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Response of a ShipOverall Structural
Struck in a Collision
Karl A. Reckling, Technical University, Berlin,

It is shown that the vibration analysis
can be efficiently employed to predict
the elastic and eventual nonlinear re-
sponse - or even collapse - of the whole
ship when struck in a collision, Based
on the assumption of an impact force-
time law , e.g. taken from model tests,
a procedure leading to a time-dependent
representation of bending moment, shear
force and state of stress is developed.
ArIillustrative example of application
to the design of a nuclear-powered con-
tainer ship, developed by GKSS For-
schungszentrum Geesthacbt in the FR of
German”. is described. It shows that. . .
high accelerations and collapse of the
whole ship may be caused by a collision
with a ship having a strong bow con-
struction.

NOMENCLATURE

~=

B.EIz .

E.
iG -.

Iz =

L=

‘1 ‘
m2,u=m2/L =

Mz(x, t) =

P(t),Po =

q(T) =

Q(x,t) =
T,t, t+$,T =

T=

‘rj(t) =

u(t) =

‘1 =
W(x, t) =

cross section area of the
struck ship

bending rigidity of struck
ship for bending in hori-
zontal plane

distance between striking
force and center of gi-a-
vity

Youngvs modulus
radius of gyration of the

struck ship
moment of inertia

length of struck ship
mass of striking ship

mass of struck ship inclu-
ding hydrodynamic mass,
mass per unit length

bending moment in hoi-izon-
tal plane

impact force, maximum force

elemental impulse of impact
force P(T)

shear force
time (see fig.3)
half Deriod of Fourier ex-

pan;ion
j-th time function of ela,-

tic vibration
strain energy
velocity of striking ship

bending deflection of the
ship!s axis

FR of Germany

X,XG,XO = distance between bo” and point
of reference, center of gra-
vity, shock force resp.

Xj (x) = j-th eigenf”nction of elastic
“ibration in horizontal plane

y(x, t) = deflection of the ship!s axis

YG(t) = deflection of aente? of gra”ity
Aj = j-th eigenva.lue of eigenf”nc -

tion X
J

o“ = yield stress

ti(x~ = reduced ei enfunction X.
(see e(l.?19)) ‘

$ = angle of undeformed ship!s
axis relative to x-axis

Uj = j.th angula.? frequency of j-th
eigenfunction X,

1. INTRODUCTION

The existing literature includes more
than one hundred papers on collision pro-
blems of ships, as the latest reviews
/1/ and /2/ show. Nea~ly all of these
papers concern the local structural re-
sponse of a striking and struck ship in
order to get force-penetration chcn-acte-
ristics and to pro”ide a basis for re-
commendations regarding designs for pi-o-
tection against colliaicm ~enetration.
Although ~any of these pap~rs use impact
dynamics for the colliding ships to de-
velop the balance of energy, there is,
to the a“tho=, s knowledge, no paper which
uses vibration analysis to investigate
thoroughly the elastic and eventual non-
linear response - or even collapse - of
the whole ~hip as a result of a collisi-
on impact.

Although a strong side eonetructi-
on may be advantageous for protecting
holds with dangerous goods or reactor
rooms of nuclear powered chips, the i-e-
sulting high collision forces and rela-
tively short collision durations nay in-
duce high stresses and a.ccele~ations. In
the worst caa. , the collision foycea may
induce the collapse of the struck ship
bull girder sven though the p~otected
cornpartmants nay not ha.”e been destroyed
by the impact force. To the authoi-vs
knowledge, this aspect has not been con-
sidered up to now. Although papers /3/
to /6/ investigate the collision dynamics
of colliding ships in more detail them
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the other PaPere they
sense des?ibed above.
sent paper intends to
Several Duplications.

do not do so in the
Therefore, the pre-
fill this gan.
especially ”f~om

the expe~imental fieid, show that the
aPPrOxinate for~e-time dependencies of a. collision procsss may be assumed as known.
These dependencies of % collision m-ocess
may be e~panded into a Fourier aer~es
and taken as input for a vibration ana-
lysis of the struck ship. For simplici-
ty the ship is modelled as an elastic
beam with constant moment of inertia.
With these assumptions, kinematic and
stress-time functions can be computed
aPPro~imatelY fO~ the transient state im-
mediately after impact. This method haa
been applied to the design of a nuclear-
povered container ship with a strong pro-
tective side eonst~uction, developed re-
cently in the FR of Germany by WOISIli /7/
of GKSS. It ahovs that high accelerations
and possibly collapse of the whole ship
may he caused by a collision with a ship
hsving a strong bow const~”ction.

2. EQUATIONS OF MOTION

The equations of motion are derived with
the following a.ssumptiona:

- The striking ship collide~ with a known
force P(t) and with its axis in a line
perpendicular to the axis of the struck
ship at a distance e froa its centei-
of gravity G (see fig.1) ,

- the hydrodynamic forces are taken into
account by additional masses,

- influences of rotary inertia and shea.
deformation are “ot included in the
vibration analysis,

- the struck ship is model led as an elas-
tic beam with constant moment of in-
ertia.

%-’
elasbcdisplacementattfmei

I u 1
(a) L ‘2-.==!scI Wlx,tl

Mz(x,t)-O
=@ -

alx,o
(b) I G ‘=-. ~y

+---— L
x 0

Fig.1 (a) Displacement of the
ship!s axis

(b) Bending moment M, and
shear force Q

Fig.1 sho”s the deflection cui-veat time
t in an (x,y) coordinate system coinci-
ding with tbe position of tbe ~ti-”ck
ship at the beginning of the impact
(t=O) . The dotted line indicates the
struck shiprs axis at time t when its
deformation is not considered (rigid-
body motion) and the bending deflection
ie “(x, t). Then, for $(t)<<l

y(x,t) =yG(t) + (x-xG)@ (t) +W(x, t). (1)

This gi”es the absolute acceleration of
the struck ship]s axis

~= YG(t) + (x-xG)i(t) +9 , (2)

meaning the second order deri”a,tive
with respect to t. Thea, the general
differential equation for the lateral
elastic “ibration of the struck ship in
tbe horizontal plane - far simplicity
i-educed to a bar with constant bending
rigidity B = EIZ - is

B.=. B.&. -~at,

=-W($M +;-xG)i(t) +%] .(3)
By the la”s of linear and angular momen-
tum for the struck ship

~G(t) =$(t) and i(t) =* P(t), (4)

m2 being the mass of the struck ship in-

cluding the added hydrodynamic mass, iG
the radius of gy~ation, u the mass of
the struck ship per unit length and P(t)
the impact force. Therefore, the motion
induced by the impact fm.ce can be sx-
pressed by

22W a“w=~p(t)(q + (X- XG)&.
u.w+B.~ ~2 ]. (5)

3. EIGENFUNCTIONS AND EIGENVALUES OF
THE FREE MOTION

Firstly, it is necessary to dete~mine
the solution of the homogeneous eqation
(5), setting P(t)=O. By the approximate
separation process

w(x,t) = ; Xj(x)Tj(t) (6)
j.1

one obtains from eq. (5) the follo”ing
system of 2J ordinary differential
eqations

~j(t)+uj2’fj(t)=0 , j=l, ...J (7)

X;(X, - [)~xj (x)=o (8)

with the Bqw.rs of the angular freqency
w,
J

q . [#)2
u’ (9)
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Aj being the eigenvalue of the eigen-

function X, and ’911the 4-th order deri -

vative wit; i-sspsct
ing the integration
boundary conditions
and shear forces at
struck ship,

Xj’’(o). o ,

X:(o). o ,

to x. After adjust-
.f eq. (8) to the
of vanishing moments
the ends of the

Xj’l(L) =0
(lo)

Xj’’’(L) =0

the normalized eigenfunctions are ob-
tained

A.X )i.x
Xj (x) = sin~+ sinh~+

+ Fj(kj)[cos$ +cosh$)(ll)

The transzsndental equations for detei--
mination of ),.

J

cosAj.coshAj = O (12)

deliver the eigenvalues

Lj=(2j+l)f . (13)

4. COMPLETE SOLUTION FOR THE FORCED
RELATIVE MOTION w(x, t)

pact forces and elastic forces must va.
nish. The inei-tiz forces per unit length
dx= dm/pA of the relative motion w(x,t)
result from eq .(6)

J
‘+B; ~ X’!2(x)Tj(t)dx

X.O j=l J

the virtual work of the elastic forces
is given by

-6”. -~6T, .
aTi 1

L
= -BTi(t)6Ti (t) ~ X;’(x)dx , (16)

X=o

Finally, the inlpulse force P(t) actin~
at the point X. with the virtual displa -
c.ment

‘$JIXO
= 6Ti(t)Xi(xo)

performs the virtual work

P(t)6Ti(t)Xi(xo) . (17)

By summing up the terms (15) to (17),
equating to zero, di”iding by 6Ti, and
referring to eq .(7),

!i(t)+wi2Ti (t)= P(t)Ci(xo) (18)

is obtained with

lnatead of solving eq. (5) for the and
total motion it is more appropriate to Xi(xa)
“se d~Alembert Ts

7
rinciple for the rela-

tive motion w(x,t , according to which
Ei(xo)= L (19)

the virtual work of inertia forces, im-
u ~ X:(x)dx
x=o

w< again being the angulsr frequ~ncy of

- PA.% = -uj~lXj(x)ij (t) . (14)

With the virtual displacement
6w=6Ti(t)Xi (x), and taking account of

tbe orthogonality relatlons for the ei-
genfunctions we obtain the virtual work
of the inertia forces

L a2w6
-uj~wdx=
x=”

L ,, L
= -v ~ Tj(t)6Ti (t) ~ X.(x)Xi(x)dx=

j.1 ~.. J

L
= -u!i(t)6Ti(t) } X:(x)dx . [15)

,=0

With the strain energy of the ship re-
duced to a bending beam with constant
bending stiffness B

t~e i-th eigenfunction of the free mo-
tion . By integration in the denominator
of eq. (19), with Xi(x) according to
eq. (11). it follows approximately

so that:

L
~ X:(x) =L

x=~

Xi(xo)
Ei(xo) =— UL . (20)

For studying the transient state
of the motion caused by a non-periodic
force P(t), it is apprapiate to use an
impulse analysis. It is necessary to
determine the effech of all elemental
momentum values qi”(T)dT= P(T)tidl per

unit ma..so on the system at the time t
(se. fig.2). The velocity increase is

~~i(T) =qi(T), i.e. d~i(~)=qi(~)d~.

The displacement at the instant t cor-
i-~sponding to the initial “elocity
dTi(~) imparted to the system at the
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Force

E

qjlT)=fiP(Tl

permass

qi(I)dx = elementalImpulse

o

T
d._ ,14’ Tirnet,T

Fig,2 Impulse analysis for w(x, t)

time T is analogous to the response of
a linear undamped system for which

;(t) +J1’x(t)=0 .

This holds with the solution adjusted
to the initial conditions X(o)=o
and x(o) =“0

“0
x(t) == sinwt .

BY ‘substituting dTi for x(t), qi(~)d~

for Vo, IJJifor w and t-~ fo~ t, one ob-

tains as response of the syetem at the
instant t to the impulse qi(T)d T at the
time T

qi(T)dT
dTi(t-T) = ~ sinui (t-T) . (21)

1

A particular solution of eq. (18) is ob-
tained by integrating the dT. between
O and t. Adding the solutionlof the ho-
mogeneous eq. (18), the total solution
results as

Ti(t) = Aicostiit+ Bisinwit +

E.(xo) t+1
— ] P(T)sinui(t-T)dT .(22)

w. ~=o1

The initial conditions w(x,O) = O and
i(x, O) = O deliver all constxnts A. = O
and Bi = O on .aceo”nt of eq .(6) ,solthat

the complete solution of the forced Te-
lative elastic motion is

I ~i(Xo) t
W(x,t). ~ — Xi(x) ~P(T)sinwi(t-~)d7.

i.? w ~=~
(23)

5. SOLUTION FOR TWO FORCE FUNCTIONS ?(t)

5.1. P(t) Increasing Linearly with t

For the first shock phase the
o“ers.11 response of the struck ship ia
elastic (regardless of possible large
plastic deformation of tbe shipls strut.
ture in the vicinity of the point of im-
pact) and it is s“ita.ble to assume a
?oi-ce growin

?
linearly with the time T

(see fig. 3a

P(T) ‘~T= CT for the time O~T~+ (2~)

Fig. 3

so that ec

&T= T+2t*.4
Shock-force time dependen-
cy represented by
(a) a linear law
(b) : :o;rier series with

~.(23) after integration yields

I Ci(Xo)
W(x,t) = c ~ TXi(x){wit -sinuit} .(25)

i.1 ~

It is necessary to add the rigid
motion from *q. (~)

body

(26)

“hich after integration, gi”e.s

$(t) .S,g+iot+bo . (27)
’21G

tbe initial conditions

yGo=o, ‘YGO=O, $0=0, ,$..O

With

we obtain f~om wq. (1), with the approxim-
ation (20) for Ci(xo) and with eqs. (Z5)

and (27), the absolute displacement of
the ship!s axis

[
y(x,t) .: :11 + (X- XG)+GI+

I Xi(xo)xi(x)
+1 ~i 1 1{mit-sinoit} (28)
i.1

and its absolute acceleration

5.2. Expansion of P(t) into a Fourier
_

FOF desribing the whole shock
process, it is desirable to represent
the impact force-time dependency by the
Fourier series
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Pm
P(t) .~.t ~ [anco,s~ + bnsir& ) . (30)

*=1
p(t) =Po[~+n~lw sin%] . (32)

‘faking all terms of this series, the Notice that with a finite numbe~ N of
force is zero when t~O and t2T, jumping terms the impulse begins at_t=-t*, so
at t=o to a Conf+tant value Po,and switch- that the shock duration is T=T+2t*. ln-
ing off at t=T (dotted curve =n fig,3b) . sei-ting eq. (3z) into eq .(23), the rela -
Howe”e?, with the finite numbe? N of tive displacement of the ship,s axis is
terms one can better represent the real obtained at time t and point x,caused
shape of a shock force cur”e as obtained by an impact force P(t) at point Xo, as
by tests . Fig.3b shows an impact force
P(t) with N=5. I Ci(xo)

One can even choose the number N
W(x, t). ~

.=t,i[~+
—xi(x)Po }

~., ~i

so that any desired gradient of the P(t)- (33)
curve, selected from experimental evi-
dence and corresponding to the slope of +n=~,3._in~) sinwi(t-l)dT,

the P(t) -cui-ve of fig.3a, can be obtained
(greater values of N give steeper gradi-
ents of the fores curve) . It is assumed

the terms in the second series for n=2,4. .

that waviness of the force curve around
being zero. The total absolute di,splace-

the constant foroe P is not essential
ment is determined a.sin 5.1 by adding

for the shock proces~. However, the as-
the rigid body motion terms .

sumption of approximately constant shock
foi-ces after a first linear phase is

The Fourier analysis should be re-

rather ?ealistic,
stricted to the constant shock force

EIBtests have shown.
The Fo”i-iei-coefficients in eq. (30) are

phase, whereas for the first linear phase
it is better to apply eq. (25) because

P that equation does not contsin distur -
an=o , bn=- ~(cosnn -1} (31) bances for t eta+ as tbe Fo”rie? series

with finite N does (see fig.3b) .
so that we have

6. BENDING MOMENTS AND SHEAR FORCES

Bending moments and shear forces (see fig. lb) for the different load assumptions
are derived from eq. (25) and eq. (33) as follows:

6.1. For Linearly Increasing P(t)

The bending moment is obtained from eq.(25) with ui from .eq.(9), Ei from eq.
(20) and with the eigenfunctiona Xi(x) from eq. (11) as

3 {i~lw(sinh~- sin~+F.(kMz(x, t) =B~=cL/– ~
Ax

1 i){cosh~ - cosk+)(uit-sinuit)) (34)
1

and the shear force is

Q(x,t) ‘ ‘~= cfv%i~l~[oosh%- cOs%+Fi(Ai){sinhY+ sin~}(~it-sin~it)].(jj)

6.2. For a Force Curve Expanded Into a Fourier Series

The bending deflection is obtained by writing the first t“o terms
second series in eq. (33) as

After integration of the first two terms in the bracket, one obtains

I ~i(X )
W(x, t) = 1

[
+xi(x)Po & [1 + sinwitsinwit* - coswitcostiit~$)-

i.1 I 1

(N=3) of the

- +.i.wit[~~...(f+~i)t - ..s(++oi)t++]++( Co+i)t - COs(;-wi)t+} + ..)-

- ~coswit(~{sin(~-mi)t +sin(&ui) t*) - &(sin(~+wi)t + sin(f+wi)tx} * ..] (36)
1 1
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and so forth. Then, with the bracket re-
lation ~. j i = BiN, the bending moment

for N terms of the Fourier series will
he-.

MJx,t) =~,~lXi(.o)(.inh~- .inA#+
l–

A.x A.x

1+Fi(Ai){cosh~- COB+} BiN (37)

and the shear force will be

With eqs. (3A) and (35) or (37) and (38)
the basic equations are in hand for the
stress-time analysis below.

7. STRESS ANALYSIS

The stress analysis can be per-
formed with the basic eqations of sec-
tion 6 by application of conventional
methods of the theory of strength of
structures. The determination of bending
stresses from Mz and shearing stresses
from Q is elementary. As Q is mainly
transferred th~ough the double bottom
and not through the shear center, one
has to take account of a.torsional mo.
ment with additional shear stres~es and
longitudinal stresses on account of re-
strained warping; the calculations for
this purpose are also well known in en-
gineering . To these stresses one must
add the stresses resulting from service
conditions and determine the equivalent
Uniaxial stresses in order to be in a
P08iti0n to judge the danger of collapse
of the whole ship. ‘lothis end, it is
necessary to take into account the in-
crease in yield stress with strain i-ate
and of buckling caused by normal and
shear stresses as described in /8/. It
is not the purpose of this paper to
dwell on details of this stress analysis
because the procedure is self e“ident.
Only the results will be discussed in
the following section.

8. THE OVERALL STRUCTURAL RESPONSE OF A
NUCLEAR POWERED CONTAINERSHIP TO A
COLLISION IMPACT

AD a“ example for applying ths fore-
going theoretical results a ship of inter.
est would be one “hich can endure a rs.th-
er high impact force without suffering
to much local fail”~e. The design of the
nuclear-powered containership described
in /7/ seems to be well suited for this
purpose because ample results from colli-
sion tests aye a“a.ila.ble. The tests “ei-e
made with models having scale ratios of
7.5 and 12 using several bow construc-
tions and several “ei-sions of the pro-
tective consti-uct.ion sound the reactor-
rootn, as reported in /7/.

8.1. Input Data for the ImDact Calculation

The values of input quantities foi-
the dynamic .analysi~ were as in Table I .
As point X. of the force application the
middle of the reactor-room was chos,n.
This is the best protected part of the
st=”ck ship whei-e the ma.xim”m force of
400 MN can be carried without much local
permanent destruction as model tests
showed /7/ .

The impact foi-cewas taken as the
maximum value calculated from accelei-a-
tion measurements in the yeferi-ed colli-
sion tests of /7/, multiplied by the
sq”a-e of the model scale. Assuming this
force to be approximately constant during
the total impact dui-ation,and postulating
an entirely plaetic impact, it can be
concluded from the basic la”s of dynamics
that the d“ra,tion of the impact will be

T= ‘2”1

{1 +(~)’ +m2/ml}Po ‘
(39)

ml being the mass of the striking ship.

Assuming mo/ml = 1.1, with e = X. - L/2 = 40 m,
.

the total duration of the impact is
T. O.88 sec.

8.2. Acceleration and Displacement of the
Ship!s Axis in the First Impact Phase

For this analysis, first of all,
the angular frequencies Ui (l/see) of the

Table 1. GBneral characteristics of the containership

\ieight of struck ship
Mass of st~uck ship including

50% added hydrodynamic mass
Mass per “nit length
Len@th of struck shin

Radius of
Bending rigid
Impact: Veloc

Bea; of struck ship ‘
gyration

:ity
,ity of striking ship

Constant maximum force
Farce acts at

mz
u
L

iG
B

VI
Po
Xo

556

85
0.297

286
j2.3
71.5
1.236

10
Loo
i83

MN (55,780 tons)

MNsec2/m (2,6oo tcmssec’jft)
MNsec2/m2 (2.77 tonesec2/sqft)
m (938.3 ft)
m (106 ft)
m (234.6 ft)
MNm2 (1,335 tonssqft)
m/see (19.42 knots)
MN (40,120 tolls)
M (.o.64L = 600.5 ft)
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Table II Angular frequencies ui(llsec) of f~ee motion

i I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8—
Wi 5.58 15.15

.-
30.1 L &9.82 7!i. L3 103.96 138.40 177.77

free motion were determined f~om eqe.
(9) and (13) in table II.

For the design of the nuclear
facilities, determination of the maxi-
mum possible acceleration of the reacto~
is of primary interest. To calculate
this, it is appropriate to use eq. (29)
with an impact force P(T) = cT_ ‘linearl-
y increasing from zero to T = t, and
acting at the point XO=0.64L of the
reactor. Eq. (39) establishes the dura-
tion of the whole impact (for a certain
impact scenarjo) but statements about
tbe duration t of the first collision
phase can be made only from experimen-
tal observations. In all German colli-
sion tests /7/, the collision force as-
gended nearly linearly within the time
t> O.I-T up to ita ~axi~u~ valu~.

Befo?e one czn determine the ac-
celerations, it is necessary to eva~u -
ate the ~elative displacement W(x, t)
of the shipls axis, given by the series
in eq. (28), which may be of interest
for the stress analyeis. Becauss Wi is
raised to the 3rd power in the denomina.
tor of the series elements, 1=2 terms
give acceptable approximations, i.e. the
displacement is determined mainly by the
first two eigenfunctions . Fi_~.4 show,
the total displacement y(x, t , according

D@acement
r---x”’ l’’’’-----l

v1,5
cm

+
rigidbodydisplacement

-0.5

L 0.8L 0.6L O.4L

Fig. & Total displacement y(x,~)
of the shiprs axig and elast-
ic response w(x,t) caused
by an impact forc~ P growing
linearly within t = O.1 nec
to its maximum “al”e
P. = LOO MN

to eq. (28)4 and the relative displace-
ment w(x, t), for the special case when
the ~aximum force_ P. . 400 MN is ~eached
w~thm the time t=O.1 Gee. Here it
should be msntioned that the stresses

resulting from w(x, ~) in this first
phase are not “erj high. For sti-es~anal-
ysis ths results of section 8.3 are
more important, but the acceleration
may ha”e their greatest “alues in tbe
first phase.

In order to determine the accelel-a-
tion of the i-eactor,eq. (29) ia evaluated
for the duration O <~. 0.18 sec. , and foi-
tbe point x = X. , so that one obtains

I X;(xo)
9=:[1{1+($1+ ~ — sinwi;] , (LO)

i.1 ‘i

with the eigenf,unctions Xi(xo) from eq.
(11) and wi from table II. Taking 1.8
terme of the series, one obtains the m8x-
imum acceleration of the geactor as a
function of the duration t of the first
impact phe.fie.This is plotted in Fig. 5
as a multiple of the acceleration due to
gravity. As mentioned above, in all Gei--

Accelemtion

“009 ~
3.65g

3.00g

a’y
at’
Z.cQg

-k

“’t-------
L-----J

0,OL 0.06 0,12 0.16—”0.18

Durationoffirstshockphase? [see]

Fig.5 Maximum acceleration azy/at2 at
= O,5&L caused by an impact

~~rce P growing linearly within
% se. to its maximum value
P. = LOO MN (g = accele~ation due
to gra”ity)

imum accelerat
5 need not be
ation. It seem
celebration of

man collision tests with models of the
struck ship according to tabls I the du-
~ation gf the first collision phase was
t > O.I.T = 0.0L38 SeC. TherefOre, the ~ax-

ons of up to 3.65 g in Fig.
%ken into serious consider-
that , in this czse, an ac-
.25g is a good approximation.
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3.3. Solution for the Entire ImDact

Stating with the Fourier analysis
of section 5.2., the impact force is ex-
panded into a series with N=3 te~ms as
in eq. (32). In the first shock phase,
this force law can be very well approxim-
ated by a linear l~w for which the
force rises within t = 0.18 sec. to its
maximum value of ?0 = LOO MN (see section
8.1 and Fig.3b and 5). The entire dura-
tion of the impact is chosen from sec-
~ion 8.1 as
T= T+2t$*=0.676+2. O.l02=0.88 sec.
Figs.6 and 7 show the corresponding dis-
placements w(xo, t) and the relative ac-
celerations aZk./at2 at t~e point X. of
the impacting force, obta.lnsd by numeri-
cal differentiation of eq. (36) with 1=2.
The time t=O (aero.”alue of the Fouriex--
expansion) is of interest only for the
calculation procedure. Impact begins at
the time t= -t+:=-0.102 sec. and ends
at t. O.78 sec. IrIFigs.6 and 7 the rig-
id body displacements and accelerations
are displayed by dotted lines so that
the respective total values can be read
off as the differences between the
dotted curves and the curves of w(xo, t)
and a’w/at2 for Xo,t. The total acl2,21-
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-lo-
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-20 ‘cached 1 r!gldtcdydeflectim-Yl~,t)
-30~

Fig.’6Displacement of the shipf~
axis at X. = 0.6LL for a
maximum shock force
PO = /+00MN reached within
0.18 sec. and acting at x

o

Fig.7 Accelerations at X. = 0.6LL
for maximum shock force
P. = 400 MN Tezched within
0.18 sec. (g.accelei-ation
of gravity

eration of l.lgat ;= 0.18 ~ec. of the
first impact phase (t = 0.08 sec. ) coin-
cides with the corresponding value of
Fig .5. During the impact, 1.35 g is the
maximum total acceleration.

Whether the acceleration of nearly
2 g after the end of the impact will be
reached seems to be questionable because
damping will play w,role with increasing
time but this has not been considered in
the foregoing investigation.

8.4. Stress Analysis

For calculating the bending moment,
e<. (37) is used while the shear force is
calculated from eq.(38) beea”se the
equivalent values from eqs. (34) agd (35)
in the first colli~ion phase (t ~ ~), .ac.

~~~!inf.~~ ;;~~~~a~:’;j .a;;r;;~~~g~~~
the dominating first t“o tei-meof BiN
are needed (i.e. set 1.2 in the
said equations) in order to obtain satis-
factory app=oxitnations. The point

‘o = 0.6hL Of the imPacting force remains
as before, but fo~ x we use the most en-
dangered cross section (just in front of
the reactor-room) , namely x = 0.59 L. Then
finally, the time dependencies of bending

Shearforce

Fig.8 Shear force Q(t) at x= O.59L
resulting from maximum shock
force P. . kOO MN acting at
XO=0.64L
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Fig.9 Bending moment M,(t) re-
sulting from shock foi-ce
as in Fig.8

I
b.



moment and shear force follow f~om Figs.
8 and 9.

Only longitudinal st~esaes and
bending sbea.r stresses have been taken
into consideration in the stress analy.
sis. These have been combined into an
equivalent uniaxial strese. Longitudinal
stresses are cauaed by the impact bend.
ing moment M in the (x,y)-plans (see
fig.9) , by tfiestill water bending mo-
ment in the (x,.)-plane, and by re-
strained warping associated with the
torsion moment. The warping stresses
and bending shear st=esses have been
calculated by assuming an open cross
section and total warping resti-aint,
which are admittedly rather strong sim-
plifications . Fig. 10a shous the double
bull cross section just in front of the
reactor room. The results of these cal-
culations are plotted in Fig.10b as
curves of longitudinal stresses veTs”s
time for the four most endangered points
of the cross section.
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section at x = 0.59L

(b) Resultmt uniaxial
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Collapse is considered to start
when the equivalent uniaxial ~trea~
reaches tbe dynamic yield stress
OYd”n = 3?0 N/mm (L5 ksi), or when b“ck-

.“
ling, occurs on the compression side
(e.g, point @) ,taking the influence of
t~e shear stresses on buckling into ~On-
slderation) . Collapse of the cros~ sec-
tion will begin at about t . O.Z Sec. ,
i.e . 0.3 sec. after the impact started,
if one considers only Iongit”dinal and
bending shear stre~ses. Inspection of
Fi .9 shows that the bending moment

?Mz t) at t .0.63 sec. theoretically is
twice its value at the collapse time, so
one can conclude that in reality a
smalle~ impact force or a smaller colli-
sion velocity will cause collapse.

Inclusion of torsional shear
stresses, whose calculation i-eq”ire.sa
more exact and rather complicated stress
analysis of the whole ship which goes
beyond the scope of this paper, will
make the situation even “orse.

Finally, the influence of the
wave propagation of stresses on the itn-
pact process has been estimated. With
most unfavorable assumptions, the max-
imum time fo? building up the final
stress state in the whole ship is about
0.05 sec. Comparing this value with the
stress-time curves of Fig .10, one may
conclude that the time for propagation of
the sti-eesua”es i~ so short that it
has no essential influence on the impact
process.

9. CONCLUSIONS

It must be emphasized that the
preceding studies were not intended to
predict exactly the behavior of the
whole ship when struck in a collision be-
cau,ssthe assumptions for a collision
scenario cannot be defined very accurate.
~Y . The calculation give only a rough
estimation. Therefore, the simplifica-
tions (constant bending rigidity, homo-
geneous mass distribution, linearly in.
crea~ing shock foi-ceup to an approxima-
tely Constant “slue and inclusion in the
stress analysis of only longitudinal
stresses and bending shear stresses)
seem to be justified in order to get a
rather simple and quick instrument for
estimating the consequences of a colli-
sion impact. For tbe special case of a
nuclear po”ered containership struck at
the middle of its heavily protected I-e-
actor Toom, the study shows that in
spite of - or perhaps even because of -
the resistance of the protective con-
struction, which is able to withstand
the intruding of the striking shipls
bow, the whole ship will collapse at a
CTOSB section in front of the reacto~
room. The study alao shows that the Dax-
imurnsccele~ation has so high a value
that it must be taken into serious con-
sideration in tbe design of the reactor
facilities. &–-
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