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1. INTRODUCTION 

1.1 General 

This project has been undertaken on behalf of the inter-agency Ship Structures Committee (SSC) 
through a contract let by the U.S. Maritime Administration (MARAD), and overseen by a Project 
Technical Committee (PTC) comprising representatives from various organizations and 
individuals from around the world.  

The stated primary objective of the project is: 
 
“…a scoping study… identifying issues related to the challenges with regard to structural safety 
of ships navigating in the Arctic Ocean, which may be undergoing climatic changes. A detailed 
literature review will be undertaken ... to recommend future research required to ensure 
continued safety...” 

 
With the review as a base, the project has tabulated the changes and challenges and has proposed 
directions for research to address the most critical issues.  These proposals are focused on areas 
where the SSC is best suited to play a leading research role. 

 

1.2 Background 

The Arctic Ocean is the least travelled of all the world’s major seas.  Ice, winter darkness, great 
distances, environmental challenges and jurisdictional issues are continuing impediments to 
shipping.  And despite all these issues, the arctic shipping situation is changing.  The climate is 
warming, the ice is retreating and ship traffic is likely to increase.  There is increasing public and 
professional awareness of the sensitivities associated with the arctic.  The environmental, social, 
political and security issues are numerous and interrelated.  The recent release of the Arctic 
Marine Shipping Assessment (AMSA) by the intergovernmental Arctic Council consolidates 
recent work on a number of these issues, and presents a range of scenarios for future arctic 
shipping operations (see http://arcticportal.org/en/pame/amsa-2009-report).  

 
There are several factors which are driving the likelihood of increased shipping.  The primary 
issue is the wealth of the resources in the region.  The Arctic is said to comprise approximately 
25% of the Earth’s undeveloped resources.  This includes non-renewable mineral and petroleum 
resources as well as renewable resources such as the fishery.  Tourism is another significant 
driver, growing steadily in recent years.  Other key drivers are public sector activities in science, 
regional management and development, as well as defense and security.  While all these aspects 
are significant, the petroleum resources must be considered the single largest factor when 
considering the future of arctic shipping. 

 
“The U.S. Geological Survey (USGS) has completed an assessment of undiscovered conventional oil and gas resources in all 
areas north of the Arctic Circle. Using a geology-based probabilistic methodology, the USGS estimated the occurrence of 
undiscovered oil and gas in 33 geologic provinces thought to be prospective for petroleum. The sum of the mean estimates for 
each province indicates that 90 billion barrels of oil, 1,669 trillion cubic feet of natural gas, and 44 billion barrels of natural gas 
liquids may remain to be found in the Arctic, of which approximately 84 percent is expected to occur in offshore areas.” - US 
Geological Survey report 2008 
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At today’s prices (2010) this represents a traded commodity value of 14 Trillion dollars. In terms 
of total economic activity, the importance of the arctic is exceptionally large. When added to the 
environmental and strategic concerns, the arctic represent a challenge and opportunity of nearly 
unparalleled significance.  

 
Numerous current projects by governments, shipbuilders and resource companies are 
contemplating a range of vessels; tankers, bulk carriers, support vessels, science ships, military 
patrol ships, cruise ships and emergency evacuation craft.  With the climatic and commercial 
changes in the arctic, even our limited range of operational experience may be of little use in 
predicting the structural challenges that future vessels will face.  The aim of this project is to take 
a forward looking view to develop a listing of issues, challenges and needed research to try to 
ensure viable arctic shipping in the years ahead.  The particular focus is on ship structural 
questions, including but not limited to: 

 
 Will changes in the arctic climate tend to lead to increased or decreased ice loads? 
 As arctic ice retreats and shipping seasons are extended, will cold-embrittlement, or 

various material degradation issues (corrosion, fatigue) become significantly larger 
issues? 

 Will developments in the arctic lead to more local infrastructure, or will development 
need to continue as fully self sufficient remote operations? 

 Will improvements in material grades, welding standards and overall design have a 
significant positive impact on arctic ship structural risks? 

 Will changes in design methods, standards and corporate policies contribute to improved 
safety levels? 

 Are there likely to be a sufficient number of adequately trained people to perform the 
design, operation, research and regulation activities that will be initiated? 
 

The main topics have been grouped in to five primary areas, each with multiple topics and sub-
topics.  For each sub-topic, a description is presented below.  In the appendix, the actual 
references are found.  For some aspects of the report, footnotes are used to identify URLs for 
websites that are sources of data or for information that may change with time; e.g., 
environmental conditions, regulations and standards. 
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2. OUTLINE OF AREAS AND TOPICS 

The topics listed in the proposal have been grouped and subdivided as shown below.  Section 3 
expands on this list.   

Area Topic Sub Topics Key Issues 
    
Changing Climate Change   
Environmental 
Conditions 

 Environmental Changes Coverage, Thickness, Loss of MY 
ice 

  Potential Impacts More variability, uncertainty  
 Ice Cover   
  First Year Ice  
  Multiyear Ice Differentiation of MY thicknesses 
  Thickness  
  Pressure Identification and prediction of 

pressure 
  Pressure Ridges  
  Rubble Ice  
  Consolidation  
  Lead Systems  
    
Ice Load  Ice Loads  Extreme loads on larger ships 

Load patterns  
Load following 

Scenarios Mechanical Properties 
Load Measurements 

Computer Simulation  

    
Material / 
Structural Response 

Materials  Material Grades 
Corrosion 
Material Behaviour 

Tearing 
Temperature and strain rate 
influences 

  
 
 
 
Design /Assessment 

 
Sandwich Plate System 
Coatings 
 
Plastic Design 
 

 
 
 
 
Collapse mechanisms 

    
    
Risk and Hazard Key Risks Simulation 

Sensing 
Databases 

Human factors 
Data collection 

Assessment  Assessment Methods   
    
    
Regulatory and  Regulation International 

National 
Classification Societies 

 

Other Factors Remote Facilities Search and Rescue 
Environmental 
Protection 
Vessel repair 

 

 People   
 Information Technology   
    

    



BMT Fleet Technology Limited  6696DFR.Rev00 

 

SR1463:  Structural Challenges faced by Arctic Ships 4 

3. TOPIC OUTLINE 

3.1 Changing Environmental Conditions  

3.1.1 Climate Change  

Numerous sources of data suggest that the average annual quantity of Arctic sea ice is declining 
(see Figure 3.1).  These data sources include nuclear submarine sonar data stretching back to the 
1950s; satellite data such as the Scanning Multi-channel Microwave Radiometer (SMMR) on the 
Nimbus 7 satellite, and the Special Sensor Microwave Imagers (SSMIs) on the Defence 
Meteorological Satellite Program (DMSP) satellites; and observations of sailors who lived and 
worked in the Arctic since the early twentieth century.  Science Magazine reports “Satellite 
monitoring revealed a 5% decrease in the extent of the ice between 1978 and 1998” (Kerr, R.A., 
1999).  Old sailors say that there is much less ice in the Arctic now than there used to be.  For 
this reason, there is very limited value in using old ice data such as historical ice atlases to plan 
current and future operations. 

 

 

Figure 3.1:  Observed Northern Hemisphere Sea Ice Extent  
(Source:  Vinnikov et al, 1999) 

 

3.1.1.1 Projected Changes 

Polar regions are amongst the most extensively modelled areas of the world for climate change 
forecasting.  These models are usually extremely complex, involving (broadly) an atmosphere 
component, an ocean component, the ability to deal with sea ice cover, and anthropogenic 
forcing (e.g., greenhouse gasses and sulphate aerosols).  There is a strong coupling between sea 
ice and the rest of the climate system.  This means that errors in the simulation of sea ice cover 
will be propagated to errors in the simulated atmosphere and simulated ocean too (Parkinson et 
al, 2006).  The strong coupling between sea ice cover and the rest of the climate system springs 
from the influence of sea ice cover on the following:  exchanges of heat, mass, and momentum 
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between the ocean and atmosphere; reflection of solar radiation; net transport of cold fresh water 
towards the equator; and the salinity and density structure of the ocean. 

A 2006 study (Parkinson et al.) evaluated eleven of the world’s leading Global Climate Models 
(GCMs) based on their ability to deal with sea ice.  Table 3.1 lists these GCMs.  This study 
showed that each model does well simulating the annual ice extent cycle; the best model overall 
was not any one model in particular, but an average of all eleven models. 

 

Table 3.1:  Model Particulars for Eleven Global Climate Models  
(Parkinson et al, 2006, p 5). 

 

Five1 GCMs were used in the Arctic Climate Impact Assessment and the Intergovernmental 
Panel on Climate Change Fourth Assessment Report (2007).  In general, these GCMs predict 
continuous declines in sea ice coverage through the 21st century.  At the extreme, some 
simulations show that by the middle of the century, the entire Arctic Ocean could be ice-free for 
a short period in the summer.  However, it is also important to note that no simulations have 
indicated that the winter sea ice cover of the Arctic Ocean will disappear during this century.   

On a more local basis, the Canadian Arctic Archipelago is predicted to retain significant summer 
ice coverage and large concentrations of multi-year ice for longer than any other area of the 
Arctic. 

3.1.2 Ice Cover  

There has been a substantial decrease in sea ice cover over the past few decades.  Since the 
1950s, there is a reduction in sea ice coverage by 10-15% (IPCC – Intergovernmental Panel on 
Climate change).  The extent of sea ice cover is maximum in March and minimum in September.  
There is a twofold increase/decrease in sea cover between March and September (IPCC).  The 
ocean and atmosphere play an intrinsic role in the extent of sea ice cover.  A negative trend is 
apparent in the time series of the variability of ice extent at 2% in March and 7% in September 

                                                 
1 CGCM2, CSM_1.4, ECHAM4/OPYC3, GFDL-R30_c, and HadCM3. 
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(Richter-Menge et al., 2008).  The mean ice edge position retreated significantly over a period of 
150 years with greater retreat during the last century (Shapiro et al., 2001). 

 

 

Figure 3.2:  Sea Ice Extent during March and September (2009)  
(Source: Richter-Menge et al) 

3.1.2.1 Types 

Sea ice is comprised of both first year and multiyear ice.  The presence of multiyear ice adds a 
significant dimension to the design issues. Since multiyear ice concentration has been showing a 
declining trend in the past decade, its implication to Arctic shipping is vital.  The presence of less 
multiyear ice means there is a probability of extended Arctic navigation season.  Passive and 
active microwave satellite remote sensing observations are used to monitor the extent and 
concentration of sea ice.  It has been found out that two different ice regimes were not 
differentiable by microwave remote sensing under similar climatic conditions. 

3.1.2.2 Thickness 

Thickness of sea ice is one of the main restricting factors in commercial Arctic shipping and it is 
poorly documented.  The speed at which commercial vessels can go through ice is directly 
related to the thickness of the ice.  The thickness also plays a very important role in the structural 
design of the ship.  The thickness of the ice also decreases with ice cover area during the melt 
season.  It is more difficult to monitor ice thickness.  Measurements of ice thickness can be made 
in situ.  Satellite based techniques such as ICESat (Ice, Cloud and Land Elevation Satellite) 
altimeter (Kwok et al., 2006) and obtaining ice thickness from satellite based estimates of ice 
freeboard (Laxon et al., 2003) are already in use, but these observations have been spatially and 
temporally limited. Ice thicknesses have also been measured by using submarines.  Scientific Ice 
Expeditions (SCICEX) program have acquired many ice draft data in the 1990s (Gossett, 1999) 
(Margo, H et al., 2003).  Data from submarine based observations indicate that at the end of the 
melt season the permanent ice cover thinned by an average of 1.3 m between 1956– 1978 and the 
1990s, from 3.1 to 1.8 m (Rothrock et al., 1999). 
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Figure 3.3:  Modeled Seasonal Cycle of Ice Thickness  
(Source:  Rothrock et al., 1999) 

There is a significant loss of older, thicker multiyear ice drifting out of the Arctic through the 
Fram Strait (Rigor and Wallace, 2004).  On the other hand, measurements of the seasonal ice 
cover do not indicate any statistically significant change in thickness in recent decades (Melling 
et al., 2005).  The thickness of first year ice in level floes ranges from a few tenths of a meter 
near the southern margin of the marine cryosphere to 2.5 m in the high Arctic at the end of 
winter.  In the present climate, old multi-year ice floes without ridges are about 3 m thick at the 
end of winter (ACIA). 

 

Table 3.2:  Level Ice Thickness  
(Source:  S. Løset et al., 1999) 

 
 
The above table shows the measurement of monthly level ice thickness in various regions.  The 
air temperature regimes play a role in the overall thickness of ice. 

3.1.2.3 Ice Pressure 

Ice pressure is dependent upon many factors such as wind speed, current direction and current 
speed, etc.  The sea ice under pressure has the potential to stop the ship in its tracks by inhibiting 
its forward motion.  Since most of the shipping will be done near coastal areas, fast ice is an 
inherent danger which can strand a ship. 
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3.1.2.4 Ridge Rubble Consolidation 

Ice ridges are formed when sea ice floes collide with each other under pressure.  These can 
happen near the sea ice land interface too.  The ridges form when the floes buckle and break into 
blocks due to the compression of the ice pack.  These ridges can be up to 30 m thick (Arctic 
Climate Impact Assessment - ACIA).  Waves are an additional cause of ridging near open water, 
notably in the Labrador, Greenland, and Barents Seas.  Because of ridging and rafting, the 
average thickness of first-year sea ice is typically twice that achievable by freezing processes 
alone (Melling and Riedel, 1996).  Heavily deformed multi-year floes near the Canadian 
Archipelago can average more than 10 m thick. 

 

 

Figure 3.4:  Rubble Fields  
(Source:  M.L. Druckenmiller et al., 2009) 

A multiyear ridge is fully consolidated and has low salinity.  The sail height of ridges can reach 
up to 6 m in height. 

3.1.2.5 Lead Systems 

Leads are ice free areas between ice floes which the ship can use for transit.  Since a ship is like a 
vehicle, the lead systems can be used to navigate the ship through ice floes without sustaining 
any structural damage.  Lead systems are short lived; unlike polynyas, which are regularly 
occurring ice-free areas generated by wind, current and upwelling conditions. 

 

3.2 Ice Loads on Ships  

3.2.1 Introduction 

Ice loads represent the main structural challenge faced by ships in the arctic.  And even after 
years of study, ice loads continue to be poorly understood and difficult to predict.  This 
uncertainty stems from several causes, including: 

 Complexity of ice loads – Ice forces arise when breaking a brittle solid.  The ice 
fractures in many ways and creates highly localized and dynamic local pressures.  
The direct contact pressures are difficult to observe visually or measure 
electronically.  Only recently have technologies been developed to observe the 
complex reality of the contact, and such observations have only taken place in 
controlled laboratory conditions.  Field tests on ships have given useful data, but have 
always been difficult to analyze, understand and generalize.  
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 Inadequate modeling methods – While there are ice tanks that perform tests of ships 
in ice, the focus is on level icebreaking and resistance.  Local ice pressures are not 
modeled with any available model ice materials.  Numerical techniques are used for 
modeling local loads, but such methods are unable to represent the complexities 
observable in laboratory tests.  Models, whether physical or numerical, tend to reflect 
the views and biases of the model’s author.  There are many different models and 
little agreement among specialists.    

 Shortage of specialists – The field of ship structures is not particularly large when 
compared with some engineering fields.  The sub-field of ice-class ship structures is 
quite small.  A handful of specialists from a handful of arctic countries cover the 
field.  Research in the area is relatively limited when compared to Naval Architecture 
as a whole.  

The following sections will expand on these topics to illustrate the challenges and uncertainties. 

3.2.2 Ice Mechanical Properties and Load Measurements   

When ship-ice interaction occurs, local and global loads occur on the ship.  The loads will 
depend on the mechanical behavior of ice, and thus the mechanical properties of ice are certainly 
relevant.  Empirical evidence of ice loads on ships shows that the ship-ice interaction process is 
quite complex. It is not easy to show a strong link between mechanical properties of ice 
measured in a lab (or field) and the load phenomena on ships.  Nevertheless, mechanical 
properties of ice are a starting point.    

3.2.2.1 Compressive Strength 

Local ice contact with ice will always involve compression of the ice edge.  The standard test 
arrangement for measuring the uni-axial compressive strength of ice is shown in Figure 3.5 
(Timco and Weeks, 2010).  Both freshwater and glacial ices have no salt, and yet the 
compressive strength at high (i.e., brittle) strain rates is noticeably different as shown in Figure 
3.6 (Jones, 2007).  There are several issues that this plot highlights.  The trend lines appear to 
indicate that freshwater ice gets significantly stronger (almost 2x) as the strain rate rises from 103 
to 101 /s.  Over the same range the iceberg ice appears to get about 20% weaker.  And yet when 
all the data is examined without reference to the trend line, it is clear that the scatter in the data 
overwhelms the trend of the mean.  At the high strain rates (typical of ship impact events) the 
uniaxial strength of freshwater ranges from 3.5 to 18 MPa, a 5x increase.  The iceberg ice, taken 
has a whole, shows a 4x increase from lowest to highest.  When considering that these tests all 
involved prepared standard samples, tested in a simple way in controlled conditions, the scatter is 
quite curious.   
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Figure 3.5:  Typical Lab Test Arrangement for Uni-axial Compression  
Strength Test of Sea Ice (Source:  Timco and Weeks, 2010 

 

 

Figure 3.6:  Uni-axial Compressive Strength Data for Iceberg and  
Fresh Water Ice at -10oC (Source:  (Jones, 2007) 

 

The strength of saline ice (sea ice) under combined bi-axial stresses is shown in Figure 3.7 
(Iliescu and Schulson, 2004).  It shows that while uni-axial strength may be only around 5 MPa, 
biaxial stresses (confining stresses) can raise the apparent strength to over 20 MPa.  When ships 
strike ice edges, the contact can become large and the ice towards the center is confined.  Biaxial 
strength tests are more complicated to conduct and are thus less available.  As an attempt to 
address the need for a more appropriate confined strength test, the borehole jack was developed 
for ice (Masterson and Graham 1996).  Figure 3.8 shows the use of a borehole jack device for 
measuring in-situ confined compressive strength of ice.  Masterson et. al., (1997) discuss the 
relationship between bore-hole jack tests and uni-axial tests.  Figure 3.9 shows how strength (as 
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measured by borehole jack) decays in first-year, second-year and multi-year ice during the decay 
season (Johnston et.al., 2003).  As ice decays in spring and summer, the strength diminishes 
markedly.  First year ice decays more due to the presence of brine in the ice.  Multi-year ice, 
which has almost no brine, maintains its strength to a much greater extent.  This is an important 
factor when considering ship operations in the arctic in late spring and summer.  Figure 3.10 
shows how borehole jack strength in old ice varies with temperature (i.e., from winter to 
summer) and can be nearly 40MPa (Johnston et.al., 2003).  Once again, one of the most 
interesting aspects of Figure 3.10 is the very wide range of the data.  At warmer temperatures, 
the borehole jack (confined) pressures range from 3 to 25 MPa, approximately an 8x range.  At 
colder temperatures the range is from 10 to 40 MPa.  Given both the small sample size and the 
relatively controlled conditions for such data, this represents a remarkable range.  Could it be 
that material properties of ice do vary over such a wide range?  Or is there something about the 
tests or their interpretation that tends to generate random results?  

 

 

Figure 3.7:  Failure Envelope for the Brittle Strength of Saline Ice  
(Iliescu and Schulson, 2004) 
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Figure 3.8: Borehole Jack for In-Situ Compression Test in Ice  
(Source:  Photo by Lanthier from Timco and Weeks, 2010) 

 

 

Figure 3.9:  Comparison of First-Year, Second-Year and Multi-Year Borehole 
Strength during the Decay Season (Johnston et. al., 2003) 
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Figure 3.10:  Multi-Year Borehole Strength as a Function of Temperature  
(Johnston et.al., 2003) 

 

3.2.2.2 Other Types of Ice Strength 

A comprehensive review of various mechanical properties of ice is presented in Hooke at. al., 
(1980).  Timco and Weeks, (2010) present a more recent review of mechanical properties. 
Fracture properties of ice at high strain rates are reviewed in Dutta et. al. (2004).  Ice load and 
pressure measurements are often observed with ice, and are the subject of much continuing 
debate.  Scale affects are discussed in Gagnon et. al. (2001) and Goldstein et.al. (2009).  Flexural 
strength is a key parameter for ice loads on ships in normal operations.  The flexural strength of 
first year sea ice in the Barents Sea is discussed in Krupina et.al. (2007) 

3.2.3 Ice Load Measurements  

An understanding of the safety of ships in ice relies on an understanding of the ice loads that 
occur in various situations.  Field measurements of ice loads are essential sources of information 
to permit rational design and risk assessment.  Ice loads have been measured on many ships since 
the 1970s.  The approaches used have varied and improved over the years, though strain gauges 
applied to framing have been the most common method.  Sensor technologies have improved 
significantly since the 1970s.  Many of the early trials focused on monitoring locations where the 
strains were thought to be highest.  The data was collected in analog form and later examined to 
try to assess loads (e.g., German and Milne 1973).  Beginning with the Kigoriak trials (Ghoneim 
and Keinonen 1983), a new approach was taken, one which aimed to use strain gauges to convert 
the vessel into a pressure sensor.  Gauges were placed to ensure the most unique relationship 
between the desired load measurement and the response.  Practically all ice loads trials since the 
Kigoriak have used a similar philosophy.  Combined with digital data acquisition, it is now 
typical that ice loads data can be derived and presented in real time during the voyage.  
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The ‘standard’ way to measure ice loads on ships is to instrument the framing with strain gauges 
(e.g., Daley, et.al. 1984, Muller and Payer 1987, Kujala 1989, Ritch et al. 1999, Mejlaender-
Larsen and Nyseth 2007).  There have been improvements in the technology over the years.  
Improved finite element model tools have permitted more accurate system design.  Modern 
systems have far greater data storage capacity and typically record data at higher sampling 
frequencies.  And yet the improvements in the standard approach can only be described as 
modest.  The system characteristics suffer from the same fundamental shortcomings as existed 
with the systems on the Kigoriak and Polar Sea in the early 1980s.  The key weakness of these 
systems is the lack of spatial resolution, coupled with the inherent challenges of trying to use a 
stiffened panel as the ‘structure’ of a force transducer.  A design aim for any transducer (sensor) 
is to achieve a high level of fidelity between the ‘true’ and ‘measured’ quantities.  All strain-
gage-on-frames (sgof) ice load panels on ships suffer from inherent ‘cross-talk’ between frames, 
which both limits the spatial resolution of the data and amplifies errors.  And since ice pressures 
contain complex patterns and sharp peaks, sgof systems are incapable of providing anything but 
a blurred impression of the loads.  Figure 3.11 illustrates how the lack of adequate spatial 
resolution can blur patterns to the point of completely misrepresenting their meaning.  
Structurally significant ice pressures can occur in line-like patterns with dimensions (line widths) 
as small as a few cm. (Riska, Rantala and Joensuu, 1990).  The spatial resolution typical of sgof 
systems is 35cm to 50cm, and would be completely incapable of resolving fine patterns of ice 
load.  

 

Figure 3.11:  Illustration of Effect of Spatial Resolution on Patterns 

The newest approaches to ice load measurements in the field involve surface mounted high 
resolution (smhr) ice load panels (e.g., Gagnon et. al. 2008, see Figure 3.12).  The Terry Fox 
trials of 2001 were the first to examine full scale collisions between a ship and iceberg fragments 
(called bergy-bits).  The trials were novel and advanced in several aspects.  Three separate ice 
load measurement systems (Figure 3.12) were deployed: 

(1) the MOTAN system that attempted to estimate forces from the accelerations of the 
vessel;  

(2) a strain gauged panel (a sgof system) covering 6m2  with a spatial resolution of 
0.08m2 to 0.24 m2 sampled at 500hz; and  
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(3) a novel optical pressure panel, covering 4m2 mounted outside the hull (a smhr 
system) with a spatial resolution of  approximately .0004m2 , measured at 60hz. (the 
IMD panel).    

 

Figure 3.12:  Multiple Sensor Systems for Bergy Bit Impact Tests on  
CCG Terry Fox (Gagnon et al 2008) 

 

The vessel was deliberately collided with bergy bits (see Figure 3.13) that had been profiled to 
determine shape and mass.  

Interestingly, the strain gauge panel on the Terry Fox measured the highest local pressure of 11.3 
MPa on an area of 0.12m2.  This corresponds surprisingly well to the highest measurement on the 
Polar Sea in multiyear ice in 1983 of 11.3 MPa on an area of 0.15m2 (see Daley et. al. 1984).  
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Figure 3.13:  Profiled Ice from Bergy Bit Impact Tests on CCG Terry Fox 
(Ralph et al 2008) 

 

Table 3.3 gives a list of ship instrumented, along basic test information.  The data collected on 
these trials has had a very significant impact on ice class construction standards.  

A useful reference for field measurements of ice pressure on ships is the Catalog of Local Ice 
Pressures (CLIP) maintained by the Nation Research Council of Canada (NRC) (see Frederking 
and Collins, 2005).  The data from many of the trials conducted in North America and Europe 
are included as well as data from several offshore structures (see Figure 3.14). 

 

 

Figure 3.14:  Ship and Offshore Structure Data included in the CLIP data set  
(Frederking and Collins 2005) 
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Table 3.3:  Ice Load Measurement Programs on Ships 

Ship Name: Louis S St. Laurent 
Location(s): Lancaster Sound Instrumentation:  Small through-hull Pressure sensors   
Year(s): 1977,1980 Comments: 25 Pressure sensors recorded point pressures up to 

75MPa over very small areas.  
References:  Glen, I.F., Blount, H., 1984 Measurement Of Ice Impact Pressures And Loads Onboard CCGS 

Louis S. St. Laurent., Proc. OMAE 1984 Symposium, 3, New Orleans, pp. 246-252. 
 

Ship Name: Sisu 
Location(s): Baltic Instrumentation:  Frame gauges and ice pressure gauge 
Year(s): 1979-1984 Comments: 234 days of operations in ice, with 670,000 measured 

peaks 
References:  Kujala, P., Vuorio, J., "Results and Statistical Analysis of Ice Load Measurements On Board 

Icebreaker SISU in Winters 1979 to 1985", Winter Navigation Research Board Report 43, 
52p., 1986 

 
Ship Name: Polar Sea 
Location(s): Beaufort, Chukchi, 

Bering Seas and 
Antarctic   

Instrumentation:  Strain gauges applied to frames (compression normal 
to shell) to create 60 sub-panels, each of 0.15m2, 
covering 9m2 on bow shoulder.   

Year(s): 1982 - 1984 Comments: Approx 3700 recorded impacts in FY and MY ice.  
References:  Daley, C., St. John, J.W., Brown, R., Glen, I.F., 1990. "Ice Forces and Ship Response to Ice - 

Consolidation Report", Ship Structures Committee Report SSC-340. 
 

Ship Name: MV Arctic  
Location(s): Baffin Bay Instrumentation:  Hull Girder Strain Gauges to determine Ram forces 

and Bending Moments 
Year(s): 1984 Comments: 146 Head-on Rams, most of which causes the ice to 

break in bending.    
References:  Riska, K., "On the Mechanics of the Ramming Interaction between a Ship and a Massive Ice Floe", 

Thesis for degree of Doctor of Technology, Technical Research Centre of Finland, 
Publications 43, Espoo, Finland, 1987. 

 
Ship Name: Polar Star 
Location(s): Beaufort Sea Instrumentation:  Strain gauges on decks for hull girder bending, plus 

accelerometer package in the bow.   
Year(s): 1985 - 1986 Comments: Approx 80 impacts in ice floes and ridges. Mainly 

symmetrical head-on rams  
References:  Minnick, P., St. John, J.W., Cowper, B., Edgecombe, M., 1990. Global Ice Forces and Ship 

Response to Ice, Ship Structural Committee  Report SSC-341.  
Minnick, P., St. John, J.W., 1990. Global Ice Forces and Ship Response to Ice – A Second Season, 

Ship Structural Committee  Report SSC-343,  
 

Ship Name: ODEN 
Location(s): Arctic Ocean (North 

Pole) 
Instrumentation:  Shear difference frame gauges in 2 separate panels in 

the bow, as well as global hull loads 
Year(s): 1991 Comments: A 50 day ice transit from Spitsbergen to the North 

Pole. Triggered recording of load events.  Hourly 
observations of ice conditions. 

References:  Edgecombe, M., St. John, J., Liljestrom, G. and Ritch, R., 1992. Full scale measurements on hull-
ice impact loads and propulsion machinery response onboard icebreaker Oden during the 1991 
International Arctic Ocean Experiment, Transport Canada TP 11252E  
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Ship Name: Nathanial B. Palmer 
Location(s): Antarctic   Instrumentation:  4 Strain gauge panels, on bow, bottom fwd, side aft 

and stern (transom).  Approx 60 gauges measuring 
compression normal to shell. 

Year(s): 1992 Comments: Approx 800 recorded impacts in FY and SY ice.  
References:  St. John, J.W., Minnick, P., 1995. Ice Load Impact Study on NSF R/V Nathanial B. Palmer, Ship 

Structural Committee  Report SSC-376,  
 

Ship Name: Louis St. Laurent 
Location(s): Arctic Ocean (North 

Pole) 
Instrumentation:  Shear difference frame gauges in 3 separate panels 

Year(s): 1994 Comments: A 35 day transit, with USCGC Polar Sea, from 
Alaska, across the Arctic Ocean to Svalbard. 
Triggered recording of loads and hourly observations 
of ice conditions. 

References:  Ritch, R., St. John, J., Browne, R., Sheinberg, R. 1999. Ice Load Impact Measurements on the 
CCGS Louis S. St. Laurent during the 1994 Arctic Ocean Crossing, Proc of the 18th OMAE. 
July 11-16, St. John's Newfoundland, paper OMAE99/P&A-1141 

Frederking, R. 2000 Local Ice Pressures from the Louis S. St. Laurent 1994 North Pole Transit 
Technical Report, HYD-TR-054. Canadian Hydraulics Centre, NRC, Ottawa  

 
Ship Name: Healy 
Location(s): Labrador Sea and 

Davis Straight 
Instrumentation:   

Year(s): 2000 Comments:  
References:  Santos-Pedro, V.M., Timco, G.W. 2001. Canadian Involvement in the USCGC HEALY Ice Trials, 

POAC 01, August 12-17, Ottawa Canada 
 

Ship Name: Terry Fox 
Location(s): Newfoundland Instrumentation:  3 load and pressure systems: Strain Gauge Panel, 

exterior optical pressure panel and MOTAN 
Motion/Loads package  

Year(s): 2001 Comments: These were dedicated bergy-bit collision trials, with 3 
load measuring approaches.  

References:  Gagnon, Robert, David Cumming, Ron Ritch, Robin Browne, Michelle Johnston, Robert 
Frederking, Richard McKenna, and Freeman Ralph. 2008.  Overview accompaniment for papers 
on the bergy bit impact trials. Cold Regions Science and Technology 52, (1): 1-6. 

 

3.2.3.1 Local Loads 

The term local ice loads refers to ice load cases that relate to local structural response, both shell 
plating and framing, as well as loads on appendages.  Most ice loads of structural interest arise 
from collision events.  A head-on ram may cause both local and global responses.  Shoulder and 
other ice impacts will typically only be of local structural interest, with the potential damage 
confined to the local area of the impact.  

There have been many ship trials to measure local loads in ice, with a partial list shown in Table 
3.3.  The load measurements have been found to be quite non-uniform, varying significantly 
from panel to panel.  As a way to express the spatial variability of the pressures, the concept of 
the pressure-area relationship was developed as a way to quantify and present the spatial 
variability of ice pressures (see Sanderson 1988, Frederking 1998, Daley 2007, Jordaan et al 
2010).  There continues to be some debate and controversy about the pressures-area relationship  
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(see Daley 2007).  There are those who appear to believe that the currently available data 
(meaning the measured pressures on various ships and structures in the arctic) represent values of 
pressure that cannot be exceeded.  In the introductory remarks of (Jordaan et. al. 2010) the 
authors state: 

Thus the ship's rams and indentor impact tests represent in all cases the 
ultimate strength of the ice in practical situations of confined compression.   

 

The authors then propose a design pressure-area curve (see Figure 3.15) that is derived from a 
statistical assessment of the available pressure data with inclusion of ‘exposure’.  The proposed 
pressure-area curve just happens to go through the highest measured values of pressure.    

 

 

Figure 3.15:  Local Pressure-Area Curves (Jordaan et.al. 2010) 

 

In contrast to the view that the existing local pressure data represents the ‘ultimate strength of 
ice’ and thus is representative of maximum possible ice pressures, there are some authors who 
remain to be convinced.  The key to the debate lays in the influences that parameters such as 
force, velocity, mass and interaction shape on ice pressures.  Sanderson (1988) speculated as to 
whether ice pressures may be just a function of area, and relatively independent of other factors.  
This would be true if local ice pressure were primarily controlled by ice material properties.  In 
such a case, both large and small ships, fast and slow ships, would experience similar pressures 
when operating in similar ice.  
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If, on the other hand, local ice pressures are significantly influenced by factors such as the 
overall force level, and total area of contact, then larger, faster ships would not only experience 
larger forces, but would also experience larger pressures.  To address this question, Daley (2004, 
2007) re-analyzed the measured data from the USCGC Polar Sea (Daley et al. 1990), with the 
aim of examining the relationships between force, total area of contact and local pressures.  The 
results clearly showed that the local pressures are strongly correlated to total contact area and 
force.  Figure 3.16 shows the trends from a single impact.  The ten largest impacts all showed 
similar results.  Gagnon (2008) finds a similar link in the Terry Fox iceberg impact pressure data.   

 

 

Figure 3.16:  Local Pressure Data from Event #410 on the  
USCGC Polar Sea, from 1983 (Daley 2007) 

A topic that has arisen recently in the literature is the question of ‘exposure’.  Frederking and 
Johnston (2008), and Jordaan et. al. (2010) both discuss the matter of the definition and influence 
of exposure.  The explanation by Jordaan is as follows: 

Exposure can be measured in a number of different ways.  One can think of exposure in the case 
of a Weibull “weakest link” problem.  In this case we could have a chain with many links, all 
with random strength.  The strength of the chain is only as strong as that of the weakest link. 
Exposure can be considered here as the number of links in the chain.  The greater the number of 
links in the chain, the greater the likelihood of having a link with a low strength to initiate 
failure.  For the design of offshore structures in an ice environment, exposure can be considered 
as a function of time.  One can compare the effect of floe sizes which could impact the Molikpaq 
structure.  A floe that is 1000 m long would have a greater exposure than a floe with a diameter 
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of only 100 m.  Here the duration of the impact with a 1000 m ice floe would be much longer 
than that of a 100 m ice floe, resulting in a greater likelihood of exceeding a particular load or 
pressure threshold. 

The difficulty with the above explanation is that it seems to be an attempt to define a new term to 
describe something that needs no definition, and in doing so merely confuses the matter.  All 
statements about probability require context. It is meaningless to give any probability without the 
context.  

Nevertheless, the focus on ‘exposure’ or context does serve a useful purpose.  There are many 
examples in the literature in which probabilities of ice pressure have been presented with 
insufficient description of context.  Frederking and Johnston (2008) serves as an example of this 
issue.  Figure 3.17 presents a comparison of plots of the cumulative probability for various level 
of local pressure.  The data is taken from pressure measurements from both glacial and multiyear 
ice and for both ships and a pressure panel attached to a cliff in Labrador.  In all the cases the 
pressure data represents the maximum observed pressure on a sensing area of approximately 
0.3m2, for one ‘event’.  The probability of exceeding the pressure Y is determined by ordering 
the data of N samples, and then using the rank of the Y sample (nY);  

nY
1

 

The five data sets shown in Figure 3.17 all use this simple form of probability to generate the 
plots from the measured data.  For each set of tests the probability context is an ‘event’, where an 
event is one impact.  It is clear that the data from the different tests follows different trends.  The 
differences include the ice type, temperature, strength (as measured in the lab), as well as the 
mass speed and shapes of the impacting bodies.  All data was scaled using a pressure-area 
relationship, of the form; 

   

C 
A
A

.

  

Unfortunately, there was no correction for factors such as mass, shape and velocity. It might be 
inferred that Frederking and Johnston do not expect that such factors influence ice pressure.    
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Figure 3.17:  Comparison of Local Pressures from Tests on Terry Fox, Polar Sea 
and Grappling Island (Frederking and Johnston 2008) 

The authors do, however, make one additional correction to the data, which they describe as 
accounting for exposure.  They seek to express the probability of pressure on a single sub-panel 
of 0.3 m2.  In the case of the Polar Sea data, which had an overall sensing area of 9m2, the 
authors divided all probabilities by a factor of 30 (=9/.3).  The ‘corrected’ probabilities are 
shown in Figure 3.18. In doing so the authors were trying to express the chance that any 
individual panel of 0.3m2 would experience a given pressure in a single event.  While this may at 
first seem reasonable, it is actually not correct, or at least not at all useful.  The purpose of 
correcting for exposure is to place all the data to be compared on a valid common base. In the 
case here, the statistics for the maximum pressure were divided by the total number of measuring 
panels.  This is, in this case, inappropriate, as it implicitly assumes that all the panels are equally 
likely to experience the load.  Only if the loads were equally and randomly distributed over all 
panels would it be reasonable to assess the risk on a per-panel basis.  It would presumably be 
relatively easy to use the data to see if the panels were equally likely to experience a peak.  
Otherwise there would be little value in estimating the average risk for all panels.  The practical 
concern should be the risk to the ship of damage to any plate.  

This issue deserves a significant amount of discussion, not only to clarify a complex matter, but 
because there is a significant trend towards probability based design.    
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Figure 3.18:  Comparison of Local Pressures from Tests on Terry Fox, Polar Sea 
and Grappling Island, Corrected to a Common ‘Exposure’ of One Sub-panel  

(Frederking and Johnston 2008) 

3.2.3.2 Global Loads 

The term ‘global loads’, in the case of ships, normally refers to those loads that cause a global 
structural response in the hull girder.  The term can also refer to the total force of impact, 
although since most ice impacts occur over a small area, there is little need to separate local load 
from total impact forces.  In the case of the Terry Fox bergy-bit impact trials (Gagnon et.al. 
2008), one of the sensors, the MOTAN system, used the global rigid body response of the vessel 
to determine the total ice impact force (see Figure 3.13).   

The major global load and response of interest is hull girder stress that arises from a head-on ram 
into very heavy ice features.  This interaction formed the design basis for the Canadian Arctic 
Shipping Pollution Prevention Regulations (ASPPR).  There was a great deal of research 
conducted on this topic in the 1980s.  Key field programs are reported in Ghoneim et.al. (1984), 
German and Milne and VTT (1985).  Ramming model tests are reported in Riska and Daley 
(1986) and Howard et. al. (1989).  Mathematical models are described in Daley (1984), Vaughn 
(1986), Riska (1987) and Daley (1999).  The global load and strength requirements of the IACS 
Polar Rules are presented in Daley (2000).  The ramming forces and vessel response for the case 
of a ship ramming heavy ice are now quite well understood, and require little further study.   
There is limited sensitivity of global loads to the pressure/area effect discussed above, vital as 
these are to local loads. 
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3.3 Materials, Structural Response and Fabrication 

3.3.1 Material Grades 

Ships operating in the polar regions are subjected to highly concentrated loading from ice 
features and air temperatures down to -50°C.  For this reason, large load carrying capacity and 
high ductility are required.  Additionally, the necessity of weight reduction for saving material 
and lowering production costs, construction time and buoyancy leads to the employment of 
different materials and enforces their development for these special environmental conditions. 

3.3.1.1 Steel 

Steel is preferred over other construction materials for arctic going ships because of its high 
strength, processability, availability and its relatively low price.  The required steel grade for a 
particular application will depend on (Riska et al. 1997): 

 Design minimum temperature 

 Associated wind speed 

 Likelihood of exposure of the structural member to impact loads at low temperatures 

 Stress category of the member, and anticipated strain rate 

 Steel thickness 

 Stress relieving  and post-welded heat treatment 

 Amount of cold-forming (unless its effects have been nullified) 

 Accessibility to structural components for welding inspection and periodic surveys 

 Weld acceptance criteria 

 Provision of artificial means of heating (Rapo 1983) 

In 1996, the International Association of Classification Societies (IACS) issued new unified 
requirements, UR S6 (rev. 3), pertaining to the use of steel grades for various hull members.  
Included were requirements for structures exposed to low air temperatures.  By these rules, the 
selection of steel grades is to be made on the basis of the design temperature, material thickness 
and the structural category.  This coupled with drivers from industry in the form of increased 
material property demands for liquefied natural gas (LNG) and container ships as well as 
corrosion resistant crude tank material have lead to the development of new steels through new 
manufacturing processes.  Specific industrial demands on steel grades are (Ohkita and Oikawa 
2007): 

 Heat Affected Zone (HAZ) toughness 

 Crack arrest properties 

 High heat input weldability 

 High tensile strength 

 Small distortions 

 High efficiency fabrication 

 Corrosion resistance, and  

 Fatigue strength 
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The process by which these new steels are made is called the thermo-mechanical control process 
(TMCP).  TMCP now uses online accelerated cooling devices during steel production.  In 
addition to online cooling, heat affected zone (HAZ) grain size is controlled through thermal 
stabilization of TiN particles; and HAZ grain microstructure is controlled through advanced 
microalloying technology (i.e., microalloyed with one or more of nickel, chromium, copper, 
niobium and boron) (Um et al. 2008; Suzuki, Ichimiya, and Akita 2005; Nie et al. 2010; Kang 
2005; Basu, Tripathi, and Modak 2005). 

Steels created with these new processes are optimized for high heat input welding, high strength 
and low temperature fracture toughness.  (Stern, Wheatcroft, and Ku 1985; Um et al. 2008; 
Suzuki, Ichimiya, and Akita 2005; Nie et al. 2010; Kang 2005; Stern, Wheatcroft, and Ku 1985; 
Kim, Suh, and Kang 2007b).  These steels are available in an “as rolled” condition; rather than in 
a quenched and tempered state (Basu, Tripathi, and Modak 2005). In particular, high heat input 
welding versions of grades EH36, EH40 and EH47 are now available (Um et al. 2008; Stern, 
Wheatcroft, and Ku 1985; Kim, Suh, and Kang 2007a).  These EH-grade heavy shipbuilding 
steels are expected to have long crack arrestibility for brittle cracks in a base plate or welded 
joint.  At least one paper (Inoue et al. 2007) has shown that while this is the case for 
longitudinally stiffened panels loaded to stresses less than 200MPa, this was not the case when 
these stresses exceeded 200 MPa. 

Of these new steels, much research in niobium bearing steels in particular has been carried out.  
Published works generally report that niobium bearing steels provide improved toughness 
(including at low-temperatures), fracture resistance and weldability.  (Jansto 2008; Yang et al. 
2008); however McPherson (2009) suggests that niobium imparts no beneficial effects in the 
HAZ and Ichimiya et al (2008) state that the reduction of carbon, silicon and niobium improves 
HAZ toughness. 

 
The above experiments were performed at room temperature, as has been normally done in such 
experiments. The plastic behavior of steel grillages and structures at cold temperatures has not 
been widely explored and is significant concern for arctic ships.  Recent research into the effect 
of cold temperatures on ship steels has shown that the yield strength can be significantly 
enhanced at colder temperatures and that fracture strain is not strongly affected, although the 
testing methodology (involving dry ice and acetone versus liquid nitrogen) does have a 
significant effect.  This is significant because the dry ice/acetone environment is supposed to 
more closely resemble an arctic environment than the liquid nitrogen setup; implying that other 
previous laboratory experiments into the effect of cold temperatures on steel material behavior 
(which mostly used liquid nitrogen cooling) may be overestimating the quasi-static failure strain 
(Kim et al, 2009, 117-124). 
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Figure 3.19:  Stress-strain Behavior for Tests at Various Temperatures  
(Kim et. al. 2009) 

 

Another area of research applicable to arctic ship structures is the effect of cold temperatures on 
material strain rate effects.  Hot rolled mild steel is notoriously strain-rate sensitive (Marsh and 
Campbell 1963), as are other steels.  For steel, this strain rate sensitivity manifests itself in the 
form of increased yield strength (i.e., dynamic yield strength) with increasing strain rate, and 
decreasing fracture strain with increasing strain rate.  Dynamic yield stress for various materials 
may be described by the following regression equation proposed by Cowper and Symonds (Jones 
1983; Cowper and Symonds 1957): 

1  

 where:   is the dynamic yield stress 

    is the static yield stress 

    and  are constants called the Cowper-Symonds Parameters 

 and  for hot-rolled mild steel are: 

40.4 and 5 

Values for other materials are given in the following table (Jones 1983): 

Material C [‐/s] p

Stainless Steel 304 100 10

Alpha‐Titanium (Ti‐50A) 120 9

Aluminum 6500 4  
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Figure 3.20 shows the behavior of hot-rolled mild steel versus that of other materials. 

 

 

Figure 3.20:  Yield Stress Scale Factor for Various Materials  
for Various Strain Rates 

 

This dynamic increase in yield strength for various ship building materials can be quite dramatic 
(even at quasi-static strain rates).  Quantifying the increased yield strength for various ship 
building materials at various temperatures would allow the substitution of this dynamic yield 
stress into design equations for specific load scenarios where the strain rate can be assumed; thus 
preventing the overdesign of structural members in some cases. 

It should be noted that the Cowper-Symonds relationship given above has gained nearly 
universal acceptance because of the remarkable agreement between analytical and numerical 
predictions with experimental data (Jones 1983).   

Other factors to consider are the post dynamic yield stress-strain relationship and the effect of 
strain rate on fracture strain. 

One potential pitfall of using the Cowper-Symonds formula lies in assuming it is valid for any 
strain.  Note in Figure 3.21 that for the static case, plastic design using a perfectly plastic stress-
strain relationship assumes that the structural stresses will never exceed the static yield stress for 
any strain up to fracture.  This provides a very conservative estimate a structure’s energy 
absorbing capacity.  For the 0.02 strain rate case, the actual stress beyond the yield strain 
promptly drops significantly.  In this case if a perfectly plastic assumption is used based on the 
Cowper-Symonds formula, it will over-predict the structure’s energy absorbing capacity (see the 
Erroneous Dynamic Perfectly Plastic Assumption line in the figure).  A general rule is that for 
cases where the expected strains are only a few percent, it is acceptable to use the Cowper-
Symonds formula; if strains are expected to be greater, than Cowper-Symonds formula may still 
be used, but with new C and p parameters that provide a more conservative scale factor on the 
static yield stress.  Even at room temperature, little data exists regarding the Cowper-Symonds 
parameters for large strains. 
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Figure 3.21:  Mild Steel Stress-strain Curves for Two Strain Rates  
(1 unit of ordinate is 103 lb in-2) (modified from Jones 1983). 

 

The effect of strain rate on fracture strain affects the energy absorption capacity of a structure.  
The energy required to fracture steel is proportional to the area under the stress-strain curve up to 
the fracture strain.  Fracture strain is sensitive to strain-rate but does not necessarily decrease 
with increasing strain rate; it can be significantly higher than the static fracture strain.  Fracture 
strain is also sensitive to temperature.  Much research has been done regarding the effect of 
elevated temperatures on structural steels, however similar experiments on ship building steels at 
reduced temperatures are lacking.  More research is needed to determine the combined effects of 
strain-rate and reduced temperatures on ship-building steels so that an assessment of the energy 
absorption capacity of arctic ship structures may be made. 

 

3.3.1.2 Selection of Steel Grades Based Design Temperature 

Steels for hull structures subject to the direct action of ice have to possess high resistance to 
brittle fracture under impact loads and high stresses at low temperatures.  According to 
established practice and IACS unified requirements (UR W11), steel grades A, B, D and E of 
normal strength; and AH, DH, EH and FH of higher strength are distinguished based on their 
impact test requirements.  The only difference is in the CVN-test temperature and the amount of 
steel to be tested for the steel grades. 
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All the factors influencing the ductile-to-brittle transition are greatly variable and all are 
essentially random in nature.  No scientifically based formulas or proven empirical relationships 
exist for selecting the appropriate steel grades as a function of these parameters.  After Japanese 
studies started in the late 1970’s (Yajima and Tada 1981 and others) remarkable progress has 
been made in this field (e.g., Sumpter and Caudrey 1995; Malik et al. 1997), however this 
progress has not yet translated into commonly agreed scientific criteria for selecting a steel 
grade. 

There are a number of existing regulations, as well as the recently adapted IACS rules, for 
structures exposed to low air temperatures.  The Baltic Rules contain virtually no requirements 
other than an introductory remark that the hull materials are to be adequate for operation in -
30°C.  Material selection in all non-Baltic rules is based on the concept that structural members 
operating in cold environment under high impact loads are to be made of higher steel grades.  
However, the specific material requirements by different regulatory bodies differ considerably 
from each other both in approach and in detail.  As a result, in spite of the limited list of steel 
grades, different rules do not always require the same steel grade for a structural member of a 
ship. 

This is an area of uncertainty and controversy, best illustrated by the contrast between the two 
IACS URs, S6.22 and I23 as shown in Tables 3.4 and 3.5 below.  During the development of the 
(later) I2 various stakeholders pointed to the absence of fracture problems on existing high ice 
class ships and offshore structures despite lack of conformity to S6.2 standards.  There was an 
absence of material to justify the requirements of the (earlier) S6.2 scientifically.  The resulting 
steel grade requirements in I2 represented a compromise solution.  However, several 
classification societies have now published various forms of “winterization” guidelines (e.g., 
ABS) that re-introduce the S6.2 requirements for items not covered by I2.  The paradoxical result 
is to require higher steel grades for some non-safety critical components than for the hull itself. 

Table 3.4:  Material Grades from IACS S6.2 

 
 

                                                 
2http://www.iacs.org.uk/document/public/Publications/Unified_requirements/PDF/UR_S
_pdf158.PDF 
3 
http://www.iacs.org.uk/document/public/Publications/Unified_requirements/PDF/UR_I_
pdf410.pdf 



BMT Fleet Technology Limited  6696DFR.Rev00 

 

SR1463:  Structural Challenges faced by Arctic Ships 30 

 

Table 3.5:  Material Grades from IACS I2 

 
 

3.3.1.3 Aluminium 

Aluminium alloys are generally useable for different structures that experience low temperatures.  
Examples of these structures are cars, trains, aerospace and space technology, gas tanks, ships 
and offshore structures.  Unlike common non-austenitic steels for ship and offshore structures, 
the mechanical properties of aluminium alloys suitable for use in sea water improve with lower 
temperatures.  The shear and Young’s moduli go up.  The tensile strength increases; but in a 
higher grade than the yield strength.  This means that the plastic reserve of the material increases 
too, providing a higher durability against impacts (Ostermann 1998).  Toughness and 
deformability increase at lower temperatures as well.  The fatigue strength of the basis material, 
as well as the welding, seems to show higher values at lower temperatures too. 

The classification societies have specified a number of aluminium alloy grades for use in ship 
construction.  These are the non- heat treatable 5XXX- group and some of the heat treatable 
6XXX grades.  The alloys of the 5XXX- group plate materials have a high corrosion resistance 
and are suited for underwater use as hull plating, while the alloys of the 6XXX- group are used 
for extruded profiles, commonly used for internal applications. 

Aside from a 14m, 14.7 tonne displacement aluminium pilot boat (Beecham 2000), a literature 
search reveals little else regarding aluminium hulled vessels specially designed for Polar 
Regions.  This is because:  (a) aluminium alloys are preferred for marine applications because of 
their relatively low density, but there is little reason for weight saving in ice breaking vessels in 
this regard; (b) the relatively high material costs; (c) the processability is somewhat more 
difficult than for steel; (d) the higher risk of corrosion due to destructed coating (especially in the 
ice belt); and (e) the relatively low fire resistance.  With increasing fuel costs and the 
development of suitable coatings, the above disadvantages may be negated.  This may allow 
aluminium to be considered for greater use in polar vessels.  It must be stressed, however, that  

Notes to Table 3.5:
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current polar class ship design methods cannot be simply adjusted for use with aluminum. There 
are many practical matters, including issues of welding, heat-affected zones, fatigue, and general 
arctic durability for which there is little or no field experience.  Aluminum in polar applications 
will need to be carefully tested and initially used with care.   

 

3.3.1.4 Fibre Reinforced Plastics 

Fibre reinforced plastics (FRP) are increasingly being used to reinstate/strengthen steel structures 
(Liu et al. 2009; Zhao and Zhang 2007) and their use may be warranted in arctic ship structures.  
Further, arctic-related FRP research (for use in ice-capable lifeboats and ship superstructures 
among other areas) is currently underway regarding FRP structure-ice interaction (Ré, Kuczora, 
and Veitch 2008) and the effects of cold temperatures on FRP material properties (see below). 

FRP is attractive for arctic application because of its corrosion resistance, light weight, fatigue 
resistance and the ability to tailor its structural and mechanical response (Wilde et al. 1996).  The 
question is whether these benefits exist under the environmental conditions in the arctic.  
Compared to pure metallic structural materials, composites have a lower thermal conductivity, 
lighter weight, higher strength and stiffness, and better fatigue and vibration damping 
characteristics. 

Special tests were performed to determine the material behavior of FRP at low temperatures 
(Dutta 1994; Ritter 1995; Shen and Springer 1977; Jang et al. 1987; Aboudi 1991).  Generally, 
when a glass fibre is embedded in an annulus of cured resin, the resin exerts a radial compression 
on the fibre as the temperature lowers.  This compression produces a better contact at the 
interface of the resin and fiber; and the effect is to hold the fiber tighter during a fiber pull out 
test (Jang et al. 1987).  Additionally, the resin gives a more effective support to the fiber against 
local buckling. 

By theoretical treatment and experimental testing, it was shown that the Young’s modulus of just 
the polymer resin matrix increases with decreasing temperature.  The change of matrix modulus 
also causes a change of the composite modulus (Jang et al. 1987; Hartwig 1979; Tsai and Hahn 
1980; Dutta 1989).  The shear modulus of the polymer matrix increases approximately linearly 
with reduction of temperature (Kreibich, Lohse, and Schmid 1979).  The comparison of shear 
strength of a unidirectional carbon fibre reinforced epoxy at +20°C and -196°C shows that the 
shear strength doubles at low temperatures (Ritter 1995).  The estimation of yield strength by 
compression tests shows that the strength increases at lower temperatures. 

There are two important effects that influence the behavior of unidirectional composites in 
compression at low temperatures:  first, the increase of thermal residual stresses that must be 
overcome by the matrix and second, the increase in matrix stiffness that causes an increase in the 
critical fibre stress before failure (Dutta 1994).  The ultimate tensile strength of a unidirectional 
carbon fibre reinforced epoxy decreases at lower temperatures (Ritter 1995).  Tests show that 
samples of glass- and carbon-fibre reinforced laminates impact loaded at -196°C always have 
impact energy values greater than identical samples tested at 23°C (Jang et al. 1987).  This 
higher impact energy seems to go hand-in-hand with a greater degree of macroscopic 
delamination and a larger amount of microdelamination or microcracking.  The reduction of 
impact energy for Aramid-fibre-epoxy biaxial systems loaded at low temperature may be 
attributed to Aramid fibres having a higher transverse thermal expansion coefficient than the 
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epoxy resin.  Of interest is the influence of moisture on FRP at low temperatures.  Moisture 
accumulates mainly in pores.  Evidently a minimum volume is necessary to lead to an 
impairment of the laminate (Ritter 1995; Shen and Springer 1977).  A careful optical 
microscopic examination reveals that very few microcracks are apparent in all samples exposed 
or unexposed to moisture attack (before impact loading).  This implies that the thermal stresses 
and/or the moisture-induced stresses (if any) are not sufficient to cause microcracking at room 
temperature.  A microscope cold stage was designed and used to observe if microcracking 
occurred at -196°C.  No apparent microcracking was found (Jang et al. 1987). 

As with aluminium, the interesting and potentially beneficial material properties of FRPs may 
lead them to be considered for greater use in polar vessels.  Again it must be stressed, however, 
that current polar class ship design methods cannot be simply adjusted for use with FRP.  There 
are many practical matters, including issues of bond strength and general arctic durability for 
which there is little or no field experience.  FRPs in polar applications will need to be carefully 
tested and initially used with care.   
 

3.3.2 Corrosion 

Corrosion is a destructive electrical or electro-chemical attack on a material by reaction with its 
environment.  The arctic environment is dominated by cold water, relatively clean air and the 
sun’s radiation.  The corrosive nature of seawater has already been widely documented.  The 
main factors which make seawater such a corrosive fluid are divided in two groups:  (bio) 
chemical (i.e., oxygen, carbonate, salts, organic compounds, biochemical activity and pollutants) 
and physical (i.e., temperature, flow velocity, potential pressure and light) (European Federation 
of Corrosion and Institute of Materials 1993).  As a general rule, the corrosion reaction rate in 
seawater increases as the temperature is increased.  This rule applies only to the effect of 
temperature on the corrosion assuming all other variables are unchanged.  The solubility of 
oxygen decreases as the temperature is increased.  Biological activity generally increases with 
increasing temperature, and calcareous deposits and other protective scales are also more likely 
to form/deposit on metal surfaces at higher temperatures (Baboian 1995).  Thus the cold arctic 
waters are generally less corrosive than warmer waters, but the corrosion protection systems, 
especially coatings, are highly loaded and often damaged by external forces. 

On metal arctic structures, higher corrosion rates can be expected in the area of the water (ice) 
line by permanent abrasion of the corroded layer.  This acts normally as a kind of corrosion 
protection.  Field and laboratory tests (European Federation of Corrosion and Institute of 
Materials 1993) conducted on stainless steels and aluminium alloys in Antarctica allow the 
following preliminary conclusions: 

 Oxygen reduction depolarization induced by biofilm growth on the surface of 
stainless steels, similar to that observed in other seas, was also found in Antarctica 
with a seawater temperature close to 0°C. 

 Nevertheless, in comparison with the Mediterranean Sea, some differences in the 
final shape of cathodic curves, when the surface of stainless steels has been covered 
by biofilms, can be observed. 
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 The differences point to a decrease in the probability of localized corrosion initiation 
in Antarctica, although once started the rate of propagation of localized corrosion in 
the two regions is about the same. 

 A rise in temperatures above 30°C tends to delay the oxygen reduction depolarisation 
induced by biofilm growth on the surface of stainless steels. 

 The corrosion of aluminium alloys is heavily affected by the seawater temperature:  
thus under 10°C localized corrosion, in the form of both crevice and pitting corrosion, 
is easily enhanced with the propagation sustained by the oxygen reduction.  Above 
10°C only uniform corrosion, sustained by hydrogen reduction, occurs. 

The new low-carbon Nb microalloyed steels mentioned above are reputed to have better 
corrosion resistance in sea water than that of niobium-free steel (Wang, Yang, and Zhuang 2007; 
Li et al. 2009). 

3.3.3 Coatings 

There are many requirements for a coating in arctic operations (Makinen 1994): 

 Be smooth 

 Have good wear resistance 

 Have good bond strength with the base material 

 Give good corrosion protection for the base material 

 Sustain high normal pressures 

 Withstand the deformations of the base material 

 Withstand low temperatures, temperature changes and temperature gradients 

 Maintain its properties in the arctic environment 

 Be reasonably priced 

 Should have antifouling properties (with limits of environmental issues) 

 Applicable on a large scale 

 Application method must be practicable in yard construction 

 Not inhibit the possibility of repairs after installation 

Ultraviolet considerations may also play a factor, depending on the base material.  Sun light is 
about 95% absorbed and about 5% reflected by open sea water.  If the water is ice and snow 
covered, these two values can be exchanged.  This leads to much higher ultraviolet radiation in 
snow covered regions.  This radiation is additionally increased by the depletion of the ozone 
layer over the polar regions.  Ultraviolet radiation causes embrittlement of many duro- and 
thermoplastics.  Therefore the need of special coatings for ultraviolet stabilized materials is 
greater (Domininghaus 1992). 

One solution for coating the area of the water (ice) line of arctic structures is to use stainless steel 
cladded plates; which are offered by different manufacturers.  In Makinen et al. (1994), friction 
coefficients of different coatings are compared.  Katoh et al. (1989) investigated adhesion 
strength and wear by ice on various coatings in order to develop coated steel piles suitable for  
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use in sea ice regions.  Polyethylene and polyurethane coatings were found to be the best because 
these two coatings were durable against impact and the compressive forces of ice; as well 
adhesion strength and wear by ice were smallest. 

Research has been initiated to evaluate coatings which can be applied to offshore structures and 
service vessels to minimize the bond between spray ice and the surfaces of these structures and 
vessels (Sackinger et al. 1988).  A field program to collect naturally formed spray sea ice on 
vertical cylinders is described, and crystallographic evidence of four distinct crystal types 
(formed under differing atmospheric conditions) is presented.  Bond strength of this ice to 
several coatings was measured, with the lowest values given by a graphite paint and 
polyethylene. 

A major area of uncertainty for coatings – both external and internal – is resistance to 
deformation (strain) of the base material.  While some of the ice-resistant external coatings such 
as Inerta 160TM and its competitors have displayed good adhesion on moderately deformed 
external plating, internal ballast tank coatings on a number of vessels have performed much less 
well.  This is considered to be an area in which additional research is needed (see Section 4). 

3.3.4 Plastic Design 

Plastic design has become the new norm for ice class ship design.  The new IACS unified polar 
rules (IACS UR I), the Canadian Administration (ASPPR 1996) and the Russian Maritime 
Register (MRS 1999) all employ plastic design methods.  There are several elements to the 
rationale for the use of plastic design for ice-structure interaction (Kendrick and Daley 2000).  
These include: 

 Plastic design can ensure a better balance of material distribution to resist design and 
extreme loads.  This is important because extreme ice loads can be considerably in 
excess of design values.  This is more likely for ice loads than (e.g.) for wave 
loadings.  The use of plastic methods ensures a considerable strength reserve, which 
may or may not be the case with elastic design. 

 Plastic design can allow considerably lighter structure, particularly when the return 
period for design loads is relatively long and when cumulative damage (deformation, 
fatigue cracking, etc.) is not a major consideration. 

 Plastic design methods are more applicable to damage analysis, which allows the 
assumptions in the URs to be tested against experience and refined in the future as 
necessary. 

These considerations tie in well with actual operating practice for ice class ships.  Occasional 
local deformation (denting) has tended to be an acceptable consequence of ice operations, 
provided that this does not compromise the overall strength or watertight integrity of the ship.  
The selection of structural design criteria for plastic design is more difficult than in elastic 
design.  In the latter, first onset of yield is relatively easy to predict, and thus offers a simple 
criterion for design.  In plastic design, there are many possible limit states ranging from yield 
through to final rupture. 

The IACS URs have selected a set of limit states for plating and framing design which allow 
substantial plastic stress but preclude the development of large plastic strains or structural 
deformation.  The development process for these requirements has devoted considerable effort to 
the selection of suitable design criteria, as described by Kendrick and Daley (2000).  These limit 
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states are defined by analytical representations of mechanisms within the frame or plate, rather 
than by reserves against ultimate failure (locally, rupture) as might be determined by FEA or by 
testing, due to the needs of the ship design and classification process.  The analytical solutions 
are based on energy methods, assuming the sets of mechanisms shown in Figure 3.22 and Figure 
3.23, for loads at the centre and near the ends of framing, respectively. 

 

 

Figure 3.22:  Symmetrical Loading:  3-Hinge Response 
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Figure 3.23:  Asymmetrical Loading:  Energy Absorption Mechanisms 

 

Energy methods cannot provide deflection or strain predictions, and so it has been necessary to 
rely on finite element methods to ‘calibrate’ these aspects of the design criteria and procedures.  
At the design limit states the structures lose stiffness, but are still able to carry higher loads.  
Figure 3.24 illustrates the FE analysis of the behavior of a typical frame under the two possible 
design load locations (i.e., centred and close to one end), with first yield, and the points defined 
by the mechanisms underlying the relevant design equations also shown.  The lower of the two 
pressure intensities defines the capability of this frame, and in this case, the symmetric case 
dominates. 
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Figure 3.24:  Illustration of Plastic Design Points 

Figure 3.24 shows that there are various ways of describing the design limit states used in the UR 
rules.  Nominally, the limit states are plastic collapse mechanisms.  However, although they are 
relatively sophisticated, they still contain numerous simplifications.  For several reasons the real 
structure will not collapse totally in the assumed manner or at the design load level.  Two main 
reasons for this are that the assumed mechanisms ignore the effects of membrane stresses and 
strain hardening.  As a result the real structure will have a substantial reserve capacity.  More 
precisely then, the design limit states represent a condition of substantial plastic stress, prior to 
the development of large plastic strains and deformations, but where the structural elements are 
starting to show significant losses in stiffness.  Permanent (residual) deflections under the design 
loads should not require repair, and should not be sufficient to cause damage to internal or 
external coatings. 

The IACS (and other rule systems) are generally drawn from elastic analysis, and although some 
recent work is has been undertaken to confirm that these solutions are adequate (e.g., Bond and 
Kennedy 1998) more work is warranted to develop improved representation of stability in the 
elasto-plastic range. 

In a comprehensive set of structural experiments (Daley and Hermanski 2008, Daley et. al. 2007, 
SSC Project 1442) the plastic limit state equations in the IACS Polar Rules were studied.  Figure 
3.25 illustrates the experimental arrangement for a large grillage subjected to transverse (i.e., 
external) loading in a very small load patch.  Figure 3.26 shows the web deformations that were 
typical plastic responses. 
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The physical experiments reported in Daley and Hermanski (2008) showed generally good 
agreements with the capacity values in the IACS Polar Rules.  There were differences in 
deformation patterns which may be significant for some cases.  The physical experiments 
indicated that there is significant reserve plastic capacity, both in terms of load capacity and 
energy absorbing capacity, above the nominal plastic design point (which some would describe, 
incorrectly, as plastic ‘collapse).  This may become increasingly important in the future, as more 
attention is paid to accidental and over overload cases.  Two structures which display similar 
elastic capacity can easily have significantly different plastic capacities.  Similarly, two 
structures with similar nominal plastic capacity can have significantly different extreme response 
reserve.    

 

 

Figure 3.25:  Large Grillage Test Arrangement (Daley et. al 2008) 

 

 

Figure 3.26:  Microscribe Data for First and Last Load Step on  
Large Grillage Test LG2 
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3.3.5 Sandwich Plate System 

3.3.5.1 Introduction 

The sandwich plate system4 (SPS) shown in Figure 3.27 is intended to replace standard steel 
stiffened panels in ship structures.  The SPS is composed of unstiffened sandwich plates that 
consist of two thin steel plates bonded to a polyurethane elastomer core.  The SPS was initially 
developed to provide impact resistant plating for offshore structures working in the Canadian 
Beaufort Sea (Brooking & Kennedy, 2004).  SPS was developed in conjunction with Elastogran 
GmbH (a member of the BASF Group) and has approvals from the major Classification Societies 
(Lloyd’s Register, 2006; Welch, 2007) and regulatory authorities (Brooking & Kennedy, 2004) 
for the use of SPS in newbuilds and the rehabilitation of ships. 

 

Figure 3.27:  Sandwich Plate System (SPS) 

In flexure, the plates act as flanges and the core as the web.  The flexural stiffness and strength 
are tailored as required by choosing appropriate thicknesses for the sandwich elements.  The 
elastomer core provides continuous support to the steel plates, thus precluding local buckling 
(Kennedy, et al., 2006; Little, et al., 2007) and eliminating the need for closely spaced discrete 
stiffeners (see Figure 3.28), and transfers shear from one steel plate to the other (Brooking & 
Kennedy, 2004).  Published literature suggests that SPS plates can be taken in to the fully plastic 
regime without local faceplate buckling or bond delamination between sandwich cores (Little et 
al., 2007). 

  

                                                 
4 Intelligent Engineering Ltd. 
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Figure 3.28:  SPS (above) and Conventional (below) Structures 

SPS plates were first used in the shipping industry in 1999 (Brooking & Kennedy, 2004).  Since 
then, research and development has focused on material characterization, structural behavior and 
performance, design principles, fire resistance and engineering, energy absorption design 
philosophies and the development of connection specific details specific to sandwich plate 
structures. 

3.3.5.2 SPS Benefits 

Benefits of SPS construction over conventional steel structures (Brooking & Kennedy, 2004): 

 Simplified structure 

 Reduced weight 

 Increased fatigue resistance 

 Reduced susceptibility to corrosion 

 A60 fire rating 

 Enhanced puncture, impact, blast and ballistic resistance 

 Inherent structural damping reducing vibration and noise transmission 

3.3.5.3 Recent Applications of SPS 

In total to date, Intelligent Engineering (the producers of SPS) have delivered over 150,000 m² of 
SPS plate to the marine industry for various applications including:  deck reinstatements (Welch, 
2007) (including RoRo, heli, and gun decks), funnel casings, newbuild and retrofit hulls, 
bulkhead and tanktop reinstatement (especially bulk carriers (Brooking, 2005; International Bulk 
Journal, 2007) anchor pad and superstructure strengthening5.  Besides for marine applications, 
SPS is used in civil works such as road bridge decks, stadia terraces and flooring systems. 

                                                 
5 Calculated from “Project Portfolio” found at http://www.ie-sps.com/downloads/386.pdf including projects up to 
June, 2010. 
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3.3.5.4 Arctic Applications of SPS 

As mentioned above, the original purpose for the SPS was impact resistant plating for offshore 
structures working in the Canadian Beaufort Sea (Brooking & Kennedy, 2004).  To date, there 
has been no publically available literature published on arctic application or suitability for the 
SPS.  A design study comparing a newbuild SPS hull with a traditional build of small products 
tanker (Brooking & Kennedy, 2004) has shown that at least in this case: the SPS design weighed 
slightly less than the traditional design, the elimination of secondary stiffening provided a 20% 
reduction in internal surface area, a reduction of weld volume of 50%, 6% increase in cargo 
capacity, and enhanced inspection and maintenance because of easier access and fewer locations 
with potential for coating breakdown and structural failure. 

There is a definite need for research related to the suitability of the SPS to icebreak/strengthened 
hulls and superstructure.  The simplified structure; reduced weight; increased fatigue resistance; 
reduced susceptibility to corrosion; enhanced puncture and impact resistance; and inherent 
structural damping reducing vibration and noise transmission exhibited by the SPS over standard 
stiffened plates promises beneficial application in arctic ship structures.   

3.3.5.5 Sandwich Plate System – Fabrication 

SPS plates require their internal surfaces to have a surface roughness of at least 60 microns and a 
surface cleanliness of SA 2½.  The preparation uses standard steel fabrication practices.  The 
internal cavities must be clean, dry and airtight.  The SPS plates are restrained during elastomer 
injection and curing to ensure that the plates remain flat.   The injection process usually takes 
around 8-12 minutes and must occur at a temperature no less than 20°C.  The core is fully cured 
in about 15 minutes. 

SPS structures may currently be produced using delivered pre-fabricated SPS panels, or by 
integration of SPS panel fabrication into a production line.  As of 2004, SPS panels were being 
implemented into yards in Europe, Asia and North America (Brooking & Kennedy, 2004). 

Other known issues to be explored: 

 Large shipyards may not have the automated capability to construct ships with frame-
spacings small enough for ice classed vessels. 

 

3.4 Risk and Hazard Assessment  

The term risk is defined as the combination of probability and consequences.  Probability is the 
study of the degree of certainty in situations involving some uncertainty.  Consequences mean 
outcomes or events that may happen as the result of the uncertain situation.  In some cases of 
uncertain outcome the variability is precisely definable.  For example, a fair six sided die has 
exactly equal probability (=1/6) of producing any of the six numbers on any single roll.  This is a 
case in which we would say that all the uncertainty is ‘statistical uncertainty’.  Such cases permit 
the calculation of probabilities with high precision, even though the outcome in any one situation 
is unknown.  There are other types of uncertainties which are more difficult to quantify.  When 
some aspect of the system is unknown, the system behavior cannot be precisely quantified, until 
more is learned about the behavior.  Take for example the case of a deck of cards with ‘some’ 
cards removed.  The chance of drawing the nine of clubs from such a deck is not just a matter of 
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statistical uncertainty, there is also the uncertainty about what the nature of the system is.  This is 
called systematic uncertainty, or model uncertainty.  With experimentation, the probabilities of 
drawing a nine of clubs can be estimated better and better.  If it were known exactly how many 
cards were removed and how (were random cards removed or were clubs removed?) it would be 
possible to remove all model error and return to a case of pure statistical uncertainty.  

In the case of arctic shipping, the dominating uncertainties are systemic or model uncertainties.  
This makes the problem of assessing risk much more challenging than if the problem was 
dominated by statistical uncertainty.  The framework for risk assessment and risk based design 
does exist.  The challenge is that many of the needed statistical parameters are poorly 
understood.  Much work is still needed to understand the system, and its component 
probabilities.  Remote sensing is being used to quantify the statistical models of the natural ice.  

Shipboard and laboratory studies are focused at understanding the ice load mechanics and 
statistics.  Vessel performance, transit and transportation models are needed to quantify the many 
operational uncertainties.  Numerical simulations of ice interactions and structural response are 
examining the nature of these aspects.  These various studies can be seen as attempts to reduce 
the model uncertainties.   
 
Current ice class rules are not explicitly formulated using measures of risk (e.g., IACS URI2). 
While some specialists advocate that ice class rules should be formulated using a risk-based 
methodology, others advocate scenario-based design, where the focus is on the numerous 
possible ice interactions. Both approaches seek to deal with the many uncertainties in arctic 
vessel design and operation.    

3.4.1 Risk Based Design Frameworks 

There is literature that tackles the overall framework of risk to arctic ships.  Jordaan et.al (1987) 
proposed a general framework for developing design criteria based on risk.  The paper presents 
the general concept of risk based design and discusses the specific issues that relate to arctic ship 
design.  Daley and Ferregut (1989) presented a model of structural risk for ice going ships, called 
ASPEN (Arctic Shipping Probability Evaluation Network).  The ASPEN model used a cell grid 
map of the arctic, with ice statistics in each cell for each month.  A user would specify a route in 
terms of cells (and month).  The model calculated the encounter-detection-avoidance-impact-
damage probabilities using a set of probability algorithms.  The program could evaluate the 
sensitivities of aspects such as route selection, detection strategies, and structural capacity.  

Buzuev and Fedyakov (1997) examined the reliability and risk of shipping in ice along the 
northern sea route (NSR) in Russia.  The focus was more about transportation reliability than 
structural risks, though both rely on similar models of ice conditions.   

Loughnane et.al (1995) examined the risks for an arctic oil tanker with a focus on oil spill risks 
and mitigation costs and strategies.   

To some degree, both the Russian and Canadian operational control systems in the Arctic are 
risk-based, though this is not made explicit in the regulations.  The Russian Northern Sea Route 
regulations (see also below) require: 

 The use of ice strengthened ships, with class depending on area, season and general 
severity of the ice conditions; 
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 The use of icebreaker escort for certain operations; 
 The development of an “ice passport” to give the operator an idea of the capabilities of 

the ship; 
 Having a certified ice navigator/master aboard. 

This system is described for example in translations of annexes to the relevant decrees of the 
Russian government.6 

The Canadian Arctic Ice Regime Shipping System7 (AIRSS) under the Arctic Shipping Pollution 
Prevention Regulations (see also below) matches actual ice conditions to ship capability with 
more precision than the Russian approach as regards the ice, but with rather less as regards the 
ship (only basic ice class is taken into account).  Again, ice navigators must be certified in order 
to be permitted to operate.  Considerable work has been undertaken to assess how well this 
system functions, see for example Timco et. al (2009). 

3.4.2 Information Technology 

Information technology plays three key roles in improving our ability to assess risk.  Computer 
simulation technology has become an important research tool to study phenomena.  Numerical 
simulations, if sufficiently advanced, can be the basis for experimentation as an alternative to 
either model scale laboratory studies or field studies.  Remote sensing permits the collection of 
ice data, which is a key input for any risk assessment.  And thirdly, database technology permits 
the assembly and study of data.  

3.4.2.1 Computer Simulation  

Computer simulations are advancing significantly.  Computers are improving in capability and 
permitting more ambitious simulations.  Structural analysis has employed computer since the 
1950s, with large finite element packages being the primary tool.  Recent advances in algorithms 
and software have greatly improved the assessment of non-linear structural behavior (Paik 2010).  

 
Finite element models simulate structural behaviours at a level of sophistication that greatly 
exceeds any other aspect of arctic shipping.  However, there are improvements in other areas 
such as the local ice loads, vessel ice going performance, and station keeping in ice.   

Su et. al. (2010) present a numerical method for the prediction of ship performance in level ice 
based on a sequence of discreet breaking events.  

3.4.2.2 Remote Sensing  

Remote sensing as it relates to arctic shipping involves collecting data on the following arctic 
environmental factors:  ice, waves, bathymetry, and weather phenomena such as wind, 
atmospheric pressure and temperature. 

                                                 
6 http://meeting.helcom.fi/c/document_library/get_file?folderId=76322&name=DLFE-
30794.pdf 
7 http://www.tc.gc.ca/eng/marinesafety/tp-tp12259-menu-605.htm 



BMT Fleet Technology Limited  6696DFR.Rev00 

 

SR1463:  Structural Challenges faced by Arctic Ships 44 

Much literature is present regarding cold region remote sensing.  Much of this literature is not 
relevant to ships operating in these regions and has not been included in this literature survey.  
Many of these remote sensing techniques however, may be adapted for uses applicable to arctic 
shipping.  An overview of existing and adaptable remote sensing techniques is presented below 

Submarine 

There is a growing interest in the use of submersible for data collection in the arctic.  
Dowdeswell et. al. (2008) is a paper with 23 authors and 45 references.  It gives a wide 
ranging overview of the use of autonomous underwater vehicles (AUVs) to investigate 
the ice-ocean interface in Antarctic and Arctic waters.  Eichhorn (2009) discusses the use 
of the AUV "SLOCUM glider" under ice sensing operations.  

Airborne 

Ground Penetrating Radar (GPR) - a near-surface, non-invasive geophysical technique.  
Provides images of the dielectric properties of the top few tens of meters of the earth.  
Resolution is approximately metre scale.  Radar data can be used to detect the presence of 
liquid organic contaminants, many of which have dielectric properties distinctly different 
from those of the other solid and fluid components in the subsurface.  GPR images are 
interpreted to obtain models of the large-scale architecture of the subsurface and to assist 
in estimating hydrogeologic properties such as water content, porosity, and permeability 
(see Knight 2001, 229-255) Centre for Remote Sensing of Ice Sheets (CReSIS) Sensor 
Developments 

 Multichannel Coherent Radar Depth Sounder (MCoRDS) 

 Accumulation Radar 

 Snow Radar 

 Ku-band Radar Altimeter  

 UAS Radar 

Satellite 

Available satellite technologies consist of optical imaging sensors, microwave imaging 
sensors and non-imaging sensors.   

Optical imaging sensors detect either reflected or emitted radiation. 

Sensors detecting visible light from the sun that is reflected off objects on earth are good 
for observing sea ice because sea ice has a high albedo compared with the surrounding 
ocean.  Being dependent on visible light, these sensors are limited in arctic application 
during the winter months by a persistent lack of daylight.  Further, cloud cover limits 
their use year round. 

Sensors detecting infrared radiation emitted from objects on earth are also good for 
observing sea ice because the sea ice temperature is generally colder than that of the 
surrounding ocean.  Limitations on the use of these sensors come from infrared radiation 
from clouds, and the near similar temperatures between melting ice and sea water during 
the warmer seasons. 
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The following satellites and sensors are commonly used to identify and map sea ice using 
both visible and infrared sensors8:  the Defense Meteorological Satellite Program 
(DMSP) Operational Linescan System (OLS), the National Oceanic and Atmospheric 
Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the 
National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging 
Spectroradiometer (MODIS). 

Passive microwave imaging sensors detect emitted microwave radiation from objects on 
earth.  Microwaves emitted by ice can penetrate cloud cover, and are significantly 
different in magnitude than those emitted by the surrounding ocean.  Because the 
microwave radiation emitted by ice is small in magnitude, it is difficult to detect unless 
the observation area is large; therefore, sea ice details (e.g., pack ice concentration) are 
generally unavailable.  These sensors are valuable for detecting the presence of sea ice in 
a geographic area, and information availability is not limited by sunlight or clouds.  
These sensors have been used to monitor sea ice since 19729.  Ice observations from the 
following sensors are available from National Snow and Ice Data Centre (NSIDC):  
Electrically Scanning Microwave Radiometer (ESMR), NASA’s Scanning Multichannel 
Microwave Radiometer (SMMR) DMSP Special Sensor Microwave/Imager (SSM/I) and 
the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) 
sensor. 

Active microwave imaging systems emit microwave radiation toward objects on the earth 
and detect the reflected microwaves.  This provides them a much finer resolution than 
passive systems.  One type of active system that is used for remote ice sensing is the 
Synthetic Aperture Radar (SAR).  This system is a special type of imaging radar system 
from which sea ice characteristics may be determined.  Since the amount of reflected 
energy depends on the characteristics of the ice, this type of sensor may be used to 
identify thick multi-year ice versus thin first year ice.  The RADARSAT mission, 
managed by the Canadian Space Agency, is the primary SAR mission today10.  In 
addition to identifying multi-year ice, SAR instruments can detect small leads in sea ice 
allowing them to help route ships through ice-covered regions.  SAR images are currently 
used by the Canadian Ice Service and the National Ice Center. 

Connor et.al.(2009) discuss the use of Envisat radar altimeter measurements for direct 
measurement of ice freeboards (and thus thickness) over Arctic sea ice. This technology 
addresses the issue of remote measurement of ice thickness which is a very important issue for 
arctic ships.  

Quincey and Luckman (2009) provides a current state-of-the-art review of ice related satellite 
remote sensing technologies, methods and missions. 

  

                                                 
8 http://nsidc.org/seaice/study/visible_remote_sensing.html 
9 http:/sidc.org/seaice/study/passive_remote_sensing.html 
10 http://nsidc.org/seaice/study/active_remote_sensing.html 
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Ice remote sensing includes obtaining data regarding ice salinity (i.e. an analogue for ice age), 
thickness, snow cover, temperature, location, extent, and topography (e.g. pack ice concentration, 
as well as ice features such as ridges, hummocks, inclusions…).  Harlow (2010) describes an 
analysis of airborne microwave data, where the emissivities were shown to relate to both ice and 
snow properties. Snow properties are particularly important for predictions of vessel 
performance.   

3.4.2.3 Databases  
Existing databases of ice related information include: 

 Iceberg Databases 

o BMT Fleet Technology – Iceberg Sightings Database 

o NSIDC-IIP – Iceberg Sightings Database 

o NRC-IOT – Iceberg Collisions 

o NRC-CHC – Iceberg Management 

 Marine Icing Databases 

o NRC-CHC 

 Ice Charts Database 

o NRC-IOT – Ice Charts Database (1810-1958) 

o Canadian Ice Service 

 Ice Pressures Database 

o NRC-IOT – Catalog on Local Ice Pressures (CLIP) 

3.5 Regulatory and Other Issues  

3.5.1 International and National Regulations and Standards 

This section of the report does not include formal referencing for most of the regulations and 
standards, as these are subject to amendment from time to time and the latest versions are 
generally available at the organizations’ websites.  The commentary provided relates to the status 
as of the date of this report; i.e., mid-2010. 

The main regulatory systems affecting Arctic operations include: 
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3.5.1.1 International 

United Nations Convention on the Law of the Sea (UNCLOS 82)11 

International Maritime Organization Guidelines for Ships Operating in Polar Waters12 

Antarctic Treaty13 

A number of countries also have national systems of regulation for their Arctic waters: 

3.5.1.2 National 

Canadian Arctic Shipping Pollution Prevention Regulations (ASPPR)14 

Russian Northern Sea Route: 

 Regulations for Navigation on the Seaways of the Northern Sea Route (NSR)15 
 Regulations for Icebreaker-Assisted Pilotage of Vessels on the NSR 
 Requirements for Design, Equipment and Supply of Vessels Navigating the 

NSR 
 
Much of the current regulatory development for Arctic waters references Article 234 of 
UNCLOS, the so-called “Arctic clause”, which is quoted in full below: 

Article 234 

Ice-covered areas 

Coastal States have the right to adopt and enforce non-discriminatory laws and regulations for the 
prevention, reduction and control of marine pollution from vessels in ice-covered areas within the limits 
of the exclusive economic zone, where particularly severe climatic conditions and the presence of ice 
covering such areas for most of the year create obstructions or exceptional hazards to navigation, and 
pollution of the marine environment could cause major harm to or irreversible disturbance of the 
ecological balance. Such laws and regulations shall have due regard to navigation and the protection 
and preservation of the marine environment based on the best available scientific evidence. 

 

It is important to note that while the Arctic does have Coastal States (and recognized, though 
somewhat disputed exclusive economic zones (EEZ), the Antarctic does not.  The Antarctic 
Treaty aims to preserve the Antarctic from development, while all of the Arctic Coastal States 
orient their Arctic policies to a greater or lesser extent towards sustainable development of 
resources and infrastructure. 

Currently, the main regulatory thrust internationally is to reformulate the IMO recommendatory 
Guidelines into a mandatory Code for ships operating in Polar Waters.  The schedule for this 
foresees ratification and implementation by 2012. 

                                                 
11http://www.un.org/Depts/los/convention_agreements/convention_overview_convention.htm 
12 http://www.imo.org/ 
13 http://www.ats.aq/documents/ats/treaty_original.pdf 
14 http://laws.justice.gc.ca/en/C.R.C.-c.353/ 
15 www.morflot.ru/about/.../en/RULES%20OF%20NAVIGATION.doc 
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At a national level, Canada is moving to incorporate the IMO approach and the IACS Polar 
Classes into its Arctic regulations. 

Mention also needs to be made of the Finnish-Swedish Ice Class Rules16.  Although these have 
been developed for the Baltic, many Baltic-classed ships have also operated in the Arctic and 
other ice-covered waters.  This rule system is still the most familiar to a majority of designers, 
builders and operators, and is fully incorporated into the classification society rules of most 
IACS member classification societies. 

3.5.1.3 Classification Societies 

A number of classification societies have in the past developed construction standards for Arctic 
class ships to supplement their Baltic classes.  The most widely used by far have been those of 
the Russian Maritime Register of Shipping (RMRS), which are incorporated by reference into 
the Northern Sea Route regulations.  In 2008 IACS adopted a set of Unified Requirements for 
Polar Class ships, which are now part of all IACS member rules (available at most societies’ 
websites).  As the URs do not incorporate all elements of member societies’ previous (or more 
recent) approaches to ice class design, different societies still have somewhat different 
approaches to details of structural design, and a variety of “winterization” notations that can also 
affect structure and materials selection.  

The structural approach taken by different ice class rule systems varies quite widely, as 
illustrated in Table 3.6 (Kendrick et. al., 2007).  The Baltic rules are also essentially elastic, 
contain a strong displacement and a moderate power level dependency.  Different ice load 
models underlie each system, with the URs being the most transparent in this regard. 

Table 3.6:  Structural Approach taken by Different Ice Class Rule Systems 

 
Issue 

Canadian Russian  
ABS 

 
DNV 

 
GL 

 
LR ASPPR CAC Old New 

No. of Classes 9 4 3 + 4 
icebreaker 

6 5 (8 if 
escort 

available 

6 + 3 
icebreaker 

4 4 

Displacement 
Dependency 

Strong Moderate Strong Strong Strong None None Moderate 

Power 
Dependency 

None None Weak None Weak None None Moderate 

Structural 
Design Basis 

Elastic Elasto-
plastic 

Elastic Elasto-
plastic 

Elasto-
plastic 

Elastic Elasto-
plastic 

Elastic 

3.5.2 Human Resources  

The Arctic represents a uniquely challenging operating environment.  Traditionally, “Ice 
Masters” have learned on the job and experience remains the main qualifying requirement for 
most ice masters and ice navigators today under the various national standards.  Efforts are under 
way to develop a more formal and portable ice navigator certification process, which will be 
required under any mandatory IMO Polar Code (see above). 

                                                 
16 www.sjofartsverket.se/pages/3265/b100_1.pdf 
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The lack of suitably qualified and experienced personnel is a major impediment to the 
development of Arctic shipping.  At present, there is a fairly small pool partly composed of 
retired Coast Guard captains who support Arctic operations during the northern summer and 
Antarctic tourism in the northern winter.  Many of the individuals are approaching final 
retirement and there are limited sources of new talent.  It is generally considered to be very 
important that better ice simulators are developed as rapidly as possible to allow for accelerated 
training in future. 

3.5.3 Escorted and Independent Operation 

The Russian (and Soviet) administrations have always required most commercial operations in 
Arctic waters to proceed under escort by the national icebreaker fleet.  This notionally persists 
today, although some new services with modern high ice class ships are effectively conducting 
independent operations for most of the time. 

The Canadian approach does not require escort.  During the Beaufort Sea operations in the 1980s 
the offshore companies invested in their own icebreaker fleets, which were used partly for escort 
and partly for ice management around offshore installations.  On the other hand, the current all 
season operations into several northern Canadian nickel mines (Raglan and Voisey’s Bay) use 
independently operating bulk carriers with no escorts available.  The impending Baffinland iron 
ore project, which is orders of magnitude larger than the Canadian (or Russian) nickel projects 
will also use unescorted ships. 

Escort modifies the loads on the escorted vessel, and can reduce them significantly.  However, 
there are also risks involved.  If the escorted ship is wider than the icebreaker, or turns more 
slowly, it can hit the edges of the channel.  Also, ice pieces submerged by the escort can surface 
ahead of the escorted ship, or under it.  Collision risk is obviously increased.   

3.5.4 Search and Rescue  

In an analysis by the Canadian Coast Guard (2007), it was seen that the SAR effectiveness in 
Arctic areas was less than 90%.  The national benchmark assumed for the analysis of SAR 
system in Canada was 90%.  The SAR effectiveness is defined as the percentage of lives saved 
out of the total number of lives at risk.  This is to be achieved during conventional incidents.  
According to the Canadian Coast Guard, conventional units are defined as: 

1. resources are able to respond within a short period of time; 
2. the search object is located by the responding resource on scene in a timely manner; 
3. environmental, geographic, and hydrographic conditions have little impact on the 

successful resolution of the incident; and, 
4. the responding resource has the necessary capability and capacity to effectively 

resolve the incident. 

SAR services for the Arctic maritime environment are very challenging.  Incidents of Arctic 
SAR are not termed as “conventional incidents”, but are termed as “difficult incidents”, due to 
their harsh conditions.  The level of system effectiveness typically accepted for SAR 
effectiveness in the Arctic is around 50+%.  The 2007 SAR system effectiveness evaluation 
revealed higher-than-expected levels of service: 69.23% for the waters of the Northwest 
Territories Area; 86.67% for the James Bay Area; 81.48% for the eastern Arctic Area; and, 
93.10% for the Nunavut Area. 



BMT Fleet Technology Limited  6696DFR.Rev00 

 

SR1463:  Structural Challenges faced by Arctic Ships 50 

For Northern Canada, there is a lack of SAR response units.  The current SAR capacity in 
Northern Canada will not be able to meet the increased demands of the future.  This would be 
partly due to year round commercial shipping in the future.  Three Canadian Coast Guard 
Auxiliary (CCGA) units already exist in the Arctic at Rankin Inlet, Cambridge Bay and Iqaluit. 

3.5.5 Environmental Protection 

Both the Canadian and Russian Arctic are “zero discharge” areas for wastes dumped into the 
water under the applicable national regulations.  Owing to the fact that the regulations predate 
most MARPOL agreements there are some anomalies in both systems; for example Canada 
permits the discharge of untreated sewage (though this is now being subsumed into other 
national regulations that follow MARPOL more closely). 

Rather surprisingly the US and Canadian Arctic were not incorporated into the new North 
American Emission Control Area (ECA) for airborne emissions (particularly NOx and SOx).  
However, on the US side offshore projects (including vessel operations) have been subjected to 
annual caps on airborne emissions under Environmental Protection Agency (EPA) regulations. 

Two areas of increasing concern in the Arctic are oil spill response and ballast water 
management.  Many standard mitigation approaches to oil spills (booms, skimmers) do not work 
in the presence of ice.  Cold temperatures limit the effectiveness of others and slow down natural 
remediation.  The problems of response led to the incorporation of double-hulling requirements 
in the Canadian and Russian Arctic regulations well in advance of measures elsewhere, and spill 
prevention continues to be an important theme in Arctic regulations.  More recently, the risks of 
invasive species becoming more able to tolerate Arctic conditions due to climate change has 
received increasing attention.  Ice class ships tend to have relatively large ballast capacities due 
to the need to maintain propeller and rudder submergence and to reduce the range of waterlines 
exposed to ice and cold temperatures.  This poses additional design challenges. 

3.5.6 Vessel Repair 

For any type of vessel repair facility in the Arctic, the location of the facility is of utmost 
importance.  The location of the facility shall not impede the entry of vessels into the facilities.  
Most of the bays and inlets around the Canadian Arctic archipelago have fast ice and pack ice for 
most of the season and any facilities present in these areas have to make sure that they are 
accessible throughout the shipping season.  Many of the northern ports have been built in natural 
harbours to provide protections from the environment.  

The main challenge with a repair facility in the Arctic is that there would be a need for ships to 
be dry-docked for repairs as the damage would have been below the waterline.  This would 
usually be the case since the most of the damage would occur due to interaction with ice floes. 

A graving dock in the Arctic would be a dead load on the soil.  The location of the facility must 
consider low-loadbearing soils and changes in soil conditions due to permafrost or possible 
modification of permafrost.  During the 1980s, a floating dock was installed at Tuktoyaktuk in 
the Canadian Northwest Territories and saw considerable use for ship repair. 
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4. ISSUES MAP AND RESEARCH NEEDS  

This concluding element of the study is intended to consolidate the current state and future 
challenges of arctic ship structural design, and to recommend future research directions – 
particularly those within the remit and capability of the SSC. 

4.1 Issues Map 

4.1.1 Preamble 

The arctic is an environment experiencing rapid change.  There are three separate but related 
vectors of change; technology, economy and climate.  

Technology changes include: 

 improved remote sensing and communication  

 improved knowledge of ice loads and risk  

 improved powering and vessel design 

 improved simulation, training and operations 

Developing trends in the economy are:  

 driven by resources and global demand 

 encouraging the adoption of new technology  

The changes in climate include: 

 reduction in mean ice cover area and thickness, and 

 increase in variability 

The changes in socio-political factors include: 

 public concern for arctic environment, wildlife and indigenous peoples  

 heightened boundary and security concerns  

Within this overall pattern of change, the report addresses five areas affecting the future 
structural challenges for arctic vessels.  In this study, the five main areas examined are; the 
environment, ice loads, material and structural behaviour, hazards and risk assessment and 
regulatory issues.  Each of these presents a set of issues and research needs. 

4.1.2 Environment 

Issues and Knowledge Gaps:  There are a range of unknowns regarding changing climate, 
including:  

 speed of climate change 

 potential increase in variability of extremes  

 rate of growth of open water, and changes in wind/wave climate 

 loss of multiyear ice 

 possible release of ice hazards (MY ice and icebergs) 



BMT Fleet Technology Limited  6696DFR.Rev00 

 

SR1463:  Structural Challenges faced by Arctic Ships 52 

 sensitivity to environmental challenges (noise, pollution, invasive species) 

These form part of the context in which ship design and operation must function.  Some 
questions arising from this are raised below. 

 
Questions:   

 Should vessels being designed today try to anticipate climate change? 

 Will ships need greater or lesser capability in coming years? 

These are essentially economic and regulatory questions.  While an owner may try to anticipate 
the effects of changing climate, it would be very difficult to embody any potential changes in 
climate into ice class rules.  For the foreseeable future, ships in the Arctic will need to cope with 
(or avoid) all the ice types and properties that currently exist, which include multiyear ice and 
glacial ice.  With climate change, the day may come when the complete absence of summer ice 
will naturally also mean the complete absence of multiyear ice.  In such a case, one may 
anticipate a lowering in ice class structural requirements.  However, arctic winter first year ice 
will remain very challenging and dangerous.  The presence of glacial ice will likely still be 
present and may even become more common if more rapidly decaying glaciers flood the seas 
with icebergs (a trend that is already being seen).  The current structural requirements may turn 
out to be approximately what is needed for vessels being operated more aggressively in 
somewhat lesser ice conditions.  A new set of experiences will need to be examined and used to 
re-calibrate polar ice class rules.   

It is difficult to propose clear research plans that can address these questions. Nevertheless, an 
obvious research need is: 

 the improvement of ice load models, especially those concerned with glacial and 
heavy first year ice, will put us in a better position to adapt to an Arctic without 
multiyear ice.     

4.1.3 Ice Loads 

Issues and Knowledge Gaps:  Understanding ice loads remains the primary structural challenge 
for arctic shipping.  As outlined earlier, there are continuing uncertainties in such areas as: 

 nature of extreme loads (especially for large ships) 

 patterns of load (so design loads reflect the true patterns, not highly simplified 
ones)  

 loads on deforming structures (to better understand risk of dangerous 
consequences) 

Questions:   

 What are the mechanics of ice loads below the ice belt? 

 Will local ice pressures on much larger and faster ships will be similar to current 
vessels or much larger?  
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Necessary areas of research include: 

 Field ice load data collection on large ships.  This should include high spatial 
resolution of ice pressures and detailed ice edge shape, mass and property 
characterization.  

 Testing and study (field, lab and or numerical) of mechanics of loads below the 
ice belt.  This should include contact with single blocks, ridge keels, and ice 
trapped between the vessel and sea floor. 

 Development of improved numerical models of ice crushing, for use in direct 
calculations of load and structural response.     

 Study of the influence of speed on design loads.  This will need to consider 
multiple scenarios and ice load models.  Field data would be especially valuable.      

 

4.1.4 Material and Structural Behaviour 

Issues and Knowledge Gaps:  Understanding the response of steel structure to ice loads, 
especially large overloads, is crucial to the prediction of risks for arctic shipping.  Some areas of 
uncertainty include: 

 The nature of real plastic collapse mechanisms in structure, especially larger 
members 

 Conditions leading to tearing 

 Influence of temperature, strain rates and slenderness (ice class ships differ from 
open water vessels in these three aspects, as well as in the load types) 

Questions:  The questions below relate both to the structural behavior and also to the nature of 
the loads – the two are generally not easily separable. 

 Can plastic design methods give significant benefits to both safety and cost? 

 What numerical methods (FE, FD, etc) are best suited to plastic and collapse 
analysis under ice loads? 

 How can compatible principles be applied to the design of other features for ice 
loads (LNG containment systems, appendages, machinery)?  
 

Necessary areas of research include: 

 Study of dynamics in material (and structural) response to ice loads 

 Study of full range of structural behaviour, including folding and tearing 

 Development of practical numerical tools that include fracture in heavily 
deformed structures.  
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 The above might be addressed initially by empirical models that model response 
capacity in a simple aggregate manner with empirical model of tearing. These 
models would be something like the current pressure-area models that describe 
ice pressures empirically.   

 

4.1.5 Hazard and Risk Assessment 

Issues and Knowledge Gaps:  There is an increasing consensus around the need to use risk-based 
methodologies to validate project and service safety levels.  There is thus a perceived need to 
develop appropriate tools for risk-based design and assessment for arctic shipping.  Some issues 
involved in this approach are: 

 The need to develop a risk paradigm that reflects the reality of ships (rather than 
civil engineering structures) through realistic utilization of “standard” approaches 
(HAZID, HAZOP, etc) 

 The need to account for the influence of ‘learning’ (operators are constantly 
testing capacity and both learn capacity and adjust operations – unlike the case 
with fixed installations) 

 The recognition that dominant uncertainties are model uncertainties rather than 
statistical uncertainties.   

Given these types of issue, the questions that result are summarized below. 

Questions: 

 How can vessel design be risk based when verification is so difficult? 

 Should design be capacity based with risk assessment as a parallel activity? 

 What will lower risks the most – risk models or ice load/strength models? 

 How can additional data be collected in consistent ways to support future risk 
models? 

Necessary areas of research include: 

 Development of a risk modelling paradigm that includes the short and long term 
learning and risk optimization (feedback) that occurs on ships.  

 Study of ways to assess costs and benefits in risk-based design. The costs and 
benefits should cover both commercial and societal measures (i.e., from the 
perspectives both of the vessel owner and for a much broader range of 
stakeholders).    
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4.1.6 Regulation/Other 

Issues and Knowledge Gaps:  Regulation in a rapidly changing situation is challenging.  
Normally, both prescriptive and performance-based regulations and standards will lag 
technological development, as the need to achieve consensus is time-consuming.  Exceptions 
may occur when a major incident leads to political pressure to “do something”; however such 
regulations are rarely well thought-through.  Some of the issues in this area include: 

 The need to develop regulations that are both strong and flexible; and 

 The need to avoid a ‘cabal’ of users, specialists and regulators (i.e., need for 
diverse input, transparency and debate). 

The authors consider that performance-based – or “pure” risk-based standards and regulations 
can be quite dangerous when there is a limited knowledge base, as many practitioners may not 
know what they do not know, and regulators may not have the ability to assess submissions in 
any meaningful way. 

Questions:  The overarching question in this area is how to develop a ‘standard’ when there is so 
much debate and a rapid rate of change in the state of knowledge.   

Necessary areas of research include: 

 Development of a regulatory paradigm that includes consideration for change in 
engineering practice, technical theories and climate.  

 

4.2 Research Directions 

The issues and questions summarized above cover many areas.  This subsection of the report 
focuses on potential research directions that are considered to be of particular relevance to the 
SSC.  This has led to highlighting two of the thematic areas – ice loads, and material and 
structures response.  The first of these is relatively unique to Arctic or more generally, to ice-
classed ships.  In the second area, some of the issues and knowledge gaps are more generally 
applicable to ships of all types and may offer leverage opportunities for research programs. 

4.2.1 Ice Loads Research 

The three most important areas of uncertainty in ice load modeling are considered to be: 

i) the effect of ship size/kinetic energy on peak loads and pressures; 

ii) changes in ice load patterns on a deflecting/deforming structure; 

iii) load mechanisms for non-waterline areas of the hull. 

The first of these is of great importance in selecting appropriate design points for larger ships and 
for other ship types that may need to maintain high operating speeds in ice-covered or infested 
waters. 
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The second is a major issue for risk assessment and for the treatment of accidental loads, such as 
impacts with icebergs and multi-year ice features and pressured ice conditions.  It is known that 
the ice does not act as a rigid ‘indenter’ of the hull under these conditions, but there are not 
currently any proven modeling techniques for more sophisticated treatments. 

The third area of uncertainty is a major driver of steel weight, particularly for larger vessels.  To 
the degree that they are made explicit, rule ice load models are almost entirely impact models for 
the types of impact found at the bow and in turning (or backing) impacts.  The worst case loads 
in these areas are quite different in nature from those experienced lower in the hull; empirical 
“hull area factors” are not necessarily valid for new designs or operating patterns. 

The research approaches in all of these areas can involve a range of approaches.  All will, in the 
end, require some level of validation against full scale data. 

Size/energy effects can be explored systematically by experimentation below field scale, but 
preferably using relatively large apparatus.  The types of technology and system discussed in 
Section 3.2.3 are expected to provide considerable new insights into these areas over the coming 
years.  SSC may wish to undertake projects that explore aspects of loadings. 

Improved insight into ice mechanics should allow for the development of better numerical 
modeling and simulation tools, which is also being facilitated by the development of massively 
parallel computer hardware and software designed for use in such systems.  This applies to both 
structural loading and response mechanics, and also to aspects of the problem such as ice flow 
around the ship.  Computation flow simulation, discrete element, finite difference and finite 
element methods may all need to be combined to develop a “unified theory” of ice loads on 
many areas of the ship.  As with all grand theories, observation and real-world data are required 
to test the models.  Ice trials are extremely expensive, but SSC may be able to play a role in 
catalyzing collaborative trials programs, particularly given the interests of the USN, USCG, 
Canadian Navy and CCG in a new generation of Arctic ships. 

4.2.2 Research into Materials and Structural Response 

The three most important areas of uncertainty in this field are considered to be: 

i) steel grade requirements for thicker low temperature steels; 

ii) improved methods for plastic analysis of structures; 

iii) coating performance on deformed structures. 

The first of these is important to material cost, fabrication and repair.  Higher grades of steel 
need increasingly specialized equipment to weld, and are generally less available than lower steel 
grades.  Unfamiliarity is a major cost driver for shipyards, and results in additional premiums for 
cost.  It also gives rise to problems of quality control and inspection. 

Plastic design approaches remain relatively poorly understood by most naval architects and 
structural engineers.  The analytical methods in the URs for polar class ships do not provide 
solutions for all structural elements.  The use of finite element methods to extend (or substitute 
for) analytical solutions requires experience or training, both of which are in short supply.  
Certain issues, such as the “true” nature of instability in the plastic regime, and the ability of FE 
techniques to model strain in detail, require further exploration. 
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The advent of requirements for coating longevity under IMO and IACS increases the challenge 
to develop a better understanding of coating performance on structures with visible levels of 
deformation.  Almost all ice class ships, whether Baltic (notionally elastic), Russian (elasto-
plastic) or Polar Class (elasto-plastic) do suffer local deformation in service.  In some cases 
coatings fail, with major economic consequences for recoating, repair, or loss of life expectancy. 

Exploration of the steel grade question will require some lateral thinking regarding appropriate 
testing techniques.  Exploring failure mechanisms in thick specimens at low temperatures 
directly is not simple, but the use of simplistic methods such as Charpy tests of small samples is 
simply inadequate.  

Typical non-linear finite element analysis is now readily capable of modeling large strain and 
large deformation behavior for ductile behavior of steel. However, the inclusion of material 
fracture is very difficult and normally not even attempted. Material grades relate strongly to cold 
temperature fracture resistance. In order to improve the rational assessment of issues related to 
steel grades and fracture, there is a need to significantly improve finite element modeling tools. It 
may well be that new modeling paradigms will be needed in order to allow for the development 
of models that can readily include stress, thermal, welding, ductility and fracture effects in a 
practical engineering analysis.   

As noted in section 3.3.3, there is very little published data on the strain limits of coatings, but 
considerable empirical evidence of in-service failure.  This is an area where testing can be 
relatively simple and where the development of guidelines or standards that match coating 
performance to structural design philosophy would be very useful.  This type of work would also 
be of considerable value to the broader marine community.  “Acceptable” levels of deformation 
before repair are by no means consistently applied between classification societies or 
administrations, and this is one aspect of continued fitness for service that it would be useful to 
explore. 

4.3 Summary 

To conclude this study, the authors have revisited the questions raised at Section 1 of the report, 
and summarized the (complex) answers to these as follows: 

Changes to the arctic climate are not likely to lead directly to changes in ice loads (either 
increased or decreased loads) in the foreseeable future.  Loads will be more dependent on the 
types of operation envisaged, which may well encompass a wider range as ice cover changes. 

Similarly, as arctic ice retreats and shipping seasons are extended, cold embrittlement, and other 
material degradation issues (such as corrosion and fatigue) will not become more (or less) 
significant.  There is, however, a continuing need for a better understanding of some of these 
issues. 
 
It is quite likely that future oil and gas projects will develop their own infrastructure in the 
Arctic, as is already happening in Russia.  Bulk mineral operations will also require shore-side 
facilities such as docks and loading systems.  There are also moves to enhance governmental 
capabilities to address emergency response capabilities.  Based on past experience most other 
types of development and the shipping operations associated with these will attempt to continue 
with any significant infrastructure investments. 
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Improvements in material grades, welding standards and overall design may have some positive 
impact on arctic ship structural risks.   
 
However, it is more important to develop better methods that can inform the operator of the 
actual capability of the vessel; and to ensure that regulations and standards mitigate the risk of 
catastrophic failures. 
 
In the same vein, changes in design methods, standards and corporate policies may contribute to 
improved safety levels, but the greatest potential influence is in creating an enhanced safety 
culture.  This requires a better appreciation of the nature of the risks involved in Arctic 
operations. 
 
Currently, there are not sufficient numbers of adequately trained people to perform the design, 
operation, research and regulation activities that are already under way in the Arctic.  This will 
be aggravated (certainly) by the retirement of the generation with experience from the previous 
“Ice Age” of the 1980s and (probably) by a continuing increase in Arctic activity.  The SSC may 
be able to assist in developing a future generation by sponsoring research, symposia and 
workshops. 
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