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AssfltACr

A stochastic mtiel for fatiguecrackgrowth is

applied.which accountsfor uncertaintiesin loading,
initialand criticaldefectsizes,materialparameters

includingspatialvariation,and in the uncertainty

relatedto computationof the stressintensityfactor.

Failu~ probabilitiesare computed by first-and

second-orderreliabilitymethods and sensitivityfac-

torsare &termined. Model updating based on in-

serviceinspectionresultsis formulated witfdn the

firstkrderreliabilitymethod. Updated failureproba-

bilitiesarecomputed and thedistributionsofthebasic

variablesareupdated.Two typesof h-serviceinspec-

tionresultsare used to update the computed failure

probabilities.Inspectionswhich do not detect a crack
are used and the inspection uncertainty k included in
terms of the distribution of nondetwted crack sizes by
the specific tnspectlon methcd. inspections which
detect a crack are also included and the inspection
uncertainty l.s Included through the uncertainty m the
measured crack size. The formulation are presented
for u@ating based on one or more fnspectioms. A
similar formulation for reliability updating after
repair 1sprovided within the same framework.

INTRODUSXION

In offshore steel structures flaws are inherent due
to, e.g., notches, weldiag defects and voids, Macro
cracks can originate from thew flaws and under time
varying 100ding grow to a critical size causing mtas-
trophic failure. The conditions governing the fatigue
crack growth are the geometry of the structure and
crack initiation site, the material characteristics, the
environmental conditions and the loading. In general,
these conditions are of random nature. The appropri-
ate analysis and design methodologies should there-
fore be based m probabilistic rnethcds.

In recent years considerable research efforts have
been reported on probabilistic modellng of fatigue
cm.ck growth based m a fracture mechanim approach,
see, e.g., [1-81. In particular, stable crack growth due
to cyclic kmding has been studied. This paper presents
a stochastic model for this crack growth phase for
which linear elastic fracture mechanics 1s applicable.

A common mcdel is formulated for constant and vari-
able amplitude loadfng. The model is &veloped for a
cracked panel and has hem shown to be in good

agreement with experimental test restits. A generafi-
zatkm to a semi-elliptical surface crack is straightfor-
ward and has been successfully implemented. Uncef-
taintks fn the loading conditions, in the computation
of the stress intensity factor, in the initial crack
geometry, and in tie material properties are included.
fn particulm the material resistance against crack
growth ts mcdeled as a spatial random process thus
accounting for material variations within each spec-
men.

The probability that the crack size exceeds a criU-
cal size during some time Prlcd fs of interest. It f.s
demonstrated how thfs event is formulated in terms
of a limit state function with a corresponding safety
margin and how the probability of falfure can ke cal-
culated by a first- or second-mder reliability method.
The critical crack size may refer to growth through
the ttdcknm m’ to a size where a brittle fracture or
plastic collapse occur. The critical crack size can be
mcdeled as a determirdstlc or as a random quantity.

impactions are frequently made for structures in
service. some inspections rt.mdt in the detection of a
crack while others give no detection. The size of a
detected crack is measumd either directly m
indirectly through a non destructive inspection
methcxi, where the meammd signal k interpreted as a
crack size. Neither the measurement nor the interpr~
tation are possible In an exact way and the resulting
Inspection result is consequently of random nature.
When the ins~tkm dc+s not reveal a crack this does
not necessarily mean that no crack fs present. A
detectable crack is only detected by a certain probabil-
ity depsnding on the size of the crack and on the
inspection method. Whether or not a crack k
detected, the inspection provides additional informat-
ion which can be used to update the reliability and/or
the distribution of the basic variables. This can lead
to, e.g., modifications of inspection plans, change in
inspection methcd, or a decision on repair or replace-
ment. The pap?r describes ins~ction results in terms
of event margins and formulates the updating in
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terms of these event margins and the safety margin.
The use of first-order reliability methods to perform
the calculations h demonstrated.

When a repair of a detected crack is made and a
new refinability analysk is performed, it is important
that the new analysis accounts for the information
that a repair was necessary. Often it is not pmsible to
determine If the unexpected large crack size has keen
caused by a large initial size, by material properties
poorer than anticipated, or by a loading of the crack
UP area larger than anticipated. The paper demon-
strates how information obtained III connection with a
repair is introduced.

For welded structures a crack is generally
assumed to te present after fabrkation. The analysis
methcd can, however, in a simple manner include a
random crack initiation pericd for which a separate
mcdel can be formulated.

FATfGUE CRACK GROWTH MODEL

In a linear elastic fracture mechanics approach
the increment in crack tie, Aa, durfng a load cycle IS
related to the range of the stress intensity factor, AK,
for the load cycle. A simple relation which k
suflcient for most pm-poses was proposed hy Paris and
Erdcgan, [9]

Aa=c(AKY, AK>O (1)

The crack growth equation IS used without a positive
lower threshold on AK below which no crack growth
occurs. The equation was proposed based on experi-
mental results, but is also the result of various
mechanical and energy based modefs, see, e.g., [9,101.
C and m are material constants. The crack increment
in one cycle is genemdly very small compared to the
crack size and (1) is consequently written in a ‘kinetic’
fmm as

.@. c(AKr, AK>o
dN

(2)

where N is the number of stress cycles. The stress
intensity factor K IS computed by ltnear elastic frac-
ture mechani~ and is expressed as

K=u Y(a)& (3)

where o is the far-field strm and Y(a) IS the
geometry furmtlon. To explicitly account for uncer-
tainties in the calculation of K, the geometry function
is written as Y(a) = Y (a ,Y), where Y ts a vettor of
random parameters. Inserting (3) tn (2) and separating
the variables leads to the differential equation

da

Y(a,YF(&Y
= C (AaTdN, a [O)=ao [4)

where Q~ fs the hdtial crack size. The equation IS

appli~ hth for constant and for variable amplitu&
leading, thus ignoring possible sequence effects. Also a
pxmlble etfect of the mean stress or R -ratio is ignored.

Eqs.( 1L4) describe the crack size as a scalar a,
which for a cracked panel IS the crack length. For a

surface m embedded crack a description of the crack
depth, crack length and crack shape is necessary. It !s
common practice to assume a semi+ lliptical initial
shape for a surface crock and to assume that the shape
remains semi-elliptical during the crack growth. In
that WI.%the crack depth a and the length 2C describe
the crack. TIM differential equation (2) is replacd by
a pair of coupled equations,seee.g.[11].

8olutions to (4) are smcmtb curves which do not
intermingle. TMs is in contrast to experimental
results as reported in, e.g., [12]. As a consequence the
crack growth model is randomized as, [7]

(5)

where C, b a random variable nmdeung variations in
C from specimen to specimen, while C*(a) is a sta-

tionary 1~-nomml process mcdeling variations ti C
within each specimen. The expected value of C ~(a ) ts
taken as one. The random model in (5) has th~ pm-
pertie.s, which me ex~rfrnentally observed in the test
results reported in [121

sample curves of a versus N me irregular and
not very snmotb,

sample curves of a versus N become more
smooth for larger values of a,

sample curves of a versus N intermingle, tn pm.
titular for smaller values of o.

To estimate the correlation proyrties of the random
process C 2(u ) a statistical analysis of the @t data
from [12] has been carried out, [7]. The correlation
function p2( Aa ) for C ~(a ) IS shown to decrease to
zero very rapidly with Aa. The correlation radius rc
ISdefined as

.
r= = j’p2(x ) dx (6)

and has been estimated as 0.12 mm for the alwninum
alloy in the experiments of [12]. The variance of C ~
has been estimated as 0.062 for the same data. The

variance fs expected to be signtfcantly larger for crack
growth in material in the heat affwted zone or In the
weld material. Non-proprietary &td are, however,
not available for e&fmatfon of the variance in these
Circumstances.

A damage function V(. ) is introduced from (4)
as

a
c *(x)

Y(=)=/ Y(x,YY(&Y”
dx (7)

The stress ranges are denoted St= Ao ~ and solution of
(4) gives

N C , S’” N comtani ~plitie
Y(a) =C, fSmdN= (8)

o c I is,” .~~le amPlicude
,=,

The d~erence between the two cases of constant and
variable mnplltnde Ioadfng therefore only concerns



the loading statistics. fn what follows, um.stant
amplitude loading 1s considenxi, while variable ampli-
tude loading is considered again at the end of the
paper.

fn th? pm.sentation it has so far been a,s.sunmd
that a crack k present at the time the loading is

applied. With an Initial crack initiation Periwi before
the crack reaches a size a ~, for which fracture
mechanics can be applied with some confidence to
describe the fatigue crack growth, the solution to (4)
k

/y(x>y;:(;&)mdx = C,Sm (N–NO) (9)

where No IS the (random) crack Initiation pericd for
which a separate mcdel can Ix formulated.

The samnd moment statistics for the damage
function conditioned upon (a ~,Y,m ) are

E[v(4 )lao,Y,ml = Jy(x,y;,=y ‘~(’o)

“ ‘C, v~[czldx
Vclr [w(. )lr30,Y,nI] = J

., Y (x ,YY’” (7X F
(11)

p[W(a ~),Y(a J Iao,Y,m 1= (12)

~im[a,,nJ

] ‘ dx
.0 Y (x ,YP (mx Y

The approxlmatkms for the variamx and the cm’reL-
tkm function are justh%d by the short correlation
length of C J.a ) compared b crack size increments of
interest. The random variable W(U) Ia ~,Y,m IS essen-
tially the sum of many Independent random variables
of approximately the same variance. The distribution
IS therefore well approximatai by a normal distribu-
tion.

The failure criterion is taken as exceedence of a
critical crack size a= In a time period with N stress
cycles,

q+N <0 (13)

where aN is the crack size after the N stress cycles.
Y(a) IS monotonically increasing and the failure cri-
terion (13) can be written as

Y(rlc ) - Y(ON) = (14)

The safetymarginM isthereforedefined as

=.
c Jx )

M=JY(X,YY(GY
dx– C,S” N (15)

and the failure probability PF is

P= = P(’i’f <0) (16)

EvENT MASGINS FOR INSPECTION RESULTS
AND REPAfR

Two types of inspection results are considered

a(Nf) <Adi, i=l,2, . . ..r (17)

a(N, )= A,, j=l,2, . . ..s (18)

In the first case, (17), no crack was found in the
inspection after Ni stress cycles, implying that the
crack size was smaller than the smallest detectable
crack size Adi. Adt is generally random since a det.w-
able crack is only detected with a certain probability
depending on the crack size and on the inspection
method. The distribution of Adi is the distribution of
non-detected cracks and the distribution function IS
identical to the M (probability of detection) function
for t-he inspection methbd. fnformatkm of the type
[17) can be envisaged for several times. ff Ad, IS
determhdstic, however, and the same for all tnspR-
tkms, the information in the latest observation vJn-
tains all the Infommtkm of the previous ones. In the
second case, (18), a crack size A, is observed after N,
stress cycles. A, fs generally random due to measure-
ment error and/or due to uncertainties tn the interpre-
tation of a measured signal as a crack size. Measure-
ments of the type (18) can also be envisaged for
sm-eral times corresponding to several values of N,.

For each measurement (17) an event margin Ml
can be defined similar to the safety margin (15) as

Mi=CISm Nt–~
c Jx )

.0 Y(X,YY (..G)-
dx < 0(19)

These evmt margins are negative due to (17). For
each measurement (18) an event margin can similarly
be defllwd as

These safety margins are zero due to ( 18).

The situation is envisaged where no crack is
detected in the first r inspatlons at a location, while a
crack is detected by the r + 1‘th inspection and its size
is measured at this ond the following .s–1 lmspections.
The updated failure probability IS in this w

PF=P(~sOl~,<on.nkfr $on~, +,=.= ~r~=o) (21)

A more general situation iavolves simultaneous con-
sideration of several locations W(UI ptentlally
dangerous cracks for which inspectkms are carried
out. The u.cdatlng prccedure still applles when due
consideration is taken to the dependence between basic
variables referrin~ to di5erent locations.

Assume now that a repair takes place after N,tp
stress cycles and a crack size CZ,epis observed. The
event margin M,,, is defined as



The crack size present after repair and a ~hle
inspectkm is a random variable o_ and the material
properties after repair are ~ and C,,-. The
safety margin aftir repair is Mm

–cl,- s“- (N–Nrq )

and the failure probability after repair is

PF = P(MW <O IMW=O) (24)

This updated failure probability 1s then of the same
form as (21).

The crack size at repair IS not necessarily mea,-
ured, but the decision of repair k based on an observed
size larger than a limiting value arw. The event mar.
gin M,ep in (22) is then negative.In (24) for tie

updated failureprobability,the conditionMmp =0 is

then replaced by MW <0 and the expression is still of
the form covered by (21).

fWLfASILfTY METHOD

The reliability methcd used in this paper is the
firs-order reliability methcnl wbfch is here briefly
revfewwf for parallel systems. For a more thorough
description see [13]. Each element III the parallel sys-
tem is described by a safety margin Mi =Ei (Z) in

terms of the vector of basic variables Z. The safety
margin-s are defined with M, <0 corresponding to
failure in the i tb element, and gi (z)=O debing the

limit state surface for the i th element. The failure
probability of a parallel system with k elements k

% = p(M1<OnM2<0n . . . nkft <0) (25)

The failure probability is computed efficiently and to a
good accuracy by a fimt+rder reliability methcd. The
tit step In the computation fs a transformation of the
vector of basic variables into a vector of standardized
and in&y?ndent normal variables U. The transforma-
tion is denoted T and the transformed space is called
the normal space,

U = T(Z) (26)

A god choice for T is a transformation, which uses
the conditional distribution functions

F, (Z, IZ 1,.,2, _,)=P(Z~ <Z, IZ 1=2 l,.,?+I=ZI+) of
the basic variables, [14]

U1 = O-l(F1(Z J)

U2 = 0-1(F2(Z21ZJ)

U, = U+Ft(Z, lZ1.Zz, . . . .Z-l))
(27)

u,, = .#+Fn(zn 121,22,... .z, _J)

Here 0( ) denotes the standardlzfd normal distribu-
tion function. The limit state surfaces for the indivi-
dual elements are expressed in terms of u as

& (z)= gi (T_’(u))= g.,~ (u)= O, i= 1,2,.,k (28)

The second step in a firs-order reliability
analysis consists in determining the joint design point
u-, which is the point cm the limit state surface closest
to the mlgln. u“ is thus found as the solution of a
con.stralnwl mirdmizauon

min [“l
g.,,(u) <0, i=l,2, . . ..k (29)

provided that gU,<(0)>0 for at least one i 6{ 1,.,.,x}.
Standard optimization techniqu~ can be applkd to
solve this problem. All constraints are not necessarily
active at the joint design @nt, Le., gu ,j (u” )=0 is not
necessarily valid for all i. Let 1 <k denote the
number of active constraints.

The third shp in a first-order reliability method
consists In a linearization of the safety margins at the
joint design pint ““ formulated in the normal spw%.
In normalhed form the Uneari2ed safety margins are

M, = f3i–@f (30)

where m{ is a unft vector and & =CZ,TU”is the fiti-

order reliability index for element i of the parallel
system linearized at the joint design point. The mrre-
lation coefficient pi, between the safety margins Mt

and M, is

P,, = PLW sM, 1= CZ?CZl (31)

The failure probability of the parallel system IS now
estimated as

PF = Qz(–&P) (32)

where B= [& ), p={p,, } and only the t active elements
are included. The asymptotic result .%s Iu“ I*CU is,
[151

Pn -0, (–E?;P) [det(I–D)~l/l, Iu“ I-PW (33)

where 1 &notEs the unit matrix and D is a matrix
determined by the coordinates of the design point and
the gradients and second order derivatives of the limit
state functions at the design point.

The reliability index ISn for the system is de5ed
as

5, = 4-’(P, ) (34)

For a single element the asymptotic result for /3R is
derived fn [161:

fln -0, (3= IU” I+C0 (35)

A generalization of this result to a parallel system
yields

6, - –0–1(0/ (–& p)), I u“ I+0s (36)

The failure probability in ( 16) is calculated
directly by (32) m (33) with k =1 =1. The updated
fallure probability in (21) IS rewritten as
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?(.i.f<oi.if, <on. n.w, <on.w+,=.=~r+. =o) (37)

VP(M <O,M, <O...M, <O,M, +,%+,,..M,., <X, +,)

tw+, ax,+,

aJ~@flsO..Mr <OM, +I%+,.. M,+, %+,)
a.++, w+,

where the partial derivativesare evaluatedat x= O.

TWO parallelsystems mmt thus be analyzed,but the

optimizationproblem is cast in a slightlydUTerent

form than (29)sincethe constraintscorrespondingto
the detectedcracksizesarechangedto equalitycon-

straints.In addition,linearizedsafetymargins for

inactiveconstraintsare iacludedas describedin [171.

The vectorof reliabilityindicesand the correlation

matrixfortienormalizedsafetyand evemt~arginsIII

thenumeratorare

5 ~ P; P;

& . PI P,l Pfi (38)

& Pz PM Pu

where 13refcm to the safety ma@n, an Index 1 to the
normalized event margins for no detection and an
Index 2 to the normalized event margins for a detected
crack andrneasured crack size. The dimension of !31is
r (since imwt.lve constraints have been included) and
the dimension of /32 is s. The vector of reliability
lndi~ and the correlation matrix for the denomtmitor
are similarly

&’ P,,’ P;:

Bi ‘
(39)

P2i P2i

The joint design @nt for the parallel system in the
denmmhmtm Is generally different fmm the design

point for the parallel system in the numerator. This is
emphasized by the w of a prlmeio the denominator.
The dimension of L31’IS r and the dimension of f32,is
s.

In [181 the asymptotic result for the partial
deriwitive of 13Rfor an element has been derived with
respect to a distribution m fimit qtate function param-
eter p:

a~,
—-+g! l“” 1+-

ap
(40)

For the failure probability then follows

apF _ ao[–h ) –_o(BR ) *
———_

ap ap
(41)

-–O(B)%, l“’l+co

Gewwaltzlng this result to the parallel system in the
numerator of (37) yields

P;H=6,(+3,;PJ Q. +, – :, – p~ PG102 ;

1 p; p:
* Pfil [P2 PJP, P,, – p21

J

where stindard results for the conditional multivari-
ate nnrmal distribution have been applied since the
vectors of Unearized safety margins me joint normally
distributed. Furthermore a/3t / &ri=– 1 has ken A,
which is valld since Var [Mi ]= 1. For the conditional
probability in (37) one obtatns

p(,wsol~, son. n,wrson~, +,=,=,vf, ,,=o) (43)

The updzdlng of the reliability has been &mon-
strated. If the interest IS on updating the distribution
of the basic varfables the same procedure is followei
fnstead of the safety margin (15) an event margin M
for basic variable Zi is defined as

M= Zi–zi (44)

With the safety margin replaced by th!s event margin
the value of the cumulative distribution function for
Z< at the argument Zi is updated. ‘f& procedure can
be repeated for dilYerent arguments z, and the com-
plete distribution function thereby be updated. Even
when the basic variables are Initially in&psndeat the

u@t@ prtiure generally introduces &pen&nce.
It may thus be more relevant to update the joint di.e-
trlbution function. The safety margin M is then
replaced by a vector of event margins
{Zi –zt }, i = 1,... ,n and the updating of the vector is
performed as described above.
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EXAMPLE.

Consider a panel with a center crack as in the
experiments of [12]. The loading is a constant ampli-
tude loading leading to a far-field stress range S. The
geometry function is mtiled as

Y(a ,Y) = exp(Yl(~)y9 (45)

The geometry function takes the value one for a=O.
Lengths are measured in mm and stresses in N /mm 2.
The distribution of the basic variabks k taken as

S 6 N (60, 102)

Y1 c LN(l, O.29

Y*e LN(2,0.12)

cloc’?x(l) (46)

ac 6 N (50, l@)

(lnC,, m ) c N,(–33.CXJ, 0.472,3.5, 0.32; -0.9)

N (g, 02) denotes a normal distribution with mean
value # and variance 02. Similarly LN (#,oz) denotes
a 1~-normal distribution with mean value p and
variance 02. N JLLI,o ~,wz,ul;p) denotes a blvariate
normal distribution with mean values PI and p2, vari-
ances o ~ and o; and correlation cmf?icient p. EX (p)
denotes an exponential dktrlbution with mean value
p. The negative correlation between lnC, and m k
not reflecting a physical depmdence, but IS introduced
by the form of the crack growth equation (2). Statis-
tics for C *(a ) are taken as those reported in [7], see
section 2 of this paper. The example has eight basic
variables and the transformation into standardized
and Independent normal variables has been described
in [13,19,20].

~
,03 ,!0’ 5!0’ 10’ ,10’

Figure 1. First- and second-order relia-
bility index from design calculation.

The firs-order and improved second-order

aPProximauons to the reliability index are shown In
Fig. 1 for variom life times expressed III terms of the
number of stress cycles N. The two approximations
are close implying that the curvatures of the limit
state surface are mcderate at the design point. Stat&
tics for the distribution of life time T CaIIbe directly

apprO~mati frorntheresultsof Fig. 1. For the nlean
life time the approximation Is

EIT]=f(l– P(T<t))dt =
0

plw,dt ,47,

For N= 1.5. I@ cycles the reliabiftt y index and
the sensitivity factors am shown in Table 1. cz~ can

be interpreted as the fraction of the total uncwtalnty
due to uncertainty arising from basic variable Ui. The
major contribution to the overall uncertainty is thus
In tbfs case from the uncertainty in the material
parameters. The critical crack size uncertainty IS of
little relative Wqmrtance III this case, and the same is
conclude.1 in almost all cas~ where the critical crack
size Is significantly larger than the Initial crack size.
The uncertainty in the gmmetry function contributes
very little to the total uncertainty in this case. This IS
kecause the value for a =0 is completely km.wm.
When this initial value IS not known the uncertainty
Is comparable to the uncertainty in the loadlng. The
uncertainty contribution from the uncertainty in the
change in the geometry function fmm the initial valw
Is generally found to be low. For tubular jolnis,
where the geometry function is approximately pmpor-
UOnal to a ’112 for large values of a, this statement
may not be true in all cases.

TARLE 1 ReUaMlity index and sensitivity factors

N=l.5.l@ 13=1.816

Variable % ~i’

am 0.5513 30%.
% -o.ml 0%

s 0.3577 13%

m -0.6141 38%

Clm 0.4362 19%

y: -0.0248 o%

Y, 0.CJ385 w

+*)l. OJ%,Y.M -o.fwo o%

J3a.sd on the results in Table 1 and results for the
parametric sensitivity factor (40), [13, 181, the sms-
tivity of the reliability index to a change in a d!.strlbu-
Uon parameter can be &termined. For the mean value
I.LSof the normally distributed loading variable S, the
sensitivity factor is

~ . –~ . .? . 4).0358 (48)

An increase in PS by 10 MPa thus leads to an change
m !3of approximately (-O.0358)1C-O.358.
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Next, the situation where a crack h found in the
first insped.ion is considered. It is envisaged that the
inspection is carried out after N,= I@ stress cycles

and a crack length of 3.9 mm is measured. The mem-
urement error ls assumed to be normally distributed
with standard deviation UA. Figure 2 shows the

u@t~ mUability index as a function of OA, when
(43) has been applied with (rs )==(0,1). The result is
almost independent of OA tn this example as the
uncertainty in the initial crack size fs dominating the
uncertdlnty in A,. When the crack Is detected, a tii-
sion has to be ma& and two options are present. It
may be decided to repair the crack now or to leave the
crack as it is and base a decision on repair on more
inspection results. With just one inspection it k not
possible to determine if the crack was initially fmge
but grows slowly enough that repair is not needed, or
the crack was inlttally fairly small but is growing fast
and must be repaired. ff a requirement on the reliabil-
ity index in a period without lnsFctiom is fornm-
Iated, e.g., 51>2, the latest time of the next lnspe-s-
tion ts determined from Fig.2.

4

3

~ :\:

CA. ..5

2
%.?
0.02
om

0

.,

N

,05 2,.5 5,0, ,Os m. ,1.6 10,

Figure 2. U@atmf Jimt-ofder reliability
tn&x after first inspection with crack
measurement 3.9 mm.

Assume that the crack is not repalre?f but a
second inspection at N =2.l@ stress cycles I.$required.
Let the InspectIon methcd be the same as in the first
impection and let the measured crack size h 4.0 nun.
The measurement error is again assumed to be nor-
mally distributed “Ith standard &viation OA and the

two measurement errors are assumed to be stmsu-

callyindependent. Figure 3 shows the updated relfa-
billt.y index after tbk. second Inspection. Different
inspection qualities now lead to very different results.
With CA=0 the negative slope of the reiiabilit y index
curve becomes very large demonstrating that the
crack growth behavior is basically determined by two

B r ., 05 02 0? 002 Or”m “7
4

3

2

0

‘ ::\

-1

N

,0, 2d 51$ 10s 210” 5.10” 10’

Figure 3. Updated first-order reflabillty
ti&x after second inspecthm with crack
measurements 3.9 mm and 4.0 mm.

combinations of the basic varkibks. With a iarge
measurement uncertainty there is an hnmedlate and
large increase in reliability, but after some time the
curve become almost identical to the curve resulting
after the first InspectIon. Due to large uncertainty in
both Inspdions only ifttle foformation Is gained on
the crack growth rate. If the Inspection quallty is
very high It may be possible to state that the crack
does not grow to a critical size wtti the design Me
time. Repair and further inspections are then unneces-
sary. For a poorer inspection quality a time period
until the next inspection can be determined and the
decision on repair be further delayed.
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Figure 4. U@ded first~rder reliability
in&x after second inspection with crack
measurements 3.9 mm and 4.0 mm,
importance of inhomogeneit y.

N
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Figure 4 shows the results of Flg.3 together with
similar results for a homogeneous material. It is
observed that only for very small ins~ion uncer-
tainty dces the material inhomogeneity sigticantly
zdfect results. The estimates for material inhomu.
genelty used in this example are for base material and
the conclusion may be somewhat different for crack
growth In weld material or in base material in a heat
a5ected zone.

Figure 5 presents results similar to those in Fig.3,
but for the case where a crack size of 5 mm fs reported
in the second Inspection. Tc.gether, the two inspection
results now indicate fiat a large and fast growing
crack IS present. Repair is therefore necessary witbfn
a short period.
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Figure 5. Updated 6mt-onier reflabllity
index after second in,s~cm with crack
measurements 3.9 mm and 5.0 mm.

Consider now difTwent situations where the

~-OIIS do nOt result in crack detecticm. h
attempt 1s ma& to lflustrate possible means to achieve

a rff@~ re~bflity. Let the reliablflty requirement
be BR>3.0 and let the design fife time correspond to

1.5. I@ tires cycles. Figure 6 shows the refinability
index as a funcflon of numbw of stress cycles for two
pfate thicknesses. With a plate thickness t the refia-
blfity requirement is fuffilled for the design life tfme
and no tnspectlons are needed. With a plate thtcfcms
of only 60?3 of t the refinability requirement is
fuffdkd for the period until N =2.l@ stress wcks,
where an inspection is neded. The quallty of the
inspection IS reflected fn the distribution of non-
detected cracks. An exponential distribution is
assumed with a mean value k. Cracks initially
present are cracks which have passed the inspwtion at
the production We either because they were not
detected or bemuse they were below the acceptance
level. ~ no cracks were accepted in fabrication, the
fabrication inspection therefore corresponds to k= 1.
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Figure 6. First-.mder r-efhbflity Index for
two plati thickne53es.

Figure 7 shows the initial reliability index and

u~t~ mliabiEty ~&ces for three inspection quali-
ties. The best inspection quality A=O.3 is betkr than
the fabrication imspecUon quality and if no crack IS
found with this method the increase in reflabillty is
sw?tcient to make further inspections unnecessary. For
the two other inspection qualities, Prbds are deter-
mined until the next In5pwtion.
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Figure 7. Updated first-order reliability
index after first inspection with no crack
detection.
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Figure8 shows the totalinspd.ionrequirement

fork= 1 when no crackisdetectedin anY inspection.

For thiscase two tn.s~ctionsare needed. Finally,

Fig.9 shows the total inspection requirement for A=3
when no crack is detected fn any InspectIon, and for
this case five inspections are needed. It is thus demon-
stratti that different strategies on design and inspec-
tion planning can be used to achieve a required relia-
bility.

6 p,I I 1

0

-,

0,

,,10s
L I I

w’ m’ 5703 ?.’ ,m’ 3w’ ,.’ N

Figure 8. Updatkd fimt-order refiabiffty
fndex after inspections with no crack
&tectfOn, mean sfze of non-detecti
cracks 1 mm.
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Figure 9. Updated first-order reliability
index after inscectlons with no crack
detection,rnea~ size of nondetectd

cracks3 mm.
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The results of a reliability analysis following a
repair of a detected crack is lllustmted in Fig.10. It is
assumed that a crack size of arep=8 mm is repaired
after N*P =2.105 stress cycles. The distrlbt uon of the
initial crack size after repair a- is taken as an
exponential distribution with a mean value of 1 mm,
I.e., as the same initial dktributlon as after fabrim-
tion. Two situations are considered with either idenU-
cal or independent nmterlal properties before and after
repair. When independent pmpwties are assumed the
same distribution k used for the properties kefore and
after repair. If follows from the resuft.s that there is
an immediate increase in refiabifity after repair, but
the rellabtllty quickly drops to a level below the level
obtained for the calculations before repair. This
reflects the possibility @t the cause for the large
repaired crack sfze fs a larger than anuci@ed loading
of the crack tip, which is afso acting after the repair.

-1.

INDEPENDENT

NO REPAIR

~+
@ 2m5 5W5 @ ~.@ 5.w6 107

Figure 10. Updated first-order refiabifity
inckx after repair of an 8 mm crack at
N =2.l& stress cycles.

The results presented fn this example have keen
for a constant amp fftude loading. For offshore struc-
tures a long tsrm stress range distribution fs generally

appfied fn fatigue analyses. Due to uncertainty fn the
environmentzd statistics, load models, global stmc-
tural analysis and local stress analysis, the parameters
of the long term distribution should be modeled as
random variabks. A Weibull distribution is often
used

FS[S ) = l–exP(-(sl A )B), s >0 (49)

where A and B are random variables. A calibration
of the statistics for A and B, based on an uncertainty
modeling for the above mentioned sources, can be per-
formed by a modification of the probabilistic fatigue
anal ysis presented fn [21]. The factor ~N= ,Spmin (8)
1s replaced by the expected value, which for Weibull
distributed stress ranges becomes
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E[$S:]=EW]E[S” ]= E[N]A” I’(1+~) (50)
,==1

The expected vdUi? is random due to the random dl.-
tributicm parameters, but the uncertainty in the sum
for 6xd distribution parameters is neglected. ‘flIIS is
reasonable due to the large number of random vari-
ables with little correlation in the summation.

For variable ampUtude leading it is also of
Interest to study the eflect of a non-zero threshold
value for AK in (2), which becomes

~= C(AKY, AK> AKtti
dN

(51)

Eq.(4) is then replaced by

da
= c (Amy” 1

Y(a,Yp(GY”
K* dN (52)

‘i’ ~

where 1 denotes the indicator function. Replaclng as
an approximation

(AoF 1 Mm
Au>

Y(n.Yh!m
by its expected value, [221, yields

da
Y(a,YY’(~P G(a)

= C E[(AuY ]dN (53)

The reduction factor G(a), O<G (4)< 1 depends on
the long term stress range distribution as (S =Ao )

j S“f,(s)ds
.

G(a)=
K(. ,W.Ar. (54)

p,s(stis

where the last expression is vafid for the Weibull dis-
tribution in (49].

C0Nf7f,uSIONs

1)

2)

The following conclusions can be stated

A stccbastic model for fatigue crack growth has
been applkd which accounts for uncertainties in
loading, lr.itial defects, critical crack size,
material parameters including spatial variation,
and in the computation of the stress fntemity
factor. lfased on the crack groti mcdel and a
load model a safety margin has been dehned.

Two types of inspection results have been con-
sidered and the inspection umertalnty has teen
modeled. Event margins have been defined for
both types of inspection results. U@ated relia-
bilities have been expressed III terms of the safety

mardn and the inspection event margins. p. .sIrni.
la. armlysls has bee” performed for a structure
after re~r.

3)

4)

A brief discussion of Iirstarder reliability theory
applied to parallel systems has teen presented. It
has teen demonstrated that the updatig after
ins~tion and repair can be carried out in a slrn-
ple way by use of first-order reliability methcds.
Updating of the reliability and/or of the dLstribu-
tkm of the basic variables have been considered.

The analysis has been presented for an example
panel with a center crack. The reliability Index
has been computed based on information at the
design stage and has been updated based on
Inspection results both remdtlng m crack detw-
tion and in no detectfon. The effect of material
inhomogmeity for the selected base material has
kn &rnon.straWf to be insi@Kar.t. DOlerent
in.wection qualities have been considered result-
ing In di5erent dferts on the updated reliability
index.
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