Ships Copy No. 12 - Lt. Condr. E.L. Perry, USCG, U.S. Coast Guard Headquarters Copy No. 13 - W.G. Frederick, Maritime Administration Copy No. 14 - Hubert Kempel, Military Sea Transportation Service Copy No. 15 - John Crowley, Office of Naval Research Copy No. 16 - M. J. Letich, American Bureau of Shipping Copy No. 17 - L. C. Host, American Bureau of Shipping Copy No. 18 - E.M. MacCutcheon, Jr., Bureau of Ships 1.7 Copy No. 19 - V. L. Russo, Maritime Administration Copy No. 20 - Finn Jonassen, Liaison Representative, NRC Copy No. 21 - E. H. Davidson, Liaison Representative, AISI Copy No. 22 - W. P. Gerhart, Liaison Representative, AISI Copy No. 23 - Wm. Spraragen, Liaison Representative, WRC Copy No. 24 - Charles Hoch, Military Sea Transportation Serv., Alt. Member Copy No. 25 - W.E. Magee, U.S. Coast Guard, Alternate Member, Copy No. 26 - J.B. Robertson, Jr., U.S. Coast Guard, Alternate Member Copy No. 27 - John Vasta, Bureau of Ships, Alternate Member Copy No. 28 - J. E. Walker, Bureau of Ships, Alternate Member Copy No. 29 - Edward Wenk, David Taylor Model Basin, Alternate Member

a de se Committee on Ship Steel

Copy No. 30 - P. E. Kyle - Chairman Copy No. 31 - C. H. Herty, Jr., - Vice Chairman Copy No. 32 - Wm. M. Baldwin, Jr. مي ري در در مي مي ري در در در در در Copy No. 33 - C. S. Barrett

:	Committee on Ship Steel (Continued)	
13 J.		
	Copy No. 34 - R. M. Brick	
	CODV No. 35 - S. I. Howt	
	$\frac{1}{2} \cos y = \frac{1}{2} - \frac{1}{2} \cos y$	
		-,-
	opy No. 36 - M. W. Lightner	
	Copy No. $37 = R$. F. Mehl	
	Copy No. 38 - T. S. Washburn	* •
	Copy No. 20 - Finn Jonassen - Technical Director	
	Copy No. 39 - A. Muller - Consultant	
	Members of Project Advisory Committees SR-98 SR-99 SR-100	
	SR=108. SR=109. SR=110 and SR=111 (not listed alrewhere)	
	on roof on roof on-rro and on-rri (not risted ersewhere)	i
	CODY No. $IO = P$. He there	
	Copy No. (1) = N. (n. RDOIN)	
	Copy No. 41 - L. A. Anderson	
,	Copy No. 42 - L. C. Bibber	
	Copy No. 43 - Morris Cohen	
	Copy No. 44 - W. C. Ellis	
	Copy No. 45 - M. Gensamer	
	Copy No. 46 - M. F. Hawkes	
	Copy No. 47 - W. F. Hess	
	Copy No. 18 - W. R. Hibbard Jr.	,
	CODY NO - C = C = Toolsoon	
	Copy No. $47 = 0$. B . Sackson	
	Copy No. 51 - H. W. Pierce	x ¹
	Copy No. 52 - W. A. Reich	-
	Copy No. 53 - C. E. Sims	
	Copy No. 54 - R. D. Stout	
	Copy No. 55 - J. G. Thompson	
	Copy No. 56 - B. G. Johnston, Welding Research Council, Liaison	
	Copy No. 57 - W. H. Wooding, Philadelphia Naval Shinward	
	. Committee on Residual Strogger	
	COMMITTORE ON RESIDUAL OPPESSES	
	Contr No EQ T T D Norther Obstance	
	Comp No. 32 www. 16^{12} and 7^{12}	
· · · · · .	$C_{\text{res}} = N_{\text{res}} = N_{$	
,	copy No. 59 - Paul FileId	
	Copy No. 60 - Le Van Griffis	
	Copy No. 61 - K. Heindlhofer	
	Copy No. 62 - Daniel Rosenthal	
	Copy No. 20 - Finn Jonassen - Technical Director	
,		
	T. S. NAW	
	CODY No. 63 - Capt. R. H. Lambert USN Philadal-Lie North City	
	Copy No. 64 to Copt. C. M. Cooler USN', Miladelphia Naval Shipyard	
	Copy No. 04 - Capter U. M. 100Ke, USN, Long Beach Naval Shipyard, Calif.	
	Corry No. 05 - Comdr. H. G. Bowen, USN, Code Re-3, Burean of Ordnance	t
	Copy No. 00 - Comdr. R.S. Mandelkorn, USN, Armed Forces Special Weapons Hoi.	
	Copy No. 67 - A. Amirikian, Bureau of Yards and Docks	
	Copy No. 68 - A. G. Bissell, Bureau of Ships	

.

- - .-

_--

- -

....

.

--

I

* * * - iii -U. S. Navy (Continued) Copy No. 69 - J. W. Jenkins, Bureau of Ships Copy No. 70 - Carl Hartbower, Naval Research Laboratory Copy No. 71 - R. H. Raring, Naval Research Laboratory Copy No. 72 - Noah Kahn, New York Naval Shipyard Copy No. 73 - O. T. Marzke, Naval Research Laboratory Copy No. 74 - W. E. McKenzie, Metallurgical Branch, Naval Gun Factory Copy No. 75 - J. E. McCambridge, Industrial Testing Lab., Phila. Naval Shipyard Copy No. 76 - N. E. Promisel, Bureau of Aeronautics Copy No. 77 - Naval Research Laboratory Copy No. 78 - Naval Research Laboratory, Mechanical Section Copy No. 79 - Naval Research Laboratory, Metallurgical Section Copy No. 80 - Post Graduate School, U. S. Naval Academy Copies No. 81 and 82 - U. S. Naval Engineering Experiment Station Copy No. 83 - New York Naval Shipyard, Material Laboratory Copy No. 84 - Industrial Testing Laboratory Copy No. 85 - Philadelphia Naval Shipyard Copy No. 86 - San Francisco Naval Shipyard Copy No. 87 - David Taylor Model Basin, Attn: Library Copies No. 88 and 89 - Technical Library, Bureau of Ships, Code 364 U. S. Coast Guard Copy No. 90 - Capt. R. B. Lank, Jr., USCG Copy No. 91 - Capt. H. C. Moore, USCG Copy No. 92 - Capt. G. A. Tyler, USCG Copy No. 93 - Testing and Development Division Copy No. 94 - U. S. Coast Guard Academy, New London U. S. Maritime Administration Copy No. 95 - Vice Adm. E. L. Cochrane, USN (Ret.) Copy No. 96 - E. E. Martinsky Representatives of American Iron and Steel Institute Committee on Manufacturing Problems Copy No. 97 - C. M. Parker, Secretary, General Technical Committee, AISI Copy No. 42 - L. C. Bibber, U. S. Steel Co. Copy No. 31 - C. H. Herty, Jr., Bethlehem Steel Co. Copy No. 98 - E. C. Smith, Republic Steel Corp. Welding Research Council Copy No. 99 - C. A. Adams Copy No. 101 - LaMotte Grover Copy No. 100 - Harry Boardman Copy No. 23 - Wm. Spraragen

Copy No. 102 - C. R. Soderberg, Chairman, Div. of Engr. & Ind. Res., NRC Copy No. 37 - R. F. Mehl, Chairman, Committee on Ship Steel Copy No. 20 - Finn Jonassen, Technical Director, Committee on Ship Steel Copy No. 103 - S.T. Carpenter, Investigator, Research Project SR-98 Copy No. 104 - W. P. Roop, Investigator, Research Project SR-98 Copy No. 105 - A. W. Zell, Investigator, Research Project SR-98 Copy No. 106 - E. Kasten, Investigator, Research Project SR-98 Copy No. 32 - Wm. M. Baldwin, Jr., Investigator, Res. Projects SR-99, 111 Copy No. 107 - L. J. Ebert, Investigator, Research Project SR-99 Copy No. 108 - L. J. Klingler, Investigator, Research Project SR-99 Copy No. 109 - C. B. Voldrich, Investigator, Research Project SR-100 Copy No. 110 - P. J. Rieppel, Investigator, Research Project SR-100 Copy No. 111 - M. L. Williams, Investigator, Research Project SR-106 Copy No. 37 - R. F. Mehl, Investigator, Research Project SR-108 Copy No. 34 - R. M. Brick, Investigator, Research Project SR-109 Copy No. 112 - C. H. Lorig, Investigator, Research Project SR-110 Copy No. 113 - E. W. Suppiger, Investigator, Research Project SR-113 Copy No. 114 - E. R. Ward, Investigator, Research Project SR-113 Copy No. 115 - Carlo Riparhelli, Investigator, Research Project SR-113 Copy No. 116 - J. F. Wallace, Investigator, Research Project SR-114 Copy No. 19 - V. L. Russo, Investigator, Research Project SR-117 Copy No. 117 - R. A. Hechtman, Investigator, Research Project SR-119 Copy No. 118 - G. S. Mikhalapov, Investigator, Research Project SR-120 Copy No. 119 - Clarence Altenburger, Great Lakes Steel Company Copy No. 120 - T. N. Armstrong, International Nickel Co., Inc. Copy No. 121 - A. B. Bagsar, Sun Oil Company Copy No. 122 - British Shipbuilding Research Association, Attn: J.C. Asher Copy No. 123 - D. S. Clark, California Institute of Technology Copy No. 124 - Paul De Garmo, University of California Copy No. 125 - J. E. Doran, University of California Copy No. 126 - George Ellinger, National Bureau of Standards Copy No. 127 - A. E. Flanigan, University of California Copy No. 128 - 0. J. Horger, Timken Roller Bearing Company Copy No. 129 - H. Kennedy, University of California Copy No. 130 - E. P. Klier, University of Maryland Copy No. 131 - J. E. McNutt, Carnegie Institute, Pittsburgh Copy No. 132 - Robert C. Madden, Kaiser Steel Company Copy No. 133 - N. M. Newmark, University of Illinois Copy No. 134 - E. Orowan, Massachusetts Institute of Technology Copies No. 135 - 159 - E.G. Hill, British Joint Services Mission (Navy Staff) Copy No. 160 - E. R. Parker, University of California Copy No. 161 - W. G. Perry, RN, British Joint Services Mission (Navy Staff) Copy No. 162 - L. J. Rohl, U. S. Steel Company Copy No. 163 - H. A. Schade, University of California Copy No. 164 - Saylor Snyder, J. S. Steel Company Copy No. 165 - Standard Oil Company of California, Attn: K. V. King

- iv -

. ..

Copy No. 166 - Webb Institute of Navel Architecture Copy No. 167 - Georges Welter, Ecole Polytechnique, Montreal Copy No. 168 - Carl A. Zapffe, Carl A. Zapffe Laboratories Copy No. 169 - Division of Metallurgy, National Bureau of Standards Copy No. 170 - Transportation Corps Board, Brooklyn, New York Copies No. 171 through 175 - Library of Congress via Bureau of Ships, Code Copy No. 176 - NACA, Attn: Materials Research Coordination, Navy Dept. Copy No. 177 - File Copy, Committee on Ship Steel Copies No. 178 through 182 - Bureau of Ships Copy No. 183 -Copy No. 184 -Copy No. 185 -Copy No. 186 -Copy No. 187 -Copy No. 188 -Copy No. 189 -Copy No. 190 -Copy No. 191 -Copy No. 192 -Copy No. 193 -Copy No. 194 -Copy No. 195 -Copy No. 196 -Copy No. 197 -Copy No. 198 -Copy No. 199 -Copy No. 200 -Copy No. 201 -Copy No. 202 -Copy No. 203 -Copy No. 204 -Copy No. 205 -Copy No. 206 -Copy No. 207 -Copy No. 208 -Copy No. 209 -Copy No. 210 -Copy No. 211 -Copy No. 212 -Copy No. 213 -Copy No. 214 -Copy No. 215 -Copy No. 216 -Copy No. 217 -Copy No. 218 -Copy No. 219 -Copy No. 220 -Copy No. 221 -Copy No. 222 -Copy No. 223 -Copy No. 224 -Copy No. 225 -

• 7 •

TABLE OF CONTENTS

•

-

۴.

•

2

Ŷ

Abetroat	xiv
ADStract,	
List of Tables	VII
List of Figures	ix
Introduction and Summary	1
Materials	3 🦾
Test Specimens and Test Schedule	5 -
Measurement of Elongation	7
Temperature Control	7
Test Results	8
Data	8
Maximum Unit Stress	8 .
Unit Energy	11
Discussion of Test Results	11
Average Unit Stress	11.
Unit Energy Absorption	12
Transition Temperatures	15
Correlation with Tests by Others	20
Conclusions	22
Bibliography	23
Acknowledgments	24
Appendix I - Tables of Basic Data	34
Appendix II - Graphical Summaries of Basic Data	50
Appendix III - Typical Load-Elongation Curves	61

vi

	· · · ·	· /.
	LIST OF TABLES	
	e e e e e e e e e e e e e e e e e e e	·
<u>No.</u>	<u>Title</u> Page	*;1.
l	Aspect Ratios tested 7	·
2	T-1 steel, Summary of unit energy and unit stress	1 2 5 1
	at maximum load 9	* J#1*
3	T-2 and $T-2R$ steels.	
	Summary of unit energy and unit stress	. ; ÷ <u>i</u>
	10	
4	Transition temperatures 16	
5	T-2 and T-2R steels, Transition temperatures addition 1963	i v
	an a	
	n an	
	e e a a a a a	
		· /
	· · · · · · · · ·	, and the
	· · · · · ·	
		·
	and the second	
ī.	en e	۳.

- -

,

· · · — – ·

. . . .

. . . .

_

.

15¹ 15 17

vii

-

74

List of Tables (Contid)

	· .		
••••	* *		

APPENDIX: 1

يەر باھە دەند ئىر

	', <u>+</u>	Basic data			;	
No.	Steel code	Thickness inches	Aspect Ratio	Block No;	Page	
I-I I-la I-2 I-3 I-3a I-4	T-1 n 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	1/2 1/2 1/2 1/2 1/2 1/2 1/2	4 4 16 16 19	I, II III, IV I, II I, II III, IV I, II, III	35 35 36 36 37 37 37	
I-5 I-6 I-7 I+8	T-1 11 11 11	3/4 n n n	4 8 12 16	II II II II, II ^{ter} ini	38 38 553 39 39 39	
I-9 I-10 I-11	T-1 "	ב זי ח	242 X120 8 ₩212	II II IV, V	40 40 41	
I-12 I-12a I-13	T-1 n 1	ב ל וי וי	4 4 6	I, II III II	41 42 42	
I-14 I-15 I-16 I-17	т-2 н п	3/4 n n	, 4 8 12 16	none n n n	43 43 44 44	
I-18 I-19 I-20 I-21	T-2 n n	<u>ן</u> זו ווי ווי	4 6 8 12	none ti ti ti	45 45 46 46	
1-22 1-23	T-2 n	15 n	4 6	none 11	47 47	
I-24 I-25 I-26 I-27	T-2R " " "	3/4 n 11	4 6 16 20	none n n n	48 48 49 49	

.

- .

. . . .

. ..

._ .

: /

e

、=

....

	LIST OF FIGURES	
<u>No.</u>	Title	Page
1	Typical Specimen	25
2	T-1 Steel, 1/2" Thickness, Plate Layout	26
3	n n, 3/4n n n n	26
4	и и _э ди	26
5	n n $1\frac{1}{2}n$ n n n	26
6	T-2 Steel, 3/4" " " "	27
7	и. и " <u>1</u> и и и и "	27
8-A	11 11 <u>1 12</u> 11 11 11 11	27
8 B	T-2R Steel, 3/4" " " "	27
9	Aspect Ratio Program T-1 Steel	28
10	" " T2 "	28 .
11 -	n n n T-2R n	28
12	T-1 Steel Variation in unit stress at maximum load for varying thickness and Aspect Ratio	29
13	T-1 Steel Variation in unit stress at maximum load for varying width and thickness	29
14	T-1 Steel Average unit strain energy to maximum load, " with varying Aspect Ratio and thickness	30
15 .	T-1 Steel Average unit energy to maximum load - Variation with varying thickness and width	30
L6	T-1 Steel Average unit strain energy to maximum load, with varying width and thickness	31

LIST OF FIGURES

ix

LIST OF FIGURES (Contid)

. .

.....

2

	<u>119</u>		<u></u>	•
17	T-1 Steel Transition temperature and thickness	s with varying Aspect Ratio	31	
18	T-1 Steel Transition temperature Ratio, thickness and w	s showing effect of Aspect idth of specimen	32	-
19	T-1 Steel Transition temperature thickness	s with varying width and	32	•
20	T-2 and T-2R Steels Transition temperature Ratios and thickness	s with varying Aspect	33	
	· · · · ·			, .
r 			, . ,.	
· ·			·	т 15 1
·.				
, ,			,	
			. [.]	•
				·

 \mathbf{x}

LIST OF FIGURES (Cont'd) Appendix II

.

. .

Graphical Summaries of Basic Data

No.	Steel	Code Thickness inches	Aspect Ratio	Block No. in Layout	•	Page -
II-1	Т-1	1/2	4	I		51. <u>;</u> "
II-2	н	$1 \le 1 \le$	- 4	·· II		51
II3	្តែ អ	11 -	. 4	· III	· .	51
II-4	11	12	4	IV.		51
II-5	11	19	4	All Blocks	. '	52 🖓
II-6	11	二百日 公開計 化	- 8	II ·	•	52
II7	т <u>і</u> н	11	16	I		52
II-8	11	11	16	. II		52
II - 9	11	11	16	III	·•••	53
II-10	11	会は熱 シー・パー・	16	. IV		53
II-11	83 H	17	16	All Blocks		53
II-14	11	11	19	Blocks' II,III		53
II -1 5	T-1	3/4	4	II		54
II - 16	11	11	8	II		54
II - 17	11	11	12	II		54
II-18	11	"	16	I		54
II -1 9	It	77	16	II		55
II-20	<u>,</u> ††	11	16	Blocks I, II		55
II-21	T-1	l	4	II		55
II-22	11	17	8			55
II-23	11	**	12	VI VI		56
II - 25	fT		12	Blocks IV, V		56
II 26	T-1	1 <u>1</u>	4	I		56
II-27	11	11	4	ŢI		56
II-28	11	t t	4	TII		57
II-29	11	11	4	Blocks I, II, III		57
II - 30	11	11	6	II		57
II-31	T2	3/4	- 4	none		57
II-32	11	ti.	8	11		58
II-33	ft	R I	12	11		58
II-34	11	11	16	11		58
II35	T–2	1	4	11		58
II-36	T-2	11	6	11		59
II37	11	11	8	н		59
II-38	11	11	12	11		59
II-39	tr	112	4	11		59
II-40	11	11	6	11		60
II-41	11	3/4	16	11		60
II-42	tt	11	20	11		60

xi

. . ..

_

List of Figures (Cont'd)

APPENDIX III

1....

\$

÷.,

1

Load-Elongation Curves

No.	Steel Code	Thickness inches	Aspect Ratio	Temp. Deg.F	% Snear	Page
TTT-1		ז /2	1.	- 20	100	62
III-2		/~- 11	4		100	62
III+3	'n	m	Ŕ		100	62
III-A	rt	tt	Ř	õ	100	62
III-5	17	ท	ı 16	4 20	100	63
III-6	It	17	16	1~0	100	63
III-7	n	11	19.5	õ	1.00	63
III-8	11	n	19.5	ō	0	63
III-9	T-1	3/4	4	-20	100	64
III-10	n	11	L.	-30	0	64
111-11	n	11	ġ	4 10	100	64
III-12	17	n	8	-30	0	64
III-13	η `	n	12	+ 10	100	65
III-14	ท	n	12	-10	Ö	65
III-15	17	11	16	#3 0	100	65
III - 16	Y .	н	16	-20	Ó	65
III-17	T-1	1.	4	+15	100	66
III - 18	11	tt	4	10	Ò	66 🕚
III -1 9	tt	11	8	430	100	66
III-2 0	rt	rt	8	-10	0	6 6
III - 21	11	11	12	+3 0	100	67
III - 22	n	11	12	+ 20	0	67
III-23	T-1	12	4	4 60	100	67
III-24	n	17	4.	43 0	0	67
III - 25	11	11	6	+ 50	100	68
III - 26	n	tt	6	4 40	0	68
III-27	T - 2	3/4	L.	-10	100	68
III-28	17	n	Ĩ.	-30	0	68
III - 29	11	n	8	- 5	100	69
III-30	11	n	8	-3 0	0	69
III-31	n	11	12	∔1 0	100	69
III-32	11	11	12	-30	0	69
III-33	n	11	16	1 20	100	70
III - 34	11	17	16	0	0	70

List of Figures (Cont'd) -

	•	1 2 2	· ·	*
APF	END	TX	III	

No.	Steel Code	Thickness inches	Aspect Temp Ratio Deg.	• % F Shear	Page
III-35 III-36 III-37 III-38 III-39 III-40 III-41 III-42	T-2 17 17 17 17 17 17 17 11		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 0 100 0 100 0 100 0	70 70 71 71 71 71 71 72 72
III-43 III-44 III-45 III-46	T-2 " "	1.≩ "" ""	4 +40 4 +20 6 +40 6 +60	100 0 100 0	72 72 73 73
III-47 *III-49 *III-51 III-52 III-53 III-54	T–2R " " " "	3/4 n n n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 100 100 100 0 0 0 0 0 	73 73 74 74 74 74
			- 	, ,, ,, ,,	14.42.5 0.1477.7 204.277 204.272 3.4.275
···.	.* .*			 	i Constantin Vinse III Vinse III Vinse
م. رون ۲	· · ·		- 	24 5 19 14 1	中部本人でも 同語本でです。 時日本語です。 時本でのです。 日本本でのです。
* Figs	. 48 and 50	are omitted.		: ••	

xiii

ABSTRACT

This report contains the results of tensile tests made on geometrically similar steel specimens. Tests were made in a systematic manner with Aspect Ratios (width divided by thickness) varying from 4 to 20. Each specimen was internally notched with a central transverse notch having a length equal to 1/4 of the width of the specimen. The ends of the notches terminated with a drilled hole. The diameter of the drilled holes was made proportional to plate thickness. Steel plates ranging in "as rolled thicknesses", from 1/2 inch to $1\frac{1}{2}$ inch were investigated from two heats of steel.

The results of the tests are classified on the basis of strength, energy absorption, and transition temperature,

It was found from this investigation that dimensional similarity of specimens does not assure geometrical similarity of plastic strain patterns. Therefore, the geometrical and metallurgical effects of thickness on transition temperature could not be segregated on the basis of geometrically similar specimens in this investigation.

xiv

PROGRESS REPORT

NAVY BUSHIPS CONTRACT NObs-45521 (Index No. NSOll-043)

PROJECT SR-98

The Effects of Width and Thickness on Strength, Energy

Absorption and Transition Temperature for Internally

Notched Flat Steel Plates

Prepared by

Samuel T. Carpenter, Wendell P. Roop, A. W. Zell, E. Kasten

SWARTHMORE COLLEGE DIVISION OF ENGINEERING SWARTHMORE, PA.

- --- -

.___ _ .___ __

PROGRESS REPORT

NAVY BUSHIPS CONTRACT NObs-45521

PROJECT SR-98

The Effects of Width and Thickness on Strength, Energy Absorption and Transition Temperature for Internally Notched Flat Steel Plates

Prepared by

Samuel T. Carpenter, Wendell P. Roop, A. W. Zell, Ewald Kasten Swarthmore College, Division of Engineering, Swarthmore, Pa.

INTRODUCTION and SUMMARY

د الديافي مورد المروج ومن الأسم الاراد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

and Miles and Charles and

This study, designated as the Aspect Ratic Program, is an exploratory investigation of the effects of specimen geometry (width and thickness) on strength, energy absorption and transition temperature, using internally notched steel specimens tested in tension. The width and thickness of specimens were related by considering the Aspect Ratios (AR) of the specimens where AR represents the ratio of gross width of specimen to thickness of the plate. Specimens of equal AR were said to be geometrically similar, since notch length and acuity were also held in strict similitude.

The intent of this study was to obtain a separation of the geometrical from metallurgical effects in plates having variable "as rolled" thicknesses from the same heat. A systematic variation in AR in various plate thicknesses was made, utilizing two different steels. Assuming for a given thickness of a given steel that chemical and

. . .

÷ ÷ ·

metallurgical effects would remain constant, the size effects noted could be attributed to geometry in the form of increased width. It was thought that data using specimens of different thicknesses but with equal AR and the same chemistry, would enable a determination to be made of the effects of metallurgical changes due to rolling. The latter comparison is dependent upon the validity of geometrical similarity of both elastic and plastic strains in all regions of the specimen, regardless of plate thickness.

Results of this study on internally notched specimens indicate that dimensional similarity of unstressed specimens does not necessarily guarantee similarity of such important physical relations as strength and unit energy absorption. These physical quantities were found to vary with both thickness and width.

With regard to strength, as determined by the maximum average unit stress on the net cross-section, comparisons of geometrically similar specimens show that the thicker plates have a definitely smaller unit resistance than thinner plates. For plates of equal width the strength of the plates shows small differences with varying thickness. On the whole the strength does not appear to depend greatly on thickness when width is not varied.

With regard to energy absorption, to maximum load, the data for geometrically similar specimens indicate that the thicker plates absorbed less energy per cubic inch of volume (termed unit energy) than thinner plates. However, for specimens of equal width the situation is reversed and the thicker plates absorb more unit energy than thinner plates.

- 2 -

The transition temperature for a given thickness of plate, metallurgical effects assumed constant, shows a trend upwards as the width of the plate increases. For small widths the thicker plates have higher transition temperatures than the thinner plates, considering either constant aspect ratio or width. The question here is what part of this increase in transition temperature is due to the geometrical effect of increased thickness and what part due to metallurgical differences. The effects of metallurgical differences can only be determined in the absence of geometrical effects. As it was found that dimensional similarity does not completely eliminate geometrical effects, the isolation of metallurgical effects may require comparison of the various thicknesses on some basis other than equality of aspect ratio.

A trend toward uniformity of strength and unit energy in the various plate thicknesses, as width is increased, would suggest that the effect of thickness is to modify the rate at which these uniform values are approached as width is increased.

The results of this study must be considered to be exploratory, disclosing the need of further study and investigation.

MATERIALS

The steel plates used in the aspect ratio program have been given the code designation T-1, T-2, and T-2R. The T-1* steel was furnished in $1/2^n$, $3/4^n$, 1^n and $1\frac{1}{2^n}$ thicknesses, with all plates rolled

*The T-1 steel was given the plate code letter "G" in the report "Further Study of Navy Tear Test" by N. A. Kahn and E. A. Imbembo published in the Welding Journal, February, 1950.

- 3 -

<u>۲</u>

from the same heat. The T-2 steel was received in $3/4^{n}$, 1" and $l_{2}^{1"}$ thicknesses, all rolled from the same heat. T-2R designates the $3/4^{n}$ thick plates obtained by re-rolling a portion of the $l_{2}^{1"}$ thick T-2 steel.

The chemical analysis for these steels is as follows:

<u>Steel Code</u>	<u>C</u>	<u>Mn</u>	P	<u>s</u>	Si
T-1	. 16	•93	.013	•034	•020
T-2	.18	. 72	024	.026	.26

T-1 steel is termed a semi-killed steel of the ABS-B type and the T-2 steel is termed a silicon-aluminum killed, fine grained steel.

The T-2R steel was produced by re-rolling 2 pieces of T-2 steel l_2^{1n} thick x 48" wide x 60" long. A reduction to 3/4" thickness was made without cross rolling in 3 passes while maintaining the 48" wide dimension. The l_2^{1n} thick plates were in the soaking pitprior to rolling for one hour and fifteen minutes at a temperature of 2240°F. The finishing temperature was 1680°F. The surfaces of the re-rolled plates were excellent and relatively free from scale.

The grain size for these steels has been reported to this laboratory by Mr. N. A. Kahn* of the New York Naval Shipyard, as follows:

	Steel Code	Plate Thickness	McQuaid-Ehn Grain Size
	T-1	1/2"	1-4
	T-1	3/4" -	1-3
	т-1	1"	1-3
	r-1		
•	T–2R	3/4"	7-8

* By letter

It has been further reported for the T-1 steel that a progressive decrease in the ferrite grain size was observed, with a decrease in plate thickness. The ferrite grain size for the T-2 steel has been reported as 5-7 and for the T-2R steel as 6-8.

The tensile physical properties of the steels as defined by yield stress and ultimate stress are given as follows based on **ASTM** standard full plate thickness specimens:

> Physical Properties Unnotched Bars

<u>Steel Code</u>	Plate Thickness	<u>Yield Stress</u>	<u>Ultimate Stress</u>
T -1	1/2"	psi 41,000	psi 67,200
s	3/4"	35, 800	63,200
· · ·	1 "	37,200	71 , 000
· .	1 <u>2</u> n	36,400	60,000
T-2	3/4"	39,600	67,000
	1"	40,000	67,000
	1 ² "	33, 800	64,500
T -2R	. 3/4"	39,200	67,000

Test Specimens and Test Schedule

Figure 1 represents the typical specimen used. The radii of the drill holes at the ends of the internal notches are proportionate to plate thickness. The size of the drill hole used for various thicknesses of plate was as indicated in Figure 1.

- 5 -

The layout of the specimens from the plates furnished to this laboratory is shown in Figures 2 to 8b inclusive, for steels designated as T-1, T-2, and T-2R. When the program was first planned, a layout of the plates of T-1 steel was made to provide sufficient specimens of a given size distributed across the width of the plate to determine changes in transition temperature due to position within the plate. The 1/2" thick plates of T-1 steel were laid out to provide four longitudinal blocks or zones denoted as Block I, II, III and IV on Figure 2. The 3/4" thick plates were laid out in three blocks denoted as Block I, II, and III, the 1" thick plates laid out in five blocks denoted as I to V inclusive, and the $l_{\mathbb{Z}}^{1,n}$ thick plates laid out in Blocks I, II, and III. It was hoped that if enough specimens of any aspect ratio were tested from any given block, statistical studies of the effect of position within the plate could be made. However, due to costs and time involved, this extensive testing program was completed only in the 1/2" thickness.

Figures 9, 10 and 11 show the schematic outline of the aspect ratio program as originally planned in which it was contemplated that tests would be made for specimens as wide as 30° in the $l_2^{1°}$ thickness. However, this program had to be curtailed. The blacked-out plates in the figures indicate the widths and thicknesses actually tested in this

The aspect ratios tested in the different thicknesses for the various steels are given in the following table:

- 6 -

<u>TABLE 1</u>

Steel Code	Thickness	Aspect Ratios
T-1	1/2" 3/4" 1" 1 ¹ 2"	4,8,16,19 4,3,12,16 4,8,12 4,6
T-2	3/4" 1" 1 ¹ 2"	4,8,12,16 4,6,8,12 4,6
T-2R	3/4"	4,6,16,20

Aspect Ratios Tested

The specimens within any given plate layout have been identified by a letter and a number (see layout diagrams).

Measurement of Elongation

The elongations of the test specimen were measured in the direction of the tensile loading over a gage length equal to 3/4 the width of any individual specimen. The same clip gage instrumentation as described in a previous Progress Report^{1*} was adapted to longer or shorter gage lengths by using extending or shortening bars.

Temperature Control

The test temperature was controlled by enclosing the test specimens in a plexiglass housing in which temperatures below room temperature were maintained by circulating air cooled by dry ice. Heating of the specimen above room temperature was accomplished by electric strip heaters placed in the temperature control chamber. A full description of the temperature control equipment was given in a previous Progress Report¹. Test temperatures were chosen so as to *Superscripts refer to references in Bibliography straddle the transition from shear to cleavage fracture.

TEST RESULTS

<u>Data</u>

The tables in Appendix I list the basic data obtained for test specimens of all steels, as follows: Test temperature; the load producing the visible crack at the notch, the maximum load, and the fracture load: and the energy input to each of the aforementioned loads in inch-lbs. In addition, the character of the observed fracture is given in terms of percentage of shear texture in the fracture surface. The energy to the visible crack loading has been designated as E, the energy to maximum load as E1, and the energy to fracture as E2. The tables also list the difference in energies E2-E1 where this quantity represents the strain energy absorption after the maximum load. All of the tabulated energies were obtained by finding the area under the loadelongation curves. Typical load-elongation curves are included in Appendix III of this report for two specimens for every aspect ratio tested, one curve referring to a specimen failing in shear and the other curve referring to a specimen in which cleavage failure occurred. The basic data shown in the tables are graphically summarized in the figures given in Appendix II.

Average Maximum Unit Stress

Tables 2 and 3 list the average values of the nominal unit stress at maximum load for T-1, T-2, and T-2R steels in addition to the unit energy values. The nominal unit stress intensity is based on the

- 8 -

TABLE 2

T-1 STEEL

Summary of Unit Energy*, and Average Unit Stress at Maximum Load

Values Based on Gross Gage Volume and Net Area

and the Average for all Specimens Exhibiting Either 100% or 0% Shear Failures

Thick-	Percent	<u>AR</u>	4 ne1	AR (5 1051	<u>AR</u>	8 psi	AR u	<u>12</u> psi	<u>AR</u> <u>u</u>	<u>16</u> 	<u>AR</u>	<u>19</u> 	
<u>ness</u> 1/2"	100%	4,480 4,520	71,000 71,900		- <u></u>	2,610 2,400	63,050 63,570			1,870 1,220	58,100 56,300	1,700 910	54,730 52,940	
3/4"	100% 0%	3,720- 3,810	67,940 69,230			2,460 2,000	59,940 59,530	1,820 1,420	57,000 56,460	1,610 1,350	55,080 53,620			
1"	100% 0%	3,090 3,190	61,720 62,680	-1		2, <u>3?0</u> 1,900	55,420 57,160	1,860 1,245	52,550 52,680					
1 1/2"	100% 0%	2,800 2,540	59,130 60,200	2,250 1,960	56,300 56,780								-	

* u, unit energy in inch-lbs. per cubic inch

l i

Ś

3

TABLE 3

T-2 and T-2R STEELS

Summary of Unit Energy* and Average Unit Stress at Maximum Load

Values Based on Gross Gage Volume and Net Area

	1 20 psi				•		53,800
	려 고			~ .	:		1,340
ures	16 psi		55,360 54,200				55 , 000 52 , 800
lear Fail	u u		1,530 890				1,550 770
or 0% S1	r 12 ps1		56,900	54,500			
er 100%	₹ ₽		1,600 1,090	1,46 0 970			
ting Eithe	ps1	el	60 , 77 0 59, 000	56 , 500 59 , 000	x	eel	
Exhibit	u	T-2 Ste	2,160 1,410	1,77 0 1,660	``````````````````````````````````````	T-2 R St	
pecimens	R 6 Pai			60,200	58,000 57,530		61,360
f all S	a ⊓			1,970	1,920 1,570		2,750
verage	R. 4 psi		66,820 68,150	63 ,13 0 63,830	59,770 61,250		63,630
d the A	4 1		3,350	2,160 2,750	2,270 2,270	·	2,970
an	Fercent of Shear		100%	1 00%	1 00%		100% 0%
·	Thick- ness		3/4"	Ъ щ	1 1/2"		3/4"

'n,

* u, unit energy in inch-lbs, per cubic inch.

- 10 -

net cross-sectional area of the plate at the notch. The averages are separately given for all specimens exhibiting either a total shear failure or a total cleavage failure.

Unit Energy

The energy absorbing capacity of a given steel in different aspect ratios may be compared by considering average unit energy. Unit energy, designated as (u), as herein defined represents the result obtained by dividing the total energy input to maximum load by the volume of the plate between gage lines. The units of the computed unit energy are inch-lbs. per cubic inch of metal. The volume is equal to $3/4W \times Wt$ or $3/4W^2t$ (see Fig. 1) which may be termed "gross gage volume". Thus, (u) equals El $(3/4W^2t)$.

Table 2 summarizes the calculated average unit energies at maximum load for T-1 steel. The average unit energies are given only for specimens failing in 100% shear or 0% shear, with all specimens of either mode of failure being used in obtaining the average value. Table 3 similarly summarizes the limited results for T-2, and T-2R respectively.

No consideration has been given to energy absorbed beyond maximum load, but values are given in the tables of Appendix I.

DISCUSSION OF TEST RESULTS

Average Unit Stress

Average unit stress values at maximum load based on the net area at the notch, for T-1 steel, have been plotted in Figure 12 against

- 11 -

aspect ratio. The results plotted were taken from Table 2 for the specimens failing in 100% shear, but specimens failing in 0% shear do not differ significantly from the fully ductile ones in specimens of these aspect ratios. The unit stress for a given thickness gradually falls with increasing aspect ratio. This reduction is due to increased width since metallurgy may be assumed constant for a given thickness.

The unit stress for a given aspect ratio decreases as thickness increases. The loss in strength of the thicker plates may be attributed to metallurgical effects if specimens of equal aspect ratio are similar in their strain patterns. However, the effect of non-similarity of strain patterns will not be considered at the present time.

From the results obtained by the University of California² it may be expected that the unit stress would reach an asymptotic value for plates of great width. This is probably due to the more uniform action of stress upon the net cross-section at the greater width.

In Figure 13, the unit stress values of Table 2 have been plotted against width rather than aspect ratio. Here it may be noted that unit stress decreases as width increases; but that variable thickness does not greatly affect unit stress. Comparatively, width appears to be a better basis for correlation than aspect ratio.

Unit Energy Absorption

Figure 14 is a plot of unit energy (u) versus aspect ratio for the $1/2^{"}$, $3/4^{"}$, 1" and $1\frac{1}{2}$ " thick plates of T-1 steel. In plotting Figure 14 the data from Table 2 for the specimens failing in 100% shear has been

- 12 -

used. The figure shows, for equal aspect ratios, that the 1/2" thick plate generally absorbs more energy per cubic inch than the thicker plates, with the differences due to plate thickness being less in the higher aspect ratios. If unit energy to maximum load is a criterion, then it can generally be stated that the thicker plates possess less ductility than thinner plates, when comparing equal aspect ratios.

The unit energy absorption for specimens failing in 0% shear shows the same trend as aspect ratio is increased as for specimens failing in 100% shear. However, the values of unit energy are lower for 0% shear failures than for the 100% shear failures at aspect ratios of 8 and greater. It should be noted (see Table 2) that at an aspect ratio of 4 the values of unit energy are nearly equal for 100% and 0% shear for a given thickness. This indicates that the local conditions at and around the notch for the narrowest specimen are the same regardless of the mode of fracture. This progress report does not present a further analysis of the energy variation for the specimens exhibiting 0% shear failure. Ana-

The unit energy data given in Table 3 for T-2 and T-2R steels shows the same trends with regard to thickness and aspect ratio as for T-1 steel. The T-2 steel, however, appears to absorb in general less energy than T-1.

The T-2R steel, based only upon a few tests in $3/4^n$ thickness, absorbs essentially the same energy as T-2 steel. Considering the overall results it may be concluded that in a given thickness changes in metallurgy or chemistry had little or no effect on energy absorption for

- 13 -

these two steels.

An interesting comparison between unit energy to maximum load, width, and thickness is shown in Figure 15 for T-1 steel. The unit energy tends to become equal for a given width of plate as the thickness is increased from 1" to $l_2^{1"}$. The question here is whether or not this is indicative that the detail mechanism of energy absorption may be nearly similar for the specimens of constant width in the 1" and $l_2^{1"}$ thickness. Such similarity might imply identical plastic strain patterns generally throughout the specimen with the probability that conditions at the notch would become similar for specimens of equal width in 1" or $l_2^{1"}$ thickness. If this should be true, then the transition temperatures of equal width specimens would be comparable instead of specimens of equal aspect ratio. Furthermore, if this assumption is true, the difference in transition temperature so found could then be attributed to metallurgical differences alone. No definite generalizations can be made from the results, hence these speculations must be considered only in the form of a query.

- 14

When the values of unit energy to maximum load for 100% shear failures are plotted on width rather than on aspect ratio, Figure 16, the values for constant thickness run closely parallel, the results for greater thicknesses lying above the smaller thicknesses rather than below them. In Figure 14, where values of unit energy were plotted against aspect ratio (Wt^{-1}) , the greater thickness gave lower values of unit energy. Inferences from this fact might be drawn with respect to the strain patterns as affected by thickness, but these are left for later consideration.

In any case, it appears that by plotting on some function intermediate between Wt⁻¹ and Wt^o the curves could be superimposed within the

limits of experimental error.

Transition Temperatures

÷.,

Transition temperatures have been established by two methods: First, a temperature range was determined, either the range within which the mode of fracture changes from shear to cleavage, or the range within which the energy absorption shows a marked decrease. This is the range of uncertainty as to the temperature below which ductile behaviour is not assured. Second, a single value of transition temperature, instead of range, was determined by selecting a temperature at which either the energy value to maximum load or percent of shear in the fracture is midway between their respective maximum and minimum values. In a number of instances the single value fails outside of the transition temperature range (see Tables 4 and 5).

Figure II-1 of Appendix II is typical of the test results of the entire program, where the energy El to maximum load is not significantly different in the fully ductile or the fully cleavage modes of failure. Only several exceptions to this statement have been noted. (It is to be recalled that in previous wide plate tests^{1,2} where jeweler's hack-saw cut notches were used, there was a definite transition in energy to maximum load.) As a consequence, the energy to maximum load cannot be used here to obtain a transition temperature except in a few cases shown in Tables 4 and 5. E2 and E2-E1 diagrams (Appendix II) do show an abrupt drop in energy levels in the transition zone and a transition temperature can be obtained by using either of them. However, in this program

- 16 - <u>TABLE 4</u>

TRANSITION TEMPERATURES

ря¹

. .

• •

T-1 STEEL

and the second second

å.-

			Transition Te	mperature Range ^O F		,
Plate Thick ness	Aspect - Ratio	Block No.	Based on energy to max. load	Based on appear- ance of fracture as defined by % of shear	All Blocks Combined, based on appearance	Single Point Transition Temp. OF based on appearance
1211 2	n ^a r <mark>y</mark> an San Arta San Arta	I II III IV	Indeterminate " " "	-20 to zero -40 to -30 -35 to -25 -40 to -30	-20 [°] to ⁿ zeron 17 de ministres	; <u>∵10</u>
	16 16 10 2 40 10 2 40	I I II III IV	Indeterminate zero to ' <u>1</u> 0 Indeterminate zero to +10 Indeterminate	-10 to zero zero to +10 "+10 to +20 zero to +10 -10 to zero	-10 to zero +10 to 20	-10 • • • • • • • • • • • • • • • • • • •
	19). 	I II III	Ins -20 to -10 -10 to zero	sufficient -20 to -10 -10 to zero	D a t a -10 to zero	- 8
3/4"	4	II	Indeterminate	-20 to zero	-20 to zero	- 23 [°]
	8	II	Indeterminate	zero to +10	zero to +10	zero
	12	II	zero to 410	zero to +10	zero to +10	+ 5
	16 16	I II	Indeterminate "	-20 to -10 +30 to +40	+30 to 40	+15
1"	4	,II	Indeterminate	+10 to +20	+10 to +20	1 13
	", , 8 ,	II	n	+10 to +20	+10 to +20	1 13
	12	VI V	4 30 to 4 40	430 to 440	+ 30 to + 40	+ 28
1 <u>1</u> "	4	I II III	Indeterminate " "	+40 to +50 +40 to 50 +50 to +60	+50 to 60	+44.
	6	II	n	450 to 460	50 to 60	+ 50

- 17.-

TABLE 5

TRANSITION TEMPERATURES

T-2 and T-2R STEELS

		<u> </u>		
Plate Thick - ness	Asp ect Ratio	Transitio Based on Energy to max. load	<u>Fingle Point</u> Transition Temp F based on appearance as de- fined by % of shear	
<u> </u>			T-2 STEEL	
3/4"	4	Indeterminate	-20 to -10	-17
	8	11	-10 tò - 5	-18
	12	11 11 11 11 11 11 11 11 11 11 11 11 11	-10 to zero	- 5
	16	11	+10 to +20	· + 2
				- ± -
1"	. 4	n	-10 to zero	- 7
	6	ſſ	+10 to +20	+10
	8		+30 to +40	+33
	12	zero to +20	zero to +20	1 13
1 <u>1</u> "	4	Indeterminate	+30 to +40	1 30
	6	11 '	+60 to +75	+68
			T-2R STEEL	
3/4"	4	(Insu:	fficient Data)	
	6	(Insu:	fficient Data)	
	16	Indeterminate	+40 to ₹50	1 38
	20		1 35 +o →50	1 38

1

5

,

3-

۰.

,

,

..

.....

these latter two diagrams will not determine transition temperature any better than the percentage of shear diagram. For this reason the appearance of the fracture (as defined by the percentage of shear) has been used to determine transition temperature range and single values of the transition temperature. Transition temperature results so found are shown in Table 4 for T-1 steel and in Table 5 for T-2 and T-2R steels.

- 18 - ¹

In Table 4 relating to the T-1 steel, note that the transition temperatures have been given for the various thicknesses, aspect ratios and blocks indicating position within the plate, as indicated on the plate layout figures. The transition temperature was indeterminate by a consideration of energy to maximum load in all except six instances. The transition temperature did not vary significantly from block to block for the 1/2" thick plate or for the 3/4" thick plate except that the transition temperature was quite different in blocks I and II for the Aspect Ratio 16. No reasons have been formulated to explain this exception. It was thought best to incorporate all of the data from the various blocks and determine the overall transition temperature for each thickness from these composite results. Table 4 summarizes the transition temperature ranges and the single values of transition temperature where both are based on the appearance of the fracture.

Figure 17 is a plot of the single values of transition temperature for T-l steel against aspect ratio for the four plate thicknesses involved. It will be noted that transition temperature for any given (AR) is affected by a change in thickness with the thicker plates (with one exception at AR 4 for the 3/4" thick plate) showing the higher transition temperatures. For a given thickness of plate the transition temperatures also generally increase with an increase in the aspect ratio.

Figure 18 represents a repetition of Figure 17 with a second parameter, the width of the test specimens, added. In order to complete this diagram, an extrapolation of the test results in l_2^{1m} thickness was made to widths of 4 and 10 inches. With the two parameters, thickness and width of specimen shown together, it is clearly indicated that as width is increased, for a given thickness, the transition temperatures also increase. This increase in transition temperature due to width can only be accounted for by a modifying of the strain conditions at the notch since metallurgical effects may be assumed to remain constant for a particular plate thickness.

Due to a combination of metallurgical and geometrical causes, transition temperature rises with increasing plate thickness. Also, increased thickness causes a decrease in the average stress at maximum load for geometrically similar specimens. Perhaps these two facts may be coupled together by referring the degree of localization of stress or strain at the notch to thickness.

When the transition temperatures are plotted on width, as in Figure 19, rather than on width divided by thickness, the curves for the different thicknesses, although not reversing in order as they were in plotting unit energy values, are seen to rise less steeply and appear to be more nearly parallel. This might be considered to indicate that the geometrical effect of width had in this way been more completely eliminated than in Figure 17. Residual differences between different thicknesses

- 19 - .

5
on the energy scale would then be attributed to non-geometrical (metallurgical) causes.

1

I. . .

The limited results of tests on T-2 steel (Figure 20) exhibit the same trends previously noted for T-1 steel. The transition temperature for $t = 3/4^n$ is about 10° lower than for T-1 steel. Here, this difference may certainly be attributed to metallurgy alone. The 1° and $1\frac{1}{2}^n$ thicknesses, however, have a transition temperature of about the same as for T-1 steel. Insufficient tests prevent any general conclusion or firm comparisons.

Limited tests on T-2R steel indicate that the transition temperature of the re-rolled $3/4^{n}$ thick plates are about 40° higher than for T-2 steel. (See Figure 20). It is evident that metallurgical changes took place which increased the notch-sensitivity of the T-2 steel. (See grain size classifications under section entitled^{IM} Materialsⁿ).

CORRELATION WITH TESTS BY OTHERS

The University of California(2) has reported on wide plate tests for steel plates of 3/4" thickness in widths varying from 12 to 108", or interpreted in terms of aspect ratio, tests were made with AR varying from 16 to 144. Although only a few tests were made in the greater widths, there is an indication that the transition temperature rose as the width of the plate was increased, with a trend toward constant transition temperatures at great widths. This is in keeping with the trend found in this investigation. It can be inferred from the test . · · inter a la statut de port of the 1/2" and the 3/4" thick plates of this investigation that plate String of Land ↓ ℓ² Esta -

- 20 🕂 --

widths of around 12" are nearly wide enough to establish a value for transition temperatures of internally notched specimens of great width.

The University of California⁽²⁾ reported investigations made on geometrically similar specimens. The specimens reported were edge notched, with the thickness varying from 1/2" to 1 1/8". The thickness was the as rolled plate thickness in each instance. Since the width of the 1/2" thick specimen was only 2", it may be seen that the aspect ratio was in the lower range, whereas the tests reported herein cover aspect ratios up to and including 20. However, the trend in transition temperature shown by the California tests, namely, that transition temperature may be expected to increase with plate thickness, confirms the results of this investigation. Other California⁽²⁾ tests using 3" wide edge notched specimens with thickness varying from 1/2" to 1 1/8", all machined from 1 1/8" thick plates, show that with constant width and varying thickness the transition temperature is generally lower for the thinner plates. The same type of specimen using plates of "as rolled" thicknesses showed more or less the same trend with the exception that the transition temperatures are lower than for the specimens machined from a single plate.

Professor E. R. Parker has reported⁽³⁾ on work performed at the University of California concerning the action of geometrically similar specimens which were all machined from an annealed plate originally $l_4^{1,"}$ thick. The specimens were 3", 6", and 12" wide and 3/16", 3/8" and 3/4" thick. The stress raiser was a square hole in the center of the plate with its sides at 45 degrees to the longitudinal axis of the plate. The radii at the corners of the square hole were made proportional to plate

-21 -

thickness. Professor Parker points out that geometrically similar notched specimens exhibit a marked size effect. This statement was made with the assumption that the specimens were metallurgically similar, and that the size effects must be due to geometry. Not enough evidence is presented to permit a study of the trends and transition temperature. Professor Parker contends that geometric similarity is destroyed before the maximum load is reached. This is a contention which our investigation supports, since it is felt that after the crack at the notch has become visible, the notch acuity is essentially the same in all specimens and that the original dimensional similarity is destroyed.

CONCLUSIONS

The tentative conclusions permitted on the basis of test
results of internally notched specimens are as follows:
1. With plates rolled from the same heat the thick plates shift from shear to cleavage fracture at a higher temperature than thinner plates.
2. Transition temperatures, as judged by appearance of the fracture, for plates of constant thickness (metallurgy constant) increase as width increases, tending to become uniform for large widths.
3. The average unit stress at maximum load of geometrically similar notched plates indicates that thicker plates will withstand a smaller stress intensity than thinner plates. The average unit stress at maximum load for plates of equal width but of different thickness.

- 22 -

- 4. Unit energy absorption to maximum load for specimens failing in 100% shear decreases with increased thickness for dimensionally similar specimens; for plates of equal width but of different thickness the thicker plates have a unit energy absorption greater than thinner plates.
- 5. Dimensional similarity of specimens defined by equal aspect ratios does not establish geometric similarity of strain patterns when judged by unit energy absorption for specimens failing in 100% shear.
- 6. Differences in unit energy and transition temperature in plates of different thickness due to non-geometrical (metallurgical) causes are not completely segregated in comparisons made at equal aspect
 ratio. It now appears that instead of aspect ratio (w .t-1), another function such as (w .t-n), where ly n 30, may serve better for segregating the geometric from the metallurgical effects.

BIBLICGRAPHY

- S. T. Carpenter, W. P. Roop, N. Barr, E. Kasten & A. Zell, Swarthmore College, "Progress Report on Twelve-Inch Flat Plate Tests", Serial No. SSC-21, April 15, 1949 to the Bureau of Ships, U. S. Navy.
- 2. H. E. Davis, G. E. Troxell, E. R. Parker, A. Boodberg, M. P. O'Brien, University of California, "Final Report on Causes of Cleavage Fracture in Ship Plate, Flat Plate Tests and Additional Tests on Large Tubes", Serial No. SSC-8, January 17, 1947, to Bureau of Ships, U. S. Navy.
- 3. E. R. Parker, "The Effect of Section Size on the Fracture Strength of Mild Steel" in "Fracturing of Metals", p. 82, American Society of Metals, 1948.

ACKNOWLEDGMENTS

The investigation herein reported has been under the direct supervision of S. T. Carpenter. Captain W. P. Roop, USN (Retired) has been a constant adviser and collaborator. The testing has been done under the supervision of A. W. Zell and E. Kasten.

Theodore Bartholomew, Eugene Urban and Lawrence Robbins prepared all specimens and assisted in testing. Drawings of the report were made by John Calvin, Roy Bosshardt and Henry Rueger. Mrs. Ruth Sommer has performed all stenographic duties.

The investigators are deeply indebted to Dr. Finn Jonassen, Project Coordinator, and Dr. William Baldwin, Chairman of the Ship-Structure Advisory Committee, and to the members of the Committee, for much helpful advice.

.

· · · ·

-- - -

FIG. I

TYPICAL SPECIMEN

SWARTHMORE COLLEGE

9-6-49

Z

c

'. <u>.</u>

ч

1

1

۰.

- 26 -

. 2

41

· 1

.

|

- ti - iii

-27-

			THICKNESS A	ND WIDTH						THICKNESS	AND WIDTH	
Aspect	1/2"	3/4"	1"	1] "	1 ¹ ⁿ		Aspect Ratio	1/2"	3/4"	1"	1,1	1 ^k ⁿ
Hatio	2"	3"	4.0	5*	6"		4	2"	3"	4"	5"	6"
-	_	4.5"		f	 9"		,		4.5"	611		
6		<u> </u>		107			D	4.U	 			
8	<u> </u>	o"	8	10"			8		2		10"	12"
12	6ª	9"	12"	15"	18"	-	12	6"	9 ⁹¹	12"	15"	18"
15	8ª	12"	16"	20 "	24"		15	8"	12"	16"	20"	2J.#
16				<u> </u>		<u> </u>	16					
20	*9.5 ⁿ	15"	20"	25")ri	20	10"	15"	20"	251	30"
	• •		STEEL	T-1						STEE	L T-2	
*	Aspect Rati	pecimens tested o 19			FiG. 9			Indicates sr	ecimens tested			FIG. 10
					ASPECT RATIO PRO SWARTHMORE COLLE	GRAM T-I					ASF	ECT RATIO PROGRAM T-2
						THICKNESS	AND W	<u>IDTH</u>				
				Aspect <u>Ratio</u> 1	/2"3/4"	1"	11,1		1}"			
					2" 3"	4ª	5"		6"			
				4 L	4, 5"	6"						
				6			10					
				8 c		<u> </u>				1		
				2 E	<u>6" 9"</u>	12"		15"	18"			
				15	8 4 1 20	161		2014		1,10		
				15 16 c	8 ^m 12 ⁿ	16"	<u></u>	201	3	24"		
				15 16 c	8 [#] 12"	<u>16</u> "	<u></u>	20"	3	24"		
				15 16 a 20 a	8 ⁿ 12 ⁿ	<u>16"</u>		20 ⁹	3	30 ^µ		
				15 16 c 20 c	8 [#] 12 ⁿ		 L T-2R	20 ⁹¹	3	30 ⁴		

Ň

ŗ

.

-

:

•

Υ.

FIG. II ASPECT RATIO PROGRAM T-2R SWARTHMORE COLLEGE

v 1

4

- 2**8** -

T-I STEEL, 100 % SHEAR FAILURES.

SWARTHMORE COLLEGE

100 % SHEAR FAILURES

SWARTHMORE COLLEGE

÷

÷.

VARYING ASPECT RATIO AND THICKNESS, T-I STEEL, 100% SHEAR FAILURES

SWARTHMORE COLLEGE

FIG. 15 AVERAGE UNIT ENERGY TO MAXIMUM LCAD. VARIATION FOR T-I STEEL WITH VARYING THICKNESS AND WIDTH, 100 % SHEAR FAILURES.

SWARTHMORE COLLEGE

5

SWARTHMORE COLLEGE

SWARTHMORE COLLEGE

EFFECT OF ASPECT RATIO, THICKNESS AND WIDTH OF SPECIMEN.

SWARTHMORE COLLEGE

SWARTHMORE COLLEGE

-3.3-

APPENDIX I

ŗ

÷

TABLES OF BASIC DATA

4

.

6

• •

1

ι.

.

Aspect Ratio 4

		(ode: T-l		Spe	cimen Si	ze:1/2" x 2"				
Block No.	Spec. No.	Temp. Deg F	<u>To Visibl</u> Energy E in.lbs.	e Crack Load lbs.	<u>To Maxim</u> Energy El in.lbs.	<u>um Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.1bs.	ture Load 1bs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> Acuity
I	A-3	0	2,740	46,500	6,400	52,000	14,300	14,000	7,900	100	1/32" notch
0	A-2	-10	3,000	47,200	6,500	53,800	7,350	53,600	850	0	11
н	A-32	-10	3,200	47,500	6,750	52,900	14,700	17,000	7,950	100	n
11	A-1	-18	3,200	48,300	6,500	53,300	8,500	000 و 50	2,000	8	14
п	A-4	-20	3,250	47,300	6,350	53,600	11,600	41,000	5,250	30	и
Ħ	A-31	-20	3,500	49,000	6,300	53,200	6,300	53,200	0	0	11
u .	A-17	-20	2,700	46.500	6,350	53,000	13,800	17,000	7,450	100	It
U.	A-18	-64	3,850	48,200	7,850	54,000	7,850	54,000	0	0	11
TT	A-5	0	1.690	42,200	6,060	51,600	13,370	13,000	7,310	100	ti.
11	A-22	-25	1,990	12,800	6.800	53,200	14,200	15,000	7,400	100	11
11	A-6	-32	1,760	42.800	6,760	53,700	13,680	13,000	6,920	100	п
11	A-23	-35	2,100	42.000	7.250	53,500	7,250	53,300	Ó	0	14
н	A-24	-40	1.850	42,600	7.350	54,400	7,350	54,400	0	0	11
м	A-7	-52	1,960	42,500	6.870	54,700	6,870	54,700	0	0	It

TABLE I-la

Aspect Ratio 4 Continued

		Code:	T-1		Specime	n Size:1/	2" x 2"				
Block No.	Spec. No.	Temp. Deg. F	<u>To Visib</u> Energy E in.lbs.	<u>le Crack</u> Load lbs.	<u>To Maxim</u> Energy El in.lbs.	um Load Load lbs.	<u>To Fract</u> Energy E2 in.lbs.	ure Load lbs.	Energy Difference E2 - El in.lbs.	g Shear	Internal Notch <u>¥</u> Acuity
111	A-9	0	1.300	43,200	6.350	53,900	12,300	13,000	5,950	100	1/32" hole
11	A-25	-25	2,400	44,900	7,300	54,500	15,100	13,000	7,800	100	
н	A-10	-35	1,950	43,500	7,500	55,000	14,400	16,000	6,900	100	11
п	A-11	-35	2,100	44,500	6,200	53,500	6,200	53,500	0	0	11
н	A-26	-40	2,500	44.100	6,800	54,100	6,800	54,100	0	0	п
11	A-12	-40	2,200	44,200	6,200	54,400	6,200	54,400	0	0	n
עד	A-13	0	2.800	45.500	5.850	51,800	14,300	12,000	8,450	100	12
	4-14	-20	3,350	47,500	7,200	53,100	16,950	13,000	9,750	100	11
п	4-15	-20	3,350	47,300	6.600	52,800	15,400	17,000	8,800	100	н
17	A-16	-32	3,600	48 800	6,700	53,800	15,300	17,000	8,600	100	Ц
11	A-30	$-\tilde{h}^{\sim}_{2}$	4.000	48.300	6,700	53,200	6,700	53,200	0	0	н
11	4-33	-55	3.000	46.500	7.400	54,200	16,500	16,000	9,100	100	IT
н	A-29	-60	3,200	47.300	6,000	54,000	6,000	54,000	0	0	
ti -	A-34	-64	2,800	48,200	7,500	54,000	8,000	53 , 700	500	0	11

TABLE_I-2

Aspect Ratio 8

Ξ

. - -

		Cod	e: T-1		Spec	imen Size	: 1/2" x 4"				
Block No.	Spec. No.	Temp. Deg. F	<u>To Visib)</u> Energy E in.lbs.	le Crack Load lbs.	To Maximu Energy El in.lbs.	<u>m Load</u> Load lbs.	To Fracta Energy E2 in.lbs.	load lbs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> Acuity
I	0-3	0	4,250	76,500	13,750	95,200	13,750		0	0	1/32" hole
II "" "" "" ""	C-8 C-6 C-20 C-23 C-5 C-7	21 0 -10 -10 -20	3,750 3,500 3,370 3,750 3,500 3,750	72,500 73,700 73,900 73,700 71,600 74,400	14,500 16,250 15,000 17,000 15,000 18,100	93,700 94,800 94,800 95,000 95,500 97,700	37,000 40,000 40,500 40,700 15,000 28,250	16,000 25,000 20,000 16,000 95,500 83,000	22,500 23,750 25,500 23,700 0 10,150	100 100 100 100 0 25	ח ה וו ז

TABLE I-3

Aspect Ratio 16

Code: T-1

Specimen Size:1/2"x 8"

Block No.	Spec. No.	Temp. Deg. F	<u>To Visi</u> Energy E in.lbs.	ble Crack Load lbs.	<u>To Maxim</u> Energy El in.lbs.	<u>um Load</u> Load 1bs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	۶ Shear	Internal Notch <u>W</u> 4 Acuity
I	E-13	+10	11,000	136,500	45,000	168,300	117,000	20,000	72,000	100	1/32" hole
n	E-14	0	11,500	140,300	50,000	173,100	125,000	26,000	75,000	100	"
н	E-27	0	9,500	138,500	32,500	172,000	32,500	172,000	Ó	0	11
11	E-3	0	12,000	143,600	46,500	177,000	119,000	15,000	72,500	100	н
11	E-1	-10	10,000	140,000	44,000	177,400	118,000	22,000	74.000	100	ų
11	E -1 6	-10	9,000	136,800	20,000	160,500	20,000	160,500	Ö	0	ft
Ħ	E-2	-20	10,000	139,200	33,500	173,000	33,500	173,000	0	0	IT
n	E-15	-21	10,000	140,600	33,250	175,200	33,250	175,200	0	0	n
II	E-17	40	6.800	132,300	39.400	172,500	112,300	20,000	72,900	100	н
11	E-29	30	7,000	133,300	43,300	172,500	101,200	15,000	57,900	100	π
н	E-28	20	10,000	139,200	43,000	173,900	108,000	20,000	65,000	100	11
**	E-5	10	7,500	133,000	27,100	166,500	27,100	166,500	Ó	0	и
н	E-19	10	8,500	132,800	31,000	169,000	31,000	169,000	Ō	Ō	н
11	E-4	0	6,600	133,300	50,900	179,800	64,700	170,000	13,800	16	11
11	E-6	0	6,300	132,800	54,000	177,700	103,000	94,000	49,000	35	п
11	E -18	-30	6,500	139,500	28,000	170,500	28,000	170,500	0	Ő	11

TABLE I-3a

. .

:

Aspect Ratio 16 Continued

		Code: T-	1		Specimen	Size:1/2"	x 8"				
Block No.	Spec. No.	Temp. Deg. F	To Visil Energy F in.lbs.	ble Crack Load lbs.	<u>To Maxin</u> Energy El in.lbs.	um Load Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> 4 Acuity
111	E-7	30	9,200	135,300	43,000	172,900	101,000	20,000	58,000	100	1/32" hole
n	E-9	10	7,500	133,800	43,000	176,300	109,000	60,900	66,000	100	н
н	E-8	0	7,500	134,200	48,500	175,400	113,500	17,700	65,000	100	п
11	E-21	0	7,000	133,700	500, 37	173,500	37,500	173,500	Ō	0	n
н	E-20	-10	8,500	136,800	36,500	174,500	36,500	174,500	0	0	11
м	E-30	-10	6,000	134,000	20,500	160,000	20,500	160,000	0	0	ri
IV	E-10	0	11,500	140,500	46,500	175,600	116,500	25,000	70,000	100	н
11	E-12	-10	10,500	135,700	33,000	167,500	33,000	167,500	0	0	11
11	E-23	-10	8,000	135,000	41,000	176,000	41,000	176,000	0	8	11
n	E-11	-20	11,000	138,500	52,500	172,600	80,000	130,500	27,500	45	U.
М	E-25	-20	7,500	135,000	48,000	176,700	126,500	29,000	78,500	100	11
н	E-26	-25	5,500	135,000	29,500	166,700	29,500	166,700	0	0	И
It	E-32	-35	7,500	135,000	27,500	167,000	27,500	167,000	0	0	n

TABLE I-4

.

Aspect Ratio 19

		Code: T-	1	3	Specimen Sig	ze: 1/2" x	s 9•5"				
Block No.	Spec. No.	Temp. Deg F	<u>To Visib</u> Energy E in.lbs.	le Crack Load lbs.	<u>To Maxim</u> Energy El in.lbs.	<u>im Load</u> Load 1bs.	<u>To Fract</u> Energy E2 in.lbs.	Load Load lbs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> Acuity
	F-1	10	9,500	153,000	67,000	201,000	159,000	30,000	92,000	100	1/32" hole
-		~	d K00	151. 200	67000	203.500	155.000	30,000	91,000	100	17
11	r-o	20	7 500	151 000	70 150	206,300	160,000	25.000	59.550	100	11
11	F-4	10	7,500	1949000	61 000	205,000	152,000	21,000	91.000	100	ti -
17	F-22 F-5	10 20	9,500	160,200	32,250	194,700	32,250	194,700	0	0	11
77 7	P 7	0	8.000	160.000	62.500	206,500	156,000	16,000	93,500	100	n
111	F=/	ñ	9,500	159.700	55,000	207,000	148,000	30,000	93,000	100	11
	1-7	10	9,500	163,600	29,000	195,000	29,000	195,000	0	0	11
	F-1/	-10	9,000	162,800	61,000	208,000	75.000	205,000	14,000	10	17
	г~то г~то	-10	6 000	162,000	16,000	207 500	46 000	207 500	0	0	11
11	r⊶∠j F-8	-20 -60	4,000	174,500	28,000	197,000	28,000	197,000	0	0	ti

Aspect Ratio 4

Code: T-1 Specimen Size: 3/4" x 3"

Block No.	Spec. No.	Temp. Deg. F	<u>To Visi</u> Energy E in.lbs.	ble Crac Load lbs.	<u>k To Max:</u> Energy H in.lbs.	imun Load 1 Load 1bs.	<u>To Fra</u> Energy H in.lbs.	acture 22 Load 1bs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> Acuity
II	B-15	0	5,500	88,000	18,650	110,300	42,500	27,000	23.850	100	.046" Hole
	B - 16	-20	6,250	90,300	18,650	112,200	44,000	30,000	25,350	100	n Hote
	B-4	-20	6,000	92,100	19,400	113,000	39,000	23,000	19,600	100	13
	B -1 0	-20	6,075	92,300	18,300	119,600	19,470	113,400	1,170	0	
н	B -1 2	-20	5,125	89,600	17,500	112,900	42,500	27,000	25,000	100	н
	B-14	-30	6,250	88,800	21,300	114,500	21,300	114,500	0	0	11
	B 1	-30	4,400	87,700	17,250	114,500	17,250	114,500	0	0	rt
	B-9	-30	5,525	90,000	18,750	113,900	23,150	111,000	4,400	10	н
11	B -1 1	-40	6,000	94,000	19,425	114,300	20,500	114,000	1,075	0	"

- 38 -

TABLE 1-6

Aspect Ratio 8

Code: T-l

.

- -

.

Specimen Size: 3/4" x 6"

Block	Spec.	Temp.	To Visib	le Crack	To Maxim	im Load	To Fra	cture	Energy	%	Internal
No.	Ňo.	Deg. F	Energy E in.lbs.	Load 1bs.	Energy E in.1bs.	l Load lbs.	Energy E2 in.lbs.	Load 1bs.	Difference E2 - El in.lbs.	Shear	Notch $\frac{W}{4}$ Acuity
	10	10	17,500	165,000	5/ -000	200.000	118,000	40.000	64.000	100	.046" Hole
**	10	0	18,000	165,300	LL .000	195,500	44,000	195,500	0	0	
	1	ŏ	18,000	168,800	47,500	202,400	119,000	15,000	71,500	100	rt
	11	-10	19,000	167,000	38,000	196,000	38,000	196,000	0	0	It
18	7	-10	18,000	167,800	50,000	202,900	124,000	33,500	74,000	100	u
	13	-20	17,760	168,500	48,400	202,500	122,000	35,000	73,600	100	41
	ิล์	-20	18,000	169,300	46,000	202,200	116,000	37,000	70,000	100	11
	4	-30	15.000	168.500	40,000	205,000	40,000	205,000	0	0	ti
11	9	-40	19,300	175,800	38,600	205,900	38,600	205,900	0	0	11

Ξ.

1 ¹

.

_

Aspect Ratio 12

		C	ode: T-1		Specimen Size: 3/4" x 9"						
Block No.	Spec. No.	Temp. Deg. F	To Visib Energy E in.lbs.	le Crack Load lbs.	<u>To Maximu</u> Energy El in.lbs.	<u>m Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch $\frac{W}{L}$ Acuity
II	H-8 H-6 H-7 H-5 H-10	20 10 10 0 -10	16,900 16,500 17,500 16,500 16,000	218,800 221,200 222,200 224,400 220,500	80,600 90,000 78,000 58,000 73,000	285,300 284,000 285,700 281,900 279,500	212,500 200,200 219,000 58,000 73,000	45,000 40,000 20,000 281,900 279,500	131,900 110,200 141,000 0 0	100 100 100 0 0	.046" Hole " " "
U	H-9	-20	19,500	230,000	62,800	285,500	62,800	285,500	Ō	Ō	н

TABLE I-8

Aspect Ratio 16

Code: T-1

· .

.

Specimen Size: 3/4" x 12"

Block	Spec.	Temp.	To Visib	le Crack	To Maximum	Load	To Fra	cture	Energy	K	Internal
No.	No.	Deg. F	Energy F in.lbs,	Load lbs.	Energy El in.lbs.	Load 1bs.	Energy E in.lbs.	2 Load lbs.	Difference E2 - El in.lbs.	Shear	Notch <u>W</u> 4 <u>Acuity</u>
I	G-1	30	23,000	284,400	136,000	369,000	350,000	50 , 000	214,000	100	.046" Hole
	G-2	20	23,000	282,800	135,500	369,100	322,500	109,000	187,000	100	n
	G - 5	0	21,500	284,800	129,000	379,500	354,000	200ر63	225,000	100	n
11	G-3	-10	20,000	287,800	129,000	373,400	341,000	54,000	212,000	100	11
	G-4	-20	22,000	286,800	121,500	375,500	121,500	375,500	0	5	11
11	G-7	20	24,000	294,800	87,000	359,000	87,000	359,000	0	Ó	11
II	G - 6	+40	16,200	266,800	127,300	362,400	338,600	35,000	211,300	100	U
	G-8	30	26,000	280,000	138,000	366,500	138,000	366,500	0	0	п
	G 12	20	25,000	281,400	134,000	365,700	365,000	000,15	231,000	100	11
H .	G -1 5	20	22,000	276,400	123,000	364,000	327,000	66,000	204,000	100	н
	G-10	10	26,300	285,500	94,800	352,500	94,800	352,500	0	0	11
	G -11	0	17,400	275,500	145.700	370,900	145,700	370,900	0	0	tt.
11	G-9	-10	23,500	283,900	80,000	347,500	80,000	347,500	0	0	u

r. ,

,

6 1	
TABLE	

Aspect Ratio 4

ł ł . ¢

		Code:	T - 1		Specimen S	ize: l' x	t," x 8"				
Block	Spec.	Temp.	To Visibl	e Crack	<u>To Maximu</u>	m Load	To Frac	ture	Energy	<i>9</i> 6	Internal
No.	No.	Peg F	Energy E in.lbs.	Load lbs.	Energy El in.lbs.	Load lbs.	Energy E2 in lbs.	load lbs.	Difference E2 - El in.lbs.	Shear	Notch W
											Aculty
II	C7	8	20,000	164,900	000 07	183,000	95,000	33,000	55,000	100	1/16" hole
F	0-18	SO	17,500	164,300	37,000	185,000	89,000	42,000	52,000	100	=
F	C-1 9	15	16,000	164,200	34,500	187,500	87,000	45,000	52,500	10	=
=	6-8 -8	P0	18,000	167,300	37,000	186,400	37,000	186,400	0	0	=
=	0-16	0	15,000	157,400	40,000	187,300	45,000	186,600	5,000	0	4
F	C-17	01-	20,000	172,700	38,000	190,500	38,000	190,500	0	0	

TABLE I-10

Aspect Ratio 8

	Internal Notch W 4 Acuity	1/16" hole " " "
	۶hear Shear	100 100 25 0 0
	Energy Difference E2 - E1 in.lbs.	148,000 155,000 156,000 156,000 100,000 100,000
	<u>cture</u> Load lbs.	40,000 45,000 50,000 341,000 345,000
	To Fra Energy E2 in.lbs.	244,000 270,000 281,000 173,000 92,000 91,000
e: 1" x 8"	<u>m Load</u> Load 1bs.	325,000 337,000 341,000 341,000 341,000
ecimen Siz	<u>To Maximu</u> Energy El in.lbs.	96,000 115,000 125,000 113,000 92,000 92,000
Ş	le Crack Load Ibs.	263,200 261,500 268,500 263,000 274,000 274,000 280,200
T-1	<u>To Visit</u> Energy E in.lbs.	32,000 28,000 35,000 30,500 31,000 31,000
Code:	Temp. Deg F	-10 20 10 10 10 10 10
	Spec. No.	Н Н Н Н Н Н Н Н Н Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н С С Н С С Н С С Н С С Н С С Н С
	Block No.	H=====

÷

.

Aspect Ratio 12

. 5

		Code: J	r –1	Spe	cimen Size:						
Block No.	Spec. No.	Temp. Deg F	<u>To Visibl</u> Energy E in.lbs.	le Crack Load 1bs.	<u>To Maximum</u> Energy El in.lbs.	<u>Load</u> Load lbs.	To Fractu Energy E2 in.lbs.	Ire Load lbs.	Energy Difference E2 - El in.lbs	% Shear	Notch <u>W</u> 4 acuity
IA	G5	40	32,000	357,800	214,000	481,100	599,000	22,000	385,000	100	1/16" hole
ri -	G-1	30	39,000	358,400	194,000	000و483	512,000	79,000	,000 318	100	n
П	G-2	30	39,000	368,000	200,000	487,400	395,000	363,000	195,000	55	11
н	G-6	30	35,000	359 , 000	203,500	488,500	218,500	,000 687	15,000	10	n
v	G-3	75	30,000	326,000	198,000	449,500	549,000	20,000	351,000	100	н
n	G-7	50	42,500	363,900	198,000	478,700	502,000	55,000	304,000	100	11
11	6-8	20	30,000	354,800	122,000	468,400	122,000	468,400	0	0	0
11	G-4	10	31,000	358,000	147,000	480,000	147,000	480,000	0	0	11

TABLE I-12

<u>Aspect Ratio 4</u>

		Code	: T-1		Speci	nen Size:	1 <u>2</u> " x 6"				
Block No.	Spec. No.	Temp. Deg. F	<u>To Visible</u> Energy E in.lbs.	<u>Crack</u> Load lbs.	To Maximu Energy El in.lbs.	<u>m Load</u> Load 1bs.	<u>To Fra</u> Energy E in.lbs.	cture 2 Load 1bs.	Energy Difference E2 - El in.lbs.	g Shear	Internal Notch <u>W</u> 4
I	D-15	20	38,500	332,300	104,000	406,900	104,,000	406,900	0	0	3/32" Hole
н	D-3	20	33,400	329,000	109,500	405,000	109,500	405,000	0	0	11
IF .	D - 4	20	35,000	333,500	110,000	404,000	157,000	384,500	47,000	5	11
	D6	30	38,500	331,500	90,000	399,000	90,000	399,000	0	0	н
11	D-5	35	45,000	340 , 500	115,000	398,3 00	250,000	13,000	140,000	100	H.
11	D2	40	46,000	348,500	108,500	402,000	108,500	402,000	0	0	11
ri -	D-1 4	50	40,000	336,000	110,000	401,300	255,000	145,000	145,000	100	11
n	D-16	50	33,000	3 <u>1</u> 8,300	119,000	398,800	235,500	125,000	116,500	100	н
17	D-13	-65	28,200	343,000	83,400	427,600	84,250	426,000	850	0	И
II	D-9	0	32,500	328,500	116,000	415,500	,000	415,500	0	0	14
н	D-17	20	35,000	322,000	116,000	406,500	,000 ,116	406,500	0	0	II.
11	D -1 9	30	44,000	343,500	110,000	403,500	263,000	145,000	153,000	100	11
U.	D 20	30	40,300	342,000	100,200	403,000	200,200	403,000	0	0	18
ч	D-1 0	40	44,000	339,000	106,000	396,000	106,000	396,000	0	0	0
ш	D-18	40	44,000	339,000	115,200	401,800	262,000	135,000	146,800	100	11
11	D-8	40	42,000	337,700	119,000	405,000	125,000	402,000	6,000	5	11
11	D -1 1	50	41,600	336,000	000, 112	399,000	244,000	135,000	132,000	100	rt.
11	D- 12	60	35,000	320,000	118,000	392,500	285,000	120,000	167,000	100	n
11	D-7	76	40,000	327,000	114,000	388,000	246,000	125,000	132,000	100	n

TABLE I-12a

Aspect Ratio 4

Code: T-1 Specimen Size: l_2^{1} x 6"

Block No.	Spec. No.	Temp. Deg. F	<u>To Visi</u> Energy E in.lbs.	ble Crack Load lbs.	<u>To Maximu</u> Energy El in.lbs.	<u>m Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	g Shear	Internal Notch <u>W</u> 4 Acuity
III	D-23	30	34,000	324,500	107,800	404,400	107,800	404,400	0	8	3/32" hole
0	D-28	30	36,000	334,300	111,000	404,500	111,000	404,500	Ō	ō	11
ti.	D-24	32	24,000	301,000	106,000	408,000	252,000	145,000	146,000	100	п
0	D-27	40	27,500	309,000	110,000	400,200	133,000	398,800	23,000	5	17
н	D-26	50	32,000	325,300	100,600	403,900	176,000	350,000	75,400	20	IT
н	D-25	60	34,000	322,500	000, 120	399,700	288,000	100,000	168,000	100	n
_ <u>11</u>	D-29	60	36,000	328,300	112,000	400,000	245,000	140,000	1.33,000	100	11
11	D-21	20	14,000	267,000	25,000	303,000	25,000	303,000	0	0	J.H.Saw cut
н	D-22	83	8,000	236,300	100,000	369,300	256,000	120,000	156,000	100	II .
" *l	₊ G -1 7	50	6,500	600 , 247	45,000	338,500	45,000	338,500	Ō	0	H
" *5	5 G-1 7	60	6,200	237,500	85,000	375,000	85,000	375,000	0	5	ti
" *€	6-17	75	8,500	234,500	58,000	348,000	58,000	348,000	0	ò	11
H 453	9 G -1 7	90	8,000	233,400	89,000	361,500	243,000	110,000	154,000	100	н

* Cut from G-17

x

:

;

4 -

TABLE I-13

Aspect Ratio 6

Code: T-l

Specimen Size: l_2^{1} " x 9"

Block No.	Spec. No.	Temp. Deg F	To Visibl Energy E in,lbs.	e Crack Load lbs.	To Maximu Energy El in.lbs.	n Load Load 1bs.	To Fract Energy E2 in.lbs.	ure Load lbs.	Energy Difference E2 - El in.lbs.	3bear	Internal Notch <u>W</u> 4 Acuity
11 11 11 11 11 11 11 11 11 11 11 11 11	18 5 13 4 16 14 15	77 60 50 50 40 30 40	100,000 67,000 84,000 70,000 64,500 70,000 71,000	507,500 459,500 495,000 480,200 463,000 480,000 479,000	210,000 200,000 165,000 205,000 206,000 193,000 203,000	564,000 568,000 568,500 578,500 579,000 574,000	568,000 440,000 165,000 477,000 534,000 193,000 203,000	185,000 190,000 568,000 155,000 150,000 579,000 574,000	358,000 240,000 0 272,000 328,000 0 0	100 100 0 100 100 0 3	3/32" hole " " " " " "

 \cdot

12

\$

Aspect Ratio 4

ана 194 Алган

т.

`

ŧ

£ ÷

Specimen Size: 3/LU 311 x 12"

.

Specimen	Size:	3/4"	х	314	х	
----------	-------	------	---	-----	---	--

. .

.

Spec. No.

:

.

1

рестцен	OTTO.	J/ 4	~	2	~	1.0

m 1 m	Load
шu	Poad

<u>To Visible</u>	Crack	To Maxim
Energy E	Load	Energy E
in.lbs.	lbs.	in The

Spec. No.	Temp. Deg. F	<u>To Visibl</u> Energy E in.lbs.	Le Crack Load 1bs.	<u>To Maxim</u> Energy E in.lbs.	<u>um Load</u> l Load lbs.	<u>To Fra</u> Energy E in.lbs.	2 Load 1bs.	Energy Difference E2 - El in.lbs.	g Shear	Internal Notch <u>W</u> 4 Acuity
XB-9	0	5,000	94,000	17,000	112,500	36 ,7 50	20,000	19,750	100	.046" Hole
XB-1	-10	5,000	93 , 500	16,500	112,000	38,375	35,000	21,875	100	и
XB3	-20	5,500	94,000	18,250	114,200	25,000	108,600	6,750	20	11
XB-8	-20	5,750	96,700	16,000	113,000	37,000	52,000	21,000	60	ti
ХВ7	-30	5,500	94,300	13,625	114,000	13,625	114,000	0	0	и
ХВ6	-40	4,500	89,000	15,000	115,000	15,000	115,000	0	0	н

TABLE I-15

Aspect Ratio 8

Code: T -2

.

Specimen Size: 3/4" x 6" x 12"

Spec. No.	Temp. Deg. F.	<u>To Visibl</u> Energy E in.lbs.	<u>e Crack</u> Load 1bs.	<u>To Maximur</u> Energy El in.lbs.	<u>Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> Acuity
 XD-5	+10	10,000	161,700	44,000	204,500	103,000	40,000	59,000	100	.046" Hole
XD-1	0	12,000	165,000	43,000	207,300	112,000	25,000	69,000	100	11
XD6	- 5	10,000	161,800	44,000	204,800	102,000	40,000	58,000	100	11
XD-3	-10	13,000	168,500	45,500	206,500	54,000	198,000	8,500	15	11
XD-2	-20	12,500	169,500	46,500	208,900	49,500	206,500	3,000	15	H
XD-4	-30	10,000	164,000	28,500	199,000	28,500	199,000	0	0	И

Aspect Ratio 12

		Code T-2		Specimen S	Specimen Size: 3/4" x 9" x 12"						
Spec. No.	Temp. Deg. F	<u>To Visi</u> l Energy E in.lbs.	<u>ole Crack</u> Load lbs.	<u>To Maximum</u> Energy El in.lbs.	<u>l Load</u> Load lbs,	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - E1 in.lbs.	g Shear	Internal Notch <u>W</u> Acuity	
XH-9	+10	15,000	229,500	68,500	284,700	185,000	45,000	116,500	100	.046"	
XH-1	0	16,250	226,300	77,500	291,300	163,500	70,000	86,000	100	hole N	
XH-7	- 5	15,000	231,500	76,000	293,500	155,000	215,000	79,000	50		
XH-8	-10	15,000	231,700	42,000	276,500	42,000	276,500	о	0	n	
XH-3	-20	16,500	230,800	71,000	293,000	79,000	281,500	8,000	10	п	
XH-5	-30	16,250	235,700	57,500	293,000	57,500	293,000	0	0	ti	

TABLE I-17

Aspect Ratio 16

Code: T-2

÷

.

.

1

ň

Specimen Size 3/4" x 12" x 24"

Spec.	Temp.	To Visible	To Visible Crack		To Maximum Load		ture	Energy	×	Internal
No.	Deg	Energy E in.lbs.	Load 1bs.	Energy El in.lbs.	Load 1bs.	Energy E2 in.1bs.	Load lbs.	Difference E2 - E1 in. lbs.	Shear	Notch <u>K</u> Acuity
10	30	21.000	292,400	116,000	370,400	336,000	25,000	220,000	100	.046" hole
6	20	20,000	296,000	126,000	375,000	300,000	45,000	174,000	100	0
15	20	21,000	301,200	130,000	374,500	279,000	200,000	144,000	55	n
ĩ	20	18,000	296,500	130,000	375,800	300,000	60,000	170,000	100	11
11	10	20,000	294,500	116,500	374,500	291,000	118,000	174,500	75	n
3	10	20,000	295,000	140,000	376,200	272,000	182,000	132,000	60	11
13	10	23,000	301,600	66,000	352,800	66,000	352,800	0	0	U.
-Ĺ	0	31,000	309,000	113,000	379,500	1.26,000	378,000	13,000	10	U
5	Ō	18,000	294,500	117,000	378,500	207,000	323,000	90,000	30	u .
14	0	24,000	302,600	120,000	379,000	164,000	364,500	44,000	15	п
2	-20	18,000	300,000	140,000	386,700	146,000	381,000	6,000	10	н
12	-20	23,500	304,100	124,500	382,000	129,500	380,000	5,000	10	If .
8	-30	21,000	308,800	122,500	391,200	122,500	391,200	Ō	10	н
9	-40	19,000	312,600	77,500	379,000	77,500	379,000	O	0	н

- -

,

.

٠.

τ.

63

Code: T-2

٦

;

.

.

. .

Aspect Ratio 4 Specimen Size 1" x 4" x 8"

Spec. No.	Temp. Deg.	<u>To Visibl</u> Energy E in.lbs.	Le Crack Load 1bs.	<u>To Maximu</u> Energy El in.lbs.	<u>m Load</u> Load lbs.	<u>To Fract</u> Energy E2 in.lbs.	Load Load lbs.	Energy Difference E2 - El in.lbs.	g Shear	Internal Notch <u>¥</u> Acuity
6	+20	9,000	153,400	29,000	187,000	71,500	25,000	42,500	100	1/16" hole
11	+10	12,000	163 , 000	25,500	187,500	68,000	33,000	42,500	100	11
9	0	10,500	165,000	24,500	191,700	71,500	35,000	47,0 00	100	IT
7	0	12,500	168,500	25,000	191,500	70,000	30,000	45,000	100	81
8	-10	7,200	158,000	32,500	.193,000	56,500	167,500	24,000	30	11
1	-20	10,000	163,000	33 , 000	191,500	33,000	191,500	0	0	IJ

TABLE 1-19

Aspect Ratio 6

Code T-2					Specimen Size: l" x 6" x 8"							
Block No.	Spec. No.	Temp. Deg F	<u>To Visib</u> Energy E in.lbs.	<u>le Crack</u> Load lbs.	<u>To Maximu</u> Energy El in.lbs.	<u>m Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in.lbs.	چ Shear	Internal Notch <u>W</u> 4 Acuity	
	3	+20	16,000	225,000	54,000	270,000	131,000	45 , 000	77,000	100	.046 " hole	
	1	20	22,000	240,000	53,500	271,800	138,000	41,000	84,500	100	н	
	5	10	16.000	221,800	51,000	272,200	100,350	205,000	49,350	30		
	Ĩ.	10	17,500	237,200	55,000	271,000	65,000	259,000	10,000	22	H .	
	7	10	22,000	236.400	52,000	271,000	139,000	40,000	87,000	100	11	
	6	0	18,500	235,000	57,500	273,200	98,500	215,000	41,000	33	r r	
	8	0	13,500	232,000	42,500	273,000	50,150	272,500	7,650	10	"	
	2	-10	17,500	233,700	52,500	278,300	89,000	246,000	36,500	33	14	

Aspect Ratio 8

Code: **T** - 2 Specimen Size 1" x 8" x 12"

Spec. No.	Temp. Deg. F	<u>To Visibl</u> Energy É in.lbs,	<u>le Crack</u> Load 1bs.	To Maximum Energy El in.lbs.	<u>Load</u> Load lbs.	To Fract Energy E2 in.lbs,	Load lbs.	Energy Difference E2 - E1 in.lbs.	% Shear	Internal Notch <u>W</u> 4 Acuity
6	50	28,000	289 ,0 00	78,000	336,000	200,000	63,000	112,000	100	1/16" hole
4	40	26,400	293,600	92,500	342,600	200,000	78,000	107,500	100	п
1	30	20,500	280,500	6 8, 000	346,500	147,000	287,000	62,500	30	н
2	10	19,500	281,800	88,000	346,800	198,000	130,000	110,000	70	n
3	-10	18,500	285,400	86,000	355,600	135,000	303,000	49,000	30	11
5	-20	17,000	292,900	80,000	354,100	80,000	353,500	0	O	n

TABLE I-21

Aspect Ratio 12

Code: T-2

.

.

1 1

Т. . .

.

..

Specimen Size: 1" x 12" x 24"

Spec. No.	Temp Deg F	To Visibl Energy E in.lbs.	e Crack Load 1bs.	To Maximun Energy El in.lbs.	1 Load Load 1bs.	To Fract Energy E2 in.lbs.	ure Load 1bs.	Energy Difference E2 - El in.lbs.	% Shear	Internal Notch <u>W</u> <u>4</u> Acuity
5	50	47,000	417,000	152,500	488,300	372,500	130,000	220,000	100	1/16" hole
4	40	31,000	389,500	163,000	493,000	393,000	140,000	230,000	100	Ħ
1	30	34,000	403,000	1 57,000	498,000	372,000	230,000	215,000	75	11
3	20	40,000	414,300	152,000	498,000	376,000	195,000	224,000	75	u
2	0	40,000	416,5 00	105,000	494,000	105,000	494,000	0	0	a

e 1

1

<u>Aspect Ratio 4</u>

. .

Spec. No.	Temp. Deg. F	<u>To Visit</u> Energy H in.lbs.	b <u>le Crack</u> E Load lbs.	<u>To Maxim</u> Energy I in.lbs.	num Load 51 Load 1bs.	<u>To Fra</u> Energy H in.lbs.	acture 52 Load 1bs.	Energy Difference E2 - El	% Shear	Internal Notch <u>W</u> 4 Acuity
XD-2	10	30,000	345,600	98,000	423,400	133,000	397,000	35,000	10	3/32" drill
XD-1	20	30,000	343,000	92,000	413,500	92,000	413,500	0	0	" NOTE
XD-4	30	36,000	354,500	95,000	415,000	208,000	215,000	113,000	50	n
XD3	40	000, 28	331,800	100,000	413,200	210,000	170,000	110,000	100	17
XD5	76	35,000	334,500	94,000	400,900	224,000	145,000	130,000	100	я
XD-6	100	37,000	341,200	82,000	396,400	222,000	145,000	140,000	100	H

Code: T-2

J.

- -- -

;

.

Specimen Size 12" x 6" x 12"

TABLE I-23

Code: T-2

Specimen Size l^{1m}_{2} x 9" x 24"

Aspect Ratio 6

Spec. No.	Temp. Deg. F	<u>To Visibl</u> Energy E in.lbs.	le <u>Crack</u> Load lbs.	<u>To Maximu</u> Energy E in.lbs.	<u>um Load</u> 1 Load 1bs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - E1	g Shear	Internal Notch <u>W</u> Acuity
хн-6	30	52,000	501,000	155,000	59 8,5 00	182,000	597,500	27,000	10	3/32" drill bole
XH-5	40	52,000	498 , 000	160,000	593 , 500	390,000	175,000	230,000	100	1010
XH-1	60	62,000	497,200	143,000	58 1,0 00	143,000	581 , 000	0	0	11
XH-3	75	60,000	492,500	190 , 000	578 ,7 00	443,000	145,000	253,000	100	п

- ----

.

£ 5

Aspect Ratio 4

Specimen Size	3/	'4" c	c 3"	x 12"
---------------	----	-------	------	-------

Code: T-2R

.

•

•

Т

Spec. No.	Temp. Deg. F	To Visible Crack Energy E Load in.lbm. lbs	<u>To Maximum Load</u> Energy El Load in.lbs. lbs.	<u>To Fracture</u> Energy E2 Load in.lbs. lbs.	Energy Difference E2 - El	% Shear	Internal Notch <u>W</u> 4 Acuit v
B-1	75	6,250 100,700	13,500 106,800	34,750 22,000	21,250	100	.046"
B-4	74	9,000 100,500	16,250 107,000	36,200 21,000	19,950	100	drill hole "

а а

TABLE I-25

Aspect Ratio 6

Code: T-2R Specimen Size 3/4" x $4\frac{1}{2}$ " x 12"

_

Spec. No.	Temp. Deg. F	<u>To Visibl</u> Energy E in.lbs.	<u>e Crack</u> Load 1bs.	<u>To Maximu</u> Energy El in.lbs.	<u>m Load</u> Load lbs.	<u>To Fract</u> Energy E2 in.lbs.	Load lbs.	Energy Difference E2 - El	% Shear	Internal Notch <u>¥</u> <u>Acuity</u>
7	85	11,000	130,200	23,000	154,300	65,000	30, 000	42,000	100	.046" drill hole
4	73	10,000	129,300	32,500	152,500	75,000	31,000	42,500	100	IF

.

Aspect Ratio 16

0-4-5 0 10

7

1

.

.

Specimen Size 3/4" x 12" x 24"

Code:	T-28
-------	------

CO LINOIN	-100	2/ 4	 	 ~~~

Spec. No.	Temp. Deg. F	<u>To Visibl</u> Energy E in.lbs.	e Crack Load lbs.	<u>To Maximu</u> Energy El in.lbs.	um Load Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - El in. lbs.	g Shear	Internal Notch W 4 Acuity
GR-4	60	29,000	308,800	110,000	367, 700	310,000	140,000	000 و200	100	.046" Hole
GR-7	50	26,000	800, 302	142,000	374,900	337,000	35,000	195,000	100	11
GR-3	40	27,000	309,500	124,000	376,900	285,000	215,000	161,000	60	11
GR-1	30	25,000	305,000	57,500	345,000	57,500	345,000	0	0	n
GR-8	+10	27,500	311,500	138,000	384,500	138,000	384,500	0	10	n
GR-6	-10	27,000	310,000	129,000	382,800	147 , 000 ·	380,000	18,000	15	IT
GR-2	-20	20,500	307,800	68,000	368,000	75,000	368,000	7,000	0	IF

TABLE 1-27

Aspect Ratio 20

Code: T-2R

Specimen Size 3/4" x 15" x 24"

Spec. No.	Temp. Deg F	To Visib Energy E in.lbs.	Le Crack Load lbs.	<u>To Maximu</u> Energy El in.lbs.	m <u>Load</u> Load lbs.	<u>To Frac</u> Energy E2 in.lbs.	ture Load lbs.	Energy Difference E2 - E1 in. 1bs.	% Shear	Internal Notch <u>W</u> 4 Acuity
I-1	+50	38,000	373,000	170,000	451,900	442,000	60,000	272,000	100	.046" drill hole
1 - 2	35	40,000	373,800	180,000	456,500	316,000	375,000	136,000	40	11
I-3	20	34,000	377,300	178,000	461,800	230,000	449,500	52,000	20	n

(1) (4

APPENDIX II

-

. . . .

- ---

..

GRAPHICAL SUMMARIES OF BASIC DATA

I.

٩

.

.

---- . -- - - .

- -

-52-

-

-53-

•

÷

-

2-

Ţ,

-55-

9-7-49

٦.
-56-

Ę.

1-10-50

-57-

. ..

- - -----

- ----

I"X 12" ASPECT RATIO 12

SWARTHMORE COLLEGE

.

-59_

SPECIMENS D-T-2

12"x 6" ASPECT RATIO 4

100

100

100

FIG. **II-4**1 SPECIMENS-G 3/4" X 12" ASPECT RATIO 16 CODE T-2R

60

60

60

60

60

-

11-4-50

SPECIMEN - I 3/4"x 15" ASPECT RATIO 20 CODE T-2R SWARTHMORE COLLEGE

TEMPERATURE OF

.

20 40 TEMPERATURE F FIG. 11-42

٥ļ

100

50

٥ļ

PERCENT SHEAR

VS. TEMP.

. .

APPENDIX III

LOAD-ELONGATION CURVES

.

-62-

٩,

-- --

.

SPECIMEN C-6 CODE T-1 0°F, 100% SHEAR

-

SWARTHMORE COLLEGE

SWARTHMORE COLLEGE

SPECIMEN C-3

CODE T-I

0°F, 0 % SHEAR

- 63-

FIG. III-5 LOAD - ELONGATION CURVE SPECIMEN E-28 CODE T-1 20°F, 100% SHEAR

LOAD-ELONGATION CURVE SPECIMEN E-26 CODE T-1 0°F, 0% SHEAR

SWARTHMORE COLLEGE 11-27-50

> 9.500 LBS 29,000 LBS

FIG. 11-8

2-15-50

-

1.2

LOAD-ELONGATION CURVE

SPECIMEN B- 4

CODE T-I

-20 F, 100 % SHEAR

FIG. 11-9

SPECIMEN B-14 CODE T-1 -30°F, 0% SHEAR

FIG. Ⅲ+11

-

LOAD-ELONGATION CURVE SPECIMEN D-10 CODE T-1 10°F, 100% SHEAR

FIG. II-12 LOAD-ELONGATION CURVE SPECIMEN D-3 CODE T-1 -30F 100% SHEAR

SWARTHMORE COLLEGE

. . .-

CODE T-1 10°F, 100% SHEAR -10°F, 0% SHEAR

- - - ----

SWARTHMORE COLLEGE

-2

. . ..

FIG. III-17

_

۰,

LOAD-ELONGATION CURVE SPECIMEN C~19 CODE T-1 15°F, 100% SHEAR

SWARTHMORE COLLEGE

FIG. III-18

LOAD-ELONGATION CURVE SPECIMEN C-8 CODE T-1 10°F, 0% SHEAR

SWARTHMORE COLLEGE

FIG. III-20

.

LOAD-ELONGATION CURVE SPECIMEN E-17 CODE T-1 -10°F, 0% SHEAR

SWARTHMORE COLLEGE

- 67-

SWARTHMORE COLLEGE

· _

5

.

.

5,500 IN.LBS.

13,625 IN.LB5.

з

MAX LOAD FRACTURE -574,000 LB5.

1

. 5

.6 7

--

-

SWARTHMORE COLLEGE 11-1-50

> SWARTHMORE COLLEGE 11-1-50

.

SWARTHMORE COLLEGE

-

FIG. III-36 LOAD-ELONGATION CURVE SPECIMEN XC-1 CODE T-2 -20°F, 0% SHEAR

-71-

FIG. III-38 LOAD-ELONGATION CURVE SPECIMEN XD-8 CODE T-2 OF, 10% SHEAR

.. ..

SWARTHMORE COLLEGE

2

. .. ____.

SWARTHMORE COLLEGE

- -

. ...

-72-

SWARTHMORE COLLEGE

L.....

SWARTHMORE COLLEGE

.. .

,2 , з ,Т ELONGATION IN INCHES

LOAD ELONGATION CURVE FIG. 11-47 SPECIMEN 3" B-1, T-2R 75°F, 100% SHEAR

LOAD ELONGATION CURVE FIG. 11-49 SPECIMEN 1/4 C-4, T-2R 73 F, 100% SHEAR

0

1

-

۰2

.з

10.000 IN.LBS.

32,500 IN LBS.

75,000 IN.LBS.

LBS.

SWARTHMORE COLLEGE 11-1-50

SWARTHMORE COLLEGE 11-1-50

..

FRACTURE 31000

. 6 .7

1_____ 1

ELONGATION IN INCHES

- -

- 74-

SWARTHMORE COLLEGE

SWARTHMORE COLLEGE
