

# PROGRESS REPORT

Third

(Project SR-110)

on

THE INFLUENCE OF HEAT TREATMENT ON THE NOTCHED - BAR PROPERTIES OF SEMIKILLED STEEL PLATE

by

R. H. FRAZIER, F. W. BOULGER and C. H. LORIG Battelle Memorial Institute

Transmitted through

COMMITTEE ON SHIP STEEL

Advisory to

SHIP STRUCTURE COMMITTEE

SERIAL NO. **SSC-71** BuShips Project NS-011-078

National Academy of Sciences - National Research Council Washington, D. C.

**Division of Engineering and Industrial Research** 

March 15, 1954

#### SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS, DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY United States Coast Guard, Treasury Dept, Maritime Administration, Dept. of Commerce American Bureau of Shipping ADDRESS CORRESPONDENCE TO: SECRETARY SHIP STRUCTURE COMMITTEE U. 5. COAST GUARD HEADQUARTERS WASHINGTON 25, D. C.

March 15, 1954

Dear Sir:

As part of its research program related to the improvement of hull structures of ships, the Ship Structure Committee is sponsoring an investigation of the influence of deoxidation and composition on properties of semikilled steel ship plate at the Battelle Memorial Institute. Herewith is a copy of the Third Progress Report, SSC-71, of the investigation, entitled "The Influence of Heat Treatment on the Notched-Bar Properties of Semikilled Steel Plate" by R. H. Frazier, F. W. Boulger and C. H. Lorig.

The project is being conducted with the advisory assistance of the Committee on Ship Steel of the National Academy of Sciences-National Research Council.

Any questions, comments, criticism or other matters pertaining to the Report should be addressed to the Secretary, Ship Structure Committee.

This Report is being distributed to those individuals and agencies associated with and interested in the work of the Ship Structure Committee.

Yours sincerely,

K.K.Cowark

K. K. COWART Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee

ļ

THIRD Progress Report (Project SR-110)

on

The Influence of Heat Treatment on the Notched-Bar Properties of Semikilled Steel Plate

\$

Ъy

R. H. Frazier F. W. Boulger C. H. Lorig

BATTELLE MEMORIAL INSTITUTE

under

Department of the Navy Bureau of Ships NObs-53239 BuShips Project No. NS-011-078

for

SHIP STRUCTURE COMMITTEE

# TABLE OF CORRENTS

|                                                     |          |     |         |         |     |              |     |         |    |          |     |        |     |   |   |   | Page |
|-----------------------------------------------------|----------|-----|---------|---------|-----|--------------|-----|---------|----|----------|-----|--------|-----|---|---|---|------|
| Table of Contents                                   | •        | •   | •       | •       | •   | •            | •   | •       | ٠  | ٠        | •   | •      | •   | • | • | • | i    |
| List of Figures                                     | •        |     | •       | •       | •   | •            | •   | •       | •  | •        | •   | •      | •   | • | • | ٠ | ii   |
| List of Tables                                      | •        | •   | •       | ą       | •   | ٠            | •   | •       | ٠  | •        | •   | •      | •   | • | ٠ | ٠ | iii  |
| Introduction                                        | ٠        | •   | •       | •       | •   | •            | •   | •       | •  | ٠        | •   | •      | •   | • | • | ٠ | l    |
| Material                                            | ٠        | ٠   | ٠       | •       | •   | •            | •   | •       | •  | •        | ٠   | •      | •   | • | • | ٠ | 2    |
| Heat Treatment                                      | ٠        | •   | ٠       | ٠       | •   | •            | •   | •       | •  | •        | •   | •      | •   | ٠ | • | • | 7    |
| Microstructure                                      | •        | •   | •       | •       | •   | •            | •   | •       | •  | •        | ٠   | •      | •   | • | • | • | 11   |
| Influence of Heat Treatme                           | ent      | t c | n       | Τe      | aı  | ? <b>-</b> ] | les | st      | Pr | oi       | oer | t      | Les | 3 | • | • | 19   |
| Influence on Keyhole Char                           | rpj      | t I | ?ro     | ope     | ert | ;ie          | s   | •       | ٠  | •        | •   | ٠      | •   | ٠ | ٠ | ٠ | 23   |
| Comparison between Tear-S<br>Transition Temperature | re:<br>s | st  | ar<br>• | ıd<br>• | Ке  | əył<br>•     | 10] | le<br>• | C} | 181<br>• | b2  | т<br>• | •   | • | • | • | 31   |
| Summary                                             | •        | •   | •       | ٠       | •   | •            | •   | •       | •  | •        | •   | •      | 0   | ٠ | • | • | 33   |
| References                                          | •        | •   | ٠       | ٠       | •   | •            | •   | •       | •  | •        | •   | ٠      | ٠   | • | • | ٠ | 35   |
| Appendix                                            | •        | •   | •       | •       | •   | •            | ٠   |         | •  |          | •   | •      |     | • | • | • | 36   |

i

**\_\_**\_\_\_.

## LIST OF FIGURES

# No.

## Title

# Page

| 1.  | Location of Tear-Test Specimens From As-Rolled<br>Project Steel "A"                                                                               | 4  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.  | Keyhole Charpy Transition Curves for Longitudinal<br>and Transverse Specimens from As-Rolled Project<br>Steel "A"                                 | 5  |
| 3.  | Heating Rate for Center of 3/4-Inch Plate.<br>Furnace Temperature1800 F                                                                           | 9  |
| 4.  | Microstructure after Water Quenching from Various<br>Austenitizing Temperatures after Heating 1 1/2 hrs.                                          | 10 |
| 5.  | Cooling Curves of Plates Austenitized at 1700 $^{\circ}\mathrm{F}$                                                                                | 12 |
| 6.  | Microstructure of 3/4-Inch Plates Cooled by Various<br>Methods from an Austenitizing Temperature of<br>1700°F                                     | 16 |
| 7.  | Effect of Austenitizing Temperature and Cooling<br>Rate on Ferrite Grain Size                                                                     | 17 |
| 8.  | Effect of Austenitizing Temperature and Cooling<br>Rate on Distribution of Pearlitic Areas                                                        | 18 |
| 9.  | Effect of Austenitizing Temperature and Cooling<br>Rate on Tear-Test Transition Temperature of<br>Project Steel "A"                               | 20 |
| 10. | Effect of Ferrite Grain Size on Tear-Test<br>Transition Temperature                                                                               | 24 |
| 11. | Effect of Austenitizing Temperature and Cooling<br>Rate on Charpy Transition Temperature of Steels<br>Cooled by Various Methods                   | 28 |
| 12. | Effect of Ferrite Grain Size on Keyhole Charpy<br>Transition Temperature of Project Steel "A",<br>Cooled at Different Rates                       | 29 |
| 13. | Comparison of Tear-Test Transition Temperatures<br>and 12-foot-pound Keyhole Charpy Transition<br>Temperatures of a Heat-Treated Ship Plate Steel | 32 |

LIST OF TABLES

| <u>No .</u>  | Title                                                                                                                                            | Page         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.           | Summary of Tear-Test Results from As-Rolled Project<br>Steel "A"                                                                                 | 6            |
| 2.           | Ferrite Grain Sizes of Specimens of Project Steel "A"<br>Plate Heated at Various Temperatures and Cooled at<br>Various Rates to Room Temperature | 13           |
| 3.           | Pearlite Distribution in Specimens of Project Steel<br>"A" Plate after Heat Treatment                                                            | 15           |
| 4.           | Summary of Tear-Test Transition Temperatures of<br>Project Steel "A" Plates Heat Treated in Various Ways .                                       | 21           |
| 5.           | Summary of Tear-Test Transition Temperatures of Project<br>Steel "A" Plates Austenitized at 1500°F for 8 Hours                                   | 22           |
| 6.           | Tear-Test Properties of Project Steel "A" after<br>Heat Treatment                                                                                | 25           |
| 7.           | Summary of Keyhole Charpy Properties of Project<br>Steel "A" Plates after Various Heat Treatments                                                | 27           |
| A-1          | Tear Test Data for Project Steel "A" in the<br>As-Rolled Condition                                                                               | A-1          |
| ∆ <b>-</b> 2 | Keyhole Charpy Impact Data for Project Steel "A" in<br>the As-Rolled Condition                                                                   | A <b>-</b> 3 |
| Â=3          | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1500°F for 1 1/2 Hours                                                                   | А-4          |
| А-Ц          | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1600°F for 1 1/2 Hours                                                                   | A-6          |
| A-5          | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1700°F for 1 1/2 Hours                                                                   | A-8          |
| A-6          | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1800°F for 1 1/2 Hours                                                                   | A-10         |
| h7           | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1900°F for 1 1/2 Hours                                                                   | A-12         |
| A-8          | Tear-Test Data for Project Steel "A" Heat Treated<br>at 1500°F for 3 Hours                                                                       | A-14         |

| No.           |                          | Title                                                                        |         |   |   |   |   |   | Page |
|---------------|--------------------------|------------------------------------------------------------------------------|---------|---|---|---|---|---|------|
| A-9           | Keyhole<br>Heat          | Charpy Impact Data for Project Steel "A<br>Treated at 1500°F for 1 1/2 Hours | 17<br>• | • | • | • | • | • | A-16 |
| A-10          | Keyh <b>ol</b> e<br>Heat | Charpy Impact Data for Project Steel "A Treated at 1600°F for 1 1/2 Hours    | 11<br>• | • | • | • | • |   | A-17 |
| A-11          | Keyhole<br>Heat          | Charpy Impact Data for Project Steel "A Treated at 1700°F for 1 1/2 Hours    | 11<br>• | ٠ | • |   | • | ٠ | A-18 |
| A <b>-</b> 12 | Keyhole<br>Heat          | Charpy Impact Data for Project Steel "A<br>Trested at 1800°F for 1 1/2 Hours | 11<br>• | • | ٠ | • | • | • | A-19 |
| A <b>-1</b> 3 | Keyhole<br>Heat          | Charpy Impact Data for Project Steel "A Treated at 1900°F for 1 1/2 Hours    | H<br>•  | ٠ | • | • | ٠ | ٠ | A-20 |
| A-14          | Keyhole<br>Heat          | Charpy Impact Data for Project Steel "A Treated at 1500°F for 8 Hours        | 11      |   |   | • | • |   | A-21 |

. .

#### THE INFLUENCE OF HEAT TREATMENT ON THE NOTCHED-BAR PROPERTIES OF SEMIKILLED STELL PLATE

#### INTRODUCTION

Earlier work<sup>(1)</sup> on ship plate steels indicated that the temperature at which ship plate is finished has a very significant effect on notched-bar properties. Plates rolled in the laboratory, where the finishing temperature can be carefully controlled, showed a  $16^{\circ}F$  decrease in tear-test transition temperature when the finishing temperature was lowered  $200^{\circ}F$ . The same plates showed a drop of  $10^{\circ}F$  in the keyhole Charpy transition temperature from the same decrease in finishing temperature. Commercially finished plates<sup>(2)</sup> exhibit a similar change in transition temperatures with finishing temperature.

When the ferrite grain size of the laboratory plates was determined, a close relationship was found between the ferrite grain size, as determined by the counting method<sup>(3)</sup>, and the notched-bar transition temperature. Converting the grain counts to ASTM numbers meant changes of  $30^{\circ}$  and  $60^{\circ}$ F in keyhole Charpy and tear-test transition temperatures, respectively<sup>(4)</sup>. The  $30^{\circ}$ F change in keyhole Charpy transition temperature agrees with the findings on low-carbon steels of Hodge, Manning, and Reichhold<sup>(5)</sup> despite the differences in composition of the steels.

The cooling rate after rolling varies from one steel plant to another. This variation changes the microstructure<sup>(3)</sup> and appeared very likely to affect the notched-bar properties of the steel plates. From these facts, a comprehensive study of the effect of austenitizing temperature and cooling rate on notched-bar properties of ship plate steel seemed desirable. Therefore, the study was conducted under the Department of the Navy, Bureau of Ships Contract NObs-53239, Index No. NS-Oll-078. Results of this study can be used to estimate the effect of rolling temperature and of cooling rates from rolling temperatures on the notched-bar properties of semikilled steel plate.

#### MATERIAL

The semikilled steel plate used in this investigation was a 3/4-inch, hot-rolled plate from an open-hearth heat. Other plates from this heat have been used on many other studies performed for the Ship Structure Committee<sup>(6,7,8)</sup>, and the heat has been identified as Project Steel "A". The chemical composition of the plate<sup>(8)</sup> is 0.25 per cent carbon, 0.49 per cent manganese, 0.011 per cent phosphorus, 0.045 per cent sulfur, 0.04 per cent silicon, and 0.004 per cent nitrogen. The tensile strength of the plate is 58,650 psi, with an elongation of 33.4 per cent in eight inches.

-2-

The Navy tear-test properties of the as-rolled plate were determined at Battelle using 48 specimens divided into four groups as shown by the diagram in Figure 1. Each group was tested as an individual steel. Four tear-test specimens from each group were broken at +70°, +80°, and +90°F. Test data from individual tests are shown in Table A-1 of the Appendix. The results of these tests are summarized in Table 1. When tested at +90°F, all 16 specimens had fractured surfaces exhibiting more than 50 per cent ductile type of failure. At +70°F, 15 of the 16 specimens showed a 50 per cent or more cleavage fracture. This is a very sudden transition in fracture texture, much sharper than is characteristic of most Half of the specimens were brittle at 80°F; this steels. would be the transition temperature: the temperature corresponding to a probability of 50 per cent brittle tests. Based on the definition of transition temperature as the highest temperature at which one or more specimens out of four are brittle, the transition temperatures of the various groups are 80°, 70°, 80°, and 80°F, respectively. This is the definition recommended by Kahn and Imbembo<sup>(8)</sup>. Kahn<sup>(8)</sup> reported the transition temperature of this steel as 70°F.

The keyhole Charpy transition curve as determined at Battelle for this steel in the hot-rolled condition is shown in Figure 2. The properties in two directions were determined

-3-

| 1 |              |             |              |          |                |                |                |               |
|---|--------------|-------------|--------------|----------|----------------|----------------|----------------|---------------|
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
|   |              | ●<br>BI     | -<br>0       | 0        | -•<br>0<br>42  | •<br>В2        | •<br>0<br>2    | 0<br>D2       |
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
|   | о<br>В3      | 0<br>C3     | 0<br>D3      | 0<br>43  | о<br>В4        | 0<br>(4        | 0<br>D4        | •<br>04       |
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
|   | O<br>C5      | 0<br>05     | 0<br>45      | О<br>В5  | 0<br>60        | 0              | 0<br>46        | о<br>в6       |
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
| ¥ | •<br>0<br>07 | •<br>•<br>• | о<br>в7      | 0<br>C7  | 0<br>D8        | •<br>0<br>48   | _•<br>О<br>В8  | •<br>0<br>83  |
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
|   | -<br>0<br>49 | •<br>В9     | •<br>0<br>09 | • 0<br>9 | -•<br>0<br>AIO | •<br>О<br>В 10 | -•<br>0<br>0 0 | •<br>0<br>010 |
|   | 0            | 0           | 0            | 0        | 0              | 0              | 0              | 0             |
|   | О<br>В I I   | 0<br>C      |              |          | О<br>В 12      | 0<br>C12       | 0<br>D12       | 0<br>A 12     |

# FIGURE 1. LOCATION OF TEAR-TEST SPECIMENS FROM AS-ROLLED PROJECT STEEL "A"

A-6664

BATTELLE MEMORIAL INSTITUTE

**Rolling Direction** 

•,



BATTELLE MEMORIAL INSTITUTE

|                 |                              |                            | Energy,              | foot-pounds                 | Average                          | Number                    |
|-----------------|------------------------------|----------------------------|----------------------|-----------------------------|----------------------------------|---------------------------|
| Group<br>Number | Testing<br>Temperature,<br>F | Maximum<br>Load,<br>pounds | To Start<br>Fracture | To<br>Propagate<br>Fracture | Per Cent<br>Shear in<br>Fracture | of<br>Brittle<br>Specimen |
| А               | 70                           | 37, 100                    | 74.0                 | 200                         | 21                               | A                         |
| А               | 80                           | 36, 425                    | 735                  | 350                         | 45                               |                           |
| А               | 90                           | 37, 125                    | 740                  | 610                         | 79                               | 0                         |
| В               | 70                           | 36,990                     | 755                  | 85                          | 13                               | 4                         |
| в               | 80                           | 36,240                     | 690                  | 610                         | 76                               | - 0                       |
| В               | 90                           | 36, 810                    | 710                  | 610                         | 82                               | 0                         |
| С               | 70                           | 37,625                     | 790                  | 310                         | 37                               | 3                         |
| С               | 80                           | 36, 760                    | 700                  | 300                         | 38                               | 3                         |
| С               | 90                           | 36, 550                    | 720                  | 670                         | 81                               | 0                         |
| D               | 70                           | 36,710                     | 705                  | 100                         | 13                               | 4                         |
| D               | 80                           | 37,040                     | 710                  | 285                         | 40                               | 3                         |
| D               | 90                           | 37, 425                    | 720                  | 710                         | 84                               | 0                         |
| A11             | 70                           | 37,105                     | 750                  | 175                         | 23                               | 15                        |
| A11             | 80                           | 36,615                     | 710                  | 385                         | 50                               | 8                         |
| A11             | 90                           | 36,980                     | 720                  | 650                         | 82                               | 0                         |

TABLE 1. SUMMARY OF TEAR-TEST RESULTS FROM AS-ROLLED PROJECT STEEL "A".

by specimens notched normal to the plate surface. The Charpy value of the transverse specimen is never as large as the value in the longitudinal direction. The transition temperature at the 20-foot-pound level is 34°F for the longitudinal specimens and approximately 160°F for the transverse direction. The 20-foot-pound value is in the flat portion of the transition curve for the transverse specimens and is not a good criterion to use for transition temperature.

Frequency distribution plots of Charpy values for steels of this type indicate that a minimum point in the frequency curve occurs at approximately the 12-foot-pound level<sup>(9)</sup>. At the 12-foot-pound level, the respective transition temperatures of longitudinal and transverse specimens are  $10^{\circ}F$  and  $34^{\circ}F$ . The temperature for the 12-foot-pound level will be used for comparisons in this report. Boodberg and others<sup>(6)</sup> reported the temperatures of the 20- and the 12-foot-pound levels as  $+20^{\circ}$  and  $+8^{\circ}F$ , respectively for longitudinal specimens. Tests made at Pennsylvania State College on plate from the same heat of steel showed the temperature for the two energy levels as  $+10^{\circ}$  and  $-8^{\circ}F$ <sup>(7)</sup> for longitudinal specimens.

#### HEAT TREATMENT

The heat treating was performed in a large electric furnace which had sufficient heating capacity to heat treat at least six 6- by 12 1/2-inch sections of 3/4-inch plate. The

-7-

six plates were placed in a hot furnace on edge and separated by small sections of refractory brick splits. Since the two outer plates might have different heating and cooling rates, these plates were not used in the test program. One of the center plates contained a thermocouple for determining the heating and cooling rates that would be typical of the three remaining test plates. A typical heating curve is shown in Figure 3. Five austenitizing temperatures ranging from 1500° to 1900°F were used in this study. After the plates had been in the furnace for 1 1/2 hours, they were withdrawn and cooled by four different methods.

The 1 1/2-hour heating time was sufficient for all the plates to reach furnace temperature except those heated to 1500°F. Here the thermocouple showed a temperature of only 1480°F when 90 minutes had elapsed. The austenitic grain size resulting from the 90-minute treatments is shown by the photomicrographs in Figure 4. Since the plates treated at 1500°F for 1 1/2 hours did not reach furnace temperature, another group of plates was heat treated at 1500°F for 8 hours. The austenitic grain size, after such a treatment, was very similar to the one shown for the 1600°F treatment in Figure 4. This was a mixture of large and small grains.

The austenitic grain-coarsening temperature of this steel is about 1600°F. Both coarse and fine grains were found in the plate heated 1 1/2 hours at this temperature. Heating for

-8-





A-6666

BATTELLE MEMORIAL INSTITUTE

----



FIGURE 4. MICROSTRUCTURE AFTER WATER QUENCHING FROM VARIOUS AUSTENITIZING TEMPERATURES AFTER HEATING 1-1/2 HOURS; PICRAL ETCH BATTELLE MEMORIAL INSTITUTE eight hours at 1600°F produced uniformly coarse austenite grains.

The four methods of cooling used to give different ferrite grain sizes and microstructures varied from air-blast cooling to furnace cooling. The air-blast cooling was done by placing the plates, still separated by the refractory-brick splits, in front of a large electric fan, thus cooling the plates in circulating air. Still-air cooling, done in a similar way but without the fan, produced a somewhat slower cooling rate. The third method consisted of burying the plates in vermiculite. This produced a faster cooling rate than that resulting from furnace cooling. The last and slowest cooling rate was produced by furnace cooling. Typical cooling curves are shown in Figure 5.

#### MICROSTRUCTURE

The ferrite grain sizes of the heat-treated steels were determined by counting the number of ferrite grains in a 4square-inch area of a photomicrograph taken at 100 diameters and dividing by four. The counts of longitudinal and transverse direction were in good agreement, as shown in Table 2. In addition to changing the ferrite grain size, the heat treatments change the pearlite distribution and spacing. The pearlite distribution was measured by counting the patches of pearlite in the same areas used for the ferrite grain-size

-11-



∢

Г

FIGURE 5. COOLING CURVES OF PLATE AUSTENITIZED AT 1700 F

A-6667

| Austenitizing |             | Fer             | rite Grain Size, |         |
|---------------|-------------|-----------------|------------------|---------|
| Temperature,  | Type of     | Grains pe       | r Square Inch a  | t 100X  |
| F             | Cooling     | Longitudinal    | Transverse       | Average |
|               | Furnace 1   | fime — 1-1/2 Ho | urs              |         |
| 1500          | Air blast   | 90              | 96               | 93      |
| 1500          | Still air   | 139             | 108              | 123     |
| 1500          | Vermiculite | 82              | 82               | 82      |
| 1500          | Furnace     | 82              | 98               | 93      |
| 1600          | Air blast   | 126             | 131              | 128     |
| 1600          | Still air   | 98              | 100              | 99      |
| 1600          | Vermiculite | 57              | 48               | 51      |
| 1600          | Furnace     | 56              | 62               | 59      |
| 1700          | Air blast   | 114             | 139              | 126     |
| 1700          | Still air   | 87              | 84               | 85      |
| 1700          | Vermiculite | 48              | 36               | 42      |
| 1700          | Furnace     | 28              | 37               | 31      |
| 1800          | Air blast   | 60              | 64               | 62      |
| 1800          | Still air   | 51              | 46               | 48      |
| 1800          | Vermiculite | 21              | 23               | 22      |
| 1800          | Furnace     | 18              | 20               | 19      |
| 1900          | Air blast   | 52              | 61               | 56      |
| 1900          | Still air   | 45              | 47               | 46      |
| 1900          | Vermiculite | 26              | 22               | 24      |
| 1900          | Furnace     | 18              | 21               | 19      |
|               | Furnace     | Time - 8 Hours  | 3                |         |
| 1500          | Air blast   | 105             | 86               | 95      |
| 1500          | Still air   | 86              | 77               | 81      |
| 1500          | Vermiculite | 64              | 64               | 64      |
| 1500          | Furnace     | 41              | 44               | 42      |

# TABLE 2.FERRITE GRAIN SIZES OF SPECIMENS OF PROJECT STEEL"A" PLATE HEATED AT VARIOUS TEMPERATURES ANDCOOLED AT VARIOUS RATES TO ROOM TEMPERATURE

#### BATTELLE MEMORIAL INSTITUTE

counts. This count was also divided by four to give pearlite areas per square inch at 100 diameters, as shown in Table 3. Pearlite spacing was not determined quantitatively, but microscopic examination of the specimens indicated a variation in spacing with the different cooling rates. The spacing was wider for slower cooling rates.

The variations in ferrite grain size and pearlite distribution are shown by the photomicrographs in Figure 6. These are longitudinal sections austenitized at  $1700^{\circ}$ F for  $1 \ 1/2$  hours. The space between the lamellae in the pearlite increased with slower cooling rates. The size of the ferrite grains increased with decreases in cooling rate. These samples were etched to show the ferrite grain boundaries and pearlite distribution, but do not show the lamellae of the pearlite plainly.

The effects of austenitizing temperature and various cooling rates on ferrite grain size and pearlite distribution are shown in Figures 7 and 8, respectively. Of course, many other changes in microstructure occur when steels are cooled from various temperatures and at various rates. One of the most noticeable changes is the distance between bands of pearlite; the slower the cooling rate, the wider the bands. This change is accompanied by a variation in the size of the pearlite areas; therefore, one characteristic is related to the other. For the purpose of this study, the ferrite grain size and the number of pearlitic areas were used as parameters.

-14-

| Austenitizing     | Number of Pearlite Areas per Square Inch at 100X |                        |                          |                |  |  |  |  |
|-------------------|--------------------------------------------------|------------------------|--------------------------|----------------|--|--|--|--|
| Temperature,<br>F | Cooled in<br>Air Blast                           | Cooled in<br>Still Air | Cooled in<br>Vermiculite | Furnace Cooled |  |  |  |  |
|                   | Furna                                            | ce Time — 1-           | 1/2 Hours                |                |  |  |  |  |
| 1500              | 80                                               | 64                     | 29                       | 35             |  |  |  |  |
| 1600              | 46                                               | 41                     | 21                       | 25             |  |  |  |  |
| 1700              | 49                                               | 41                     | 18                       | 12             |  |  |  |  |
| 1800              | 29                                               | 25                     | 8                        | 9              |  |  |  |  |
| 1900              | 27                                               | 24                     | 11                       | 8              |  |  |  |  |
|                   | Fur                                              | nace Time              | 8 Hours                  |                |  |  |  |  |
| 1500              | 48                                               | 41                     | 28                       | 18             |  |  |  |  |

# TABLE 3. PEARLITE DISTRIBUTION IN SPECIMENS OF PROJECTSTEEL "A" PLATE AFTER HEAT TREATMENT

#### BATTELLE MEMORIAL INSTITUTE

····



FIGURE 6. MICROSTRUCTURE OF 3/4-INCH PLATES COOLED BY VARIOUS METHODS FROM AN AUSTENITIZING TEM-PERATURE OF 1700 F; NITAL ETCH



FIGURE 7. EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON FERRITE GRAIN SIZE

A-6668

BATTELLE MEMORIAL INSTITUTE



FIGURE 8. EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON DISTRIBUTION OF PEARLITIC AREAS

A-6669

BATTELLE MEMORIAL INSTITUTE

\_\_\_\_

INFLUENCE OF HEAT TREATMENT ON TEAR-TEST PROPERTIES

Sufficient material was heat treated to prepare twelve tear-test specimens representing each condition. In a few cases, unfortunately, some of the specimens were lost in their preparation. The remaining ones were broken at various temperatures to determine transition temperatures. The transition temperature was defined, in this case, as the highest temperature where 25 per cent or more of the specimens are brittle. This is the method recommended by Kahn<sup>(8)</sup> and was used because of the limited number of specimens from the heat-treated plates available for this study. Additional work in progress at Battelle suggests there are some advantages in defining tear-test transition temperatures on the basis of 50 per cent probability of cleavage fracture.

The results of each test are shown in Tables A-3 through A-8 of the Appendix. A summary of the transition temperatures for the plates heated 1 1/2 hours is shown in Table 4. For the plates heated 8 hours at 1500°F, the transition temperatures are listed in Table 5. The transition temperatures for the plates cooled at a faster rate appear to have been lowered by the increase in heating time; the furnace-cooled plates indicate the opposite effect. Figure 9 shows the influence of austenitizing temperature on the tear-test transition temperature of the heat-treated steel.

-19-



FIGURE 9. EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON TEAR TEST TRANSITION TEMPERATURE OF PROJECT STEEL "A"

A-6670

#### TABLE 4. SUMMARY OF TEAR-TEST TRANSITION TEMPERATURES OF PROJECT STEEL "A" PLATES HEAT TREATED IN VARIOUS WAYS

|             | Т                 | ear-Test Tra | nsition Tem | perature, F | (1)  |
|-------------|-------------------|--------------|-------------|-------------|------|
| Type of     |                   | Austenitizir | ng Temperat | ture, F     |      |
| Cooling     | 1500              | 1600         | 1700        | 1800        | 1900 |
| Air blast   | 100(2)            | 50           | 80          | 100         | 110  |
| Still air   | <sub>90</sub> (2) | 50           | 80          | 110         | 110  |
| Vermiculite | 110(2)            | 60(2)        | 120         | 130         | 140  |
| Furnace     | 70                | 100          | 120         | 130         | 140  |

(1) The tear-test transition temperature is defined as being the highest temperature where one or more of four specimens breaks with less than 50 per cent of the fracture area exhibiting a dull or fibrous texture.

(2) Transition temperatures are based on limited data. Only one to three ductile specimens were tested at temperatures 10 degrees higher than the transition temperature reported. These temperatures will not be used in the study.

#### BATTELLE MEMORIAL INSTITUTE

#### TABLE 5. SUMMARY OF TEAR-TEST TRANSITION TEMPERATURES OF PROJECT STEEL "A" PLATES AUSTENITIZED AT 1500 F FOR 8 HOURS

| Tear-Test Transition(1)<br>Temperature, F |
|-------------------------------------------|
| 70                                        |
| 80                                        |
| 110                                       |
| 100                                       |
|                                           |

(1) The tear-test transition temperature is defined as being the highest temperature where one or more of four specimens breaks with less than 50 per cent of the fractured area exhibiting a dull or fibrous texture.

#### BATTELLE MEMORIAL INSTITUTE

When the ferrite grain size of the steels is considered, it appears that the steels with the coarser grains have the highest transition temperature, as shown in Figure 10. The transition temperature decreases 10°F for an increase of 12 grains per 0.01-inch-square area.

Heat treatment also affected the maximum load necessary to break the test specimen, the energy absorbed by the specimen before maximum load, and the energy absorbed after the maximum load was reached. Table 6 is a summary of these properties. The maximum load was decreased by an increase in austenitizing temperature and slower cooling rates. Since this load is a crude measurement of the ultimate strength and ductility, it is difficult to decide which property was affected most by the heat treatment. A general tendency exists for the amount of energy required to initiate and propagate the fracture to decrease with an increase in austenitizing temperature and slower cooling rate. These properties are dependent on the maximum load, so therefore should follow the same pattern as maximum load.

#### INFLUENCE ON KEYHOLE CHARPY PROPERTIES

Four keyhole Charpy specimens representing each heat treatment were broken at each 10°F temperature interval throughout the transition range. The specimens were parallel to the direction of rolling and were notched perpendicular to

-23-



# FIGURE IO. EFFECT OF FERRITE GRAIN SIZE ON TEAR-TEST TRANSITION TEMPERATURE

A-8671

BATTELLE MEMORIAL INSTITUTE

| Austenitizing<br>Temperature,<br>F | Type of<br>Cooling | Maximum<br>Load,<br>pounds | Energy to<br>Initiate Fracture,<br>foot-pounds(1) | Energy to<br>Propagate<br>Fracture,<br>foot-pounds(1) |
|------------------------------------|--------------------|----------------------------|---------------------------------------------------|-------------------------------------------------------|
| 1500                               | A + 1 + /          | 27 400                     | rac(2)                                            | (20(2)                                                |
| 1500                               | Air blast          | 37,480                     | 580(-)                                            | 630(2)                                                |
| 1500                               | Still air          | 36,610                     | 720(-7)                                           | 630(2)                                                |
| 1500                               | Vermiculite        | 33,480                     | 730(2)                                            | 700\2/                                                |
| 1500                               | Furnace            | 33, 580                    | 690                                               | 530                                                   |
| 1600                               | Air blast          | 37, 290                    | 810                                               | 650                                                   |
| 1600                               | Still air          | 36.350                     | 745                                               | 550                                                   |
| 1600                               | Vermiculite        | 32,990                     | 770(2)                                            | 510(2)                                                |
| 1600                               | Furnace            | 31,472                     | 620                                               | 560                                                   |
| 1700                               |                    | 2/ 025                     | 700                                               | 110                                                   |
| 1700                               | Air blast          | 36,025                     | 780                                               | 660                                                   |
| 1700                               | Still air          | 35, 235                    | 700                                               | 580                                                   |
| 1700                               | Vermiculite        | 31,390                     | 580                                               | 490                                                   |
| 1700                               | Furnace            | 31,430                     | 600                                               | 500                                                   |
| 1800                               | Air blast          | 33,870                     | 730                                               | 645                                                   |
| 1800                               | Still air          | 31. 180                    | 725                                               | 660                                                   |
| 1800                               | Vermiculite        | 31, 350                    | 600                                               | 490                                                   |
| 1800                               | Furnace            | 30, 580                    | 590                                               | 485                                                   |
| 1000                               | A.J 1.1            | 25 (40                     | 600                                               | 6 <b>4</b> 5                                          |
| 1900                               | AIT DIASU          | 33,040                     | 770                                               | 640                                                   |
| 1900                               | Still air          | 34,900                     |                                                   | 010                                                   |
| 1900                               | Vermiculite        | 30,410                     | 540                                               | 490                                                   |
| 1900                               | Furnace            | 29,960                     | 535                                               | 470                                                   |

#### TABLE 6. TEAR-TEST PROPERTIES OF PROJECT STEEL "A" AFTER HEAT TREATMENT

(1) Average of the results from the four ductile specimens broken 10 F above the transition temperature.

(2) Average, based on limited number of tests.

BATTELLE MEMORIAL INSTITUTE

. ...

the plate surface. As shown by Figure 2, the Charpy value at room temperature is well above 25 foot-pounds for the asrolled plate in the longitudinal direction. However, many of the heat treatments reduced the values to approximately 20 foot-pounds, far above the transition temperature; therefore, a 12-foot-pound transition value was used. Table 7 is a summary of the transition temperatures for the 10-, 12-, 15-, and 20-foot-pound criteria. The Charpy value at 80°F is also shown for comparison. Results of individual tests are reported in Tables A-9 through A-14 in the Appendix.

The effect of austenitizing temperature on the 12-footpound transition temperature is shown in Figure 11. Lowering the temperature from 1900°F to 1800°F had no significant effect. The major change in transition temperature, with austenitizing temperature, occurred between 1800° and 1600°F. In most cases, the longer austenitizing time at 1500°F gave a lower transition temperature. The effect of cooling rate appeared to be far more important than austenitizing temperature. It must be remembered from Figure 5 that the major change in cooling rate was between the plates cooled in still air and those cooled in vermiculite. This is also reflected in Figure 11 where the major change in transition temperature occurred between the same two types of cooling.

The relationships between ferrite grain size and Charpy transition temperature are shown in Figure 12. For plates

-26-

| Austenitizing |             | Charpy       | <u> </u>          | Transition Ter | nperature, F | <del>فلدي وقلب مركا مركات</del> |
|---------------|-------------|--------------|-------------------|----------------|--------------|---------------------------------|
| Temperature,  | Type of     | Value        | 10-ft-1b          | 12-ft-1b       | 15-ft-lb     | 20-ft-1b                        |
| F             | Cooling     | at 80 F      | Level             | Level          | Level        | Level                           |
| D             | As-Rolled   | 26.3         | 4                 | 10             | 19           | 34                              |
| >             |             | Furnace Time | e = 1 - 1/2 Hours | S              |              |                                 |
| 1500          | Air blast   | 22,8         | 33                | - 37           | 43           | 54                              |
| 1500          | Still air   | 23.0         | 24                | 29             | 35           | 51                              |
| 1500          | Vermiculite | 13.8         | 65                | 71             | 79           | 93                              |
| 1500          | Furnace     | 16.3         | 63                | 69             | 79           | 95                              |
| 1600          | Air blast   | 26.5         | 2                 | 7              | 12           | 22                              |
| 1600          | Still air   | 27.0         | 2                 | 6              | 13           | 29                              |
| 1600          | Vermiculite | 16.5         | 58                | 64             | 72           | 92                              |
| : 1600        | Furnace     | 12.8         | 69                | 75             | 84           | 102                             |
| 1700          | Air blast   | 28,5         | 2                 | 8              | 15           | 28                              |
| 1700          | Still air   | 25.0         | 19                | 25             | 33           | 47                              |
| 1700          | Vermiculite | 15.3         | 69                | 76             | 86           | 105                             |
| 1700          | Furnace     | 8.8          | 77                | 83             | 92           | 106                             |
| 1800          | Air blast   | 20.0         | 34                | 42             | 54           | 75                              |
| 1800          | Still air   | 20.5         | 39                | 43             | 49           | 72                              |
| 1800          | Vermiculite | 7.8          | 83                | 88             | 97           | 117                             |
| 1800          | Furnace     | 8.0          | 87                | 93             | 103          | 122                             |
| 1900          | Air blast   | 24.5         | 35                | 40             | 48           | 60                              |
| 1900          | Still air   | 24.5         | 33                | 35             | 39           | 55                              |
| 1900          | Vermiculite | 9.3          | 82                | 87             | 95           | 113                             |
| 1900          | Furnace     | 8.5          | 87                | 95             | 105          | 126                             |
|               |             | Furnace Tin  | me - 8 Hours      |                |              |                                 |
| 1500          | Air blast   | 26.0         | 10                | 15             | 21           | 32                              |
| 1500          | Still air   | 26.0         | 8                 | 12             | 19           | 34                              |
| 1500          | Vermiculite | 19.8         | 53                | 57             | 65           | 82                              |
| 1500          | Furnace     | 11.8         | 67                | 74             | 84           | 99                              |

TABLE 7. SUMMARY OF KEYHOLE CHARPY PROPERTIES OF PROJECT STEEL "A" PLATESAFTER VARIOUS HEAT TREATMENTS

1



FIGURE II. EFFECT OF AUSTENITIZING TEMPERATURE AND COOLING RATE ON CHARPY TRANSITION TEMPERATURE OF STEELS COOLED BY VARIOUS METHODS

A- 6672



FIGURE 12. EFFECT OF FERRITE GRAIN SIZE ON KEYHOLE CHARPY TRANSITION TEMPERATURE OF PROJECT STEEL "A" COOLED AT DIFFERENT RATES. The variation in grain size was obtained by using different austenitizing temperatures and cooling rates.

A-6673

BATTELLE MEMORIAL INSTITUTE

cooled at equal rates, the transition temperature decreased regularly with grain size. As in the previous discussion, the plates can be considered representative of two significantly different cooling rates. The steels cooled fairly rapidly, in still air or by an air blast, showed the same influence of grain size. The Charpy transition temperature decreased about  $30^{\circ}$ F for an increase of one ASTM number. This value agrees with data reported by previous investigators<sup>(4,5)</sup>.

The plates cooled slowly in vermiculite or in the furnace behaved approximately alike. The effect of ferrite grain size on the Charpy transition temperature of these steels is less pronounced than for the other group. The transition temperature decreased only 13°F for each ASTM number in the case of the materials cooled fairly slowly from the austenitizing temperature.

For ferrite grain sizes approximating ASTM No. 6 1/2, the Charpy transition temperature is about  $30^{\circ}$ F higher for the plates cooled at the slower rate.

The four points for the plates heated to 1500°F for 1 1/2 hours do not fit the curves for steels containing coarser austenite grains. The fine austenite grain size in this case appears to be detrimental to transition temperature.

#### <u>COMPARISON BETWEEN TEAR TEST AND KEYHOLE CHARPY</u> <u>TRANSITION TEMPERATURES</u>

It seems natural to expect a correlation between transition temperatures established by different kinds of notchedbar tests. At least, several investigators have suggested formulas for estimating Charpy Keyhole transition temperatures from data obtained with other notch types or at other energy levels. Conversions of this kind can be misleading. Earlier experiments on this project showed that a particular change in nitrogen or manganese content does not have the same effect on the transition temperature in Keyhole Charpy tests as it does in tear tests. That is, the difference between the two transition temperatures is influenced by chemical composition. The present study shows that the relationship between the transition temperatures of a particular steel in the Charpy and in the tear test is also influenced by microstructure. This conclusion is illustrated by Figure 13.

Figure 13 compares the transition temperatures determined in the tear test with those set by the 12-foot-pound Charpy level. It shows that specimens cooled relatively rapidly fit a trend line different from that for the plates cooled quite slowly from the same austenitizing temperatures. The graph indicates that changing the rate of cooling can cause a variation of about 35°F in Charpy transition temperature between plates of this steel having the same transition



## 0-21788

temperature in tear tests. Similarly, two plates having 12 foot-pound Charpy values at the same temperature could perform quite differently in tear tests.

If the slight differences in slopes of the trend lines in Figure 13 are neglected, it appears that the principal effect of slow cooling is to raise the Charpy transition temperature. As discussed previously, slow cooling increased the size of the pearlite patches and the distance between pearlite bands. Therefore, the data show that the Charpy test is more sensitive than the tear test to these variations in microstructure. The results for this steel in the heattreated conditions emphasize the dangers of converting transition temperatures for different types of tests.

#### SUMMARY

The results of this work may be summarized as follows:

- 1. The average ferrite grain size was found to be dependent on the cooling rate as well as the austenitizing temperature.
- 2. The number of pearlite areas was also found to be dependent on both the cooling rate and austenitizing temperature.

- 3. The tear-test transition temperature was found to depend entirely on ferrite grain size, regardless of the pearlite distribution or other variations resulting from different types of cooling. An increase of 12 ferrite grains per square inch of image at 100X means an increase of 1 degree F in transition temperature. The maximum load and the energy required to start or to propagate fracture were decreased by increases in austenitizing temperature and by decrease in cooling rate.
- 4. The keyhole Charpy transition temperature is dependent upon the ferrite grain size, whether changed by the austenitizing temperature or the cooling rate. There is also a reflection of the austenite grain size in the transition temperature. The ferrite grain size has the greatest effect on transition temperature when the steels are air cooled. Here, the change is approximately 30°F for each ASTM grain-size number.
- 5. The relationship between tear-test transition temperature and keyhole Charpy transition temperature is good only when there is no major change in microstructure, as is the case when the cooling rate has been greatly changed. Other factors such as composition may also change this relationship.

٩

#### REFERENCES

- 1. Banta, H. M., Frazier, R. H., and Lorig, C. H. "Some Metallurgical Aspects of Ship Steel Quality", <u>The Welding</u> <u>Journal 30</u> (2), Research Supplement, 79-s--90-s (1951).
- 2. Epstein, S. "Notch Resistance of Carbon-Steel Ship Plate", Reprint of Paper Presented at the Philadelphia Regional Meeting of AISI, (1951).
- 3. Campbell, J. E., Frazier, R. H., and McIntire, H. O. "Ferrite-Grain-Size Measurements for Ship Plate Stteel", <u>The Welding Journal</u>, <u>31</u> (2), Research Supplement, 78-s--94-s (1952).
- 4. Boulger, F. W., and Frazier, R. H. "Some Metallurgical Aspects of Low Temperature Behavior of Metals," Paper presented at a Conference on Materials and Design for Low-Temperature Service, Sponsored by the Scientific Council, Engineer Research and Development Laboratories, Fort Belvoir, Virginia, May 1952.
- 5. Hodge, J. M., Manning, R. D., and Reichhold, H. M. "The Effect of Ferrite Grain Size on Notch Toughness", <u>Trans</u>. <u>Am. Inst. Mining Met. Engrs. 185</u>, 233-240 (March 1949).
- 6. Boodberg, A., Davis, H. E., Parker, E. R. and Troxell, G. E., "Causes of Cleavage Fracture in Ship Plate--Tests of Wide Notched Plates", <u>The Welding Journal</u>, <u>27</u> (4), Research Supplement, 186-s--199-s (1948).
- 7. Klier, E. P., Wagner, F. C., and Gensamer, M. "The Correlation of Laboratory Tests With Full-Scale Ship Plate Fracture Tests," <u>The Welding Journal</u>, <u>27</u> (2), Research Supplement, 71-s--96-s (1948).
- 8. Kahn, N. A., and Imbembo, E. A. "A Method of Evaluating Transition From Shear to Cleavage Failure in Ship Plate and Its Correlation With Large Scale Plate Tests", <u>The Welding</u> <u>Journal</u>, <u>27</u> (4), Research Supplement, 169-s--182-s (1948).
- 9. Vanderbeck, R. W. "Evaluating Carbon Plate Steels by the Keyhole Charpy Impact Test", <u>The Welding Journal 30</u> (1), Research Supplement, 59-s--64-s (1951).

APPENDIX

--- - --

\_

٠

| Testing      | Maximum | Energy,  | foot-pounds                           | Per Cent    |
|--------------|---------|----------|---------------------------------------|-------------|
| Temperature, | Load,   | To Start | To Propagate                          | Shear       |
| F            | pounds  | Fracture | Fracture                              | in Fracture |
|              |         |          | · · · · · · · · · · · · · · · · · · · |             |
| 70           | 37,350  | 810      | 80                                    | 11          |
| 70           | 36,700  | 680      | 230                                   | 22          |
| 70           | 37, 350 | 820      | 90                                    | 10          |
| 70           | 37,000  | 650      | 410                                   | 42          |
|              |         |          |                                       |             |
| 70           | 37,050  | 770      | 90                                    | 13          |
| 70.          | 37,450  | 780      | 90                                    | 8           |
| 70           | 36, 550 | 670      | 50                                    | 14          |
| 70           | 36,900  | 800      | 110                                   | 15          |
|              |         |          |                                       |             |
| 70           | 37,300  | 820      | 220                                   | 24          |
| 70           | 38, 150 | 820      | 120                                   | 11          |
| 70           | 37,350  | 730      | 330                                   | 36          |
| 70           | 37,700  | 800      | 580                                   | 76          |
|              |         |          |                                       |             |
| 70           | 35,800  | 680      | 80                                    | 13          |
| 70           | 37,250  | 790      | 80                                    | 10          |
| 70           | 36,900  | 680      | 170                                   | 20          |
| 70           | 36,900  | 670      | 60                                    | 10          |
|              |         |          |                                       |             |
| 80           | 36,100  | 640      | 630                                   | 85          |
| 80           | 36,050  | 720      | 110                                   | 11          |
| 80           | 37,300  | 940      | 580                                   | 70          |
| 80           | 36,250  | 630      | 70                                    | 15          |
|              |         |          |                                       |             |
| 80           | 36,100  | 660      | 480                                   | 56          |
| 80           | 36,800  | 770 .    | 690                                   | 85          |
| 80           | 35,850  | 650      | 670                                   | 85          |
| 80           | 36,200  | 680      | 600                                   | 78          |
| • •          |         |          |                                       |             |
| 80           | 36,550  | 690      | 380                                   | 40          |
| 80           | 36,300  | 610      | 340                                   | 48          |
| 80           | 37,150  | 800      | 430                                   | 51          |
| 80           | 37,050  | 690      | 50                                    | 12          |
| 00           | 26 000  | 470      | 250                                   | 40          |
| 00<br>90     | 26 200  | 610      | 90                                    |             |
| 00           | 20,200  | 000      | 0V<br>160                             | 20          |
| 80           | 20,120  | 000      | 120                                   | 3U<br>70    |
| ðV           | 20,900  | 000      | VOC                                   | (7          |
|              |         |          |                                       |             |

TABLE A-1. TEAR-TEST DATA FOR PROJECT STEEL "A" IN THE AS-ROLLED CONDITION

| Testing      | Maximum | Energy,  | foot-pounds  | Per Cent    |
|--------------|---------|----------|--------------|-------------|
| Temperature, | Load,   | To Start | To Propagate | Shear       |
| F            | pounds  | Fracture | Fracture     | in Fracture |
|              |         |          |              |             |
| 90           | 36,000  | 660      | 630          | 82          |
| 90           | 37,200  | 800      | 630          | 77          |
| 90           | 37,250  | 700      | 610          | 76          |
| 90           | 37,050  | 790      | 570          | 82          |
| 90           | 35, 700 | 610      | 630          | 85          |
| 90           | 36,800  | 680      | 600          | 80          |
| 90           | 37,050  | 780      | 600          | 81          |
| 90           | 37, 700 | 780      | 620          | 80          |
| 90           | 36,500  | 800      | 630          | 84          |
| 90           | 36,600  | 660      | 630          | 84          |
| 90           | 36,850  | 780      | 790          | 82          |
| 90           | 36,250  | 630      | 630          | 74          |
| 90           | 36,400  | 720      | 680          | 77          |
| 90           | 37,400  | 790      | 570          | 83          |
| 90           | 39, 950 | 730      | 930          | 89          |
| 90           | 35, 950 | 640      | 670          | 85          |

TABLE A-1. (Continued)

..\_. . ....

| Testing      |     | Chai        | rpy Value, | foot-pounds |         |
|--------------|-----|-------------|------------|-------------|---------|
| Temperature, |     | Specimen    | Number     | *           |         |
| F            | 1   | 2           | 3          | 4           | Average |
|              |     |             | <b>_</b>   |             |         |
|              | Tra | insverse D  | irection   |             |         |
| 20           | 6   | 5           |            |             | 5,5     |
| 40           | 14  | 16          | 15         | ~-          | 15.0    |
| 60           | 16  | 15          |            |             | 15.5    |
| 80           | 17  | 16          | 17         |             | 16.7    |
| 120          | 18  | 18          |            | ~ -         | 18.0    |
| 140          | 19  | 20          |            |             | 19.5    |
| 150          | 19  | 19          | 20         | 19          | 19.3    |
| 160          | 20  | 20          | 20         | 20          | 20.0    |
|              | Lon | gitudinal I | Direction  |             |         |
| -20          | 3   | 3           |            |             | 3.0     |
| 0            | 10  | 11          | 10         | 12          | 10.8    |
| 20           | 15  | 18          | 6          | 17          | 14.0    |
| 30           | 20  | 19          | 8          | 21          | 17.0    |
| 40           | 23  | 23          | 20         |             | 21.5    |
| 80           | 27  | 26          | 26         |             | 26.3    |
|              |     | ·           |            |             |         |

## TABLE A-2. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" IN THE AS-ROLLED CONDITION

#### BATTELLE MEMORIAL INSTITUTE

| Testing      | Maximum   | Energy,         | foot-pounds  | Per Cent    |
|--------------|-----------|-----------------|--------------|-------------|
| Temperature, | Load,     | To Start        | To Propagate | Shear       |
| F            | pounds    | Fracture        | Fracture     | in Fracture |
|              | Co        | oled in Air B   | last         |             |
|              |           | oled in All D   |              |             |
| 30           | 38,400    | 780             | 60           | 2           |
| 40           | 37,600    | 690             | 60           | 1           |
| 50           | 37,400    | 730             | 190          | 10          |
| 60           | 37,650    | 760             | 620          | 75          |
| 60           | 38,000    | 870             | 60           | 3           |
| 60           | 37, 350   | 820             | 530          | 65          |
| 70           | 37,600    | 780             | 70           | 5           |
| 80           | 36,600    | 720             | 50           | 5           |
| 90           | 37,900    |                 |              | 80          |
| 90           | 37,000    | 740             | 600          | 62          |
| 90           | 36,800    | 780             | 70           | 12          |
| 100          | 36,000    | 580             | 630          | 75          |
|              | <u>Co</u> | oled in Still A | Air          |             |
| 20           | 36, 150   | 780             | 50           | 1           |
| 30           | 35,650    | 780             | 110          | 2           |
| 40           | 36,750    | 680             | 110          | 1           |
| 50           | 37,000    | 700             | 70           | 1           |
| 60           | 37, 350   | 790             | 70           | 1           |
| 70           | 36,600    | 670             | 60           | 2           |
| 80           | 37 050    | 730             | 660          | 80          |
| 80           | 37,200    | 690             | 40           | 2           |
| 90           | 37, 300   | 840             | 80           | 12          |
|              |           |                 |              |             |

TABLE A-3. TEAR-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1500 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

.....

| Temperature,<br>F     Load,<br>pounds     To Start<br>Fracture     To Propagate<br>Fracture     Shear<br>in Fracture       Cooled in Still Air     Cooled in Still Air       100     34,900     690     580     80       100     36,100     720     680     85       100     36,250     740     620     75       Cooled in Vermiculite     Cooled in Vermiculite     Cooled in Vermiculite       60     34,950     730     40     2       70     34,150     750     40     2       70     34,850     740     40     3       80     34,350     750     560     70       80     34,000     870     50     2       90     33,200     730     50     2       90     32,250     720     360     62       100     32,750     860     200     35       110     31,350     720     30     2       120     32,500     820     600     75  < | Testing      | Maximum         | Energy,         | foot-pounds       | Per Cent    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|-------------------|-------------|
| F     pounds     Fracture     Fracture     in Fracture       Cooled in Still Air       100     34,900     690     580     80       100     36,100     720     680     85       100     36,250     740     620     75       Cooled in Vermiculite       60     34,950     730     40     2       70     34,150     750     40     2       70     34,850     740     40     3       80     34,350     750     560     70       80     34,000     870     50     2       90     33,200     730     50     2       90     32,250     720     360     62       100     32,750     860     200     35       110     31,350     720     30     2       120     32,500     820     600     75       120     32,500     830     100     3       <                                                                                           | Temperature, | Load,           | To Start        | To Propagate      | Shear       |
| Cooled in Still Air100 $34,900$ $690$ $580$ $80$ 100 $36,100$ $720$ $680$ $85$ 100 $36,250$ $740$ $620$ $75$ Cooled in Vermiculite $60$ $34,950$ $730$ $40$ $2$ $70$ $34,150$ $750$ $40$ $2$ $70$ $34,350$ $750$ $560$ $70$ $80$ $35,650$ $850$ $540$ $72$ $80$ $34,000$ $870$ $50$ $2$ $90$ $33,200$ $730$ $50$ $2$ $90$ $33,200$ $730$ $50$ $2$ $90$ $32,750$ $860$ $200$ $35$ $110$ $31,350$ $720$ $30$ $2$ $120$ $31,800$ $640$ $800$ $75$ $120$ $35,650$ $890$ $50$ $3$ $70$ $35,650$ $890$ $50$ $3$ $70$ $35,050$ $780$ $70$ $3$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,850$ $720$ $490$ $63$                                                                               | F            | pounds          | Fracture        | Fracture          | in Fracture |
| Cooled in Still Air       100     34,900     690     580     80       100     36,100     720     680     85       Cooled in Vermiculite       Cooled in Vermiculite       60     34,950     730     40     2       70     34,150     750     40     2       70     34,850     740     40     3       80     34,350     750     560     70       80     34,350     750     560     72       90     35,650     850     540     72       90     32,250     720     360     62       100     32,750     860     200     35       110     31,350     720     30     2       120     31,800     640     800     75       Eurnace Cooled       60     35,650     890     50     3       70     35,050     780     70     3  <                                                                                                             |              |                 |                 |                   |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Co              | oled in Still 4 | Air               |             |
| 100 $36, 100$ $720$ $680$ $85$ $100$ $36, 250$ $740$ $620$ $75$ $Cooled in Vermiculite$ $60$ $34, 950$ $730$ $40$ $2$ $70$ $34, 150$ $750$ $40$ $2$ $70$ $34, 850$ $740$ $40$ $3$ $80$ $34, 350$ $750$ $560$ $70$ $80$ $34, 350$ $750$ $560$ $72$ $80$ $34, 000$ $870$ $50$ $2$ $90$ $33, 200$ $730$ $50$ $2$ $90$ $33, 200$ $730$ $50$ $2$ $90$ $32, 750$ $860$ $200$ $35$ $110$ $31, 350$ $720$ $30$ $2$ $120$ $31, 800$ $640$ $800$ $75$ $I20$ $35, 650$ $890$ $50$ $3$ $70$ $35, 650$ $780$ $70$ $3$ $70$ $35, 050$ $780$ $70$ $3$ $70$ $33, 750$ $830$ $100$ $3$ $70$ $33, 250$ $720$ $490$ $63$                                                                                                                                                                                                                              | 100          | 34,900          | 690             | 580               | 80          |
| 10036, 25074062075Cooled in Vermiculite6034, 9507304027034, 1507504027034, 8507404038034, 350750560708035, 650850540728034, 0008705029033, 2007305029032, 2507203606210032, 7508602003511031, 35072030212031, 8006408007512035, 650890503Furnace Cooled6035, 650720307035, 0507807037033, 75083010037033, 2507205027031, 7505804018033, 85072049063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          | 36,100          | 720             | 680               | 85          |
| Cooled in Vermiculite $60$ $34,950$ $730$ $40$ $2$ $70$ $34,150$ $750$ $40$ $2$ $70$ $34,850$ $740$ $40$ $3$ $80$ $34,350$ $750$ $560$ $70$ $80$ $35,650$ $850$ $540$ $72$ $80$ $34,000$ $870$ $50$ $2$ $90$ $33,200$ $730$ $50$ $2$ $90$ $32,250$ $720$ $360$ $62$ $100$ $32,750$ $860$ $200$ $35$ $110$ $31,350$ $720$ $30$ $2$ $120$ $31,800$ $640$ $800$ $75$ Furnace CooledFurnace Cooled $60$ $35,650$ $780$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,750$ $830$ $40$ $1$ $80$ $33,850$ $720$ $490$ $63$                                                                                                                                                                                                 | 100          | 36,250          | 740             | 620               | 75          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Cool            | ed in Vermi     | culite            |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60           | 34,950          | 730             | 40                | 2           |
| 70 $34, 150$ $750$ $40$ $2$ $70$ $34, 850$ $740$ $40$ $3$ $80$ $34, 350$ $750$ $560$ $70$ $80$ $35, 650$ $850$ $540$ $72$ $80$ $34, 000$ $870$ $50$ $2$ $90$ $33, 200$ $730$ $50$ $2$ $90$ $32, 250$ $720$ $360$ $62$ $100$ $32, 750$ $860$ $200$ $35$ $110$ $31, 350$ $720$ $30$ $2$ $120$ $31, 800$ $640$ $800$ $75$ $120$ $32, 500$ $820$ $600$ $75$ Furnace CooledFurnace Cooled $60$ $35, 650$ $780$ $70$ $33, 750$ $830$ $100$ $3$ $70$ $35, 050$ $720$ $50$ $2$ $70$ $33, 750$ $830$ $100$ $3$ $70$ $33, 250$ $720$ $50$ $2$ $70$ $31, 750$ $580$ $40$ $1$ $80$ $33, 850$ $720$ $490$ $63$                                                                                                                                                                                                                                  | 70           | 24 150          | 750             | 40                | 2           |
| 10 $34, 350$ $140$ $40$ $3$ $80$ $34, 350$ $750$ $560$ $70$ $80$ $35, 650$ $850$ $540$ $72$ $80$ $34, 000$ $870$ $50$ $2$ $90$ $33, 200$ $730$ $50$ $2$ $90$ $32, 250$ $720$ $360$ $62$ $100$ $32, 750$ $860$ $200$ $35$ $110$ $31, 350$ $720$ $30$ $2$ $120$ $31, 800$ $640$ $800$ $75$ $120$ $32, 500$ $820$ $600$ $75$ Furnace Cooled60 $35, 650$ $890$ $50$ $33, 750$ $830$ $100$ $33, 750$ $830$ $100$ $3$ $70$ $35, 050$ $720$ $50$ $2$ $70$ $31, 750$ $580$ $40$ $1$ $80$ $33, 850$ $720$ $490$ $63$                                                                                                                                                                                                                                                                                                                        | 70           | 24 950          | 750             | 40                | 2           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70           | 54,050          | 140             | 40                | 2           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80           | 34,350          | 750             | 560               | 70          |
| 80 $34,000$ $870$ $50$ $2$ $90$ $33,200$ $730$ $50$ $2$ $90$ $32,250$ $720$ $360$ $62$ $100$ $32,750$ $860$ $200$ $35$ $110$ $31,350$ $720$ $30$ $2$ $120$ $31,800$ $640$ $800$ $75$ $120$ $32,500$ $820$ $600$ $75$ Furnace Cooled $70$ $35,650$ $70$ $35,050$ $780$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,250$ $720$ $50$ $2$ $70$ $31,750$ $580$ $40$ $1$ $80$ $33,850$ $720$ $490$ $63$                                                                                                                                                                                                                                                                                                                                                                                                         | 80           | 35,650          | 850             | 540               | 72          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80           | 34,000          | 870             | 50                | 2           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00           | 22 200          | 730             | 50                | 3           |
| 90 $32,250$ $720$ $360$ $62$ $100$ $32,750$ $860$ $200$ $35$ $110$ $31,350$ $720$ $30$ $2$ $120$ $31,800$ $640$ $800$ $75$ $120$ $32,500$ $820$ $600$ $75$ Furnace Cooled60 $35,650$ $890$ $50$ $3$ $70$ $35,050$ $780$ $70$ $3$ $70$ $35,050$ $780$ $70$ $3$ $70$ $35,050$ $720$ $50$ $2$ $70$ $33,250$ $720$ $50$ $2$ $70$ $31,750$ $580$ $40$ $1$ $80$ $33,850$ $720$ $490$ $63$                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90           | 22,250          | 730             | 50<br>2( <b>0</b> | 2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90           | 52,250          | 120             | 300               | 02          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100          | 32,750          | 860             | 200               | 35          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110          | 31,350          | 720             | 30                | 2           |
| 120 $32,500$ $820$ $600$ $75$ $120$ $32,500$ $820$ $600$ $75$ Furnace Cooled $60$ $35,650$ $890$ $50$ $3$ $70$ $35,050$ $780$ $70$ $3$ $70$ $33,750$ $830$ $100$ $3$ $70$ $33,250$ $720$ $50$ $2$ $70$ $31,750$ $580$ $40$ $1$ $80$ $33,850$ $720$ $490$ $63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120          | 31,800          | 640             | 800               | 75          |
| Furnace Cooled6035,6508905037035,0507807037035,75083010037033,2507205027031,7505804018033,85072049063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120          | 32,500          | 820             | 600               | 75          |
| 60     35,650     890     50     3       70     35,050     780     70     3       70     35,050     780     70     3       70     33,750     830     100     3       70     33,250     720     50     2       70     31,750     580     40     1       80     33,850     720     490     63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | न्य             | urnace Coole    | đ                 |             |
| 60   35,650   890   50   3     70   35,050   780   70   3     70   33,750   830   100   3     70   33,250   720   50   2     70   31,750   580   40   1     80   33,850   720   490   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <u> </u>        |                 | <u> </u>          |             |
| 70   35,050   780   70   3     70   33,750   830   100   3     70   33,250   720   50   2     70   31,750   580   40   1     80   33,850   720   490   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60           | 35 <b>,</b> 650 | 890             | 50                | 3           |
| 70   33,750   830   100   3     70   33,250   720   50   2     70   31,750   580   40   1     80   33,850   720   490   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70           | 35,050          | 780             | 70                | 3           |
| 70   33,250   720   50   2     70   31,750   580   40   1     80   33,850   720   490   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70           | 33, 750         | 830             | 100               | 3           |
| 70   31,750   580   40   1     80   33,850   720   490   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70           | 33, 250         | 720             | 50                | 2           |
| 80 33,850 720 490 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70           | 31, 750         | 580             | 40                | 1           |
| 00 53,050 (20 <del>2</del> 70 <b>03</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80           | 33 950          | 720             | 400               | 63          |
| 80 33 100 700 540 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80           | 33,050          | 700             | 77V<br>540        | 0J<br>65    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00<br>QA     | 32 000          | 660             | 550               | 60<br>60    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90<br>90     | 32,700          | 680             | 550               | 60          |
| 00 J2,700 000 J±0 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00           | J4, 700         | 000             | UPC               | 07          |

# TABLE A-3. (Continued)

----

| Testing      | Maximum | Energy,         | foot-pounds                            | Per Cent    |
|--------------|---------|-----------------|----------------------------------------|-------------|
| Temperature, | Load,   | To Start        | To Propagate                           | Shear       |
| F            | pounds  | Fracture        | Fracture                               | in Fracture |
|              | Cod     | oled in Air B   | ast                                    |             |
| 40           | 37,200  | 770             | 380                                    | 29          |
| 50           | 38,150  | 710             | 650                                    | 75          |
| 50           | 37,800  | 940             | 70                                     | 5           |
| 50           | 36,950  | 840             | 630                                    | 75          |
| 50           | 37,000  | 830             | 130                                    | 5           |
| 60           | 37,700  | 780             | 640                                    | 80          |
| 60           | 36,250  | 730             | 600                                    | 72          |
| 60           | 37, 200 | 870             | 750                                    | 82          |
| 60           | 37,400  | 850             | 600                                    | <b>7</b> 5  |
|              | Co      | oled in Still A | Air                                    |             |
| 30           | 37,000  | 820             | 110                                    | 3           |
| 40           | 36,900  | 780             | 550                                    | 70          |
| 40           | 36,700  | 710             | 180                                    | 10          |
| 50           | 37,050  | 790             | 660                                    | 77          |
| 50           | 35,650  | 730             | 80                                     | 2           |
| 60           | 35,600  | 710             | 630                                    | 80          |
| 60           | 36, 350 | 770             | 420                                    | 72          |
| 60           | 36,000  | 740             | 530                                    | 55          |
| 60           | 36,000  | 760             | 630                                    | 75          |
| 70           | 36,200  | 750             | 600                                    | 85          |
|              | Cool    | ed in Vermic    | ulite                                  |             |
| 50           | 33, 500 | 720             | 70                                     | 2           |
| 60           | 34.000  | 800             | 490                                    | 65          |
| 60           | 32, 750 | 560             | 80                                     | 2           |
| 70           | 32,650  | 750             | 530                                    | 65          |
| 70           | 32,850  | 750             | 510                                    | 76          |
| 70           | 33, 700 | 810             | 500                                    | 84          |
|              |         |                 | ······································ |             |

TABLE A-4. TEAR-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1600 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

| Testing      | Maximum | Energy,      | foot-pounds  | Per Cent    |
|--------------|---------|--------------|--------------|-------------|
| Temperature, | Load,   | To Start     | To Propagate | Shear       |
| F            | pounds  | Fracture     | Fracture     | in Fracture |
|              | Cool    | ed in Vermic | mlite        |             |
|              |         |              |              |             |
| 80           | 32,400  | 590          | 430          | 62          |
| 90           | 32,050  | 520          | 520          | 73          |
|              | F       | urnace Coole | đ            |             |
|              |         |              | _            |             |
| 90           | 31,800  | 590          | 50           | 12          |
| 100          | 31,600  | <b>590</b>   | 510          | 72          |
| 100          | 31,050  | 560          | 550          | 75          |
| 100          | 31,600  | 580          | 530          | 70          |
| 100          | 31,350  | 580          | 80           | 5           |
| 110          | 31,200  | 570          | 490          | 75          |
| 110          | 31,500  | 630          | 560          | 77          |
| 110          | 31,400  | 620          | 620          | 75          |
| 110          | 31,750  | 670          | 580          | 75          |

TABLE A-4. (Continued)

. \_\_\_\_

| Testing      | Maximum    | Energy,         | foot-pounds  | Per Cent    |
|--------------|------------|-----------------|--------------|-------------|
| Temperature, | Load,      | To Start        | To Propagate | Shear       |
| F            | pounds     | Fracture        | Fracture     | in Fracture |
|              | Co         | oled in Air B   | last         |             |
|              |            |                 |              |             |
| 60           | 36,900     | 930             | 90           | 4           |
| 70           | 36,300     | 740             | 560          | 70          |
| 70           | 36,500     | 830             | 540          | 80          |
| 70           | 36,200     | 860             | 70           | 3           |
| 80           | 35, 300    | 730             | 580          | 80          |
| 80           | 36,000     | 790             | 80           | 3           |
| 90           | 35,950     | 670             | 650          | 90          |
| 90           | 36,150     | 830             | 680          | 86          |
| 90           | 35, 350    | 830             | 590          | 76          |
| 90           | 35,650     | 800             | 730          | 70          |
|              | <u>C</u> o | oled in Still A | Air          |             |
| 70           | 34,600     | 820             | 40           | 5           |
| 70           | 35,400     | 890             | 60           | 7           |
| 80           | 34, 500    | 610             | 60           | 10          |
| 80           | 34,800     | 650             | 290          | 25          |
| 80           | 35,050     | 640             | 640          | 80          |
| 80           | 35, 550    | 660             | 210          | 13          |
| 90           | 36,450     | 850             | 490          | 70          |
| 90           | 35, 500    | 690             | 620          | 77          |
| 90           | 34, 900    | 600             | 640          | 80          |
| 90           | 35,600     | 660             | 590          | 80          |
|              | Coo        | led in Vermic   | culite       |             |
| 90           | 30, 550    | 510             | 40           | 1           |
| 120          | 31,300     | 500             | 180          | 10          |
| 130          | 30,950     | 590             | 510          | 80          |
| 130          | 32,000     | 610             | 540          | 80          |
| 130          | 31, 450    | 550             | 420          | 80          |
| 130          | 32, 100    | 590             | 500          | 80          |

# TABLE A-5. TEAR-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1700 F FOR 1-1/2 HOURS

| Testing      | Maximum | Energy,       | foot-pounds  | Per Cent    |
|--------------|---------|---------------|--------------|-------------|
| Temperature, | Load,   | To Start      | To Propagate | Shear       |
| F            | pounds  | Fracture      | Fracture     | in Fracture |
|              | F       | urnace Cooled | 1            |             |
| 90           | 32, 500 | 480           | 50           | 2           |
| 100          | 29,900  | 430           | 50           | 10          |
| 110          | 32,200  | 560           | 150          | 16          |
| 120          | 30, 300 | 520           | 470          | 79          |
| 120          | 30, 550 | 530           | 270          | 38          |
| 130          | 31,250  | 580           | 510          | 80          |
| 130          | 31,300  | 520           | 520          | 80          |
| 130          | 33, 350 | 720           | 490          | 74          |
| 130          | 31,500  | 580           | 480          | 70          |
|              |         |               |              |             |

TABLE A-5. (Continued)

## BATTELLE MEMORIAL INSTITUTE

......

| Testing      | Maximum | Energy,         | foot-pounds  | Per Cent    |
|--------------|---------|-----------------|--------------|-------------|
| Temperature, | Load,   | To Start        | To Propagate | Shear       |
| F            | pounds  | Fracture        | Fracture     | in Fracture |
|              | Co      |                 | 1            |             |
|              |         | blea in Air B   | last         |             |
| 90           | 30,650  | 430             | 340          | 85          |
| 100          | 35,200  | 730             | 70           | 15          |
| 100          | 34,350  | 720             | 120          | 15          |
| 100          | 30,200  | 420             | 390          | 99          |
| 100          | 34,500  | 750             | 80           | 13          |
| 110          | 34,600  | 780             | 560          | 80          |
| 110          | 35,350  | 720             | 660          | 70          |
| 110          | 35,200  | 790             | 730          | 80          |
| 110          | 34,800  | 630             | 630          | 70          |
|              | Co      | oled in Still A | Air          |             |
| 90           | 34,650  | 820             | 90           | 14          |
| 100          | 25 150  |                 | 5.20         | ac          |
| 100          | 35,150  | 880             | 520          | 75          |
| 100          | 35,100  | 830             | 170          | 14          |
| 110          | 34,300  | 790             | 580          | 65          |
| 110          | 34,400  | 700             | 100          | 20          |
| 110          | 33,400  | 680             | 450          | 35          |
| 120          | 34,400  | 700             | 700          | 90          |
| 120          | 34,200  | 690             | 700          | 85          |
| 120          | 34, 900 | 680             | 620          | 80          |
| 120          | 35,700  | 830             | 630          | 72          |
|              | Cool    | ed in Vermic    | ulite        |             |
| 120          | 31,200  | 570             | 250          | 15          |
| 130          | 31,050  | 560             | 340          | 43          |
| 140          | 22 200  | 640             | 440          | 70          |
| 140          | 34, 300 | 04V<br>540      | 400<br>500   | (7<br>07    |
| 140          | 21 400  | 54V<br>640      | 200          | 01<br>07    |
| 140          | 21,400  | 04V             | 700          | 00          |
| 140          | 51,100  | 200             | 400          | 04          |

TABLE A-6. TEAT-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1800 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

- - - -

/

A-10

| A – | l | l |
|-----|---|---|
|-----|---|---|

| Testing      | Maximum | Energy,      | foot-pounds  | Per Cent      |
|--------------|---------|--------------|--------------|---------------|
| Temperature, | Load,   | To Start     | To Propagate | ${\tt Shear}$ |
| F            | pounds  | Fracture     | Fracture     | in Fracture   |
|              | F       | urnace Coole | d            | -             |
| 120          | 30,950  | 560          | 180          | 8             |
| 130          | 30, 200 | 550          | 190          | 15            |
| 140          | 30,550  | 560          | 510          | 80            |
| 140          | 29, 500 | 510          | 480          | 70            |
| 140          | 31, 100 | 620          | 520          | 81            |
| 140          | 31,200  | 660          | 430          | 70            |
|              | -<br>   |              |              |               |

TABLE A-6. (Continued)

#### BATTELLE MEMORIAL INSTITUTE

-

| Testing      | Testing Maximum Energy, foot-pounds |                 |              |             |  |  |
|--------------|-------------------------------------|-----------------|--------------|-------------|--|--|
| Temperature, | Load,                               | To Start        | To Propagate | Shear       |  |  |
| F            | pounds                              | Fracture        | Fracture     | in Fracture |  |  |
|              | Co                                  | oled in Air Bl  | last         |             |  |  |
|              | <u></u>                             |                 |              |             |  |  |
| 100          | 36 <b>,</b> 500                     | 800             | 100          | 15          |  |  |
| 110          | 35, 100                             | 650             | 600          | 75          |  |  |
| 110          | 35,600                              | 630             | 170          | 24          |  |  |
| 110          | 36,500                              | 660             | 620          | 75          |  |  |
|              | ,                                   |                 | -            | • -         |  |  |
| 120          | 36,050                              | 680             | 640          | 80          |  |  |
| 120          | 35,700                              | 750             | 700          | 85          |  |  |
| 120          | 35, 100                             | 660             | 630          | 76          |  |  |
| 120          | 35,750                              | 680             | 610          | 89          |  |  |
| 130          | 34,450                              | 650             | 680          | 85          |  |  |
|              | Co                                  | oled in Still A | lir          |             |  |  |
| 100          | 35,400                              | 780             | 450          | 60          |  |  |
| 110          | 22.700                              | ( 50            | 220          | 0 F         |  |  |
| 110          | 33,700                              | 650             | 230          | 35          |  |  |
| 110          | 33, 150                             | 600<br>720      | 570          | 70          |  |  |
| 110          | 34,500                              | 730             | 260          | 20          |  |  |
| 110          | 35,250                              | 790             | 170          | 25          |  |  |
| 120          | 34,650                              | 810             | 680          | 91          |  |  |
| 120          | 36,500                              | 870             | 630          | 80          |  |  |
| 120          | 34,400                              | 670             | 630          | 81          |  |  |
| 120          | 35, 500                             | 740             | 630          | 87          |  |  |
| 130          | 35,950                              | 850             | 730          | 82          |  |  |
|              | Cool                                | ed in Vermic    | ulite        |             |  |  |
| 130          | 30,550                              | 530             | 410          | 70          |  |  |
| 140          | 30, 150                             | 530             | 480          | 85          |  |  |
| 140          | 30,400                              | 490             | 530          | 80          |  |  |
| 140          | 30,400                              | 520             | 430          | 65          |  |  |
| 140          | 30,000                              | 500             | 450          | 40          |  |  |
|              |                                     |                 |              |             |  |  |

# TABLE A-7. TEAR-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1900 F FOR 1-1/2 HOURS

| Testing      | Maximum | Energy,       | foot-pounds  | Per Cent    |
|--------------|---------|---------------|--------------|-------------|
| Temperature, | Load,   | To Start      | To Propagate | Shear       |
| F            | pounds  | Fracture      | Fracture     | in Fracture |
|              | Cool    | led in Vermic | culite       |             |
| 150          | 30,400  | 550           | 490          | 77          |
| 150          | 30,050  | 520           | 480          | 85          |
| 150          | 30, 400 | 550           | 530          | 84          |
| 150          | 30, 250 | 550           | 470          | 86          |
| 160          | 31,500  | 610           | 480          | 94          |
|              | F       | urnace Coole  | <u>d</u>     |             |
| 130          | 29,800  | 490           | 420          | 70          |
| 140          | 29,600  | 500           | 480          | 80          |
| 140          | 29,900  | 470           | 470          | 73          |
| 140          | 29,500  | 470           | 230          | 40          |
| 140          | 30, 100 | 520           | 380          | 70          |
| 150          | 30,350  | 520           | 480          | 75          |
| 150          | 29,800  | 480           | 460          | 80          |
| 150          | 30, 350 | 610           | 480          | 81          |
| 150          | 29,900  | 530           | 460          | 75          |
| 160          | 30, 300 | 520           | 480          | 79          |

TABLE A-7. (Continued)

.

| Testing      | Maximum         | Energy.         | foot-pounds  | Per Cent    |
|--------------|-----------------|-----------------|--------------|-------------|
| Temperature, | Load,           | To Start        | To Propagate | Shear       |
| F            | pounds          | Fracture        | Fracture     | in Fracture |
|              |                 |                 |              |             |
|              | Co              | oled in Air B   | last         |             |
| 60           | 36 <b>,</b> 200 | 730             | 70           | 3           |
| 70           | 37,600          | 790             | 180          | 12          |
| 80           | 36,450          | 660             | 560          | 88          |
| 80           | 36, 550         | 720             | 630          | 82          |
| 80           | 37,350          | 770             | 580          | 83          |
| 80           | 36,350          | 700             | 580          | 77          |
|              | Co              | oled in Still A | Air          |             |
| 50           | 35,600          | 910             | 50           | 1           |
| 60           | 36,950          | 820             | 530          | 62          |
| 60           | 36,050          | <b>7</b> 50     | 80           | 7           |
| 70           | 36,750          | 820             | 140          | 13          |
| 80           | 36.500          | 730             | 570          | 70          |
| 80           | 35,900          | 680             | 20           | 12          |
| 90           | 35, 750         | 750             | 590          | 74          |
| 90           | 35,450          | 730             | 530          | 70          |
| 90           | 35,700          | 630             | 500          | 74          |
| 90           | 35,600          | 670             | 570          | 80          |
|              | Coo             | led in Vermi    | culite       |             |
| 60           | 32,000          | 590             | 30           | 1           |
| 80           | 32,650          | 680             | 70           | 4           |
| 100          | 31,950          | 620             | 60           | 7           |
| 110          | 31, 150         | 570             | 480          | 74          |
| 110          | 31,750          | 640             | 50           | 20          |
| 110          | 30,400          | 580             | 540          | 80          |
| ~ ~ ~        | ,               |                 |              |             |

#### TABLE A-8. TEAR-TEST DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1500 F FOR 8 HOURS

| Testing      | Maximum | Per Cent      |              |             |
|--------------|---------|---------------|--------------|-------------|
| Temperature, | Load,   | To Start      | To Propagate | Shear       |
| F            | pounds  | Fracture      | Fracture     | in Fracture |
|              |         |               |              |             |
|              | Coo     | led in Vermic | ulite        |             |
| 120          | 32,450  | 670           | 510          | 80          |
| 120          | 31,750  | 700           | 540          | 75          |
| 120          | 32,500  | 780           | 550          | 77          |
| 120          | 31,850  | 590           | 580          | 90          |
|              | F       | urnace Coole  | d            |             |
| 60           | 31,450  | 480           | 10           | 1           |
| 80           | 31, 100 | 490           | 20           | 1           |
| 90           | 32, 250 | 700           | 460          | 70          |
| 90           | 32,950  | 730           | 560          | 73          |
| 90           | 33,000  | 690           | 60           | 5           |
| 100          | 31, 700 | 630           | 520          | 78          |
| 100          | 31,900  | 660           | 50           | 8           |
| 100          | 31,850  | 642           | 70           | 7           |
| 110          | 30,650  | 570           | 430          | 80          |
| 110          | 31, 350 | 590           | 490          | 78          |
| 110          | 32, 250 | 690           | 480          | 75          |
| 110          | 30, 850 | 580           | 380          | 65          |
|              | -       |               |              |             |

\_

| TABLE | A-8. | (Continued) |
|-------|------|-------------|
|-------|------|-------------|

| Testing      |          | Chai           | py Value | , foot-pound | s       |
|--------------|----------|----------------|----------|--------------|---------|
| Temperature, |          | Specimen Nur   | nber     |              | ······  |
| F            | 1        | 2              | 3        | 4            | Average |
|              |          |                | <b></b>  |              |         |
|              |          | Cooled in Air  | Blast    |              |         |
| 20           | 15       | 4              | 5        | 5            | 7.3     |
| 30           | 5        | 5              | 6        | 6            | 5.3     |
| 40           | 13       | 15             | 14       | 10           | 13,0    |
| 50           | 19       | 20             | 24       | 21           | 21.0    |
| 60           | 21       | 15             | 22       | 25           | 20.8    |
| 70           | 25       | 24             | 25       | 24           | 24.5    |
| 80           | 27       | 16             | 26       | 22           | 22.8    |
| 90           | 25       | 25             | 30       | 25           | 26.3    |
|              |          | Cooled in Stil | ll Air   |              |         |
| 10           | 4        |                |          |              |         |
| 10           | 4        | 3<br>r         | 4<br>r   | 4            | 3.8     |
| 20           | 4        | 5              | 5        |              | 7.8     |
| 30           | 19       | 17             | 15       | 16           | 16.8    |
| 40           | 22       | 6              | 5        | 20           | 13.3    |
| 50           | 21       | 19             | 21       | 21           | 20.5    |
| 60           | 19       | 21             | 24       | 22           | 21.5    |
| 70           | 22       | 20             | 22       | 23           | 21.8    |
| 80           | 24       | 21             | 25       | 22           | 23.0    |
|              | <u>_</u> | Cooled in Vern | niculite |              |         |
| 50           | 5        | 4              | 5        | 5            | 48      |
| 60           | 7        | 6              | 15       | 6            | 8.5     |
| 80           | 15       | 17             | 12       | 11           | 13.8    |
| 90           | 21       | 21             | 21       | 21           | 21.0    |
| 100          | 21       | 22             | 21       | 21           | 21.3    |
| 120          | 25       | 23             |          |              | 24      |
|              |          | Furnace Coo    | oleđ     |              |         |
|              |          | 1 41 1000 000  |          |              |         |
| 50           | 5        | 5              | 4        | 5            | 4.8     |
| 60           | 6        | 11             | 6        | 6            | 7,3     |
| 70           | 8        | 19             | 15       | 13           | 13.8    |
| 80           | 12       | 15             | 19       | 19           | 16.3    |
| 90           | 17       | 20             | 20       | 15           | 18.0    |
| 100          | 20       | 22             | 22       | 21           | 21.3    |
| 120          | 25       | 27             |          |              | 26.0    |
|              |          |                |          |              |         |

#### TABLE A-9. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1500 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

.....

| Testing      |          | Cha         | rpy Value | , foot-poun | ds      |
|--------------|----------|-------------|-----------|-------------|---------|
| Temperature, |          | Specimer    | n Number  |             |         |
| <u> </u>     | 1        | 2           | 3         | 4           | Average |
|              | C        | ooled in Ai | r Blast   |             |         |
| -20          | 4        | 5           | 6         | 4           | 4.8     |
| -10          | 5        | 14          | 4         | 5           | 7.0     |
| 0            | 5        | 4           | 17        | 5           | 7.8     |
| 10           | 19       | 18          | 15        | 20          | 18.0    |
| 20           | 21       | 6           | 21        | 21          | 17.3    |
| 30           | 23       | 22          | 24        | 22          | 22.8    |
| 40           | 25       | 28          | 24        | 27          | 26.0    |
| 80           | 25       | 28          |           |             | 26.5    |
|              | <u>c</u> | ooled in St | ill Air   |             |         |
| -10          | 6        | 3           | 3         | 4           | 4.0     |
| 0            | 11       | 19          | 14        | * 4         | 12.0    |
| 10           | 4        | 4           | 16        | 20          | 11.0    |
| 20           | 17       | 16          | 21        | 18          | 18,0    |
| 30           | 23       | 21          | 21        | 21          | 21.5    |
| 40           | 24       | 21          | 22        | 22          | 22.3    |
| 80           | 28       | 26          |           |             | 27.0    |
|              | Cod      | oled in Ver | miculite  |             |         |
| 50           | 4        | 4           | 4         | 5           | 4.3     |
| 60           | 7        | 16          | 12        | 17          | 13.0    |
| 70           | 18       | 15          | 7         | 15          | 13.8    |
| 80           | 12       | 18          | 18        | 18          | 16.5    |
| 90           | 17       | 23          | 19        | 21          | 20.0    |
| 100          | 21       | 23          | 21        | 21          | 21.5    |
| 120          | 23       | 22          |           |             | 22.5    |
|              |          | Furnace Co  | ooled     |             |         |
| 60           | 5        | 5           | 6         | 5           | 5.3     |
| 70           | 13       | 6           | 13        | 14          | 11.5    |
| 80           | 13       | 11          | 8         | 19          | 12.8    |
| 90           | 16       | 17          | 12        | 18          | 15.8    |
| 100          | 21       | 21          | 19        | 18          | 19.8    |
| 110          | 21       | 23          | 21        | 22          | 21.8    |
| 120          | 21       | 22          | 21        | 23          | 21.8    |
|              |          |             |           |             |         |

# TABLE A-10. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1600 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

#### A-17

| Testing | يندجني محتويب | Cha         | rpy Value, | 100t-pound      | 15      |
|---------|---------------|-------------|------------|-----------------|---------|
| F       |               | 2           | 3          | 4               | Average |
|         |               |             |            |                 | uge     |
|         | C             | ooled in Ai | r Blast    |                 |         |
| 10      | _             | _           |            |                 |         |
| -10     | 5             | 5           | 4          | 4               | 4.5     |
| 0       | 11            | 4           | 8          | 14              | 9.3     |
| 10      | 17            | 10          | 18         | 11              | 14.0    |
| 20      | 17            | 15          | 5          | 21              | 14.5    |
| 30      | 21            | 21          | 22         | 20              | 21.0    |
| 40      | 21            | 25          | 26         | 24              | 24.0    |
| 80      | 28            | 29          |            |                 | 28.5    |
|         | C             | ooled in St | ill Air    |                 |         |
| 0       | 3             | 5           |            |                 | 4.0     |
| 10      | 6             | 10          | 6          | 6               | 7.0     |
| 20      | 12            | 5           | 11         | 5               | 8.3     |
| 30      | 17            | 18          | 8          | 16              | 14.8    |
| 40      | 21            | 19          | 19         | 20              | 19.8    |
| 50      | 23            | 20          | 19         | 17              | 19.8    |
| 60      | 23            | 20          | 21         | 23              | 21.8    |
| 70      | 24            | 23          | 22         |                 | 23.0    |
| 80      | 24            | 26          |            |                 | 25.0    |
|         | Cod           | oled in Ver | miculite   |                 |         |
| 50      | 5             | 5           | 5          | 6               | 5.3     |
| 60      | 7             | 6           | 6          | 5               | 6.0     |
| 70      | 12            | 13          | 9          | 17              | 12.8    |
| 80      | 13            | 18          | 18         | 12              | 15.3    |
| 90      | 13            | 12          | 12         | 17              | 13.5    |
| 100     | 20            | 20          | 19         | 18              | 19.3    |
| 110     | 21            | 19          | 21         | 20              | 20.3    |
| 120     | 23            | 20          | 21         | 21              | 21.3    |
|         | <u>1</u>      | Furnace Co  | oled       |                 |         |
| 60      | 6             | 11          | 7          | 6               | 7,5     |
| 70      | 7             | 15          | 8          | 8               | 9.5     |
| 80      | 6             | 8           | 9          | 12              | 8.8     |
| 90      | 11            | 16          | 20         | 19              | 16.5    |
| 100     | 20            | 21          | 18         | $\overline{21}$ | 20.0    |
| 110     | 2.1           | 25          | 17         | 21              | 21 0    |
| 120     | 21            | 24          | 20         | 24              | 22.3    |
| 140     | 30            |             |            |                 | 30 0    |
|         |               |             |            |                 |         |

### TABLE A-11. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1700 F FOR 1-1/2 HOURS

.

| Testing      | sting Charpy Value, foot-pounds |             |                |        |         |
|--------------|---------------------------------|-------------|----------------|--------|---------|
| Temperature, |                                 | Specimer    | n Number       | ****** |         |
| F            | 1                               | 2           | 3              | 4      | Average |
|              | ~                               |             | 51             |        |         |
|              | <u>c</u>                        | ooled in Ai | r Blast        |        |         |
| 30           | 6                               | 5           | 18             | 6      | 8.8     |
| 40           | 8                               | 16          | 7              | 15     | 11.5    |
| 50           | 21                              | 8           | 9              | 13     | 12.8    |
| 60           | 22                              | 16          | 24             | 15     | 19.3    |
| 70           | 14                              | 22          | 20             | 17     | 18.3    |
| 80           | 25                              | 16          | 22             | 17     | 20.0    |
|              | ğ                               | ooled in St | <u>ill Air</u> |        |         |
| 30           | 7                               | 8           | 5              | 6      | 6.5     |
| 40           | 6                               | 8           | 11             | 11     | 9.0     |
| 50           | 23                              | 19          | 9              | 18     | 17 3    |
| 60           | 24                              | 17          | 15             | 18     | 18 5    |
| 70           | 20                              | 20          | 21             | 20     | 20 3    |
| 80           | 16                              | 22          | 21             | 23     | 20.5    |
| 90           | 29                              | 25          | 24             | 25     | 25 3    |
| 100          | 30                              | 27          |                |        | 28.5    |
|              | Cod                             | oled in Ver | miculite       |        |         |
| 70           | 7                               | 7           | 6              | 7      | 6.8     |
| 80           | 10                              | 7           | 7              | 7      | 7.8     |
| 90           | 12                              | 13          | 13             | 9      | 11.8    |
| 100          | 18                              | 15          | 13             | 19     | 16.3    |
| 110          | 18                              | 21          | 19             | 18     | 19.0    |
| 120          | 19                              | 20          | 19             | 21     | 19.8    |
| 130          | 23                              | 23          | 21             | 22     | 22.3    |
|              | <u> </u>                        | Furnace Co  | ooled          |        |         |
| 80           | 6                               | 9           | 8              | 9      | 8_0     |
| 90           | 12                              | 12          | 8              | ,<br>7 | 9.8     |
| 100          | 17                              | 12          | 13             | 16     | 14 5    |
| 110          | 15                              | 11          | 14             | 18     | 14 5    |
| 120          | 21                              | 21          | 21             | 25     | 22 0    |
| 140          | 23                              | 21          | 24             | 21     | 22.3    |

## TABLE A-12. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1800 F FOR 1-1/2 HOURS

#### BATTELLE MEMORIAL INSTITUTE

| Testing      | <u></u>  | Cha                  | rpy Value,    | foot-pounds  |              |
|--------------|----------|----------------------|---------------|--------------|--------------|
| remperature, |          | <sup>o</sup> pecimen | Number        |              | A 110 110 00 |
| r            | <u>_</u> | <u> </u>             |               | <del>*</del> | Average      |
|              | С        | ooled in Ai          | r Blast       |              |              |
|              |          | _                    |               |              |              |
| 20           | 5        | 5                    |               |              | 5.0          |
| 30           | 7        | 6                    | 12            | 13           | 9.5          |
| 40           | 14       | 15                   | 13            | 12           | 13.5         |
| 50           | 13       | 15                   | 7             | 13           | 12.0         |
| 60           | 19       | 22                   | 22            | 20           | 20.8         |
| 70           | 24       | 23                   | 19            | 22           | 22.0         |
| 80           | 24       | 25                   |               |              | 24.5         |
|              | C        | ooled in Sti         | <u>11 Air</u> |              |              |
| 20           | 6        | 4                    | 5             | 5            | 50           |
| 30           | 6        | 5                    | 5             | 9            | 63           |
| 40           | 24       | 18                   | 22            | 6            | 17 5         |
| 50           | 19       | 18                   | 13            | 18           | 17.0         |
| 60           | 2.4      | 13                   | 2.4           | 17           | 20.5         |
| 70           | 21       | 21                   |               |              | 21.0         |
| 80           | 27       | 22                   |               |              | 24.5         |
|              | Cod      | oled in Ver          | miculite      |              |              |
| 70           |          | ,                    |               | ~            |              |
| 70           | 6        | 6                    | (             | (            | 6,5          |
| 80           | 7        | 9                    | 13            | 8<br>1 a     | 9.3          |
| 90           | 13       | 14                   | 12            | 13           | 13.0         |
| 100          | 17       | 16                   | 19            | 15           | 16,8         |
| 110          | 19       | 20                   | 19            | 21           | 19.8         |
| 120          | 22       | 22                   | 19            | 20           | 20.8         |
| 130          | 20       | 21                   | 22            | 21           | 21.0         |
|              | Ĩ        | Furnace Co           | oled          |              |              |
| 70           | 8        | 5                    | 7             | 6            | 6.5          |
| 80           | 7        | 10                   | 12            |              | 9.7          |
| 90           | 7        | 8                    | 7             | 12           | 8.5          |
| 100          | ,<br>11  | 13                   | 16            | 14           | 13.5         |
| 110          | 20       | 10                   | 19            | 21           | 19.8         |
| 120          | 14       | 16                   | ±7<br>21      | 19           | 17 3         |
| 130          | 10       | 10                   | 21            | 21           | 20 0         |
| 140          | 17       | 17<br>21             | 41<br>21      | 21           | 20.0         |
| 140          | 20       | <u> </u>             | ~ <u>1</u>    | ل مک         | 40,0         |

# TABLE A-13. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1900 F FOR 1-1/2 HOURS

BATTELLE MEMORIAL INSTITUTE

| Testing      |          | Cha             | rpy Value | , foot-poun | ds      |  |
|--------------|----------|-----------------|-----------|-------------|---------|--|
| Temperature, |          | Specimen Number |           |             |         |  |
| F            | 1        | 2               | 3         | 4           | Average |  |
|              | Co       | ooled in Ai     | r Blast   |             |         |  |
| -10          | 5        | 3               | 3         | 6           | 4.3     |  |
| 0            | 5        | 8               | 4         | 7           | 6.0     |  |
| 10           | 5        | 18              | 15        | 18          | 14.0    |  |
| 20           | 10       | 17              | 11        | 6           | 11.0    |  |
| 30           | 22       | 22              | 24        | 21          | 22.3    |  |
| 40           | 23       | 21              | 22        | 20          | 21.5    |  |
| 80           | 25       | 27              |           |             | 26.0    |  |
|              | <u>c</u> | ooled in St     | ill Air   |             |         |  |
| -10          | 4        | 3               | 3         | 3           | 33      |  |
| 0            | 4        | 12              | 4         | 6           | 6.5     |  |
| 10           | 15       | 16              | 8         | 12          | 12.8    |  |
| 20           | 17       | 18              | 5         | 19          | 14.8    |  |
| 30           | 17       | 19              | 20        | 20          | 19 0    |  |
| 40           | 19       | 21              | 26        | 20          | 21 5    |  |
| 80           | 26       | 26              |           |             | 26.0    |  |
|              | Co       | oled in Ver     | miculite  |             |         |  |
| 50           | 14       | 12              | 14        | 11          | 12 0    |  |
| 50           | 14       | 15              | 14        | 11          | 13.0    |  |
| 70           | 11       | 9               | 9         | (           | 9.0     |  |
| 70           | 14       | 19              | 20        | 18          | 17.8    |  |
| 80           | 19       | 18              | 21        | 21          | 19.8    |  |
| 90           | 21       | 20              | 24        | 20          | 21.3    |  |
|              | <u>1</u> | Furnace Co      | oled      |             |         |  |
| 50           | 6        | 5               | 8         | 6           | 6.3     |  |
| 60           | 15       | 6               | 6         | 12          | 9.8     |  |
| 70           | 6        | 16              | 16        | 8           | 11.5    |  |
| 80           | 19       | 9               | 10        | 9           | 11.8    |  |
| 90           | 19       | 21              | 14        | 21          | 18.8    |  |
| 100          | 21       | 18              | 21        | 21          | 20.3    |  |
| 110          | 21       | 21              | 23        |             | 21.7    |  |
| 120          | 25       | 26              | 26        | 27          | 26.0    |  |
| 160          | 26       | 27              |           |             | 26.5    |  |
|              |          |                 |           | ······      |         |  |

#### TABLE A-14. KEYHOLE CHARPY IMPACT DATA FOR PROJECT STEEL "A" HEAT TREATED AT 1500 F FOR 8 HOURS

BATTELLE MEMORIAL INSTITUTE

\_\_\_\_\_.

. .....