PROGRESS REPORT

on

Second

MTRB LIBRARY

AN INVESTIGATION OF THE INFLUENCE OF DEOXIDATION AND CHEMICAL COMPOSITION ON NOTCHED-BAR PROPERTIES OF SEMIKILLED SHIP STEEL

R. H. Frazier, F. W. Boulger and C. H. Lorig BATTELLE MEMORIAL INSTITUTE Under Bureau of Ships Contract NObs-53239 (BuShips Project NS-011-078)

by

Transmitted through

NATIONAL RESEARCH COUNCIL'S COMMITTEE ON SHIP STEEL

Advisory to

SHIP STRUCTURE COMMITTEE

under Bureau of Ships, Navy Department Contract NObs-50148 (BuShips Project NS-731-036)

Division of Engineering and Industrial Research National Academy of Sciences - National Research Council

Washington, D. C.

SERIAL NO. SSC-53

November 28, 1952

NATIONAL RESEARCH COUNCIL

2101 CONSTITUTION AVENUE, WASHINGTON 25, D. C.

COMMITTEE ON SHIP STEEL

OF THE

DIVISION OF ENGINEERING AND INDUSTRIAL RESEARCH

November 28, 1952

Dear Sir:

- 1

Attached is Report Serial No. SSC-53 entitled "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Ship Steel" by Frazier, Boulger and Lorig. This report has been submitted by the contractor as a Second Progress Report on Contract NObs-53239, Bureau of Ships Project NS-Oll-078, between the Bureau of Ships, Department of the Navy and the Battelle Memorial Institute.

The report has been reviewed and acceptance recommended by representatives of the Committee on Ship Steel, Division of Engineering and Industrial Research, NRC, in accordance with the terms of the contract between the Bureau of Ships, Department of the Navy and the National Academy of Sciences (Contract NObs-50148, BuShips Project NS-731-036).

Very truly yours,

F.C. Kyle

P. E. Kyle, Chairman Committee on Ship Steel

Advisory to the SHIP STRUCTURE COMMITTEE, a committee representing the combined research activities of the member agencies -Bureau of Ships, Dept. of Navy; Military Sea Transportation Service, Dept. of Navy; United States Coast Guard, Treasury Dept.; Maritime Administration, Dept. of Commerce, American Bureau of Shipping.

e des 11 hans

SECOND PROGRESS REPORT

é Ale		
•	οα οα	,
	and the second	
`	AN INVESTIGATION OF THE INFLUENCE OF DEOXIDATION CHEMICAL COMPOSITION ON NOTCHED-BAR PROPERTIES SEMIKTLIED SHIP STEEL	AND OF
	and the second	•
-	to	1 2.2
	and the second	:
· .:	SHIP STRUCTURE COMMITTEE	
	Bureau of Ships	
	Department of the Navy	
·		
	Final Report on Contract Nobs 53239	. · .
٢	(Project SR-110)	,
	· · · · · · · · · · · · · · · · · · ·	

by

R. H. Frazier, F. W. Boulger and C. H. Lorig

BATTELLE MEMORIAL INSTITUTE

. ..

.

-1

· ___ - - - - -

-

....

TABLE OF CONTENTS

·	۰ ۲	<u>page</u>
INTRODUCTION	• • • • •	1
PREPARATION AND TESTING OF LABORATORY STEELS	• • • • •	3
ADDITIONAL STEELS FOR THE REPRODUCIBILITY STUDY	• • • • •	5
INFLUENCE OF CARBON AND MANGANESE	• • • • •	8
VERIFICATION OF THE INFLUENCE OF SILICON	••••	17
INFLUENCE OF NITROGEN	••••	21
INFLUENCE OF TITANIUM, ZIRCONIUM, AND ALUMINUM	• • • • •	26
SPECIAL STEELS	• • • • •	40
GRAIN-SIZE MEASUREMENTS	• • • • •	43
INFLUENCE OF FINAL HOT-ROLLING TEMPERATURE ON PROPERTI OF COMMERCIAL STEELS	E S •••••	53
SUMMARY AND CONCLUSIONS		68
REFERENCES	• • • • •	71
APPENDIX		72

LIST OF FIGURES

1.10	· ·	1
		ъ.

15

5

م. ..

....

×.

.. ...

FIGURE 2. RELATIONSHIP BETWEEN MANGANESE-CARBON RATIO AND TEAR-TEST TRANSITION TEMPERATURES FOR EXPERIMENTAL SEMIKILLED STEELS OF DIFFERENT 14 FIGURE 3. INFLUENCE OF SILICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS A TYPE LABORATORY STEELS 19 FIGURE 4. INFLUENCE OF SILICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS B TYPE LABORATORY STEELS 20 FIGURE 5. INFLUENCE OF NITROGEN ON TENSILE STRENGTH 24 FIGURE 6. INFLUENCE OF NITROGEN ON TEAR-TEST TRANSI TION TEMPERATURE 25 FIGURE 7. INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE 27 FIGURE 8. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 27 FIGURE 9. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 32 FIGURE 10. INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE 33 FIGURE 11. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE 36 FIGURE 12. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE 36 FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AD SILICON ON THE TEAR-TEST TRANSITION TEM- PERATURE OF A 0.25% C, 0.45% Mn, 0.05% S1 STEEL 38 FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TE	FIGURE	1.	RELATIONSHIP BETWEEN MANGANESE-CARBON RATIO AND TEAR-TEST TRANSITION TEMPERATURE FOR EXPERIMEN- TAL SEMIKILLED STEELS WITH ULTIMATE STRENGTHS BETWEEN 61,400 AND 68,500 PSI	13
FIGURE 3. INFLUENCE OF SILICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS A TYPE LABORATORY STEELS 19 FIGURE 4. INFLUENCE OF SILICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS B TYPE LABORATORY STEELS 20 FIGURE 5. INFLUENCE OF NITROGEN ON TENSILE STRENGTH 24 FIGURE 6. INFLUENCE OF NITROGEN ON TEAR-TEST TRANSI- TION TEMPERATURE 25 FIGURE 7. INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE 27 FIGURE 8. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 27 FIGURE 9. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 32 FIGURE 9. INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE 33 FIGURE 10. INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSES)	FIGURE	2.	RELATIONSHIP BETWEEN MANGANESE-CARBON RATIO AND TEAR-TEST TRANSITION TEMPERATURES FOR EXPERIMENTAL SEMIKILLED STEELS OF DIFFERENT STRENGTHS	14
FIGURE 4. INFLUENCE OF STLICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS B TYPE LABORATORY STEELS 20 FIGURE 5. INFLUENCE OF NITROGEN ON TENSILE STRENGTH 24 FIGURE 6. INFLUENCE OF NITROGEN ON TEAR-TEST TRANSI- TION TEMPERATURE 25 FIGURE 7. INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE 27 FIGURE 8. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 27 FIGURE 9. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE 32 FIGURE 9. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE 33 FIGURE 10. INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSES) 35 FIGURE 11. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE 36 FIGURE 12. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE 36 FIGURE 12. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEM- PERATURE OF A 0.25% C, 0.45% Mn, 0.05% S1 STEEL 38 FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE OF 0.21% C, 0.75% Mn, 0.05% S1 STEEL 39	FIGURE	3.• .	INFLUENCE OF SILICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS A TYPE LABORATORY STEELS	19
FIGURE 5.INFLUENCE OF NITROGEN ON TENSILE STRENGTH	FIGURE	4.	INFLUENCE OF STLICON CONTENT UPON THE TRANSI- TION TEMPERATURE OF CLASS B TYPE LABORATORY STEELS	20
FIGURE 6. INFLUENCE OF NITROGEN ON TEAR-TEST TRANSL 25 FIGURE 7. INFLUENCE OF NITROGEN ON KEYHOLE CHARPY 27 FIGURE 8. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- 22 FIGURE 9. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- 32 FIGURE 9. INFLUENCE OF TITANIUM ON KEYHOLE CHARPY 33 FIGURE 10. INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- 35 FIGURE 11. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY 36 FIGURE 12. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY 36 FIGURE 12. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE 36 FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE OF A 0.25% C, 0.45% Mn, 0.05% S1 38 FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE OF 0.21% C, 0.75% Mn, 0.05% S1 39	FIGURE	5.	INFLUENCE OF NITROGEN ON TENSILE STRENGTH	24
FIGURE 7.INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE27FIGURE 8.INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE32FIGURE 9.INFLUENCE OF TITANIUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE33FIGURE 10.INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSSS)	FIGURE	6.	INFLUENCE OF NITROGEN ON TEAR-TEST TRANSL TION TEMPERATURE	25
FIGURE 8.INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE	FIGURE	7.	INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE	27
FIGURE 9.INFLUENCE OF TITANTUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE33FIGURE 10.INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSSS)	FIGURE	8.	INFLUENCE OF TITANIUM ON TEAR-TEST TRANSI- TION TEMPERATURE	3,2
FIGURE 10.INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSSS)	FIGURE	9.	INFLUENCE OF TITANIUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE	33
FIGURE 11. INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE	FIGURE	10.	INFLUENCE OF ALUMINUM ON TEAR-TEST TRANSI- TION TEMPERATURE (SPECTROGRAPHIC ANALYSES)	3 5
FIGURE 12. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEM- PERATURE OF A 0.25% C, 0.45% Mn, 0.05% S1 STEEL	FIGURE	11.	INFLUENCE OF ALUMINUM ON KEYHOLE CHARPY TRANSITION TEMPERATURE	36
FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE OF 0.21% C, 0.75% Mn, 0.05% Si STEEL	FIGURE	12.	INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEM- PERATURE OF A 0.25% C, 0.45% Mn, 0.05% S1 STEEL	38
	FIGURE	13.	INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR TEST TRANSITION TEMPERATURE OF 0.21% C, 0.75% Mn, 0.05% Si STEEL	39

.

....

.......

FIGURES (Continued)

FIGURE 14.	EFFECT OF NORMALIZING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE OF PROJECT STEEL A	ца 46
FIGURE 15.	EFFECT OF FINISHING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE FOR ONE CLASS A AND ONE CLASS B STEEL (GRAIN COUNTS ON LONGI- TUDINAL SECTIONS ONLY)	47
FIGURE 16.	EFFECT OF FINISHING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE FOR STANDARD CLASS A STFELS	48
FIGURE 17.	EFFECT OF FINISHING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE FOR STANDARD CLASS B STEELS	¥9
FIGURE 18.	EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON FERRITE GRAIN SIZE OF "PROJECT STEEL A"	51
FIGURE 19.	INFLUENCE OF FINISHING TEMPERATURE UPON THE TEAR-TEST TRANSITION TEM- PERATURE OF CLASS A STEEL	59
FIGURE 20.	INFLUENCE OF FINISHING TEMPERATURE UPON THE TEAR TEST TRANSITION TEM- PERATURE OF CLASS B STEEL	60
FIGURE 21.	INFLUENCE OF FINISHING TEMPERATURE UPON KEYHOLE CHARPY TRANSITION TEM- PERATURE OF CLASS A STEEL	62
FIGURE 22.	INFLUENCE OF FINISHING TEMPERATURE UPON THE KEYHOLE CHARPY TRANSITION TEMPERATURE OF CLASS B STEEL	63
FIGURE 23.	INFLUENCE OF FINISHING TEMPERATURE UPON FERRITE GRAIN SIZE OF COMMERCIAL AND LABORATORY ROLLED 3/4-INCH STEEL PLATE	65

Page

•

FIGURES (Continued)

٠*-* -

15

्यस्य						<u>Page</u>
FIGURE	24.	INFLUEN TEAR-TE COMMERC INCH ST	CE OF FERRITE ST TRANSITION IAL AND LABOR EEL PLATE	GRAIN SIZE UP TEMPERATURE OF ATORY-ROLLED 3	0N - /4-	66
FIGURE	25.	INFLUEN CHARPY MERCIAL STEEL P	CE OF FERRITE TRANSITION TE AND LABORATO LATE	GRAIN SIZE UP MPERATURE OF C RY-ROLLED 3/4-	on Om- Inch	67
	1	.:			÷	÷ *
	•	,		· ·		
		• .	· · ·			, .
÷	、 、	,	2.		· / .	
			<u>_1 , </u>			· ., '
, <u>.</u>	e		· · ·			
х.: Т		n in se Li set K i set	2 			

e dia V

e Na series de la composition

z •

. ...

..

.

÷

ter de la transformación de . .

LIST OF TABLES

TABLE 1.	CHEMICAL ANALYSES OF CLASS A AND CLASS B STEELS MADE TO STUDY THE REPRODUCIBILITY OF LABORATORY STEELS
TABLE 2.	TENSILE AND TRANSITION-TEMPERATURE CHAR- ACTERISTICS OF CLASS A AND CLASS B STEELS IN REPRODUCIBILITY STUDY OF LABORATORY STEELS MADE IN 1951
TABLE 3.	SUMMARY OF PROPERTIES OF LABORATORY STEELS ROLLED AT 1850 F, SHOWING REPRODUCIBILITY OF DATA
TABLE 4.	CHEMICAL ANALYSES OF 3/4-INCH LABORATORY STEEL PLATE WITH VARIOUS CARBON AND MAN- GANESE CONTENTS
TABLE 5.	TENSILE AND NOTCHED-BAR PROPERTIES OF 3/4-INCH LABORATORY STEEL PLATES WITH VARIOUS CARBON AND MANGANESE CONTENTS
TABLE 6,	TENSILE AND TRANSITION-TEMPERATURE CHARACTERISTICS OF CLASS A AND CLASS B TYPE STEELS OF VARIOUS SILICON CONTENTS
TABLE 7.	CHEMICAL ANALYSES OF 3/4-INCH LABORATORY STLEL PLATE WITH VARIOUS NITROGEN CONTENTS 22
TABLE 8.	CHEMICAL ANALYSES, TENSILE, TEAR-TEST, AND KEYHOLE CHARPY IMPACT PROPERTIES OF 3/4-INCH, HOT-ROLLED LABORATORY STEEL PLATE WITH VARIOUS NITROGEN CONTENTS
TABLE 9.	CHEMICAL ANALYSIS OF 3/4-INCH HOT-ROLLED LABORATORY STEEL PLATE
TABLE 10	. TENSILE PROPERTIES, NOTCHED-BAR PROPER- TIES, AND GRAIN SIZE OF 3/4-INCH LABORATORY STEEL PLATE WITH VARIOUS TITANIUM, ZIRCONIUM, AND ALUMINUM CONTENTS
TABLE 11.	. CHEMICAL ANALYSIS OF 3/4-INCH LABORATORY STEEL PLATE (Special Steels)
TABLE 12.	TENSILE PROPERTIES AND NOTCHED-BAR PROPERTIES OF 3/4-INCH LABORATORY STEEL PLATE (Special Steels)42

Page

TABLES (Continued)

Page

TABLE 13.	TRANSITION TEMPERATURES AND GRAIN- SIZE DATA FOR STANDARD EXPERIMENTAL HEATS OF CLASS A AND B STEELS
TABLE 14.	TRANSITION TEMPERATURES AND GRAIN- SIZE DATA FOR EXPERMENTAL HEATS OF CLASS A AND B BASE STEELS WITH VARIA- TIONS IN CARBON, MANGANESE, PHOSPHORUS, SULPHUR, SILICON, AND VANADIUM CONTENTS52
TABLE 15.	CHEMICAL ANALYSES OF COMMERCIAL STEEL PLATES
TABLE 16.	TENSILE PROPERTIES OF COMMERCIAL STEEL REROLLED TO 3/4-INCH PLATE USING VARIOUS FINISHING TEMPERATURES
TABLE 17.	TEAR -TEST PROPERTIES, KEYHOLE CHARPY TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE OF COMMERCIAL STEEL REROLLED TO 3/4- INCH PLATE AT VARIOUS FINISHING TEMPERA- TURES

.....

- -

 $\overline{\gamma}$

.

712

--

- ---

SECOND PROGRESS REPORT

on

AN INVESTIGATION ON THE INFLUENCE OF DEOXIDATION AND	
CHEMICAL COMPOSITION ON NOTCHED-BAR PROPERTIES OF SEMIKILLED SHIP STEEL	
to	•.
SHIP STRUCTURE COMMITTEE	(-
via	21
Bureau of Ships Department of the Navy	· · · · ·
by	
R. H. Frazier, F. W. Boulger, and C. H. Lorig.	
	·
INTRODUCTION	

The performance of ship-plate steel in welded ship structures is closely associated with the ductile to brittle transition temperature of the plate steel. A low transition temperature is desirable. It indicates that a steel will exhibit greater toughness at lower ambient temperatures. The transition temperature, as defined in this report, is the apparent temperature at which the type of fracture changes from ductile to brittle for a specific design of specimen. Both the Navy tear-test specimen and the keyhole-notch Charpy specimen were used. For that reason, transition temperatures for both types of specimens are reported. It should be remembered there are as many transition temperatures as there are types and sizes of specimens.

Late in 1949, the Bureau of Ships, on behalf of the Ship

Structure Committee under the guidance of the Committee on Ship Steel of the National Research Council, established a research project, Contract NObs 50020, for the purpose of studying the influence of chemical composition and deoxidation upon the transition characteristics and tensile properties of semi-killed ship steel. In this investigation steels of two base compositions are being studied. One of these contains approximately 0.25 per cent carbon and 0.45 per cent manganese and the other, approximately 0.21 per cent carbon and 0.75 per cent manganese. Since these base compositions approximate those for hull steel supplied in accordance with current American Bureau of Shipping specifications under Class A and Class B, respectively, the steels in this report are identified as Type A or Type B on the basis of carbon and manganese content. All plates prepared for this study were 3/4 inch in thickness in order to permit direct comparison of properties. This thickness is, however, not characteristic of commercial Class A steel. In practice, Class A steel is restricted to plates 1/2 inch or less in thickness.

Previous work, done on Contract NObs-50020 and reported in Ship Structure Committee Report SSC-49⁽⁵⁾, showed that 200pound semikilled laboratory heats can be made with satisfactory reproducibility for use in studying the influence of chemical composition and deoxidation upon the transition-temperature characteristics of $3/^{+}$ -inch plate. This earlier work indicated

-2-

that the transition temperature was raised by increasing the carbon, phosphorus, and vanadium contents within the limits studied. Limited data also indicated that increasing sulfur contents up to C.050 per cent did not affect the transition temperature.

Increased manganese contents were found to lower the transition temperature. However, the interrelationships between carbon and manganese contents and toughness were not explored. More data were also needed to establish definitely the effect of silicon content. Prior data indicated that the transition temperature was lowered by decreasing the finishing temperature of the hot-rolled plate.

Work in this same field was continued in 1951 under Contract NObs-53239 and is summarized and reported herein.

PREPARATION AND TESTING OF LABORATORY STEELS

The laboratory steels were prepared from 200-pound inductionfurnace melts. The charge was melted under an atmosphere of argon to insure low, uniform nitrogen contents of the order found in commercial ship plate. After the charge was melted and the desired temperature was obtained, the melt was partly deoxidized by an addition of silicomanganese. This addition was made to obtain consistent recovery of subsequent ferro-manganese and ferrosilicon additions. Carbon, in the form of graphite, was added just prior to tapping to meet the intended composition.

The entire heat was poured directly into a 6 x 6-inch big-end-up mold and the ingot capped with a steel plate when necessary. The killed steels were poured with a hot-top containing 14 per cent of the total volume of the ingot.

The ingots were processed by heating to 2250 F, followed by forging to slabs 1-3/4 inches thick and 6 inches wide. After reheating to 2250 F, the slabs were rolled to 0.9-inch gage, using reductions of approximately 1/6 inch per pass. The 0.9-inch-gage plates were immediately recharged in a furnace held at 1850 F. After 20 minutes or more in the furnace at 1850 F, the plates were rolled to 3/4 inch in one pass. Following the final pass, the plates were stacked on edge on a brick floor, with a brick separating one from another. They were allowed to cool in air.

Drillings for chemical analysis were taken from the top and bottom of each ingot following rolling.

Duplicate standard plate tensile specimens, using the full thickness of the plate, were prepared from each heat. From these tests, the upper and lower yield strengths, the tensile strength, and the elongation were determined. The upper yield strength is the highest strength obtained before the drop of the beam, while the lower yield strength is the lowest strength after the drop of the beam and before the ultimate strength is reached. The elongation was measured over an 8-inch gage length.

The transition temperature of the steels was determined by two methods: first, by using the Navy tear-test specimen, and second,

--4-

from notched-bar impact data obtained from keyhole Charpy specimens.

The tear tests were made using the type of specimen and procedure described by Kahn and Imbembo⁽¹⁾. The transition temperature was defined as the highest temperature at which one or more in a group of four test specimens exhibited a fracture area having less than 50 per cent of the ductile-shear type.

For the keyhole Charpy tests, the transition temperature was defined as the temperature on the average temperatureenergy curve corresponding to the 20 foot-pound level. All Charpy specimens had the long axis in the direction of rolling and were notched perpendicular to the original plate surface.

REPRODUCIBILITY STUDY

At intervals during this investigation, "standard" Type A and Type B steels were processed to check the constancy of experimental procedures. They provide information on the reproducibility of data for 200-pound semi-killed heats made and tested in the laboratory.

Results for five such steels processed in 1951 are given in Table 1 and additional data are recorded in Table 1 of the Appendix. All of these materials had compositions and properties within ranges expected from results obtained in 1950 and reported previously⁽⁵⁾.

Table 2 summarizes the data obtained, during 1950 and 1951, for eight Type A and seven Type B "standard" steels. Obviously

-5-

				· : :	•		:		Tensile	Properties			Tear Tes	t Propetties	· <u>·</u> ··································	Charpy
Grade of	Heat		Che	mical An	alysis, p	er cent		Yie	∍ld- th, psi	Tensile Strength,	Elon- gation in 8",	Maximum	Energy to Start Fracture ⁽¹⁾ ,	Energy to Propagate Fracture ⁽¹⁾ ,	Transition Temperature,	Keyhole Transition Temperature ⁽²⁾ ,
Steel	No.		Mn	P	<u> </u>	Si	N	Upper	Lower	psi	per cent	Load, Ib	ft-lb	ft-lb	. F	• F
Туре А	A6650	0,22	0,46	0.012	0.023	0.04	0.004	35,600	34, 250	60,550	28.0	36,740	820	640	70	+ 24
Type A	A6705	0.21	0.49	0.016	0.025	0.05	0.004	37,050	35,900	63,000	24.5	36,340	760,	580	60	+4 :
Туре А	A7663	0.22	0.44	0.015	0.027	0.03	0.003	35,050	34,500	61,100	31.5	37,590	870	790	90	+ 23
Туре В	A6651	0.19	0.74	0.017	0.023	0.01	9.005	37,200	35,700	62,300	28.5	39,090	880	730	70	-13
Туре В	A7664	0.18 T	0.69	0.015	0.026	0.03	0.003	36,100	34,800	62,300	29.5	38,980	940	740	80	7
(1) Ave	rage en	ergy o	f the f	our duct	ile spėc	imens	broken	at 10 de	grees F	above the	e transiti	on temper	ature.			
(2) Tem	peratur	e at _? w	hich th	ie Keyho	le Cha	py ene	rgy is 2	20 ft-lbi		,	а т .			•		
	• -	- 7	ŝ,			·									·	• ;
			· ·	· · ·			•	14 15 21	- +5 ***1+ {{ .}}*						n en f	
		L	1.	-							2016 		· · · · · · · · · · · · · · · · · · ·			:

0 1

•;

1

.....

	•	Туре A Steel	Type B Steel			
Property	- Average	Standard Deviation(1)	Average	Standard Deviation ⁽¹⁾		
Upper Yield Strength, psi	36,700	1200	36,500	540		
Ultimate Strength, psi	61,800	1000	62,300	400		
Elongation in 8", per cent	28.0	2.4	28.0	2.0		
Transition Temperature, F Tear Test	75	13	73	4 . 5		
Keyhole Charpy	· -14·	8.6	-15	7.1		
carbon, per cent	0.22	0.005	0.20	0.014		
Manganese	0.465	0.017	0.76	0.037		

· · SUMMARY OF PROPERTIES FOR "STANDARD" LABORATORY TABLE 2. STEELS ROLLED AT 1850 F, SHOWING REPRODUCIBILITY . . OF DATA

(1) The standard deviation is the root-mean-square of the deviations of each observation from the average for that type of steel. The averages and standard deviations are for 8 Type A steels and 7 Type B steels made in the laboratory. Care was taken to secure reproducible results. Five heats of each type of steel were made and tested in 1950, the others in 1951.

1 :

-7-,

1

the agreement was good for compositions and tensile properties of different heats of the same type. The standard deviations of the Charpy transition temperatures are of the order expected for this criterion, according to Rinebolt and Harris⁽³⁾. All measurements on these heats fell within limits equal to twice the standard deviations listed. This indicates the data were obtained under "statistically controlled" conditions. The reproducibility of the data appears to be satisfactory.

The Charpy data for the standard steels indicate that Type B steels are more resistant to brittle fracture than Type A steels. The tear test, on the other hand, did not discriminate between the two grades. Since the differences in carbon and manganese contents were expected to influence transition temperatures, this point was studied intensively. Data in the next section indicate that the difference in tear test transition temperatures between Type A and Type B steels, expected on the basis of composition, is within the limit of reproducibility of tear-test data.

INFLUENCE OF CARBON AND MANGANESE

A comprehensive study of the effect of carbon and manganese on properties of ship-plate steel was made to supplement data reported previously^(2,5). Steels with manganese contents ranging from 0.20 to 1.50 per cent, at each of five carbon levels, were made and tested. The steels were prepared by the standard procedures, then forged and rolled in the usual manner to 3/4-inch

-8-

plate. Chemical analyses of these steels are listed in Table 3. Averages for the "standard" steels, discussed above, are listed in the appropriate places in the table.

Tensile properties and transition temperatures of the steels used to establish the effects of carbon and manganese are listed in Table 4. Since the carbon and manganese contents of the steels were varied independently, the series covers a range in tensile strengths. Figure 1 shows the effect of manganese-carbon ratio on the tear-test transition temperature for seven steels with tensile strengths between 60,000 and 64,500 psi. Data for the other heats, except for two steels of entirely different strengths, are plotted in Figure 2. Both graphs show that, at equal strength levels, higher manganese-carbon ratios are desirable. This is also true, and the effect is more pronounced, in Charpy tests.

Standard multiple correlation methods were used to develop formulas for the various properties. These formulas and the standard errors of estimate are as follows:

Upper yield strength, $psi = 23,000 + 39,200 \times \% + 7200 \times \% Mn$ Standard error = 1500 psi Lower yield strength, $psi = 20,700 + 39,800 \times \% + 8400 \times \% Mn$ Standard error = 1300 psi Tensile strength, $psi = 30,800 + 104,000 \times \% + 13,000 \times \% Mn$ Standard error = 2200 psi Elongation = $38.2 - 32.6 \times \% - 3.2 \times \% Mn$ Standard error = 2.4%

-9-

TABLE 3. CHEMICAL ANALYSIS OF 3/4-INCH LABORATORY STEEL PLATEWITH VARIOUS CARBON AND MANGANESE CONTENTS

•			Composition	, per cent		
Heat Number	C	Mn	Р	S	Si.	N
		0 15% Car	hon Series			
47440	0.17	0.10/0 001	0.015	" 0.007	· • • • •	· ,
A(448	0.17	0.23	0.015	0.021	0.04	0,00
A6539	0.15	0.41	0.017	0.027	0.02	· 0.00
A6586	0.14	0.76	0.011	0.023	0.07	0.00
A7516	0.18	1.06	0.016	0.025	0.08	. 0.00
A7517	0.15	1.23	0.016	0.021	0.07	0.00
		0.20% Car	bon Series		the second	
A6590	0.19	0.22	0.015	0.026	0.05	0.00
A7532	0.19	0.45	0.015	0.031	0.03	0.00
Std. B steels	0.20	0.76	0.015	0.023	0.05	. 0.00
A7518	0.19	0.96	0.017	0.028	0.04	0.0C
A7519	0.21	1.31	0.017	0.025	0.07	0.00
A6599	0.20	1.46	0.015	0.022	0.06	0,00
		0.25% Car	bon Series			
A6589	0.25	0.23	0.016	0.024	0.08	0.00
Std. A steels	0.22	0.46	0.014	0.024	0.05	0.00
A6547	0.21	0.83	0.015	0.028	0.05	0.00
A6554	0.18	0.93	0.016	0.017	0.11	0.00
A6598	0.24	1.27	0.016	0.026	0.07	0.00
-	· .	0.30% Car	bon Series			
A7520	0.27	0.21	0 014	0.027	0.02	0.00
A7521	0.26	0.43	0.015	0.029	0.02	0.00
A7522	0.28	0.66	0.016	0.025	0.03	0.00
A7533	0,26	1 00	0.016	0.030	0.03	0.00
A7524	0.31	1.39	0.018	0.026	0.03	0.00
		0.35% Сат	hon Series	,	, ,	
**	0.21	0.21	0.016	0.027	0.02	0.00
A(32(. A6506	U.SL "(0.24	0.40	0.016	U.U∠(< 0.022	0.05	
· A0396	0.34	0.49	. 0.015	· 0.025	0.06	0.00
A659/	0.32	0.80	0.017	0.024	0.06	0.00
A(525	0.31	0.88	0.010	0.025	0.04	0.00

-10-

۰.

		Tens	ile Properties			Keyhole			
	Yie Stren ps	Yield Strength, psi		Elongation in 8",	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp,	Charpy Trans. Temp,
Heat No.	Upper	Lower	psi	per cent	٥ſ	ft-lb	ft-lb	F	F
				0.15% Carb	on Series				
A7448	33,300	28,700	50,700	35.0	33.510	950	670	50	+21
A6539	31,850	30,750	53,300	30.5	35,650	930	690	60	+10
A6586	33,000	32,000	54,400	28.0	38,490	1270	1130	40	-24
A7516	36,200	34,700	59,600	31.5	40,790	1220	840	40	-38
A7517	37,150	36,000	61,400	29.5	42,570	1180	870	30	-41
				0.20% Carb	on Series				
A6590	33,100	31,450	55,100	30.5	34,110	840	740	90	+26
A7532	31,700	31,450	56,050	32.5	36,930	870	770	70	+12
Std. Typ	eB 36,350	35,350	62,250	28.0	39,460	870	750	73	-15
A7518	36,200	35,350	61,700	33.0	40,080	960	820	50	-21
A7519	37,700	37,000	64,200	29.0	43,570	980	810	50	-29
A6599	43,850	43,400	72,350	24.5	46,820	970	850	60	-38
				0.25% Carb	on Series				
A6589	34,050	32,800	58,400	29.5	35,180	820	670	100	+36
Std. Type	eA 36,950	35,150	61,900	28.0	37,030	780	660	75	+14
A6547	36,850	35,950	65,400	26.5	39,230	760	730	80	-27
A6554	38,550	37,100	64,900	29.5	40,920	890	800	70	-45
A6598	42,850	42,150	74,200	23.0	45,490	950	830	70	-60

TABLE 4. TENSILE AND NOTCHED-BAR PROPERTIES OF 3/4-INCH LABORATORY STEEL PLATES WITH VARIOUS CARBON AND MANGANESE CONTENTS

ь à

1

1.1

) (2

-11-

		Tens	ile Properties		-	Keyhole			
	Yield Strength, psi		Tensile Strength,	Elongation	Maximum Load.	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp	Charpy Trans. Temp.
Heat No.	Upper	Lower	psi	per cent	lb	ft-lb	ft-lb (F	F
				0.30% Carbo	on Series				
A7520	34,250	32,000	58,600	29.0	34,960	670	710	90	+67
A7521	36,450	33,900	62,300	30.0	36,800	720	710	100	+61
A7522	38,450	36,950	68,450	25.5	37,780	600	560	90	+22
A7533	41,900	39,250	73,600	27.5	43,240	700	640	80	-9
A7524	45,800	45,450	80,800	26.5	47,250	740	660	100	-4
				0.35% Carbo	on Series				
A7527	34,650	33,800	62,950	30.0	35.700	590	640	120	+90
A6596	41,300	38,550	72,900	21.0	36,470	520	570	120	+75
A6597	40,900	40,100	75,100	24.5	40,970	640	610	90	+19
A7525	40,500	40,100	76,250	27.0	43,790	670	540	90	+16
					······				

TABLE 4. (Continued)

-12-

FIGURE I. RELATIONSHIP BETWEEN MANGANESE-CARBON RATIO AND TEAR-TEST TRANSITION TEMPERATURE FOR EXPERIMENTAL SEMIKILLED STEELS WITH ULTIMATE STRENGTHS BETWEEN 60,000 AND 64,500 PSI **-**13**-**

1

· 7

~ 1

FIGURE 2. RELATIONSHIP BETWEEN MANGANESE-CARBON RATIO AND TEAR-TEST TRANSITION TEMPERATURE FOR EXPERIMENTAL SEMIKILLED STEELS OF DIFFERENT STRENGTHS

-14-

```
Tear-test transition = +17 + 330 \times \%C - 23 x \%Mn
temperature Standard error = 10 \cdot F
Keyhole Charpy
transition temperature = -19 + 349 \times \%C - 74 \times \%Mn
Standard error = 15 F
```

These formulas indicate that manganese has a greater effect on transition temperatures measured by Charpy tests than by tear tests. The formulas for tensile properties of the experimental steels agree quite well with those reported for commercial \dots steels⁽⁸⁾.

Table 5 compares calculated transition temperatures for 25 commercial steels with mactual data obtained by Kahn⁽⁶⁾ and Battelle. In all but one case, the actual and calculated Charpy transition temperatures agree within twice the standard error of the formula. This indicates good agreement as do the group averages for the actual and calculated temperatures.

On the other hand, only 14 of the 25 calculated tear-test transition temperatures agree with actual values within twice the standard error, 20 F, of the formula. Most of the calculated temperatures are lower than the actual ones, probably because the commercial steels were rolled above 1850 F, the temperature used for the steels on which the formula is based. As will be shown later, increasing the rolling temperature 100 F raises the tear-test transition temperature of commercial steel 20 F. The effect on Charpy transition temperatures is about 10 F

÷.

.

-15-

<u></u>			······	· <u>·</u> ·····	;•;•;;				
	Compo	osition,	Act	Calculated					
Plate Code	C Mn		Iransition Le Tear Test	Keyhole Charpy	Iransition Tear Test	Niemperature, F Keyhole Charpy			
G-3	0,25	0.42	100	_	90				
A	0.25	0.49	70	+10	89				
C	0.25	0.51	135	+15	88	+31			
S-7	0.21	0.49	. 120	+17	75	+ 18			
[™] ∺ S-6	0.20	ʻÕ.55	100	+14	71	+10			
S-9	0, 18	. 0.50	80	+10	65	+7			
S-10	0.19	0.54	90	0	68	+8			
S-11	0.20	0.55	90	+36	71	+10			
S-8	0.14	0.46	90	+22	53	-4			
58 x 428	0.33	0.55	130	+43	114	+ 57			
5779	0.25	0.44	80	+20	91	+36			
Average ,	0.22	0.50	99	+19	80	+ 21			
G-6	0.18 :	0,96	50	_	55 · .				
S-2	0,17	0.60	110	+7	60				
S-21	0.22	0.81	70	-5	71	-2			
S-23	0.20	0.75	100	+12	66	-5			
S-1	0.17	0.66	100	+19	58	8			
S-13	0.17	0.68	90 `	-1	<u>و:</u> 58	-10			
S-22	0.19	0.77	100 ,	+8	62	-10			
S-20	0.18	0.73	80	+1	60	-10			
S-19	0.19	0.78	80	+10	62	-10			
S-18	0.17	0.73	100	-8	57	-14			
В	0.16	0:76	60	-34	53	-19			
. S - 5	0.17	0.90	70		- 53	-27			
50 x 426	0.21		. 80	-24	69				
1046	0.20	0.77	50	-28	66	6			
Average	0.18	0,76	81	-3	60	-10			

TABLE 5. TRANSITION CHARACTERISTICS OF COMMERCIAL SEMIKILLED, 3/4-INCH SHIP PLATE

· — · · ·

for Type B steels and 5 F for Type A steels. If appropriate corrections be made to the calculated temperatures, on the assumption that the commercial steels were rolled at 1950 F, the agreement is much better than indicated in Table 5.

VERIFICATION OF THE INFLUENCE OF SILICON

The first study⁽⁵⁾ left some doubt about the effect of silicon, in the range between 0.15 and 0.30 per cent, on the notched-bar properties of the two types of steel. Raising the silicon content of Type A steels decreased the tear-test transition temperature only slightly. On the other hand, the Type B steels showed a significant decrease in transition temperature when the silicon content increased from 0.01 to 0.15 per cent. Larger silicon contents seemed harmful as shown by a steel containing 0.29 per cent silicon which had a transition temperature 30 F higher than the steel with 0.15 per cent silicon. Therefore, steels of each type, containing about 0.21 per cent silicon were made and tested. The compositions and mechanical properties of the two steels are listed in Table 6.

Tear-test data for these heats are plotted in Figures 3 and 4.

Tear-test properties of Type A steels are not affected appreciably by changes in silicon content up to 0.30 per cent. Figure 4 shows, however, that this is not true for steels with lower carbon and higher manganese contents. Apparently, silicon contents between 0.10 and 0.20 per cent benefit steels with compositions otherwise meeting specifications for Type B steels. The

-17 -

1

2

4

۶,

• •

,

		Tono : La Proportina					Tear-Test Properties						Charpy		y	:
Grade of Heat	Yie	Yield Strength, psi		Tensile	sile Elong.	 Max. Load.	Max. Energy to Max. Start		Energy to Propagate Fracture		Transition Temperature		Keyhole Transition Temperature		e ion ure.	·
Steel No.	Upp	eŗ	Lower	psi	8", %	١b		ft-lb		t-lb	F		F			
Туре А А752	6 36.	950	34,900	65.000	29.0	39,640) .	740		 630 .		70		-12	·. ·. · ·;	
Туре В А752	8 36,	350	35,950	63,650	32.5	41,920)	980 -		750	· ·	50	1.	-40	 1	
	<u>.</u>			<u> </u>				·								
e «	ی ۲.۵۰			(1) Co	mposition	s of these	e steels	were as	follows	a:				•		
			-			Compositíc	on, per	cent					;			
					C Mn	Si	Р	- <u>S</u>	N					\$		
		••	Heat A	7526 (0.30 0.4	3 0.20	0.018	0.027	0.005			·			:	
. *			Heat A	7528 ().21 0:7	4 0.21	0,018	0.030	0.004		· · ·					
	•	•		•			*	r r		•			•			
•					· · ·	5.			ب ر ب							

11

- 81-

٢,

17

i

1

н. — "

FIGURE 3. INFLUENCE OF SILICON CONTENT UPON THE TRANSITION TEMPERATURE OF TYPE A LABORATORY STEELS

.

-19-

A-1387

FIGURE 4. INFLUENCE OF SILICON CONTENT UPON THE TRANSITION TEMPERATURE OF TYPE B LABORATORY STEELS

A-1388

difference in behavior of silicon in the two types of steel suggests an interrelationship between the effects of carbon, manganese, and silicon. This possibility will be investigated later.

INFLUENCE OF NITROGEN

The influence of nitrogen in Type A and Type B steels was studied by melting and rolling semikilled steels with various nitrogen contents. These steels were made by adding calcium cyanamide to the melt immediately before tapping. One additional steel containing 0.017 per cent aluminum and 0.010 per cent nitrogen was made to determine the combined effect of aluminum and nitrogen. The chemical analyses of these steels are given in Table 7.

Duplicate tensile tests were made on all of the steels. A summary of these tests is given in Table 8. The influence of nitrogen on the tensile strength is shown in Figure 5. The Type A steels and the Type B steels fall on the same trend line. This shows that variations in nitrogen content have the same effect on strength in both grades.

The addition of nitrogen raised the tear-test transition temperature of both grades of steel. This is shown quantitatively in Figure 6. Increasing the nitrogen content appears to be more harmful in Type A than in Type B steels. The steel containing 0.017 per cent aluminum had the transition temperature expected for aluminum-free steels with the same nitrogen content. This confirms the tensile data indicating that in this type of steel the aluminum

-21-

and an an an anti-state of the second sec In the second second

and a second second

	TABLE 7.	CHEMICAL ANALYSIS OF 3/4-INCH LABORATORY STEEL P	LATE
,	,	WITH VARIOUS NITROGEN CONTENTS	,

- · . ·		Composition, per cent								
Heat No.	C	Mn .	у. Р _. ,	<u>s</u> S.	Si	· N .				
A6600	0.21	0.53	0.016	0.024	0.03	0. 005				
A7440	0.21	0.54	0.015	0.018	0.08	0.013	•			
A7441	0.23	0.52	0.014	0,018	0.07	0.016	, -			
A6601	0.18	0.83	0.018	0.023	0.05	0.008	-			
: A7439	0.18	0.84	0.015	0.017	0.07	0.015				
A7437 .	0.16	0.82	0.015	0.017	0.07	0.020				
ARCENT	0.10		· · · · ·							
A/659*	0.18	0.76	0.016	0.031	0.05	0.010				

*Contains 0.017 per cent aluminum.

 A second sec second sec

		Tensi	le Properties				Keyhole		
	Yield Strength, psi		Tensile Strength,	Elongation in 8",	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp,	Charpy Trans. Temp,
Heat No.	Upper	Lower	psi	per cent	lb	ft-lb	ft-lb	F	F
A6600	36,650	35,000	62,100	24.5	37,700	850	710	60	-8
A7440	40,250	37,750	67,250	28.5	37,280	630	530	130	+24
A7441	42,200	39,350	69,350	26.5	38,520	520	770	160	+42
A6601	39,650	36,950	63,250	26.0	38,470	880	700	90	-30
A7439	42,700	40,650	70,700	29.0	40,500	710	710	130	+3
A7437	45,250	42,400	73,000	20.0	40,980	700	770	140	+20
* A7659	38,050	36,700	66,100	28.5	40,580	900	1100	100	-6

TABLE 8. TENSILE, TEAR-TEST, AND KEYHOLE CHARPY IMPACT PROPERTIES OF 3/4-INCH,
HOT-ROLLED LABORATORY STEEL PLATE WITH VARIOUS NITROGEN CONTENTS(1)

.

ħ.

(1) Compositions given in Table 6.

1

*

х,

,

Contains 0.017 per cent aluminum.

• >

Nitrogen Content, per cent

FIGURE 5. INFLUENCE OF NITROGEN ON TENSILE STRENGTH

A-1389

Nitrogen Content, per cent

FIGURE 6. INFLUENCE OF NITROGEN ON TEAR-TEST TRANSITION TEMPERATURE

A-1390

-25-

Ç-

did not combine with the nitrogen to reduce its effect.

The addition of nitrogen also raises the transition temperature of keyhole Charpy specimens. Figure 7 indicates that increasing the nitrogen content 0.001% increases the Charpy transition temperature about 2.1 F. This holds for both types of steel. The tear-test transition temperature was raised about twice as much as the Charpy transition temperature for each increase of 0.001 per cent nitrogen. The slopes of the lines indicate that the tear test is more sensitive to the effect of nitrogen.

INFLUENCE OF TITANIUM, ZIRCONIUM, AND ALUMINUM

The influence of Litanium and zirconium was studied by adding various amounts of these elements to semikilled steels of Type A and Type B composition. The amounts of these elements retained in the final composition were below 0.10 per cent. The titanium was added as ferrotitanium alloy immediately before tapping the heat. The zirconium was added as a 40 per cent zirconium siliconzirconium alloy. Chemical analyses of these heats are listed in Table 9.

The aluminum was added to steels with 0.01 or 0.05 per cent silicon. In the case of the base steels with 0.01 per cent silicon, part of the aluminum (0.05 per cent) was added in place of silicomanganese. This addition gave a total aluminum content in the steel of 0.005 per cent. The remaining aluminum addition was

-26-

Nitrogen Content, per cent

FIGURE 7. INFLUENCE OF NITROGEN ON KEYHOLE CHARPY TRANSITION TEMPERATURE

A-1391

. -27-

1
added before tapping. The steels with 0.05 per cent silicon were made by adding the aluminum at one time -- immediately before tapping. Complete chemical analyses of these steels are given in Table 9.

The tensile and notched-bar properties of these 25 steels are given in Table 10. It will be noted that only titanium increased the tensile strength of the steel plate; zirconium and aluminum had no effect on tensile strength. Along with the increase of tensile strength resulting from titanium, there was a decrease in the ductility of the steel plate. The elongation of the semikilled type of steel was not affected by the addition of zirconium or aluminum. Aluminum additions to rimmed types of steel seemed to increase ductility, as shown in the case of steels of the low-silicon series.

The tear-test and the Charpy transition temperatures of both grades of steel were increased by the addition of titanium. This effect of titanium is shown in Figures 8 and 9. The tear-test transition temperatures of the Type B steels with 0.02 and 0.04 per cent titanium are lower than the average of the five standard steels containing no added titanium, indicating that very minute quantities of titanium probably lower the tear-test transition of this greade of steel. The transition temperature apparently increases, however, when the amount of titanium present exceeds 0.02 per cent.

-28-

			Compo	sition, per	cent				
Heat Number	C	Mn	Р	S	Si	N	Others		
		Ti	tanium Serie	s' - Type A					
Á7667	0.23	0.45	0.015	0.028	0.07	0.004	0.03 Ti		
A7668	0.23	0.45	0.016	0.027	0.09	0.004	0.08 Ti		
A7665	0.23	0.47	0.016	0.020	0.10	0.004	0.10 Ti		
		Ti	tanium Serie:	s - Туре B					
A7669	0.19	0.76	0.020	0.026	0.04	0.003	0.02 Ti		
A7670	0.19	0.76	0.019	0.027	0.05	0.004	0.04 Ti		
A7671	0.19	0.79	0.020	0.028	0.10	0.004	0.10 Ti		
		Zi	rconium Serie	es -Type A	_				
A7431	0.25	0.57	0.016	0.023	0.07	0.005	0.03 Zr		
A6699	0.23	0.50	0.016	0.024	0.10	0.004	0.02 Zr		
A7432	0.25	0.55	0.015	0.022	0.08	0.005	0.06 Zr		
		Zin	rconium Serie	es -Type B					
A7433	0.19	0.85	0.018	0.023	0.05	0.004	0.04 Zr		
A7434	0.21	0.85	0.015	0.023	0.12	0.004	0.05 Zr		
A7435	0.21	0.87	0.027	0.023	0.17	0.004	0.06 Zr		
		Aluminum S	Series - Low	Silicon - T	уре А				
A6648	0.27	0.59	0.016	0.021	0.01	0.004	0.005 Al		
A6707	0.20	0.50	0.019	0.025	0.01	0.004	0.016 Al		
A6708	0.21	0.52	0.020	0.025	0.01	0.003	0.027 Al		
A6709	0.21	0.53	0.018	0.025	0.01	0.004	0.075 Al		
		Aluminum S	Series - Low	Silicon - T	ype B				
A6649	0.22	0.87	0.015	0.022	0.01	0.004	0.005 A1		
A7319	0.18	0.81	0.017	0.022	0.02	0.004	0.045 Al		
A7320	0.20	0.85	0.016	0.025	0.02	0.004	0.060 Al		
	-	Aluminum Se	eries - 0.05%	6 Silicon -T	уре А				
A7531	0.22	0.48	0.016	0.032	0.05	0.003	0.020 Al		
A7661	0.21	0.45	0.015	0.033	0.05	0.003	0.045 Al		
A7529	0.25	0.41	0.016	0.028	0.05	0.004	0.090 Al		
	-	Aluminum Se	eries - 0.05%	Silicon -T	ype B				
A7660	0.20	0.74	0.017	0.032	0.05	0.003	0.015 Al		
A7662	0.20	0.75	0.016	0.028	0.05	0,003	0.045 Al		
A7530	0.21	0.71	0.018	0.027	0.05	0.003	0.080 Al		

- · · · · · · · ·

. . . .

TABLE 9. CHEMICAL ANALYSIS OF 3/4-INCH HOT-ROLLED LABORATORY STEEL PLATE

ż

. . .

		Tensi	le Properties			Tear-Test	Properties		Keyhole
	Yie Stren ps	ld gth, i	Tensile Strength,	Elongation in 8",	Maximum Load.	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp.	Charpy Trans. Temp.
Heat No.	Upper	Lower	psi	per cent	lb	ft-lb	ft-1b	F	F
				Titanium Serie	es - Type A				
A7667	40,550	39,000	66,400	27.5	39,270	770	680	110	+41
A7668	39,500	37,400	66,900	27.0	40,760	870	790	120	+51
A7665	43,250	40,800	69,650	23.5	42,320	850	770	160	+64
				Titanium Serie	es – Type B				
A7669	37,500	35,850	62,050	29.5	40,340	990	760	50	-15
A7670	37,100	35,600	61,400	28.0	40,630	1050	780	60	-13
A7671	46,050	44,500	70,000	25.5	44,440	950	810	150	+37
				Zirconium Seri	les -Type A				
A7431	34,550	31,350	63,250	28.5	40,480	890	790	60	-5
A6699	30,550	30,300	64,200	26.0	38,880	780	680	100	+5
A7432	29,700	29,650	63,950	27.5	39,180	780	790	70	-17
				Zirconium Seri	es -Type B				
A7433	31,700	31,000	62,850	29.5	41,630	1010	870	50	+2
A7434	34,850	33,200	64,550	31,5	41,430	1010	720	50	-42
A7435	31,500	31,300	65,050	29.5	41,230	910	820	90	-43
			Alum	inum Series - Low	Silicon - T	уре А			
A6648	38,000	37,200	65,800	27.0	37,150	660	680	100	-14
A6707	35,400	33,400	59,000	28.5	36,400	870	720	90	0
A6708	38,350	35,450	61,550	30.5	38,000	910	670	80	-2
A6709	35,750	34,150	59,850	33.0	38,800	940	800	50	-40

TABLE 10. TENSILE PROPERTIES AND NOTCHED-BAR PROPERTIES OF 3/4-INCH LABORATORY STEEL PLATE WITH VARIOUS TITANIUM, ZIRCONIUM, AND ALUMINUM CONTENTS

T

1

1

r

-30-

ł.

•

		Tensi	le Properties			Tear-Test	Properties		Keyhole
	Yi Stre	eld ngth, si	Tensile Strength,	Elongation in 8",	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp,	Charpy Trans. Temp,
Heat No.	Upper	Lower	psi	per cent	lb	ft-1p	ft-lb	F	F
			Alum	ninum Series - La	ow Silicon - T	уре В			
A6649	37,700	36,850	64,700	24.0	39,490	800	730	80	-14
A7319	35,200	33,850	59,250	30.0	38,590	1040	940	80	-22
A7320	34,400	33,400	59,950	32,0	39,300	980	810	70	-20
			Al	uminum-Silicon S	Series - Type	Α			
A7531	35,550	33,950	60,550	32.5	38,080	860	850	80	+2
A7661	33,350	32,800	59,800	31.5	38,330	930	780	80	-6
A7529	37,750	34,800	62,450	31.5	38,800	780	780	80	-5
			Al	uminum-Silicon S	Series - Type	В			
A7660	36,050	34,600	61,400	31.0	39,470	 930	830	70	-20
A7662	36,300	34,450	62,450	28.5	40,600	1020	760	60	-29
A7530	36,600	35,400	62,550	31.0	41,140	930	630	40	-61

TABLE 10. (Continued)

1

٤

!

:

ļ

Т

t.

Ą.

-3**1-**

, ·

à

FIGURE 8. INFLUENCE OF TITANIUM ON TEAR-TEST TRANSITION TEMPERATURE

-33-

4

Zirconium had no detectable effect on the Charpy notchedbar transition temperature of Type A steel. The transition temperatures of the Type A steels are all within the range of the standard steels without zirconium. The Type B steels with low zirconium contents have the lowest transition temperatures. When however, 0.10 per cent zirconium is added, the transition temperature is higher than for steels with no zirconium. In this grade of steel, the effect of small quantities of zirconium appears to be not unlike that of titanium. Further studies are needed to establish the effect the zirconium in the two grades of steel.

The Charpy transition temperature was lowered by the addition of zirconium.

Small additions of aluminum decrease the notched-bar transition temperatures of most grades of steel. Figure 10 shows the tear-test transition temperatures of the laboratory steels treated with different amounts of aluminum. Three of the four series of steels showed increasing toughness as the aluminum additions increased. The Type A steels containing 0.05 per cent silicon were an exception. The three steels of this base composition had the same transition temperature even though the aluminum contents varied from 0.02 to 0.09 per cent.

The influence of total aluminum content on keyhole Charpy transition temperature is shown in Figure 11. The aluminum contents of the steel were determined spectrographically. In all cases, the transition temperatures decrease somewhat with an increase in total aluminum content. The Type A steels appeared to

-34-

FIGURE IO. INFLUENCE OF ALUMINUM, DETERMINED BY SPECTROGRAPHIC ANALYSIS, ON TEAR-TEST TRANSITION TEMPERATURE

FIGURE II. INFLUENCE OF ALUMINUM, DETERMINED BY SPECTROGRAPHIC ANALYSIS, ON KEYHOLE CHARPY TRANSITION TEMPERATURE

behave in an unusual manner. The transition temperature of the 0.05 per cent silicon steel appeared to decrease with small amounts of aluminum and then remained constant. The transition temperature of the 0.01 per cent silicon steel tended to increase slightly on increasing the total aluminum content from 0.005 per cent to 0.016 per cent, but then decreased rather sharply up to 0.075 per cent aluminum.

The apparent difference in the effect of aluminum in the two different grades of steel and at the two different silicon levels suggests the need for additional work. Several heats have been made to supplement the work already done and will be tested in the continuation of the program.

An interesting comparison of the effects of titanium, vanadium,⁽²⁾ aluminum, and silicon on the tear-test transition temperatures of the two classes of steels is shown in Figures 12 and 13. In Type A steels, small additions of the elements, titanium and vanadium, tend to increase the transition temperature, while small additions of aluminum and silicon have no effect on the transition temperature. In Type B steel, with its higher manganese content, small amounts of titanium, aluminum, and silicon tend to decrease the transition temperature. Additional amounts of titanium and silicon increase the transition temperature. Steels with vanadium contents between zero and 0.09 per cent have not been tested, so that its effect in very small quantities has not

-37-

-38-

FIGURE 12. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR - TEST TRANSITION TEMPERATURE OF A 0.25% C, 0.45% Mn, 0.05% Si STEEL

A-1396

÷

FIGURE 13. INFLUENCE OF TITANIUM, VANADIUM, ALUMINUM, AND SILICON ON THE TEAR-TEST TRANSITION TEMPERATURE OF A 0.21 % C, 0.75 % Mn, 0.05 % Si STEEL Figure 13 shows no evidence of an initial decrease in transition temperature with this element, if such a decrease exists.

SPECIAL STEELS

The advisory Committee recommended that steels containing vanadium and phosphorus be made with reduced carbon contents so that their tensile strengths would be approximately 60,000 psi. Along with these steels, two steels containing 0.10 per cent molybdenum with normal carbon contents were also requested. Chemical analyses of these steels are shown in Table II.

The tensile properties and notched-bar properties of these steels are given in Table 12. The tensile strengths of the vanadium and phosphonus steels ranged from 59,000 to 60,600 psi. The addition of the 0.10 per cent molybdenum increased the tensile strength approximately 3,600 psi.

The tear-test and Charpy transition temperatures of the vanadium steels are no different from the standard Type A and Type B steels. The phosphorus steels had high tear-test transition temperatures but had approximately the same Charpy transition temperatures as standard Type A steels. Because there was only one steel of each class in which 0.1 per cent molybdenum was added, it was not possible to establish, with any precision, the effect of molybdenum on the transition temperatures.

-40-

		Composition, per cent								
Heat Number	C	Mn	Р	S	Si	N	Other			
			Vanadiu	n Series						
A7446	0.19	0.48	0.014	0.017	0.07	0.004	0.03 V			
A7310	0.19	0.49	0.018	0,022	0.08	0.003	0.06 V			
A7447	0.17	0.83	0.015	0.016	0.08	0.004	0.03 V			
A7311	0,14	0.86	0.021	0.023	0.10	0.003	0.06 V			
			Phosphor	us Series						
A7312	0.13	0.52	0.105	0.023	0.10	0.004				
A7436	0.09	0.47	0.095	0.022	0.05	0.005	0.02 V			
A7442	0.14	0.48	0.099	0.020	0.05	0.004	0.06 Ma			
			Molybden	um Series						
A7313	0.24	0.49	0.017	0.023	0.07	0.004	0.10 Mc			
A7314	0.21	0.75	0.017	0.021	0.07	0.003	0.10 Ma			

TABLE 11. CHEMICAL ANALYSIS OF 3/4-INCH LABORATORY STEEL PLATE (Special Steels)

÷

1

.

X

· · · · · · · · · · · · · · · ·

	Tens i	le Properties			Tear-Test	Properties		Keyhole
Yi Stre P	eld ength, osi	Tensile Strength,	Elongation in 8 ⁿ ,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	Trans. Temp,	Charpy Trans. Temp,
Upper	Lower	psi	per cent	lb	ft-lb	ft-lb	F	F
			Vanadium	Series				
36,000	34,850	59,000	33.0	37.920	930	690	80	+3
39,500	37,750	60,600	28.0	37,770	760	740	70	+12
38,400	35,650	59,500	32.0	39,830	1080	770	60	-16
39,100	38,350	60,600	29.5	40,280	960	800	70	-36
			Phosphoru	s Series				
37,850	36,500	60,100	28.0	38.640	1050	770	120	+30
39,600	38,000	59,150	30.0	41,600	1270	710	100	-2
38,200	36,350	58,700	32.5	38,270	1140	680	110	+12
			Molybdenu	m Series				
39,900	36,050	63,000	27.0	36,770	670	640	100	+20
38,900	37,500	64,900	25.0	40,160	940	630	60	+12
	Yi Stre P Upper 36,000 39,500 38,400 39,100 37,850 39,600 38,200 39,900 38,900	Tensi Yield Strength, psi Upper Lower 36,000 34,850 39,500 37,750 38,400 35,650 39,100 38,350 37,850 36,500 39,600 38,000 38,200 36,350 39,900 36,050 38,900 37,500	$\begin{tabular}{ c c c c c } \hline Tensile Properties \\ \hline Yield \\ \hline Strength, & Tensile \\ \hline psi & Strength, \\ \hline Upper & Lower & psi \\ \hline \hline $36,000 & 34,850 & 59,000 \\ $39,500 & 37,750 & 60,600 \\ $39,500 & 37,750 & 60,600 \\ $38,400 & 35,650 & 59,500 \\ $39,100 & 38,350 & 60,600 \\ \hline $37,850 & 36,500 & 60,100 \\ $39,600 & 38,000 & 59,150 \\ $38,200 & 36,350 & 58,700 \\ \hline \hline $39,900 & 36,050 & 63,000 \\ $39,900 & 37,500 & 64,900 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline Tensile Properties \\ \hline Yield \\ \hline Strength, Tensile Elongation in 8", \\ \hline psi Strength, in 8", \\ \hline pper Lower psi per cent \\ \hline Vanadium \\ \hline 36,000 & 34,850 & 59,000 & 33.0 \\ \hline 39,500 & 37,750 & 60,600 & 28.0 \\ \hline 38,400 & 35,650 & 59,500 & 32.0 \\ \hline 39,100 & 38,350 & 60,600 & 29.5 \\ \hline & & & & \\ \hline Phosphoru \\ \hline 37,850 & 36,500 & 60,100 & 28.0 \\ \hline 39,600 & 38,000 & 59,150 & 30.0 \\ \hline 38,200 & 36,350 & 58,700 & 32.5 \\ \hline & & & & & \\ \hline Molybdemu \\ \hline 39,900 & 36,050 & 63,000 & 27.0 \\ \hline 38,900 & 37,500 & 64,900 & 25.0 \\ \hline \end{tabular}$	Tensile PropertiesYieldStrength, psiTensile Strength, psiElongation in 8", per centMaximum Load, per centUpperLowerpsiper centlbVanadium Series36,00034,85059,00033.037,92039,50037,75060,60028.037,77038,40035,65059,50032.039,83039,10038,35060,60029.540,280Phosphorus Series37,85036,50060,10028.038,64039,60038,00059,15030.041,60038,20036,35058,70032.538,270Molybdenum Series39,90036,05063,00027.036,77038,90037,50064,90025.040,160	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tensile PropertiesTear-Test PropertiesYieldElongationMaximumStartPropagatepsiStrength, psiTensile psiElongationMaximum havimumStartPropagateUpperLowerpsiper centlbft-lbft-lbVanadium Series36,00034,85059,00033.037,920930690Strength, per centlbft-lbft-lbVanadium Series36,00034,85059,00032.037,77076074038,40035,65059,50032.039,830108077039,10038,35060,60029.540,280960800Phosphorus Series37,85036,50060,10028.038,640105077039,60038,00059,15030.041,600127071038,20036,35058,70032.538,2701140680Molybdenum Series39,90036,05063,00027.036,77067064038,90037,50064,90025.040,160940630	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

÷

TABLE 12. TENSILE AND NOTCHED-BAR PROPERTIES OF 3/4-INCH LABORATORY STEEL PLATE (Special Steels)

-42-

GRAIN≤SIZE MEASUREMENTS

Several investigations^(2,3) have indicated that ferrite grain size influences the transition temperatures of low-carbon and shipplate steels. Therefore, grain-size measurements were made on many of the steels tested during this investigation on deoxidation and composition.

Various methods⁽⁴⁾ of measuring ferrite grain size were investigated. They included counting grains in measured areas, counting grains intercepted by lines of fixed lengths, comparisons with charts of standard micrographs, and visual comparisons of fractured surfaces. All of these methods were used to determine the ferrite grain sizes of a series of heat-treated samples from a particular Type A ship-plate steel. This steel, designated by earlier investigators as Project Steel "A", contained 0.25% carbon, 0.49% manganese, 0.011% phosphorus, 0.04% silicon, and 0.045% sulphur. The samples were prepared by austenitizing at temperatures between 1400 and 2000 F and cooling them at different rates. These treatments produced a wide variety of grain sizes and microstructures. This study indicated that counting grains within measured areas was the most reliable method of determining ferrite grain size. It was used, therefore, in evaluating the effect of grain size on transition temperatures.

2

With the method used in this investigation, the amount of pearlite in the microstructure affects the ferrite grain-size counts. Therefore, the percentage of pearlite was estimated,

-43-

by the point counting method, for most of the samples. Table 13 Shows that the standard Type A and Type B steels contained about 15 per cent pearlite. If the amount of pearlite in a steel varies appreciably from this value, this fact must be considered in comparing data obtained by other methods.

Figure 14 shows the relationship between ferrite grain size and the tear-test transition temperature of Project Steel "A" cooled in air from various austenitizing temperatures. Lower normalizing temperatures resulted in smaller ferrite grain sizes and substantial improvements in toughness. The ferrite grain sizes of these specimens were determined by averaging counts made on specimens taken parallel and transverse to the rolling direction of the plate.

The effect of finishing temperature on the relationship between the tear-test transition temperature for two steels is illustrated in Figure 15. These grain counts are for longitudinal sections and show the same trend as those for normalized specimens. The graphs show a good correlation between grain size and transition temperature for either grade of ship plate. Lower finishing temperatures resulted in finer ferrite grain sizes and lower transition temperatures.

Figure 16 shows the ferrite grain sizes and transition temperatures for plates of Type A steel rolled at 1650 and 1850 F. Figure 17 gives similar information on Type B steels. For both

Heat Number	Type of Steel	Finishing Temp, F	Tear-Test Transition Temp, F	Keyhole Charpy Transition Temp, F	Ferrite Grain Size*, grains/sq in. at OOX	Pearlite, %
			·			
A-1	А	1650	+50	-2	134(140)	
A- 2	Α	1650	+45	-16	125(118)	
A-3	Α	1650	+55	+16	128(125)	
A-4	Α	1650	+50	0	153(163)	
A-5	А	1650	+50	+10	143	
B- 2	В	1650	+40	-16	92(103)	
B-3	В	1650	+40	-32	87**	
B-4	В	1650	+40	-25	118(113)	
B-5	в	1650	+40	-34	141(157)	
B-6	В	1650	0	-38	147**	
A-6424A	А	1650	+50		119**	11
A-6424B	Α	1750	+60	÷-	87**	19
A-6424C	Α	1850	+95	~-	73**	15
A-6365A	В	1650	+10		132**	15
A-6365B	В	1750	+20		99**	12
A-6365C	В	1850	+40		76**	13
A -6555	А	1850	80	+12	157***	
A-6556	Α	1850	70	+4	103	÷-
A-6587	Α	1850	100	+12	82	
A-6650	Α	1850	70	+25	91	17
A-6705	Α	1850	60	+5	97	
A-6557	В	1850	70	-13	93	
A-6584	В	1850	70	-6	92(96)	
A-6588	В	1850	70	-20	77	17
A-6641	В	1850	80	-25	94	18
A-6651	В	1850	70	-24	73	14

TABLE 13. TRANSITION TEMPERATURES AND GRAIN-SIZE DATA FOR STANDARD EXPERIMENTAL HEATS OF TYPE A AND B STEELS

* Determined by counting method; average values for counts on longitudinal and transverse sections. Values in parentheses were obtained by a second investigator.

· -· ·

. . ..

-

** Counts on longitudinal sections only.

.

£

*** Questionable value; not plotted in Figure 16.

- -

FIGURE 14. EFFECT OF NORMALIZING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE OF PROJECT STEEL A

A-1398

,÷

2

FIGURE 15. EFFECT OF FINISHING TEMPERATURE ON THE RELATION-SHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE FOR ONE TYPE A AND ONE TYPE B STEEL (GRAIN COUNTS ON LONGITUDINAL SECTIONS ONLY)

FIGURE 16 EFFECT OF FINISHING TEMPERATURE ON THE RELATIONSHIP BETWEEN TEAR-TEST TRANSITION TEMPERATURE AND FERRITE GRAIN SIZE FOR STANDARD TYPE A STEELS

(a) a set of the se

A - 1401 Α - 1401

grades, the trend is for lower transition temperatures and finer ferrite grain sizes with lower rolling temperatures. The relationship between transition temperature and ferrite grain size is general rather than precise when several steels are considered. This indicates that the tear-test transition temperatures are sensitive to small differences in the steels not reflected by ferrite grain sizes.

Table 13 shows that the grain-size data for these steels gave a better correlation with tear-test transition temperatures than with Charpy transition temperatures.

Figure 18 shows the influence of cooling rate from various austenitizing temperatures on the grain size of Project Steel "A". Faster cooling rates gave smaller ferrite grains. According to the information on this steel discussed above, refinement of ferrite grain size should improve the toughness. This suggests that accelerating the rate of cooling from the hot-rolling temperature may improve the tear-test properties of ship-plate steels. This possibility will be checked in laboratory tests because it is easier for commercial mills to control cooling rates than finishing temperatures.

Table 14 presents grain-size and notched-bar transition temperature data for a number of laboratory steels varying in composition. The series contains steels with considerable variations in carbon, manganese, silicon, phosphorus, and vanadium contents.

Increasing the carbon or manganese content of a steel increases the amount of pearlite. This reduces the number of ferrite grains in a standard volume of metal independently of the actual size of

- 50-

 \leq

FIGURE 18 EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON FERRITE GRAIN SIZE OF "PROJECT STEEL A"

Heat	Base Composition	Element	Tear-Test Transition	Keyhole Charpy Transition	Ferrite Grain Size*, grains/sq in.	Pearlite,
Kulliber	OT Steel	Varied, %	lemp, F	Temp, F	at 100X	07 /0
A-6539	A***	0.16 C	+60	+10	66(76)	
A-6596	Α	0.35 C	+120	+75	106	26
A-6586	В	0.14 C	+40	-24	84	6
A-6597	В	0.32 C	+90	+19	111	23
A-6589	А	0.26 Mn	+100	+36	93	
A-6598	А	1.28 Mn	+70	-60	82	24
A-6590	В	0.22 Mm	+90	+26	80(90)	
A-6599	В	1.46 Mn	+60	-38	101	21
A-6135	Α	0.011 P	+80	-1	102(107)	
A-6652	Α	0.038 P	+110	+20	74	20
A-6706	Α	0.054 P	+110	+50	66	
A-6638	В	0.016 P	+60	-26	84	
A-6653	В	0.046 P	+90	-11	89	18
A-6655	В	0.053 P	+110	+10	71	16
A-6647	Α	0.042 S	+60	+10	82	13
A-6646	В	0.045 S	+50	-24	81	15
A-6602	А	0.02 Si	+80	+14	72	14
A-6594	Α	0.11 Si	+80	-7	158	
A-6657	А	0.15 Si	+70	-2	77	19
A- 6696	Α	0.31 Si	+70	-28	66	17
A-6603	В	0.03 Si	+80	-29	89	16
A-6595	В	0.13 Si	+40	-43	100	16
A-6695	B	0.16 Si	+30	-57	70	20
A-6697	В	0.29 Si	+60	-29	91	18
A-6642	А	0.08 V	+80	+15	76	20
A-6368	А	0.09 V	+100	+10	104**	19
A-6366	А).19 V	+160	+73	108**	21
A-6643	В	0.08 V	+70	-25	92	12
A-6644	В	0.12 V	+100	-20	92	15
A-6645	В	0.20 V	+160	+70	92	17

TABLE 14. TRANSITION TEMPERATURES AND GRAIN-SIZE DATA FOR EXPERIMENTAL HEATS OF TYPE A AND B BASE STEELS WITH VARIATIONS IN CARBON, MANGANESE, PHOSPHORUS, SULPHUR, SILICON, AND VANADIUM CONTENTS

* Determined by counting method; average values for counts on longitudinal and transverse sections. Values in parentheses were obtained by a second investigator.

** Counts on longitudinal sections only.

*** The finishing temperature during hot rolling was 1850 F for all steels.

the ferrite grains. Increasing carbon raises the transition temperature, but higher manganese contents improve toughness. Therefore, the ferrite grain counts do not correlate closely with transition temperatures of steels differing in carbon or manganese contents.

-53.

Varying the silicon content from 0.02 to 0.31 per cent did not cause consistent changes in the grain size of the Type A or Type B steels. Nevertheless, in both grades, there were significant differences in Charpy transition temperatures associated with changes in silicon contents. The tear tests also indicated that the Type B steel, containing 0.16 per cent silicon, was significantly tougher than the other steels in this series.

Increases in phosphorus contents were accompanied by coarsening of the ferrite grain size and loss in toughness as measured by either Charpy or tear tests. Conversely, vanadium additions lowered the toughness of both grades of steel without affecting the grain size.

In general, the data for these steels indicate that the effect of ferrite grain size on notched-bar properties is often outweighed by other effects of changes in composition.

<u>INFLUENCE OF FINAL HOT-ROLLING TEMPERATURE</u> <u>ON PROPERTIES OF COMMERICAL STEELS</u>

A study⁽²⁾ of two laboratory steels indicated that the transition temperature was raised by increasing the finishing temperature of hot-rolled 3/4-inch steel plate. A similar investigation was made on commercial steel of similar analysis. Two steel companies cooperated by providing sections of 3/4-inch plate and 1-3/4-inch plate. Each producer supplied plates of the two gages from the same heat. Another steel company furnished a 3/4-inch plate of rimmed steel. Chemical analyses of these steels are shown in Table 15.

The 3/4-inch plate was tested in the as-recived condition. The 1-3/4-inch plate was divided into two portions and rerolled. The steels were rerolled using finishing temperatures of 1650 F and 1850 F. Steel Company "X" shipped twice the quantity of 1-3/4inch plate as Company "Y". This made it possible to reroll the "X" steel at four finishing temperatures.

The 1-3/4-inch slabswere heated to 2250 F and were rolled to 0.9-inch gage, using reduction of approximately 1/6 inch per pass. The 0.9-inch-gage plates were immediately recharged in a furnace. held at the desired finishing temperature. After 20 minutes or more in this furnace, the plates were rolled to 3/4 inch in one pass. Following the final pass, the plates were placed on edge on a brick floor, with a brick separating each plate, and allowed to air cool. This procedure is the same as that used for slabs from heats made in the laboratory.

Duplicate tensile test specimens were taken from each plate. The tensile properties are shown in Table 16. It will be noted that the yield strength decreased with an increase in finishing

Grade of	Heat	Manufacturing		(Compositi	on, per d	cent	
Steel	No.	Company	C	Мп	Si	Р	S	N
Туре А	58 x 428	Company X	0.33	0.55	0.08.	0.009	0.032	0.005
Туре В	50 x 426	n	0.21	0.78	0.08	0.010	0.033	0.006
Туре А	5779	Company Y	0.25	0.44	0.02	0.007	0.031	0.005
Туре В	1046	Π	0.20	0.77	0.14	0.009	0.029	0.005
Туре А	24666**	Company Z	0.23	0.40	0.01	0.021	0.031	0.005

_

_	_	_					
TABLE	15.	CHEMICAL	ANALYSIS	OF	COMMERCIAL	STEEL	PLATES

.

..

** Rimmed steel.

•

...

-

2

~

. .. .

Heat	Finishing	Yi Stre P	e]d ngth, si	Tensile Strength	Elongation in 8", %	
No.	Temp, F	Upper	Lower	psi		
58 x 428	1650	40,250	39,200	69,550	27.0	
	1850	41,450	38,300	69,900	28.0	
	1950	39,700	37,700	69,800	26.5	
	1960*	35,350	34,250	71,350	26.0	
	2050	38,550	35,900	68,950	25.0	
50 x 426	1650	39,650	38,700	61,000	31.5	
	1850	35,950	34,750	59,250	33.0	
	1950	35,350	34,400	61,550	30.0	
	, 1970*	32,700	31,000	59,050	30.5	
	2050	34,000	33,250	61,300	30,5	
5779	1650	35,800	34,400	59,200	34.0	
	1700*	33,600	32,600	59,100	30.0	
	1850	35,100	33,600	59,500	32.0	
1046	1650	39,350	37,450	61,250	34.0	
	1700*	36,950	32,800	60,900	31.0	
	1850	40,700	39,100	66,250	28.5	
24666	1725*	31,300	29,200	59,450	27.0	

_-- --

TABLE 16. TENSILE PROPERTIES OF COMMERCIAL STEEL REROLLED TO3/2-INCH PLATE USING VARIOUS FINISHING TEMPERATURES

* Commercial rolled 3/4-inch plate.

ł

temperature. The yield strength of the commercial rolled 3/4inch plate is much lower than the laboratory rerolled plate of the same finishing temperature. This might be due to a difference in cooling rates from the finishing temperature. The elongation decreased as the finishing temperature was increased.

The tear-test and keyhole Charpy transition temperatures were determined for each plate. These temperatures are shown in Table 17. The effect of finishing temperature upon the tear-test transition temperature of Type A steel is shown graphically in Figure 19. For this figure, the transition temperatures of the Type A steels were corrected to correspond to a 0.25 per cent carbon and 0.45 per cent manganese steel. The corrections in transition temperatures, for slight differences in carbon and manganese contents, were based on the formulas given on page 14 of this report. The Battelle steel is included for comparison. All Type A steels finished at 1650 F have approximately the same transition temperature. The transition temperature of the Battelle laboratory steel increases immediately after raising the finishing temperature above 1650 F. The transition temperature of the commercial steels increased only when finished above 1850 F.

The effect of finishing temperature upon the tear-test transition temperature of Type B steel is shown graphically in Figure 20. Here, the transition temperatures of all plates are corrected to a 0.21 per cent carbon and 0.75 per cent manganese steel. The transition temperatures of all three steels are alike when finish

-57-

TABLE 17. TEAR-TEST PROPERTIES, KEYHOLE CHARPY TRANSITION TEMPERATURES, AND FERRITE GRAIN SIZES OF COMMERCIAL STEEL REROLLED TO 3/4-INCH PLATE AT VARIOUS FINISHING TEMPERATURES

Tear-Test Properties Keyhole Energy to Energy to Charpy Ferrite Finishing Max Start Propagate Trans. Trans. Grain Size, Heat Temperature, Load, Temp, Fracture, Fracture, .Temp, grains/sq in. Number F lb ft-lb ft-lb F F at 100X ۰.. 58×428 1650 40,190 760720· .90 +17 112 1850 39,440 630 590 90 +27 89 37,530 +35 98 1950 640 560 110 1960* 580 130 +43,40,040 550 66 2050 36,430 520 560 +39 13080 е, - : 93 1650 41,710 1200107050 -57 50 x 426 -37 39,040 1260 1230 50 1850 69 -23 1950 40,630 1060 . 760. 80. 79 -24 1970* 40,640 1100870 80 61 90 39,840 1130 740-16 68 2050¹80 890 38,650 1110 +21 5779 1650 · 1131700* 38,270 820 1120; 80 +20106 1850 36,830 810 78070+15 80 2010 40-44 92 1046 1650 41,970 1130 50 1700* 41,000 1080 1090 -28 50 73 40,920 1060 1170 50 -49 1850 +8281 24666 1725* 34,330. 480. 460 80

* Plates rolled commercially.

ţ

.

FIGURE 19. INFLUENCE OF FINISHING TEMPERATURE UPON THE TEAR-TEST TRANSITION TEMPERATURE OF ⅔-INCH STEEL PLATE Transition temperatures corrected to 0.25% C, 0.45% Mn steel A-1403

FIGURE 20. INFLUENCE OF FINISHING TEMPERATURE UPON THE TEAR-TEST TRANSITION TEMPERATURE OF $\frac{3}{4}$ -INCH STEEL PLATE Transition temperatures corrected to 0.21% C, 0.75% Mn steel

rolled at 1850 F. The transition temperature of the Battelle steel decreased with reduction in finishing temperature below 1850 F, but the commercial steels were unaffected by this change. The transition temperatures of the two commercial steels increased when the finishing temperature was increased above 1850 F. Qualitatively, the laboratory and commercial steels respond alike to increasing finishing temperatures, but the points of inflection of the curves are near 1650 and 1850 F, respectively, for the steels in question.

The influence of finishing temperature upon the Charpy transition temperature of Type A steel is shown in Figure 21. The transition temperature of Battelle steel and Company "X" steel increased with an increase in finishing temperature. The transition temperature for steel from Company "Y" changed very little with finishing temperature, though the tendency seemed to be for the transition temperature to decrease slightly with increased temperature. It will also be noted that the transition temperature of Battelle steel was approximately 45 degrees higher than that of the steel for Company " λ ".

The effect of finishing temperature on Charpy transition temperature on Type B steels is shown in Figure 22. The effect was the same for the Type B steels as it was for the Type A steels.

The ferrite grain size of all steels was determined by counting the number of ferrite grains in a 2-inch square laid out on a

-61-

-62-1

一方 かない ない ない ない しんしょう しょうしょう しょうしょう

۰,

FIGURE 22. INFLUENCE OF FINISHING TEMPERATURE UPON THE KEYHOLE CHARPY TRANSITION TEMPERATURE OF $\frac{3}{4}$ -INCH STEEL PLATE Transition temperatures corrected to a 0.21% C, 0.75% Mn steel
photomicrograph taken at 100 magnification. This count was divided by four to give the number of ferrite grains per square inch at 100 magnifications. The results of this experiment are listed in Table 17 and are shown plotted against finishing temperature in Figure 23. Although there is considerable scatter from the average curve, nevertheless, there is a definite trend of smaller grain size with decreasing finishing temperature. The commercial steel from Company "Y" showed the largest variation from the average curve.

The influence of grain size upon the tear-test transition temperature is shown in Figure 24. These curves indicate that there is a good correlation between grain size and transition temperature for any particular steel. Steels from Company "X" behaved somewhat differently than steels from Company "Y", the former showing much greater changes in transition temperature with grain size than the latter steels.

The effect of grain size upon the Charpy transition temperature is shown graphically in Figure 25. Both of the Type A steels show the same change in transition temperature and grain size.

-64-

FIGURE 23. INFLUENCE OF FINISHING TEMPERATURE UPON FERRITE GRAIN SIZE OF COMMERCIAL AND LABORATORY ROLLED $\frac{3}{4}$ -INCH STEEL PLATE

A-1407

FIGURE 24. INFLUENCE OF FERRITE GRAIN SIZE UPON TEAR-TEST TRANSITION TEMPERATURE OF COMMERCIAL AND LABORATORY ROLLED $\frac{3}{4}$ -INCH STEEL PLATE

FIGURE 25 INFLUENCE OF FERRITE GRAIN SIZE UPON CHARPY TRANSITION TEMPERATURE OF COMMERCIAL AND LABORATORY ROLLED $\frac{3}{4}$ -INCH STEEL PLATE

A-1409

- 67-

The indications were that the effect of grain size variation on transition temperature was slightly greater for Type B steels than for Type A steels.

SUMMARY AND CONCLUSIONS

Consistent and reproducible data were obtained on semikilled laboratory steels made and tested at intervals over a two-year period. This indicates that considerable confidence can be placed on laboratory data showning the effects of variations in composition and processing on properties of ship-plate steels.

Variations in the final rolling temperature affect the Navy tear-test and Charpy properties of semikilled ship plate. In general, lower finishing temperatures on steel prepared in the laboratory give lower transition temperatures. The transition temperatures of commercial plates rerolled in the laboratory also tended to change with finishing temperature but not until the finishing temperature was above 1850 F.

Formulas for calculating tensile properties and notched-bar transition temperatures were developed from data obtained on a comprehensive series of experimental steels. For a particular strength level, steels with higher manganese-carbon ratios have lower transition temperatures. The influence of nitrogen in raising the strength and transition temperature of semikilled steel was studied. Increasing the nitrogen of both Type A and Type B steels from 0.004 to 0.02 per cent increased the tensile

-68-

strength about 10,000 psi and raised the tear-test transition temperature about 80 F and the Charpy transition temperature about 40 F.

Heats treated with zirconium in amounts ranging from 0.06 to 0.10 per cent were made and tested. Results of Navy tear tests and Charpy tests do not justify conclusions on the effect of this element. In this respect, they agree with unofficial reports from the steel industry, that the effect of zirconium is not established.

Small additions of aluminum to steels with low silicon contents usually lowered the tear-test and Charpy transition temperatures. The effect of a specific addition varied with the composition of the base metal, the effect being greater in steels of Type B than in steels of Type A.

The presence of titanium in excess of 0.02 per cent seems to increase the transition temperature of both Type A and Type B type ship plate. In the range up to 0.02 per cent titanium, the transition temperature of Type B steel appears to be lowered by titanium.

Increasing the ferritic grain size of a particular steel by austenitizing at increasingly higher temperatures raises the transition temperature. The ferrite grain size was also increased by decreasing the rate of cooling from the austenitizing temperature. No correlation was found between transition temperatures and

ferritic grain sizes determined by a counting method of ship steels which varied in composition over a fairly wide range. This is particularly true when both manganese and carbon contents are varied. Both elements affect the amount of pearlite in the microstructure. As the amount of pearlite changes, the number of ferrite grains in a given volume of metal change, though the size of the individual ferrite grains may remain unchanged. For that reason the effect of ferritic grain size on transition temperature is often out-weighed by effects from changes in composition.

This investigation is being continued under Contract NObs 53239, Index NS-Oll-078. The influence of grain size and interrelated effects of deoxidizing elements will be given continued attention.

REFERENCES

- 1. Kahn, N. A., and E. A. Imbembo: "A Method of Evaluating Transition from Shear to Cleavage Failure in Ship Plate and Its Correlation with Large-Scale Plate Tests", <u>Welding Journal</u>, <u>27</u>, No. 4, pp. 169-186 (1948).
- Banta, H. M., R. H. Frazier, and C. H. Lorig: "Some Metallurgical Aspects of Ship-Steel Quality", <u>Welding Journal</u>, 30, No. 2, pp. 79s-90s (1951).
- 3. Hodge, J. M., R. D. Manning, and H. M. Reichhold: "The Effect of Ferrite Grain Size on Notch Toughness", <u>Journal of Metals</u>, <u>1</u>, Metals Transactions, pp. 233-239 (1949).
- 4. Campbell, J. E., R. H. Frazier, and H. O. McIntire: "Ferrite Grain Size Measurements of Ship Plate Steel", <u>Welding Journal</u>, <u>31</u>, No. 2, pp. 78s-94s (1952).
- 5. Banta, H. M., R. H. Frazier, and C. H. Lorig: "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Ship Steel", Ship Structure Committee Report SSC-49, June 27, 1952
- 6. Kahn, N. A., and E. A. Imbembo: "Further Study of Navy Tear Test", <u>Welding Journal</u>, 29, No. 2, pp. 84s-96s.
- 7. Quest, C. F., and T. S. Washburn: "Tensile Strength and Composition of Hot-Rolled Plain Carbon Steels", <u>Trans. AIME, 140</u>, pp. 489-496, (1940).
- Rinebolt, J. H., and W. J. Harris, Jr.: "Statistical Analysis of Tests of Charpy V-Notch and Keyhole Bars", <u>Welding Journal</u>, 30, No.4, pp. 202s-208s (1951).

.

.

APPENDIX

.

9

• >

TABLE 1B. NAVY TEAR-TEST DATA FOR TYPE A AND TYPE B STLELS IN THE REPRODUCIBILITY STUDY

. .

I, a

	TABLE 1A.	TENSILE- CLASS B STUDY	TEST DATA : STEELS IN (FOR CLASS A AN PHE REPRODUCIB	D ILITY
Heat Number	Specimen Number	Yi Stre ps Upper	leld ength, il Lower	Tensile Strength, psi	Elongation in 3 In., %
A-6650	1	35,300	34,100	60,200	27.0
	2	35,900	34,400	60,900	29.5
n-6705	1	36,700	35,800	62,500	22.0
	2	37,400	36,000	63,500	27.0
∧ -7663	1	35,100	34,600	60,800	29.0
	2	35,000	34,400	61,400	33.5
A-6651	1	36,200	35,700	62,000	28.0
	2	38,200	35,700	62,600	29.5
а-7664	1	36,100	34,600	62,100	27.5
	2	36,100	35,000	62,500	32.0

2

A-6650 N1 70 37,550 917 133 Q2 60 35,800 858 592 16 M2 80 36,600 767 575 16 M2 80 36,550 800 650 16 A-6705 F2 60 36,100 817 66 16 M1 70 35,600 703 616 16 16 M1 70 35,600 763 616 16 16 M2 70 36,000 700 383 16 16 M2 70 36,000 700 383 16 A-7663 M2 60 37,950 790 75 142 17 P2 80 37,150 790 50 17 133 16 Q2 90 37,500 885 133 16 16 16 Q2 90 37,500 800 842 16 16 16 Q2 90 37,750	Heat Number	Specimen Number	Testing Temperature, F	Maximum Load, Pounds	Energy to Start Frasture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-6650	NL	70	37,550	917	133	5
S1 $B0$ $37,200$ 842 750 10 $P1$ 80 $36,550$ 800 650 10 $P1$ 80 $36,550$ 800 650 10 $A-6705$ $P2$ 60 $36,100$ 817 660 $L1$ 70 $37,000$ 817 600 M $Q2$ 70 $37,000$ 750 733 10 $A-7663$ $N2$ 60 $37,950$ 790 75 $N1$ 70 $37,750$ 790 75 142 11 $P2$ 80 $37,150$ 775 650 160 $P2$ 80 $37,150$ 910 885 120 $Q2$ 90 $37,500$ 910 885 120 $Q2$ 90 $37,500$ 910 885 100 $R1$ 100 $37,750$ 915 757		02	60	35,800	858	592	100
M2 B0 $36,600$ 767 575 10 P1 80 $36,550$ 800 650 10 A-6705 P2 60 $36,100$ 817 66 L1 70 $37,000$ 817 660 10 R1 70 $37,000$ 817 660 10 Q2 70 $37,000$ 750 733 10 N2 60 $37,950$ 790 75 10 N2 60 $37,950$ 790 75 142 10 N2 60 $37,950$ 790 75 142 10 P2 80 $37,150$ 790 50 10 Q2 90 $37,500$ 885 133 10 Q2 90 $37,500$ 842 665 10 Q2 90 $37,500$ 842 105 10 S2 100 $37,750$ <td< td=""><td></td><td>S1</td><td>80</td><td>37,200</td><td>8/2</td><td>750</td><td>100</td></td<>		S1	80	37,200	8/2	750	100
P1 80 36,550 800 650 10 A-6705 P2 60 36,100 817 66 11 1 70 37,000 817 660 10 Q2 70 37,000 817 600 10 Q2 70 37,000 750 733 10 M2 70 36,000 700 383 10 A-7663 N2 60 37,950 790 75 75 M1 70 37,700 766 142 13 14 P2 80 37,150 790 50 15 Q1 90 37,250 824 633 10 Q2 90 37,500 910 885 103 R1 100 37,600 800 842 10 S2 100 37,700 842 10 10 R2 60 38,700 892 <td></td> <td>M2</td> <td>sn.</td> <td>36,600</td> <td>767</td> <td>6775</td> <td>100</td>		M2	sn.	36,600	767	6775	100
A=6705 P2 60 36,100 817 66 L1 70 35,600 783 616 14 Q2 70 37,000 750 733 16 M2 70 37,000 755 757 16 M1 70 37,700 766 142 17 P2 80 37,150 790 50 17 Q1 90 37,250 824 633 16 Q2 90 37,500 815 133 1 R1 100 37,700 845 165 16 Q2 90 37,750 815 133 1 16 R2 100 37,750 816 165 16		Pl	80	36,550	800	650	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-6705	P2	60	36,100	817	66	5
μ_1 70 $35,600$ 783 616 10 $Q2$ 70 $37,000$ 750 733 10 $N2$ 70 $36,000$ 700 383 10 $A-7663$ $N2$ 60 $37,950$ 790 75 $N1$ 70 $37,700$ 766 142 10 $P2$ 80 $37,150$ 790 50 10 $P2$ 80 $37,150$ 790 50 10 $Q2$ 90 $37,250$ 824 633 10 $Q2$ 90 $37,500$ 885 100 842 106 $R1$ 100 $37,900$ 842 665 10 $R1$ 100 $37,900$ 842 166 100 $R1$ 60 $39,550$ 833 616 100 $R1$ 60 $38,700$ 892 725		73	-	07 /00		1-1	
N1 70 37,000 817 600 10 $N2$ 70 37,000 750 733 11 $N2$ 70 36,000 700 383 11 $A.77663$ $N2$ 60 37,950 790 75 $M1$ 70 37,500 7775 6500 16 $P1$ 70 37,500 7766 142 1 $P2$ 80 37,150 790 50 1 $Q1$ 90 37,250 824 633 10 $Q2$ 90 37,500 910 885 10 $Q2$ 90 37,600 800 842 10 $S2$ 100 37,900 842 665 10 $S2$ 100 37,750 915 757 10 $R=6651$ M1 60 38,700 892 725 9 $R1$ 60 38,700 891		1911 1711	70	35,600	783	616	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		KT .	70	37,000	817	600	100
N2 70 $36,000$ 700 383 10 A-7663 N2 60 $37,950$ 790 75 N1 70 $37,500$ 775 650 16 P1 70 $37,500$ 775 650 142 11 P2 80 $37,150$ 790 50 11 00 $37,250$ 824 633 10 Q2 90 $37,500$ 885 133 11 100 $37,600$ 800 842 100 R1 100 $37,7900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $37,900$ 842 100 $39,900$ 842 100 $39,900$ <td></td> <td>Q2</td> <td>70</td> <td>37,000</td> <td>750</td> <td>733</td> <td>100</td>		Q2	70	37,000	750	733	100
A7663 N2 60 $37,950$ 790 75 N1 70 $37,500$ 775 650 142 112 P2 80 $37,150$ 790 50 112 Q2 90 $37,250$ 824 633 112 Q2 90 $37,500$ 885 133 112 R1 100 $37,500$ 800 8422 100 S1 100 $37,600$ 800 8422 100 S2 100 $37,600$ 802 100 $87,900$ 842 100 S2 100 $37,900$ 842 165 100 S2 100 $37,900$ 842 156 100 S2 100 $37,700$ 892 725 92 R1 60 $38,700$ 892 156 100 S2 70 $38,500$ 858 125 11 N1 80 $38,200$ 757 <		M2	70	36,000	700	383	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a-7663	N2	60	37,950	790	75	5
P1 70 37,700 766 142 1 P2 80 37,150 790 50 1 Q1 90 37,250 824 633 10 Q2 90 37,500 885 133 1 R1 100 37,500 800 842 10 S1 100 37,500 800 842 10 S2 100 37,600 800 842 10 S2 100 37,750 915 757 10 A=6651 M1 60 39,550 833 616 10 P2 60 38,700 892 725 9 R1 60 38,300 842 158 10 S2 70 38,500 858 125 1 N1 80 38,200 757 807 10 Q2 80 38,700 891 757 10		NL	70	37,500	775	650	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pl	70	37,700	766	142	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P2	80	37,150	7 90	50	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		01	90	37,250	824	633	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		02	90	37,500	885	133	15
R2 100 37,600 800 842 10 S1 100 37,900 842 665 10 S2 100 37,750 915 757 10 A-6651 M1 60 39,550 833 61.6 10 P2 60 38,700 892 725 9 R1 60 38,300 842 158 S2 70 38,500 858 125 1 M1 80 38,200 757 807 10 Q2 80 38,700 891 757 10 R2 80 37,700 867 741 10 N2 80 39,100 992 600 10 -7664 N2 60 29,250 1,020 216 10 P1 70 39,250 1,020 815 100 P2 70 36,750 950 58		Rl	100	37,500	910	885	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R2	100	37.600	800	8/2	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S]	100	37,900	81.2	665	100
A=6651 M1 60 39,550 833 616 10 P2 60 38,700 892 725 9 R1 60 38,300 842 158 9 S2 70 38,500 858 125 1 M1 80 38,200 757 807 10 Q2 80 38,700 891 757 10 R2 80 37,700 867 741 10 N2 80 39,100 992 600 10 -7664 N2 60 39,250 1,020 216 10 M1 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q2 90 39,400 961 784		52	100	37,750	915	757	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a-6651	MI	60	39.550	833	616	100
n_1 60 $98,300$ 842 158 $S2$ 70 $38,500$ 856 125 1 $S2$ 70 $38,500$ 856 125 1 $S2$ 70 $38,500$ 856 125 1 $S2$ 80 $38,700$ 891 757 100 $Q2$ 80 $38,700$ 891 757 100 $Q2$ 80 $38,700$ 891 757 100 $R2$ 80 $37,700$ 867 741 100 $N2$ 80 $39,100$ 992 600 100 -7664 $N2$ 60 $39,250$ $1,020$ 216 100 $P1$ 70 $39,250$ $1,020$ 815 100 $P2$ 70 $38,750$ 950 58 15 $Q1$ 80 $39,300$ 925 275 25 $Q2$ 90 $39,400$ 961 784 100		P2	40 40	28,200	802	705	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RÎ	60	38,300	842	/≪2 158	95 5
-7664 N2 60 39,100 955 129 1 N1 80 38,200 757 807 10 Q2 80 38,700 891 757 10 R2 80 37,700 867 741 10 N2 80 39,100 992 600 10 -7664 N2 60 99,250 1,020 216 10 N1 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 19 Q1 80 39,300 925 275 25 Q1 80 39,300 925 275 25 Q1 80 39,300 925 744 100 R1 90 38,700 950 734 100		¢2	70	28 600	950	195	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		52	,0	000 و00	696	129	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N1	80	38,200	757	807	100
R2 80 37,700 867 741 10 N2 80 39,100 992 600 10 -7664 N2 60 39,250 1,020 216 10 N1 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q2 90 39,400 961 784 100 R1 90 38,700 950 734 100		Q2	80	38,700	891	757	100
N2 80 39,100 992 600 10 -7664 N2 60 39,250 1,020 216 10 N1 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q1 80 39,300 925 275 25 Q1 90 39,400 961 784 100 P1 90 38,700 950 734 100		R2	80	37,700	867	741	100
-7664 N2 60 39,250 1,020 216 10 N1 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q2 90 39,400 961 784 100 P1 90 38,700 950 734 100		N2	80	39,100	992	600	100
NI 70 39,150 935 740 100 P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q2 90 39,400 961 764 100 R1 90 38,700 950 734 100	-7664	N2	60	39,250	1,020	216	10
P1 70 39,250 1,020 815 100 P2 70 38,750 950 58 15 Q1 80 39,300 925 275 25 Q2 90 39,400 961 764 100 R1 90 38,700 950 734 100		NI	70	39,150	935	7/0	100
P2 70 38,750 950 58 19 Q1 80 39,300 925 275 29 Q2 90 39,400 961 784 100 R1 90 38,700 950 734 100		19	20	30,250	າ ດ້ວດ	416	100
Q1 80 39,300 925 275 25 Q2 90 39,400 961 784 100 R1 90 38,700 950 734 100		P2	70	38,750	950	58	15
Q2 90 39,400 961 784 100 RI 90 38,700 950 734 100		Ql	80	39,300	925	275	25
		02	20	20, 100	041	7761	100
πι 90 <u>18.700</u> 950 736 10			70	27,400	901	/04	100 100
		AL DD	90	20,100	700 1006	734	100
na 90 38,990 879 734 LOU		11.2 11	90	20,950	875	734	100

TABLE 2A. TENSILE-TEST DATA FOR STEELS IN THE CARBON-MANGANESE SERIES

Heat	Specimen	Yie Stro	ld ngth, 1	Tensile Strength,	Elongation in 8 In.
Number	Number	Upper	Lower	pei	\$
		0.15% Carb	on Series		
∿7 448	1	33,600	28,600	50,700	34_0
	2	33,000	28,800	50,700	36,0
A6539	12	31,600 32,100	30,900 30,600	53,400 53,200	31.0 30.0
A-6586	1	32,300	31,300	53,800	28.5
	2	33,700	32,700	55,000	28.0
A-7516	1	35,600	34,800	59,600	31_0
	2	36,800	34,600	59,600	32 . 5
A-75 17	1 2	37,500 36,800	36,100 35,900	61,400 61,400	29.0 30.0
		0.20% Carb	on Series		
A-6590	1	33,100	32,000	55,200	30.0
	2	33,100	30,900	55,000	31.0
A-7532	1	31,600	31,400	56,400	32.0
	2	31,800	31,500	55,700	33.0
A-7518	1	36,400	35,400	61,700	33.5
	2	36,000	35,300	61,700	32.5
A-7519	1	37,800	37,100	64,400	28.0
	2	37,600	36,900	64,000	30.0
A-6599	1	44,000	43,500	72,400	24.0
	2	43,700	43,300	72,300	25.0
		0.25% Carbo	on Series		
A-6589	1	33,900	33,100	58,100	29.0
	2	34,200	32,500	58,700	30.0
A-6547	1	36,200	35,600	65,200	27.5
	2	37,500	36,300	65,600	25.5
A-6554	1	39,100	37,300	64,700	30.0
	2	38,000	36,900	65,100	29.0
a-6598	1	43,200	42,600	75,100	23.0
	2	42,500	41,700	73,300	23.0
		0.30% Carbo	n Series		
4 -7 520	1	34,000	31,400	58,200	29.0
	2	34,500	32,600	59,000	29.5
4-7521	1	36,500	34,000	62,600	32.0
	2	36,400	33,800	62,000	28.0
-7522	1	38,400	37,000	68,400	26.5
	2	38,500	36,900	68,500	25.0
-7533	1	41,600	39,400	73,900	28_0
	2	42,200	39,100	73,300	27.0
-7524	1	45,300	44,900	81,000	27.0
	2	46,300	46,000	80,600	26.0
		0.35% Carbo	ı Series		
-7527	1 2	34,800 34,500	34,000 33,600	62,900 63,000	29.0 31.0
-6596	1	43,600	40,000	75,000	20.5
	2	39,000	37,100	70,800	22.0
-6597	1	41,900	41,200	75,600	24.5
	2	39,900	39,000	74,600	25.0
-7525	1	40,500	40,200	76,500	26.0
	2	40,500	40,000	76,000	27.5

TABLE 1C. CHARPY IMPACT-TEST DATA FOR TYPE A AND TYPE B STEELS IN THE REPRODUCIBILITY STUDY

Nent	Testing Tempersture.	Chert	w Impact Str	ength. Ft -L	ь —
Number		let Tost	2nd Test	3rd Test	4th Test
A-6650	120 75 40 20 0 -40	33 31 27 21 11 3	35 32 28 6 5 3	37 31 24 21 9 3	35 29 28 22 18 3
A6705	75 40 -40	32 22 18 2	30 27 20 2	32 27 19 2	31 25 19 3
∿-7663	80 50 40 30 20 10 0	31 27 11 24 24 19 16	22 27 25 23 20 21 6	29 24 6 10 4	25 20 18 21 14
A-6651	75 40 20 0 –40 –80	38 38 33 31 3 2	37 36 34 33 4 2	39 35 35 32 10 2	39 37 35 31 17 2
∿- 7664	80 40 20 20 10 -10 -20 -40	31 34 33 30 25 26 5 16 4	37 33 26 28 31 20 26 10 5	25 25 10	27 30 20

TABLE 28. NAVY TEAR-TEST DATA FOR STEELS IN THE CARBON-MANGANESE SERIES

*

<u>_</u>^

×

TABLE 2B. (Continued)

.

Heat Number	Specimen Number	Testing Temperature, F	Maximum Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture	Heat Number	Specimen Number	Testing Temperature, F	Maximu n Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture
		0.15% Ca	arbon Seri	85			•	ML	80	36,600	900	842	100
4-7//8	דפו	10	3/ 350	1035	61	10		Q2 BI	80 80	36,450	850	775	100
			<i>,</i> ,, <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		71	10		R2	80	35,450	892	633	100
	P2 01	50 50	34,050 33,750	1050 984	715 325	80 35	A-7518	NI.	50	40.600	1040	675	100
		, . , .						N2	50	40,250	958	133	10
	92 RL	60 60	33,100 33,600	958 975	750 666	95 80		P1.	60	39,700	975	800	100
	R2	60	33,000	925	616	90		P2	60	39,750	940	734	95
	ST.	вO	32,750	950	659	85		Q2	60	39,900 40,250	984 958	1025 734	100 95
A-6539	Bl	30	38,850	1150	108	15	A-7519	۲O	50	45 000	1000	116	55
	T2	40	36,000	1018	666	100				49,000	IRCO	44.0	20
	L2	40	35,300	866	133	5		P1 02	60 60	43,000	915	868	100
	Dl	50	35,300	833	116	5		Rl	60	44,250	1025	775	100
	MO	60	3/ 900	\$75	650	100		R2	60	43,600	990	809	100
	<u>61</u>	60	36,100	950	666	100		P2	70	43,350	1000	860	100
	T1 D2	60 60	35,850 36,350	1008	542 158	70	A-6599	MA	20	49,000	1292	125	2
		~~	P - , P					10	20	16 000			
	ML	70 70	34,900	925 983	584 675	85 100		N2	JU U	46,850	1183	183	10
	SL	70	35,750	950	650	100		S2	40	46,850	1108	92	3
	111	70	35,050	858	800	100		Q2	50	46,700	925	258	8
	S2	80	33,700	892	6 66	100		R2	60	46 700	1059	222	20
∆-6586	ML	20	39,250	1283	567	75		P1	õ	46,900	1118	550	20 50
	P <u>1</u>	20	39,600	1408	208	10		NI.	70	45-550	8/2	900	100
	R2	30	38,900	1350	292	25		QI	70	45,750	842	858	100
	01	40	37,900	1250	208	5		R1. M2	70 70	45,950 47,950	1042 1150	758 892	100
	NI.	50	37,500	1225	933	100			0.05% 0.			•,•	100
	12 13	50	38,150 38,400	1225	992 1918	100				aroon Serie	18		
	RL	50	38,200	1,250	683	95	A-6589	A2 02	90 90	36,250	800	692	100
λ-7516	ML	30	41,050	1170	833	95		NI.	90	35,500	741	650	100
	M2	30	41,150	1190	550	55		MI	90	34,400	666	100	10
	NL	40	41,100	1250	850	100		B2	100	33,900	700	708	100
	N2	40	40,400	1100	325	25		M2	100	34,600	683	100	10
	Pl	50	40,500	1225	735	90		C1, D2	110	34,800	972	725	100
	P2 01	50 50	40,300 40,950	1150	809 875	100		Al	110	35,650	729 791	625	100
	Q2	50	40,850	1240	940	100		N2	110	35,450	775	616	100
A-7517	NL	20	43,350	1280	142	10	A-6547	NI.	60	40,350	910	117	10
	N2	30	42-800	12/0	875	100		N2	70	40.250	900	692	95
	Pl	30	42,600	1175	910	100		Pl	70	39,050	875	125	15
	P2	30	42,500	1170	150	10		P2	80	38,800	740	700	95
	01	40	42,300	1130	915	100		Q1 02	80 80	39,450	784	642	100
	RI	40	42,300	1180	860	100						100	20
	R2	40	42,300	1.220	850	100		R1 R2	90 90	39,150 39,250	809 784	700 692	100
		0.20% Ca	arbon Seri	9 <i>5</i>				S1	90	38,700	734	715	100
a-6590	RÌ	90	34.150	800	7/.2	100		S2	90	38,600	715	815	100
,,-	S2	90	34,700	825	750	100	a-6554	MI.	70	40,300	866	150	10
	F2	90	34,750	807 875	758	100		M2	80	41,350	935	833	100
	67	100	22 160	907	650	100		N1 N2	80 80	41,150	910 790	1110	100
	R2	100	32,600	775	866	100		P1	80	41,650	935	590	70
	F1 61	100	34,900	950 815	850	100	A~6598	M2	50	45,900	1083	192	40
	чин, 1.5	100	0000000	019		100				+,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			+
A-7532	NI N2	60 60	37,600 37,850	990 950	900 58	100 5		لمل	9	40,450	1142	75	5
		G D	2.,		/***	700		Q1. 82	70 70	46,800	925 Ø75	925	100
	M2 Pl	70 70	30,850 37,750	900 940	683 724	100		15	70	43,500	892	400	95 30
	-	רודי	37 850	970	8/2	100						·	

-

TABLE 2B. (Continued)

. _

TABLE 2B. (Continued)

Heat Number	Specimen Number	Testing Temperature, F	Maximum Losd, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -1b	% Shear in Fracture	Heat Number	Specimen Number	Testing Temporature, F	Maximum Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagats Fracture, Ft -Lb	% Shear in Fracture
	P2	80	44,700	900	817	100		12	120	36,650	500	308	40
	RI	80	46,150 44,950	1183 817	817 892	100		R1	130	35,250	525	533	100
	NL	80	45,000	917	800	100		M2 L1	130 130	35,650 35,900	466 508	525 567	100 100
		0,30% 0	arbon Seri	85				R2	130	36,700	583	667	100
A-7520	NL	80	34,800	650	175	15	A-6597	ML	80	39,150	542	33	3
	R1 N2	90 90	35,750 34,800	815 715	484 535	85 65		N2	90	40,350	566	300	45
	Sl	90	36,100	81,5	133	7		H1. J2	100 100	42,350 42,550	617 700	575 558	100 100
	P1 P2	100 100	34,500 34,500	675 635	809 675	100 100		M2 K2	100 100	40,500 40,950	600 650	658 633	100 100
	Q1 Q2	100 100	34,900 34,300	692 666	575 784	100 100	A - 7525	М	70	44,750	650	83	5
A-7521	M2	80	36,350	666	75	10		M2	80	44,500	733	242	25
	NI.	90	36,650	700	125	15		ĭ2	90	43,600	576	517	95
	МІ	100	35,650	600	56 6	100		ND.	90	42,750	634	133	15
	N2 Pl	100 100	37,100 37,850	765 765	541 566	100 90		N2 P1	100 100	43,350 43,450	625 608	592 584	100 100
	P2	100	36,400	642	416	45		F2 Q1	100 100	44,800 44,300	782 675	508 458	87 75
	Q1 Q2	110 110	37,000 37,000	709 734	709 584	95 100		11	120	42,650	616	542	100
	Rl R2	110 110	36,650 37,400	700 740	700 840	100 100							National States
A-7522	ML	90	37,750	584	150	20							
	M2	100	37,750	592	592	100							
	N1 N2	100	37,200 38,400	560 616	550 550	100 100							
	PL	100	37,800	61.6 (1-	560	100							
A-7533	P2	70	44,100	683	100	< 5							
	02 R1	80 80	43,450 41,850 43,000	633 716	659 358	95 95 45							
	Pl	90	43,600	692	675	100							
	R2 S1	90 90	42,800	650	608 591	100							
A-7524	32 งา	90 70	44,000	o⊥7 725	350	30							
	N2	80	47.050	675	117	10							
	Pl	90	47,900	700	300	15							
	P2	100	47,200	775	225	15							
	01	110	45,900	734	-	100							
	02 Rl	110 110	46,900 47,300	675 759	685 659	95 100							
	R2	110	47,800	775	642	100							
		0.35% Ca	arbon Serie										
A-7527	11	100	35,450	634	283	40							
	12	110	35,700	576	250	30							
	M1. M2	120 120	35,050 36,100	576 592	500 500	100 100							
	NI. N2	120 120	36,000 36,150	592 616	516 117	100 25							
	Pl	130	35,600	565	708	100							
	P2 Q1	130 130	36,050 35,500	616 616	650 526	100 100							
	Q2	130	35,350	558	692	100							
A-6596	Q2	90	37,700	608	100	10							
	NL	TCC	37,350	542	50	10							
	N2	110	36,600	558	183	15							

- --

TABLE 2C. CHARPY IMPACT DATA FOR STEELS IN THE CARBON-MANGANESE SERIES

-

~

đ

TABLE 20. (Continued)

Heat Number	Testing Temperature, F	 lst Test	<u>py Impact Str</u> 2nd Test	ength <u>, Ft -</u> 3rd Teat	Lb 4th Tea	- Heat	Testing Temperature,	Char	<u>by Impact Str</u> 2nd Test	ength, Ft -1 Brd Test	Lh Ath Test
	0.15%	Carbon Seri	65				0.25%	Carbon Serie	39		
A- 7448	80 49 30 20 10 0 -20	50 34 9 20 22 6 3	38 32 29 29 6 27 5	29 13 6 4	140464	A-6589	75 60 40 20 00 –40	29 23 17 17 4 2	25 24 19 4 2	28 24 29 5 4 2	30 26 22 18 5 2
A-6539	73 40 20 0 –20 –40	42 34 27 6 5 3	32 26 7 19 5 3	37 34 26 21 4 3	39 34 25 8 4 3	A-6547	60 40 -10 -20 -30 -40	38 34 28 28 24 19 7	38 34 28 25 26 17 4	24 19 17	1 1 22 23 3 3
A-6586	75 40 -20 -40 -30	54 46 49 37 4 2	55 50 44 7 6 2	56 57 51 39 5 2	56 62 56 38 5 2	A-6554	>0 80 40 -40 -50 -50	4 38 34 24 4 3	41 39 30 28 21 22	4 	28
A-7516	80 40 -20 -30 -40 -50	57 47 10 39 34 32 4 3	55 46 46 35 6 4 4	38 41 33	35 34 4	A-6598	-70 -80 75 40 -40	3 2 41 37 33 27	3 3 42 38 31 25	3 38 33 28	3 41 37 31 27
A-7517	80	58	56	-	_		-80 0-305	15 Garbon Seri	3 es	2	22
	40 0 -10 -20 -30 -40 -50	48 40 43 5 6 33 Carbon Serie	55 42 20 35 40 5 4	40 6 5	41 37 37 43	A-7520	100 80 70 60 50 40 30	27 21 22 19 23 14 5	26 27 18 17 15 6 9	24 21 19 18 17	22 20 8 21 5
A-6590	75 60 20 0 -40	33 28 28 6 4 3	32 31 21 22 13 3	35 30 29 5 5 3	30 30 26 25 5 3	A-7521	80 60 50 40 30 20 0	23 24 19 20 20 17 3	22 23 20 20 16 9 11	23 9 23 19 6	27 24 19 21 17
Λ -7 532	80 40 20 10 0 -10 -20	38 31 29 28 19 5 17 7	34 27 28 26 20 10 4	12 27 17 5	19 25 7 19	⊩-7 522	80 40 30 20 10 -10	28 24 22 13 13 13	28 24 20 22 15 17 5	17 23 22 18 10	24 17 26 11 11
A - 7518	80 40 0 -10 -20 -30 -40 -60	43 39 32 28 24 5 21 21 2	41 36 32 30 24 5 4 3	39 30 5		A-7533	80 40 0 -10 -20 -30 -40	30 27 25 20 6 7 16 8	32 28 25 25 22 18 19 9	21 23 23 5	24, 23 6 8
A -75 19	80 40 -20 -30 -40 -50	51 40 37 5 25 30 5	50 43 35 28 20 5	5433	28 6 3	A 7 524	80 40 20 10 0 -10 -20	36 41 28 23 7 25 25	32 29 29 29 5 4 20	30 16 22 26 4	27 25 26 24
4-6599	75 40 0 -20 -80	51 41 39 5 2	47 45 35 31 2	49 50 41 5 2	53 49 38 32 2	a -7 527	0.3 120 110 90 80 70 40	5 Carbon Ser: 25 23 21 22 19 16 11	24 23 20 20 21 18 4	24 21 19 21 19	25 22 19 21 16
						A-6596	75 40 0 –40	20 14 9 2	20 16 3 2	20 14 6 2	19 16 4 2
						A-6597	75 40 20 0 –40	27 23 22 5 3	26 22 20 10 3	25 25 20 19 3	26 25 20 7 3
						∿ –7525	80 40 20 10 0 -10 -20	28 22 23 22 20 11	32 26 24 20 19 6 4	21 23 6 18 4	

_

TABLE 3A. TINSILE-TLST DATA FOR STEELS IN THE SILICON SERIES

.

~

TABLE 3C. CHARPY IMPACT-TEST DATA FOR STEELS IN THE SILICON SERIES

Heat	Specimen	Yiel Streng psi	d th,	Tensile Strength,	Elongation in 8 In.,
Number	Number	Upper	Lower	<u>psi</u>	<u> </u>
A-7526	1.	37,100	34,400	65,000	29.0
	2	36,800	35,400	65,000	29.0
A-7528	1	36,300	35,900	63,500	31.0
	2	36,400	36,000	63,800	34.0

TABLE 3B. NAVY THAR-TEST DATA FOR STELLS IN THE SILICON SERIES

ч

Heat Number	Specimen Number	Testing Temperature, F.	Maximum Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture
A-7526	Ll	70	40,450	782	100	10
	N1	80	39,700	700	624	100
	N2	80	40,400	774	750	100
	P1	80	40,100	733	566	90
	P2	80	40,800	766	566	100
	M2	90	38,800	716	641	100
	L2	90	38,650	675	782	100
	Ll	100	38,200	733	566	100
A-7528	M2	40	42,000	961	193	10
	N1	50	42,800	1000	725	100
	N2	50	41,600	920	150	10
	M1	60	41,400	990	824	108
	P2	60	41,450	92n	725	100
	Q1	60	43,300	1090	692	100
	Q2	60	41,050	915	766	100

Heat	Testing Temperature,	Charp	y Imp ac t Str	ength, Ft -L	ď
Number	F	lst Test	2nd Test	3rd Test	4th Test
A-7526	80 40 -10 -20 -30	33 28 24 24 20 4	31 27 21 21 18 19	 22 21 19 17	21 20 19 7
a-7528	-40 80 140	43 35	3 45 40	12 	_
	0 -40 -50 -60 -70 -80	33 27 25 22 4 5	30 24 5 4 2	26 12 3	4 23 4 4

TABLE 4A. TENSILE-TEST DATA FOR STEELS IN THE NITROGEN SERIES

Heat	Specimen	Yie Stren psi	ld gth,	Tensile Strength,	<pre>klongation in 8 In</pre>
Number	Number	Upper	Lower	psi	%
		TYPE A S	teels		
a-6600	1	36,200	35,400	62,600	25.0
	2	37,100	34,600	61,600	24.0
A-7440	1	40.800	37.800	67.200	28.0
- 1444	2	39,700	37,700	67,300	29.0
A 71.1.1	1	1.7 600	20 1.00	6 9 1.00	<u> </u>
x=144T	1	41,000	20,200	60,200	20.0
	2	42,000 TVDE D S	toola	0000	27.0
»6601	1	10 100	10013	62 200	26 ば
r-000r	2	20,200	26 800	63,000	20.J
	2	200 و ور	000,000	05,200	27.7
A-7439	1	h2.h00	LO.200	70,700	29.0
1.427	2	43,000	41,100	70,700	29.5
A. 71.37	'n	L1. 600	1.2 200	72 400	21.0
A-1421	2	44,000	42,500	72 600	
	-	47,700	40,000	12,000	1/1/

 $\langle \gamma \rangle_{\rm p}$

TABLE 48. NAVY TEAR-TLST DATA FOR STELLS IN THE NITROGLA SERIES

*

5

-

٢.

ς.

.

_

Heat Number	Specimen Number	Testing Temperature F	Maximum Load, Pounds	Energy to Start Fracture, Ft Lb	Energy to Propagate Fracture, Ft -Lb	>> Shear in Fracture
A-6600	R2	50	38,950	933	67	3
	Q2	60	37,700	842	125	8
	L2 N2 P1 R1	70 70 70 70	38,400 36,650 37,750 36,750	875 863 900 783	800 533 825 683	100 100 100 100
А-7440	MI.	110	37,950	708	833	20
	M2	120	36,800	591	265	30
	Nl	130	37,400	650	300	40
	N2 F1 F2 Q1	140 160 140 140	37,500 37,100 37,200 37,000	641 659 591 641	534 525 516 534	100 100 100 95
А-7661	ML.	130	38,600	625	167	20
	M2	140	38,450	600	192	20
	NI. N2	150 150	39,400 38,050	6112 6142	650 266	75 30
	Pl	160	38,750	609	350	45
	P2 Q1 Q2 R1	170 170 170 170	39,350 37,600 38,500 37,950	609 484 459 541	1060 1090 541 425	100 100 100 70
A-6601	P2 NL	70 70	38,200 39,550	883 800	833 175	100 15
	\$2	80	38,900	958	100	12
	м	90	40,050	917	258	30
	Q1 S1 M2 P1	100 100 100 100	38,000 37,950 37,500 37,600	892 858 858 908	858 683 625 625	100 100 100 100
A-7439	E1	3.00	L1,200	861	50	5
	E2	110	41,250	895	133	20
	Fl	120	40,600	759	266	2G
	F2 G1 G2 H1	130 130 130 130	40,000 40,800 40,250 40,200	784 855 765 765	1300 1150 741 366	100 100 100 45
	H2 J1 J2 K1	140 140 140 140	39,950 40,500 40,500 40,200	710 734 700 691	666 825 710 650	100 100 100 100
A-7437	E2	120	41,800	725	148	15
	El	130	40,750	734	216	20
	F1 F2	140 140	41,300 41,100	775 675	534 367	95 35
	G1 G2 H1 H2	150 150 150 150	39,750 41,750 42,000 39,400	665 691 775 684	759 584 75 בב 550	100 80 75 100

TABLE LC. CHARPY IMPACT-TEST DATA FOR STEELS IN THE NITROGEN SARIES

.

.....

Heat	Testing Temperature,	Charp	y Impact Str	ength, Ft -L	b
Number	F	let Test	2nd 1est	Jrd Lest_	46h rest
A-6600	75 40 0 –20 –40	33 28 22 16 3	32 29 23 16 4	33 29 25 8 3	33 29 25 4 8
А-7440	80 40 30 20 10 0 -10	30 22 20 24 14	25 7 22 23 20 6	23 19 20 1	23 23 22 21 21
A-7hhl	80 60 50 40 30 20	23 24 24 19 5 9	24 23 21 20 18 5	22 21 20 21 18	
A-6601	75 40 0 -20 -40 -80	40 36 34 27 22 2	38 39 314 23 8 2	40 37 31 26 15 2	لغ 38 31 29 3 2
ለ-7և39	80 40 20 -0 -10 -20 -30	34 27 28 26 5 4 3 3	35 28 27 214 25 11 3 3	25 23 23 23 21	26 6 26 L
A-7437	80 40 30 20 10 0 -20	28 26 22 21 23 18 23	30 25 26 13 20 19 4	25 22 21 4 	21 23 23 4 2

TABLE 54. TENSILE-TIST DATA FOR STREES IN THE TITANIUM, ZIRCONIUM, AND ALUMINUM SERIES

TABLE 5A. (Continued)

Heat Number	Specimen Number	Y10 Strep ps: Upper	eld ngth, Lower	Tensile Strength, psi	Elongation in 8 In., %	Heat Number
		Titanium Serie	es - Type' A			
A-7667	1 2	40,400 40,700	38,600 39,400	66,300 66,500	28.0 27.0	A-7531
A-7668	1 2	39,400 39,600	37,400 37,400	66,400 67,400	27.0 27.0	А-7661
A-7665	1 2	42,700 43,800	40,900 40,700	70,200 69,100	24.0 23.0	A-7529
		Titanium Serie	es - Type B			
A-7669	1 2	37,500 37,500	35,600 36,100	62,300 61,800	31.0 29.5	A7660
a-7670	1 2	37,500 36,700	36,200 35,000	62,000 60,800	29.0 27.5	A-7662
A -7 671	1 2	46,300 45,800	600 , بلبا 44 ,400	70,000 70,000	25.5 26.0	A7530
		Zirconium Seri	les - Type A			Alu
A-7631	1 2	34,500 34.600	31,100 31,600	63,000 63,500	30.0 27.5	a-7659
A-6699	1 2	30,800 30,300	30,600 30,000	64,500 63,900	26.5 25.0	
A-7432	1 2	29,700 29,700	29,700 29,600	63,200 64,700	26.0 29.0	
	Z	irconium Serie	s - Type ^B			
a-7433	1 2	31,800 31,600	31,200 30,800	62,900 62,800	29.0 30.0	
A-7434	1 2	35,200 34,500	33,400 33,000	64,700 64,400	31.5 31.5	
A-7435	1 2	31,500 31,500	31,300 31,300	65,100 65,000	29.5 29.5	
	Alumin	um Series - Lo	w Silicon -	Туре А		
а-6648	1 2	38,200 37,800	37,500 36,900	65,300 66,300	30.0 24.5	
A-6707	1 2	35,600 35,200	33,200 [.] 33,600	58,800 59,200	29.0 28.5	
A6708	1 2	38,200 38,500	35,100 35,800	61,500 61,600	30.0 31.5	
A-6709	1 2	35,400 36,100	34,300 34,000	59,600 60,100	32.0 34.0	
	Aluminu	m Series - Low	Silicon - T	Abe B .		
A-6649	1 2	38,100 37,300	37,100 36,600	64,800 64,600	23.0 25.5	
A-7319	1 2	35,100 35,300	33,900 33,800	58,900 59,600	30.0 30.0	
A-73 20	1 2	34,600 34,200	33,500 33,300	60,200 59,700	32.0 31.5	

Heat Number	Specimen Number	Yis Stren Upper	ld gth, Lower	Tensile Strength, psi	Elongation in 8 In., %
	Aluminum S	eries - 0.05	% Silicon -	Type A	
A-7531	1	35,700	33,300	60,500	32.5
	2	35,400	34,600	60,600	32.5
А-7661	1	33,200	32,600	59,800	31.5
	2	33,500	33,000	59,800	31.0
A-7529	1	36,500	36,200	62,900	31.5
	2	39,000	33,400	62,000	31.5
	Aluminum S	eries - 0.05	\$ Silicon -	Type B	
A 7660	1	35,900	34,200	61,300	30.0
	2	36,200	35,000	61,500	32.5
A-7662	1	36,000	34,500	62,600	2 9. 0
	2	36,600	34,400	62,300	28.0
A7530	1	36,400	35,400	62 ,6 00	30.5
	2	36,800	35,400	62,500	31.5
	Aluminum - 0.05 % S	ilicon - 0.0	10 % Nitroge	n - Type B Sto	el
a-7659	1	37,700	36,400	66,000	29.0
	2	38,400	37,000	66,200	28.0

• -

-

TABLE 5B. NAVY TEAR-TEST DATA FOR STLELS IN THE TITANIUM, ZIRCONIUM, AND ALUMINUM SERIES

2

.

.....

۰.,

.

TABLE 5B. (Continued)

,

-

.

Heat Number	Specimen Number	Testing Temperature	Maximum Load, Pounds	Energy to Start Fracture Ft Lb	Energy to Propagate Fracture, Ft_Lb	% Shear in Fracture	Heat Number	Specimen Number	Testing Temperature F	Maximum Load Pounds	Energy to Start Fracture Ft Lb	Energy to Propagate Fracture, Ft Ib	5 Shear in Fracture
		Titanium	Series - T	ype A				62	70				r racture
a-7667	NJ.	60	39,800	910	92	5		H1 H2	70 70	40,300 41,600	1040	808 800	100
	N2	70	39,850	790	83	5		'n	70	41,200	1040	790 740	100
	Ql	80	38,500	842	83	5		F2	80	40,400	1120	700	100
	Pl	90	39,500	824	650	100		Fl	100	38,900	961	700	100
	Q2	90 90	38,850 39,350	766 860	625 108	100 10	A-7671.	íΩ,	80	44,100	900	117	5
	Rl	100	40,000	766	92	10		K2	100	44,050	1020	92	5
	R2	110	39,250	842	92	15		LI	120	44,700	990	92	15
	5 <u>1</u>	120	38,900	784	800	100		Ъ2 ML	140 140	43,300 44,900	950 950	800	95
	11 11	120	39,750	757	665	100		M2	140	45,350	1160	216	20
-7669	12	120	30,000	757	609 200	95 v		NL	150	44,850	975	367	45
n=1000	MO	70	40,000	070	125	5		N2 P1	160 160	44,850 44,400	984 940	757	100
	P12	30	41,000	2022	92	5		P2 Q1	160 160	44,000 44,350	940 940	1060	100
	NO	110	41,050	دده دده	10	10			Zirconiu	n Series - Ty	De A	122	200
	81	120	40,500	866	42	10	A-7431	К2	40	40,900	950	350	10
	יייי דיז	130	40,100	757	1020	<u>ج</u> ــ		кі	50	40,450	910	675	100
	P2 01	130	41,350	950	665	100		L2	50	μо, 600	950	208	15
	Q2	130	40,500	891	842	100		MI	60	LI,150	<i>7</i> 58	500	45
A-7665	MI.	70	42,650	9 00	67	1		J2 M2	70 70	40,600 39,650	850 910	815 835	100
	M2	80	42 ₁ 500	833	83	1		NI. N2	70 70	40,600 40,450	885 925	750 760	100
	ГN	90	42,650	833	100	l		л	90	39,950	868	750	100
	N2	100	43,000	961	158	5	A-6699	Sl	30	39,650	708	92	2
	Pl	11.0	43,100	815	67	5		Rl	40	39,700	717	33	2
	P 2	120	LI,700	750	58	5		UŹ	50	40 ,2 00	742	100	5
	QL	130	42,950	784	50	10		T2	60	38,550	717	83	3
	Q2	150	41,750	808	234	20		T1 02	70 70	39,250	508	675	100
	R1 R2	160 160	ы1,650 ы1,650	800 757	808 665	100 100		י- דו	7♥ 80	38,800	050	142	5
	S1 52	160 160	42,800	875 781	715 242	100 20		52	80	30,000	(1)	58	15
	 T1	170	42,600	866	784	100		P2 82	90	38,800	833	683 733	95 100
	T2 11	170 170	41,000 42,400	766 833	885 684	100 100		Q1	90	38,600	900	67	100 20
	Ű2	170	42,650	940	715	100		72	100	38,000	700	167	15
		Titanium	1 Series - Ty	rpe B				VI WI	110 110	37,600 38,100	750 767	863	100
A-7569	M2	40	40,550	925	67	5		W2 U1	110 110	38,200 39,000	767 850	683 533	100
	L2 Mil	50 50	41,450 40,700	1020 961	642 757	100	A-7432	J2	60	39,750	900	358	1.5
	N1 N2	50 50	39,950 40,500	961 958	750 100	96 7		кL	70	38,800	809	158	15
	Ll	60	40,300	950	766	100		K2	80	38,950	740	833	100
	P1 P2	60 60	41,150 40,250	950	808	100		1.2 1.2	80 80	38,550 39,550	750 850	850 725	100 100
	ų1	60	40,150	1000	775	100		л. .п	σų	39,100	765	740	100
	K2	100	20,100	1045	78)	100		UT.	30	J9,550	764	766	100
	<u>к</u> д.	100	00,050 10,800	y01	704	10						"	
л-7670	61	00	40,000	TO [[12								

TABLE 5B. (Continued)

- -

TABLE 58. (Continued)

... .

Heat Number	Specimen Number	Testing Temperature, F	Maximum Load, Pounds	Energy to Start Fracture, Ft - Lb	Energy to Propagate Fracture, Ft - Lb	5 Shear in Fracture	Heat Number	Specimen Number	Testing Temperature,	Maximum Load, Pounds	Energy to Start Fracture, Ft. Lb	Energy to Propagate Fracture, Ft Lb	% Shear in Fracture
		Zirconium	Series - Ty	vpe B			A-6708	Q2	6C	39,100	985	0	10
A-7433	К2 К1	10 50	42,000 °	950 865	534 700	60 90		P1 R1	70 70	38,200 38,500	919 1035	601 0	100 8
	MI L2 L1	50 50 50	41,350 42,000 41,650	990 1050 950	575 860 434	75 100 45		P2 Q1 R2	80 80 80	38,600 38,500 38,200	919 1035 935	601 701 0	100 100 8
	M2 N1 N2 F1	60 60 60 60	42,800 41,250 41,600 41,850	1010 965 1025 1020	981 900 734 868	100 100 95 100		S1. S2 T1. T2	90 90 90 90	37,800 37,200 36,600 37,200	885 852 985 902	635 668 635 752	100 100 100 100
A-7434	Ll	30	42,450	1110	409	55	A-6709	NL	20	40,200	967	100	7
	K2 L2	40 40	42,750 41,850	1082 1100	833 117	100 10		R2	30	39,800	972	125	7
	KL Ml	50 50	41,600 40,850	1020 950	709 158	100 10		P2 R1 S1	40 40 40	39,900 39,050 39,000	1000 923 955	824 708 92	100 100 3
	J2 M2 N3	60 60	41,300 40,450	1050 984	709 725	100 100		Q1.	42	38,100	919	618	99
	N2 J1	60 60 80	40,300	984 990	709	100		M2 P1 Q2	50 50	39,200 38,800 38,750	908 969 867	1210 651 692	100 100 95
A-7435	K2	40	42.150	965	150	10		NO	50	38 600	302	425	100
	K1 L <u>1</u>	50 50	년고,700 년고,600	984 1000	683 342	100 45		71 T2 U1	60 60 60	38,500 38,450 37,750	930 925 875	675 716 1175	100 100 100
	J2 L2 M1	60 60 60	11,900 11,200 10,800	1000 940 910	625 900 158	90 100 15		02 M1	60 70	37,250 38,400	833 952	734 718	100 100
	M2 N1	70 70	41,100	940 875	709 150	100			Aluminum Serie	s - Low Sili	.con - Type E	1	
		80	חסיב דו	1077	958	100	a-6649	Pl	5C	42,450	1108	75	5
	N2 P1	80 80	42,050 12,800	984 1040	875 125	100 50		L2 N2	60 7 0	42,600	1108	175	15
	₽2	90	41,300	925	400	70		P2	70 80	30,900	858	67	10
	T1 T2 U1	100 100 100	39,850 40,000 40,650	868 900 965	800 809 860	100 100 100		Q2 Q1	80 80	39,050 39,050	800 800	683 83	100
	Ŭ2 ,	100 Aluminum Series	40,500 : - Low Silic	891 :on - Type A	800	100		L1 R1 M1	90 90 90	38,550 37,700 38,500	842 708 758	708 775 742 736	100 100 100
A-6648	K2	50	39,900	925	67	3	A-7319	л	80	38,800	910	1010	100
	L2	60	39,300	825	67	3		J2	90	38,950	1100	1210	100
	NI,	70	37,050	750	92	3		K1 K2 L1	90 90 90	38,850 38,450 37,800	1040 1040	815 860 885	100
	ю.	80	36,100	580	33	5	A-7320	JS	60	40,000	1050	208	100
	13.	90	37,300	670	33	5		л	70	40,350	1090	850	100
	M2	100	36,850	675	250	20		K1 102	70 70	39,350 40,050	1000 1082	715	85
	M1 N2 Q1 P2	110 110 110 110	36,050 36,050 36,100 36,500	616 675 683 675	616 650 7և2 700	100 100 100 100		L1 L2 M1 M2	80 80 80	39,100 38,600 38,350	990 965 990	775 875 800	95 100 98
A-6707	Ql	70	37,000	900	117	10			uminum Series -	0-05 \$ 8:1:	724 Ann Turr A	704	95
	Sl	80	36,500	967	67	20	A-7531	P2	60	39,100	866 A	117	7
	T2 Q2	90 90	35,500 36,100	900 950	616 125	95 20		R2 92 R1	80 80	38,750 38,350	885 850	625 734	90 100
	01 R1 T1 P1	100 100 100 100	35,300 36,600 36,700 37,400	063 950 783 883	717 700 800	100 100 100		L1	80 	30,250 37,350	842 815	757 475	100 45

•

TABLE 5C. CHARPY IMPACT-TEST DATA FOR STELLS IN THE TITANIUM, ZIRCONIUM, AND ALUMINUM SERIES.

Heat Number	Specimen Number	Testing Temperature, F	Maximum Load Pounds	Energy to Start Fracture, Ft Lb,	Energy to Propagate Fracture, Ft. Lb	% Shear in Fracturs
	L2 ML M2 N1	90 90 90	37,650 38,000 37,150 38,200	808 958 800 866	725 1210 757 707	100 100 100
A-7661	12	60	36,750	933	92	10
	L1 M7	70 70	37,100 38,700	792 917	658 117	100 10
	M2	80	39,050	975	83	10
	N1 N2 P1 P2	90 90 90 90	37,850 38,500 38,200 38,200	900 967 867 975	817 758 758 775	100 100 100
A-7529	MI.	60	38,600	750	83	7
	M2	70	39,350	850	50	10
	NI,	80	39,200	782	158	20
	N2 P1 P2 Q1	90 90 90 90	38,550 39,000 38,550 38,350	782 808 782 766	838 775 658 858	100 100 100
	A	lumanum Series	- 0.05 % Si	licon - Type	в	
A -7 660	м	70	39,350	867	100	10
	N2 N1 N2 P1	80 80 80 80	39,000 39,050 39,950 40,000	891 891 965 958	700 783 1000 842	100 100 100 100
A-7662	Nl	60	L 0 ,950	1100	183	10
	N2 Pl P2 Q1	70 70 70 7 0	40,700 40,200 40,450 40,700	1000 1050 1020 1010	800 891 600 758	100 100 75 95
-7530	ML	40	41,550	950	216	20
	M2 N1 N2 P1	50 50 50 50	41,500 41,200 41,000 41,350	958 940 908 920	666 650 675 542	95 90 95 70
	Ľ.2	60	40,850	891	750	100
	Ll	70	40,400	873	766	100
ļ	luminum - (0.05 % Silicon	- 0.010 % N	litrogen - T	YPL B	
-7659	MI.	? 0	39,800	850	75	5
	MZ	80	40,050	891	282	35
	NI.	90	10,700	891	67	5
	P1 P2 01	110 110 110	41,000 40,350 40,350	891 667 863	1330 1230 1150	100 100 100

.

Heat Number	Testing Temperature, F	Cha: Ist Test	rpy Impact Si 2nd Test	arength, Ft -Lb Brd Test	hth Tost
	Titaniur	n Serics -	Type A		
A-7667	80 50 40 30 20 10	28 25 21 5 20 1	27 22 23 20 22 10 3	22 25 16 13 8	26 23 14 20 5
A-7668	80 70 60 50 10 30	28 25 23 16 20	27 25 23 21 6 5	28 27 24 23 20 10	27 25 12 19 12 5
A-7665	100 90 80 70 60 110	24 26 22 25 15 4	25 26 22 20 13 7	26 27 23 18 26	26 25 24 20 14
	Titanium	ι Series -	TYPE D		
Λ-7669	80 40 0 -20 -30 -30 -30 -30	41 34 30 5 16 6 2	38 33 26 26 26 26 26 25 4 2	29 27 21 21	27 7 4
A-7670	80 Lo -10 -20 -30 -40 -60	11 34 28 24 16 5 3	կլ 3և 23 և 5 2	25 5 4 4	22 15 1
A-7671	80 50 30 20 10 0	875 25 25 25 25 25 25 25 25 25 25 25 25 25	31 27 22 15 4 5 3	27 24 12 12 4	29 23 9 4
	Zirconium	Scries - 9	FYPE A		
A-7431	80 20 10 -10 -20	37 30 28 26 16 18 5	36 33 27 25 16 6 24	25 28 25 24 5	 27 29 29 17 4
A=6699	75 La 20 -La -80	35 31 28 21 2	32 31 27 21 7 2	34 31 27 8 8 8 3	36 31 27 25 19 2
A-7432	80 40 -10 -20 -30 -40	36 32 26 16 22 9 13	34 31 26 25 22 11 13	27 25 10 14 10	28 24 15 4 3
	Zirconium	Ser'es - 🤉	LAbř B		
A-7L33	80 40 20 10 -10 -20 -40	1- 30226 95	40 37 23 27 6 5 4	27 19 5 L	28 25 1h 6

..

.

-

.*

TABLE 5C. (Continued)

-

.

TABLE 5C. (Continued)

.

Heat Number	Testing Temperature, F	Charj 1st Test	2nd Test	rength, Ft -Lb 3rd Test	4th Test	Heat Number	Testing Temperature,	Charr 1st Test	y Impact Sty 2nd Test	ength, Ft -1 3rd Test	Lb Lith Test
A-7434	80 40 -20 -30 -40 -50 -60	43 40 35 34 30 27 8 7	43 40 37 27 4 18 4 10	 29 29 8 11	1 1 1 286 26 15	A-7529	80 40 20 -10 -10 -20 -40	31 27 10 23 21 20 10 6	31 25 23 23 21 20 19 7	25 21 20 14	26 20 20 19
А-7435	80 40	հդ. հդ	46 11	 			Aluminum Series	- 0.05 % Si	licon - TYP	ЕВ	
	0 -20 -30 -40 -50 -60	33 33 31 4 4 3	38 33 28 25 7 9	29 31 10 13	32 26 28 25	r-1660	80 40 -20 -30 -40	40 34 30 14 9	40 34 32 6 20 25		23
	Aluminum Series	- Low Sili	con - TYPE	A			50 60 80	18 5 2	3	7	3
A-0040	15 40 20 -40	30 25 21 17 4	28 26 22 11 3	32 25 18 6 3	29 26 19 16 3	A-766 2	80 50 40	38 33 38 32	39 36 35		
A-6707	75 40 -40	38 29 25 2	35 32 17 2	37 30 19 3	36 33 18 3		-20 -30 -40 -50 -80	30 21 25 12 2	25 8 17 3 2	20 22 11	21 4 4
A+6708	75 40 -20	36 32 6 4	34 30 28 4	 24 4	 26 21	A -753 0	80 40 -40	42 38 33 26	43 35 32 27	 	
A-6709	75 40 -20	45 36 30 24	40 35 30 25	28 26	32 28		-50 -60 -70 -80	25 4 22 3	24 17 23 12	23 22 17 4	23 27 20 4
	Aluminum Series	- Low Silic	on - TYPE	в		А <u>1</u> А. 76бо	uminum - 0.05 % Silicon	- 0,010 % N	Htrogen - 2	TYFE B	
а~6619	75 40 -20 -40	37 31 27 23 3	37 33 28 20 4	36 31 27 24 5	36 29 28 9 3	A-1037	40 0 -10 -20 -30	35 32 28 25 14 10	29 27 25 25 3	 25 26 4 12	23 5 4 3
A-7319	80 10 -10 -20 -40 -50	6 37 14 32 31 6 3	ы 36 35 8 6 25 3	34 35 21 8	32 31 6	<u></u>	-60	3	3 		
a-7320	80 -10 -20 -30 -40 -50 -60	40 32 33 7 6 28 10 3	43 24 27 24 20 22 3		25 26 4						
	Aluminum Series	s - 0.05 % :	Silicon - T	YPE B							
A-7531	80 40 20 10 -10 -20	3547 278 286 54	33 31 28 22 24 25 19 10	24 26 23 5	27 22 21 19						
A-7661	80 20 10 0 -10 -20 -40	32 32 24 20 21 9 4	37 26 29 26 24 10 21 4	29 27 23 14	26 20 14 4						

. .

TABLE 68. NAVY TEAR-TEST DATA FOR SPECIAL STEELS

Heat Number	Specimen Number	Testing Temperature, F	Maximum Load, Pounds	Energy to Start Freeture, Ft -Lb	Energy to Propagate Fracture, <u>Ft -</u> Lb	% Shear in Fracture
		Vanad	lium Series			
A- 7446	El	70	38,200	950	125	5
	E2	80	38,550	900	175	15
	F1 F2	90	38,450	1067	690	100
	GI	90	37,150	925 842	665	100
	62	90	37,700	885	707	100
R=7310	та Та	60	38,350	874	133	15
	12	70	37,800	800	75	10
	M1 M2	80 50	36,350 38,350	700 808	757	100
	Nl	80	37,350	708	692	100
	N2	80	38,400	800	766	95
1-7447	Fl	50	40,900	1140	92	5
	E2 F2	60 60	39,400 39,500	1080 1020	757 750	95 90
	G2	60	40,150	1140	125	10
	H1.	70	39,250	1050	808	95
	H2 J1	70	40,450 39,550	1100	790 790	95 90
	El	70	39,450	1173	707	90
A-7311	K2	37	41,350	1090	193	20
	Ll	40	40,750	1080	125	10
	Kl	42	41,200	1100	900	100
	L2	50	40,250	1025	333	15
	м	60	39,800	1010	166	10
	M2 N7	70 70	39,250	1020	891	100
	N2	70	40,000	1000	858 75	100
	Pl	80	40,550	1020	817	100
	P2	80	40,050	1020	817	100
	Q2	80	20,050 39,750	916	824 750	100
		Phosph	norus Serie	8		
A-73 12	K1	120	38,900	1117	125	40
	J2	130	38,650	1124	807	100
	LI LI	130	38,000	991	800 733	100
	12	130	38,000	1040	708	100
	JL	140	40,650	1240	742	IDO
⊼- 7436	<u>к1</u>	70	43,200	1380	392	55
	K2	80 80	43,500	1310	825	95
	12	80	41,900	1430	725	95
	ML	80	42,350	1410	100	15
	M2	90	42,200	1470	534	50
	LIN.	100	41,200	1390	915	5
	N2 Pl	110	40,050	1325	675	100
	P2	110	39,900	1200	725	100
	QI	110	39,900	1260	7 59	95
≜ -7442	F2	100	38,550	1150	833	15
	¥1	210	37,750	1100	740	90
	G2	110	38,700 38,500	1210	659 100	95 15

TABLE 6A. TENSILE-TEST DATA FOR SPECIAL STEELS

-

. . .

.'

Feat	Specimen	Yie Stren CS	ld gth, i	Tensile Strength,	Elongation in 8 In., %	
Number	Number	Upper	Lover	psi.		
		Vanadium	Series			
A-7 446	1	35,900	34,500	59,000	33.0	
	2	36,100	35,200	59,000	33.5	
A-7310	1	39,600	38,000	61,100	28.0	
	2	39,400	37,500	60,100	28.5	
1-7667	ı	39,400	36,100	59,600	32.0	
	2	37,400	35,200	59,400	32.5	
4-7371	1	39,000	38.300	60,600	30.0	
. ,,,	2	39,200	38,400	60,600	29.0	
		Phosphorus	Series			
A-7312	1	38,100	35,900	59,600	26.0	
	2	37,600	37,000	60,600	30.5	
A-7/36	1	39.400	37,900	59,100	30.0	
	2	39,800	38,100	59,200	30.5	
A-7412	٦	38.300	36,400	58,900	32.0	
	2	38,100	36,900	58,500	33.0	
		Molybdenum	a Series			
A-7313	1	40,200	36,200	63,200	27.0	
	2.	39,600	35,900	62,800	27.0	
A-7314	1	38,400	37,400	64,400	25.5	
	2	39,400	37,600	65,400	24.5	

TABLE 6C. CHARPY IMPACT-TEST DATA FOR SPECIAL STEELS

Heat No.	Testing Temp., F	Char Ist Test	py Impact St 2nd Test	rength, Ft- 3rd Test	lb 4th Test
		Van	adium Series		
<u>а</u> 7446	80 40 20 10 0 -10 -20	34 30 25 20 10 5 5	39 33 28 22 19 4	- 23 26 22 11 9	- 26 23 23 4 3
A7310	80 40 30 20 10 0 -10	36 31 28 24 25 5 4	34 30 26 26 5 18	28 - 24 20 19	- 29 - 27 23 22 6
A7LL7	80 40 20 20 30 40 60 80	47 39 35 38 31 30 4 3 2	47 39 38 9 28 9 5 3 3	38 30 26	- 36 30 7
A7311	80 0 -10 -20 -30 -40 -50 -60	42 31 32 4 25 4 3	42 31 25 28 26 3	23 34 23	- 29 7 5
		Phosp	horus Series	!	
A7312	80 40 30 20 0	28 31 33 6 1	38 28 32 7 4	30 26 7	22 9 7
A7L36	80 40 10 -10 -20 -40	40 38 25 27 3 3 3	40 37 31 31 4 3 2	- 34 3 3	- 22 28 3 3
▲ 7442	80 40 20 10 -10 -20	21 33 28 31 5 4	40 35 35 12 30 20 3	86654	8 5 26 4
		Moly	bdenum Serie	<u>s</u>	
A7313	80 40 30 20 10 -15	31 26 21 19 19 19 8	29 24 25 20 7 7	21, 21 6 13 9	- 26 - 20 19 13 5
A731և	80 30 20 10 0 -10 -20	35 27 28 15 15 12	34 30 10 25 26 5 4	29 27 25 7 6	- 28 9 6 20

. _

TABLE 6B. (Continued)

Heat Number	Specimen Number	Testing Temperature, F	Maximum Load, Founds	Energy to Start Fratture, Ft -Lb	Energy to Propagato Fracture, Ft -Lb	% Shear in Fracture
	EJ .	120	38,200	חכנל	1595	100
	E2	120	38,300	10/0	1820	100
	я 1	120	38,550	1275	675	95
	H2	120	37,750	1090	267	25
	Jl	130	38,100	1125	675	100
	J2	130	38.550	1185	61.6	100
	K1	130	38,000	1160	650	100
	K2	130	38,300	1070	591	100
		Molybd	enum Serie	9		
17313	ы	70	38,200	833	50	10
	12	80	38,750	800	17	15
	M2	90	36,350	716	683	100
	NL	90	36,900	750	168	20
	MQ.	100	36,900	775	633	100
	N2	100	36,800	750	642	100
	P2	100	37,000	750	225	20
	Pl	110	36,050	691	650	100
	Q1	110	36,200	683	617	100
	Q2	110	36,100	650	625	100
	RL	110	36,200	633	657	100
47314	Ll	60	40,500	Pen did n	ot record curv	re 10
	JL	70	40,300	908	625	95
	J2	70	40,450	942	608	90
	KI,	70	40,000	967	600	95
	K2	70	39,550	900	708	100

TABLE 75. NAVY TEAR-TEST DATA FOR COMMERCIAL STEELS FINISHED AT VARIOUS TEMPERATURES -----

=

			Yiel Streng	d th,	Tensile Strongth.	Elongation
Heat Number	Finishing Temp., F	Number	Upper	Lover	psi	<u>×</u>
8х4 2 8	1650	1 2	40,500 40,000	39,200 39,200	69,600 69,500	27.5 27.0
8πև20	1850	1 2	42,200	38,400 38,200	69,800 70,000	26.0 30.0
8x158	1950	1 2	39,400 40,000	37,300 38,100	69,600 70,000	26.0 27.5
8x428	1960*	1 2	35,600 35,100	34,300 34,200	71,500 71,200	26.0 26.5
58x428	2050	1 2	38,200 38,900	36,000 35,800	68,100 69,500	25.5 25.0
50x126	1650	1 2	39,800 39,500	39,000 38,400	60,600 61,400	32.0 31.5
50x126	1850	1	36,000 35,900	35,000 34,500	59,300 59,200	33.5 33.0
50x1126	1950	1	35,200 35,500	34,200 34,600	61,500 61,600	32.0 28.5
50xL26	1970*	1 2	31,800 33,600	31,100 30,900	59,000 59,100	30.5 30.5
50x426	2050	1 2	33,800 34,200	32,900 33,600	61,300 61,300	30.0 30.5
5779	1650	1	36,100 35,500	34,600 34,200	59,100 59,300	34.5 33.5
5779	1700*	1 2	33,600 33,600	32,800 32,400	59,000 59,200	30.0 30.0
5779	1850	1 2	36,000 34,200	33,900 33,300	59 500 59 500	31.5 33.0
1046	1650	1	39,200 39,500	37,200 37,700	61,000 61,500	35.0 33.0
1046	1700*	1	37,200 36,700	32,700 32,900	60,900 60,900	31.0 31.0
1046	1850	1	40,600	38,800 39,400	66,500 66,000	32.5 24.5
4666	1725*	1	31,300	29,200	59,700	27.0

. -

* Finished in a Commercial Mill

-

Heat Number	Finishing Temp <u>,</u> F	Specimen Number	Testing Temp., F	Maximum Load, Pounds	Energy to Start Fracture, Ft_Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture
58x428	1650	JΪ	60	ML,300	708	92	2
		J2	8Q	40,250	757	258	20
		Ю. Ll	90 90	40,300 40,350	683 716	600 117	100 15
		K2 L2 M1 M2	100 100 100	39,600 40,000 40,150 39,550	919 710 751 676	601 609 1101 576	100 , 100 100 100
58x428	1850	JL	60	40,600	8 0 8	58	2
		J2	80	39,100	67 <u>1</u>	83	5
		ĸ	90	37,950	625	200	20
		K2 L1 L2 M1	100 100 100	39,700 39,250 40,100 39,400	642 609 635 617	585 575 601 601	100 100 100 100
58 x 428	1950	H2	70	38,400	565	58	2
		л	80	37,500	1023	67	5
		75	90	38,150	583	100	15
		н Ю	100 100	37,850 37,850	608 600	700 117	100 20
		K2 11	110 110	37,050 36,400	740 525	625 67	100 20
		12 M1 M2 N1	120 120 120 120	37,800 37,800 37,500 36,550	583 690 633 658	683 565 166 583	100 100 100 100
58x428	1960*	AL	70	41,100	651	٥	5
		A2	80	42,400	835	o	25
		B2	90	LO, LOO	668	٥	θ
		Cl	100	42,000	601	¢	8
		מו	110	39,700	567	83	15
		02 D2	120 120	40,400 39,750	585 600	484 125	95 15
		E <u>1</u> E2	130 130	39,550 39,600	567 583	567 258	100 30
		F1 F2 1 2	170 170 170 170	39,800 39,400 39,550 40,000	568 534 575 600	585 576 609 534	100 100 100 95
58x428	2050	H1	8 0	38,350	658	50	5
		л	120	36,600	550	150	20
		H2 J2	130 130	36,750 36,450	543 525	565 300	95 45
		K1 K2 L2 L2	140 140 140 140	36,150 35,000 35,500 36,600	575 475 515 534	575 600 591 515	100 100 100 95
50x126	1,650	A2	50	42,700	1,292	125	5
		A1 B2 B2 C1	60 60 60 60	42,250 41,100 41,100 41,400	1245 1135 1278 1278 1245	618 878 844 1748	100 100 100

_

-

ç

-

,e

TABLE 7B. (Continued)

TABLE 7B. (Continued)

.

Heat Number	Finishing Temp., F	Specimen Number	Testing Temp., F	Maximum Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	% Shear in Fracture
50x426	1850	C1	50 `	39,500	1308	583	40
		A1 A2 B1	60 60 60	39,100 38,750 38,750	1277 1244 1295	1277 1560 960	100 100 90
		B2	60	39,100	1220	1110	100
50x426	1950	H1.	80	41,550	1182	184 51 c	16
		J1	90 90	39,250	950	900	100
		J2 K1	90	10,600	1090	659 750	90
50x1/26	1970*	B2	70	42,000	1119		10
		A1	76	40,900	1202	718	100
		A2	80	40.900	1069	1269	90
		B1 C2	80 80	41,200	1719	818	100
		02	00	41,200	1000	5(9	200
		D1	90 90	40,000	1086	1152	100
		D2	90	40,000	1052	786	100
Sovies	2050	H2	€0	40,400	1009	602 47	100 100
JONNEO	20,0	лц.	70	39,200	058	67	20 5
		н.	80	38,800	1010	750	100
		J 2	80	39,450	1000	92	10
		K1	90	39,700	1390	67	50
		K2 L1	100	40,200 40,200	1140 1167	725 725	100 100
		L2 MI	100	40,950 h0.100	1140	750 750	100
577 9	1650 AL	A1.	60	40,300	816	50	200
		A2	80	38,250	775	33	10
		B1 B2	90 90	38,350 39,550	893 951	1210 960	100 100
		C1. C2	90 90	37,400 38,050	635 876	1594 701	100 100
5779	1700*	C1.	50	38,800	969	Ó	10
		A2 B1 B2 C2	60 60 60	38,900 39,400 39,100 38,800	1019 935 952	701 635 635	90 100 100
		A1	70	38,100	768	1804	100
		D1 D2	70 70	38,600 38,800	902 969	1386 0	100 10
		E1 E2 F1	80 80 80	38,100 38,900 38,400	835 902 885	1536 1820 618	100 100 50
		F2	90	37,600	919	585	100
		G1 02	90 90	37,100 36,550	818 826	1645 1570	100 100
		n.	90	36,950	726	667	100
5779	1850	л	60	37,600	892	165	3
		K1.	70	37,600	817	165	10
		J2 K2	80 80	36,350 36,550	768 794	685 1237	100 90
		L1	80 80	37,150	860 802	543 660	90 100
1046	1650	ĸ	40	42,950	1173	108	8
		J2	50	41,300	1019	2370	100
		K2 L1	50 50	41,950 41,700	1128 1151	2490 860	100
		ч <u>г</u> Л	50	42,400	1220	1200	100

_

Heat Number	Finishing Temp., F	Specimen Number	Testing Temp.,	Maximum Load, Pounds	Energy to Start Fracture, Ft -Lb	Energy to Propagate Fracture, Ft -Lb	5 Shear in Fracture
1046	1700*	Cl	50	40,800	1035	٥	3
		A2 B1 B2 C2	60 60 60	41,400 41,000 41,200 41,400	1119 1035 1086 1086	651 1971 835 919	95 100 100 100
		Al	7 0	40,200	1035	668	100
1046	1850	Fl	50	41,50 0	1090	100	3
		D1 D2 E1 E2	60 60 60 60	40,600 40,650 41,050 40,800	1102 960 1119 1070	2235 960 626 844	100 100 100 100
24666	1725*	H1 H2	80 8 0	34,250 33,800	559 466	446 100	85 10
		л. J2 К1 К2	90 90 90 90	33,600 34,900 33,150 34,300	559 459 484 408	450 440 475 491	95 100 98 100

i.

* Finished in a Commercial Mill

TABLE 7C. CHARPY IMPACT DATA FOR COMMERCIAL STEELS FINISHED AT VARIOUS TEMPERATURES

TABLE 7C. (Continued)

_

Heat Number	Finishing Temperature, F	Testing Temperature, F	Charp 1st Test	y Impact S 2nd Test	trength, F Brd Test	t -Lb hth Test	Heat <u>Number</u>	Finishing Temperature, F	Testing Temperature, F	<u>Char</u> lst Test	py Impact 2nd Test	Strength, 3rd Test	Ft -Lb 4th Test
58x428	1650	80 40 20 10 0 -15 -30	24 22 20 18 16 3	26 20 21 23 19 4 3	22 21 19 16 18 3	23 20 5 9	5779	1650	80 20 10 0 -10 -20 -30	36 23 5 18 9 18 5 14	33 22 6 21 6 20 9 7	7 20 19 16 3	159
58x428	1850	80 40 30 20 10 	2h 23 21 20 18 16 16	26 23 21 20 9 8	20 21 16 20	20 21 21 13	5779	1700*	80 60 40 30 20 10	29 26 27 20 23 11	31 26 28 22 23 21 18	28 24 9 19	27 25 25 21
58x428	1950	80 50 10 20 10 0	26 22 24 20 16 8 11	25 23 20 19 15 10	24 17 20 16 17	23 20 12 21 8	5779	1850	80 20 -10 -10 -10	35 23 19 5 20 5	34 20 21 16 19	22 14 13	6 18 19
58x428	1960*	75 60 50 40 30 20	23 21 25 19 21 9	22 22 24 18 22 22	20 23 23 19 7 7	21 27 24 20 	1046	1650	-20 -30 0 -30 -10 -50	50 36 33 27 28	4 50 36 32 7 5	4 32 19 22	4 32 6
58x428	2050	80 60 50 40 30 20 0	27 22 24 23 20 15 4	23 25 20 17 17 5	22 17 20 20 4	25 214 19 19 20	1046	1700*	-60 -70 75 40 -10 -20	5 3 47 41 30 34	23 3 49 40 35 30	5 2 	16 5 34 30
50x426	1650	80 -40 -50 -50 -60 -70	50 40 30 5 8	49 38 26 11 30 3	28 27 3 7	31 22 29 3	1 046	1850	-30 -40	34 4 50 35	26 4 52 33	8	13 28
50x426	1850	80 -20 -30 -40 -50	46 38 33 19 31 5	49 33 29 27 29 4	5 28 4 8	12004	4666	1725*	-50 -50 -60 100 90 75	28 14 25 23 22 20	25 6 15 21 20 19	27 25 5 20 19	27 24 9 20 20 20
50x426	1950	-00 20 -10 -20 -30	5 148 141 32 25 14 23	44 38 31 31 21 18	34 26 5 9	27 27 27 5 23	. <u></u>		70 60 40 0	18 19 14 3	19 18 6 3	21, 20,	29 17
50х426	1970×	-40 75 0 -10 -20 -30 -40	3 48 141 37 27 12 7 4	49 43 28 5 31 5 12	4 28 29 13 14	7 9 33 15 26	* Finishe	nd in a Commerc:	ial Mill				
50x426	2050	80 40 -100 -300 -300 -400	39 40 33 33 20 9 13 3	41 37 31 29 6 4 14 3	23 27 4 6	644 644 64							

*

`,

1

..

.