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A study of the dynamic response of offshore towers
to wind-generated random ocean waves is presented. The
analysis is performed in the frequency domain and the
equations of motion are solved using equivalent lineariza-
tion techniques. Two methods of reliability analysis are
considered in this study : A statistical fatigue damage
analysis using the American Welding Society model (high-
cycle fatigue analysis) to demonstrate the influence of the
design stress level for fatigue-critical members on the fa-
tigue reliability and a first-passage failure probability with
periodic inspections. For the latter, a crack growth anal-
ysis is performed using the fracture mechanics method
to estimate the propagated crack size and corresponding
residual strength under random service loading conditions.
The effect of periodic inspections is very important if a fa-
tigue crack already exists. It is also shown that there is
always a limit in the number of inspections beyond which
no significant improvement can be achieved.

INTRODUCTION

In order to assess the refiability and durability of an
existing structure, the statistical distribution of each of
the significant influencing factors, such as service loading,
structural performance parameters of the material as well
as of the fabricated structure, environmental conditions,
inspection and repair procedures must be adequately char-
acterized.

In this paper, a study of the dynamic response of

offshore towers to wind-generated random ocean waves is
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presented. The analysig is performed in the frequency do-
main and the equations of motion are soived using equiv-
alent linearization techniques. Then, acrack growth anal-
ysis is performed using the fracture mechanics method to
estimate propagated crack size and corresponding residual
strength under random service loading conditions. The
residual strength is obtained as a function of crack size
and other parameters of redundancy in the case of a re-
dundant (with crack-stoppers) design. Once the residual
strength is established, the failure rate is evaluated as the
rate of upcrossing of the residual strength by the random
stress process. The probability of structural failure is then
computed on the basis of this failure rate taking the in-
spection procedures into consideration. At this point, the
following should be acknowledged: (1) This paper deals
with the fatigue-related inspection for a single location.
Multi-critical location problems are an interesting subject
of future research. (2) In some cases, the operational sea
states may produce a significant amount of failure dam-
age. However, the primary purpose of this study is to
introduce inspection procedures into reliability analysis.
Hence, the analyical procedures developed in this paper
considered only the stress arising from a stormy sea state,
although the stress due to an operational sea state can

also be incorporated in a similar fashion.



To estimate the probabilty of fatigue failure, a sec-
ond approach is also incorporated for illustrative purposes.
A statistical fatigue damage analysis is presented herein
using the AWS model (high-cycle fatigue analysis). Nu-
merical examples have been worked out to demonstrate
the influence of the design stress level for fatigue critical

members on the fatigue reliability.

BTOCHASTIC ANALYSIS OF OFFSHORE STRUC-

TURES

A 1075 ft (327.7 m) offshore tower has been ana-
lyzed for waves under fully- developed sea conditions for
which the wave height spectrum specified by Pierson and
Moskowitz is used (Pierson & Moskowitz, 1964). The

analysis is performed by means of equivalent linearization

techniques (Malhotra & Penzien, 1969; Okumura & Nish-
ioka, 1974; Palicu & Shinozuka, 1986; Penzien et al., 1972,
Yang & Freudenthal, 1977) so that the original nonlinear
equations of motion can be solved in the frequency do-
main. The nonlinearities in the systern are due to drag
forces arising from wave-structure interaction.

The structure shown in Fig. 1 is idealized as a discrete
mass system. It is assumed that the platform is above the
sea surface, the tower is fixed on the ocean floor and the
vertical structural displacements are negligible.

The equatio.ns of motion for a discrete mass system

can be written as {Malhotra & Penzien, 1960):

Mii + Cit + Ku = Cp(¥ — ii) + Cp(v — 1)

v —uf (1)

where C = structural damping matrix in air, K = stiff-
ness of the structure, M = diagonal matrix of the lumped
masses, Cpr = p kpsV, Cp = kpA, p = mass density

of the water, V = diagonal matrix indicating volume of
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water displaced by the structure, A = diagonal matix indi-
cating area projected in direction of flow, ks = empirical
coefficient of inertia in the range 1.4 - 2.0 for linear wave
theory, kp = empirical coeflicient of drag in the range 0.5
- 0.7 also for linear wave theory (Penzien et al., 1972), ¥, ¥
= vectors of horizontal acceleration and velocity of wave
particles, respectively and n,1,1 = vectors of horizontal
displacement, velocity and acceleration of structure, re-
spectively. The [A] symbol refers to the absolute value of
A. From Eq. 1 it is clear that the nonlinearity is caused
by the velocity term. Now lettingr = v - u, Eq. 1 can be

rewritten as

(M+CM)'I"+CIE‘+CD'

P+ Kr = M¥ + Cv + Kv (2)

The wind-induced storm waves are modeled as stationary
Gaussian random processes with zero mean and finite du-
ration. This indicates that the wave height and the water
particle velocity are also stationary Gaussian random pro-
cesses. In order to completely define them, we use their
power spectral densities {Paliou & Shinozuka, 1985). In
the present study, the Pierson-Moskowitz one-sided wave

height spectrum has been used.

)4] 0<w<oo
(3)

where a3, #; are nondimensional constants, g ts the grav-

oy - g2 g
Swafe) = 'ezp[_ﬂl(w-w

ity acceleration and W the average storm wind velocity
at 64 ft (19.52 m) above the water surface. A plot of the
spectrum for two different values of wind velocity (W =
25 ft/sec [7.6 m/sec| and 75 ft/sec [22.9 m/sec]) is given
in Fig. 2. Under storm waves, the effect of the drag
force increases significantly when the average wind veloc-

ity W increases, whereas it is negligible when W is below

50 ft/sec (15.25 m/sec).



The wave analysis performed in the present study uses
the assumption of small amplitude (Airy) theory implying
that the fluid is inviscid, incompressible and the ratio of
wave amplitude to wave length is small.

To linearize Eq. 2 (Penzien et al,, 1972), we rewrite

it, using r = v - u, in the form

(M + Cpr)ii + Gl + Ku = Cpy¥ + ¥ (4)

~ B
Cs5 = Cp; Vo7 TFiry (5)

- 8 .
Cjs = Cj; +Cn; V 7 T (G=12..7 (8)

where

Using modal decomposition, u = Y, eq. 4 yields to the
following

MY +CY+K'Y=P* (1)
where

M* = #Tm® = generalized mass matrix (diagonal)

(8)

-r

"

= ® K% = pgeperalized stiffness matrix
{diagonal) (9
Co = ®TC® = generalized damping matrix {not
diagonal) (10)
Pt = @T(CM€'+C\?) = genetalized force vector

{11)

C=Md:d™ (12)
o = Hgtn (13)

The essence of the approach is to alter the damping
coefficients in an optimal manner by minimizing the av-
erage mean square error. The iterative solution process
converges rapidly and the convergence depends upon the

severity of the nonlinearities.
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NUMERICAL EXAMPLE

The geometrical and material properties of the tower
are given in Table 1. Purthermore, the statistical parame-
ters op and $y appearing in the Pierson-Moskowitz spec-
trum have been taken as 0.0081 and 0.74, respectively.
The mass density of the water, p, is 2x10~2 kips-sec? /ft*
(1.03 kPa:sec?/m*) and the acceleration of gravity, g, is
32.2 ft/sec? (9.8 m/sec?). The empirical coefficients of in-
ertia, kas, and of drag, kp, were assumed to be 2.0 and
0.7, respectively. The modal damping ratio £,, which is
used to compute the structural damping matrix (Eq. 13)
is taken to be 5%.

The standard deviations of the structural displace-
ments and velocities are displayed in Figs. 3a and 3b,
assoclated with the different values of the average wind
velocity W. The seven natural frequencies and standard

deviations of the deck displacements and deck velocities

wi7

for the five examined values of windspeed W are given in
Table 2. These results have been confirmed using the time
domain (Monte Carlo) analysis performed in Shinozuka et
al., 1977.

The iterative process involving {a) the linearized and
(b) the uncoupled damping matrices, converges rapidly

requiring three to four and two to three iterations, respec-

tively.

PROBABILITY OF FATIGUE FAILURE - DAMAGE

ANALYSIS

The statistical variability of most of the factors in-
volved in offshore construction makes it necessary to use
a probabilistic approach to fatigue analysis and design.
The purpose of this section is to present a fatigue analysis

technique to estimate the probability of failure of offshore



stuctures in deep water (i.e., over 1000 ft {305 m]) under
severe storm waves {Yang, 1978; Yang, 1979).

The occurrence of a storm wave is modeled as a ho-
mogeneous Polsson process with occurrence rate 4. As-
sume that in the time interval (0,t), there are N number
of storms. Once the storm occurs, the wind-induced storm
wave is modeled as a Gaussian random process with zero-
mean and finite duration. The duration T of each storm is
also a random variable with expected value T and coeffi-
cient of variation Vr. The Pierson-Moskowitz wave height
spectrum given by Eq. 3 is used. The storm wind veloc-
ity W varies from one storm to another and is a random

variable with log-normal density function

ezp [—0.5([09(%:;)—_%{) ’]
(14)

The probability density function fw(y) of W has been

fwly) = 2Hog e
Wi = Virowy

derived from the statistical distribution of the annual ex-
pected maximum wave height ¥ ;... The distribution func-
tion of Yy, in the North Sea is characterized by a log-
normal distribution, and W is related to Yy, (Yang &

Freudenthal, 1977a; Yang & Freudenthal, 1977b) by

3.85 fo;
Y; Wi Z22 (T g2
1m P8 YW 3 % ‘/ﬂx w (15)

The base shear force Z(t) of the offshore structure is a
Gaussian random process with zero mean and finite du-
ration. Its standard deviation ¢; (W) can be computed
from the statistics of the structural response (Paliou &
Shinozuka, 1986). The stress at the hotspot (fatigue criti-
cal point) denoted by S(t) for members below -26 ft of the
water surface is produced mainly by the random vibra-
tion of the tower. The nominal stress Y(t). in the member
connecting to the hotspot can be related in approximation
to the base shear force Z(t) by the following relationship

(Nolte & Hansford, 1976; Wirsching et al., 1977)

Y{@)=C Z(t) (18)
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where C is a constant depending on the particular design
of the member and the tower. Assume that the design
nominal stress is a% of the yield stress and the applied
base shear force is b% of the total weight of the structura.
Then C can be computed by

aJy

C=54 (17)

where oy = yield stress and G = total structural weight.

Let y{j) be the absolute value of the j-th local ex-
tremum of the nominal stress Y(t) and h(j) be the abso-
lute value of the j-th local extremum of the hotspot stress

8(t). Then y{j) is related to h(j) through the relationship
h{s) = K; - y(5) (18)

Kir=K:;-Ky (19)

where K; = stress concentration factor in the range 2 -
2.5 and K, = fatigue strength reduction factor due to the
notch at the weld toe. Ky depends on the geometrical con-
figuration of the joints and lies in the range 3 - 6 (Munse,
1964). As Y(t) and 5(t) are random processes, so are their
extreme point processes y(j) and h(j). For the estimation
of the fatigue life of offshore platforms, the characteristic

S-N fatigue curve is commonly used. It is expressed as
(AS} N=K (20)

where b = constant parameter and K = random variable

to account for the statistical variation of the fatigue data

(Marshall, 1976; Nolte & Hansford, 1976; Wirsching et
al., 1977; Wirsching and Yao, 1976). AS = stress range
equal to twice the stress peaks or troughs since Eq. 20 is
obtained from test results under constant amplitude load-
ing. The fatigue damage due to the i-th storm, denoted

byD,'iS
NJ NI )
ML TS ) 2 C) i
D'_,:ZIZN(J')“K ; =

— NJ
_ (2K K

7 2 (21)



we T

NI =22T= (22)

where T = duration of the storm, w, = the fundamen-
tal natural frequency and NJ = the total number of half-
cycles per storm. T and therefore NI are random vari-
ables.

The total fatigue damage in a service interval (0,t)

denoted by D(t) is obtained using Eq. 21,

D) = ipi =K KL (23)
i=1
where
N NI N
L=3% g =3 a (24)
=1 5=1 =1

where N is a random variable following the Poisson distri-
bution denoting the number of storms in (0,t).

Since K—! and L are statistically independent ran-
dom variables, the expected damage D(t) and coefficient

of variation Vp(t) are obtained from Eq. 23 as

D)= (2Ky)* - K1 L (25)
vo(t)=/[vV} + V2 + V3 V{] (26)
where
=7t (27a)
Yo

(275)

Following the analysis of Yang (1978), D(t) and V(t) can

be easily obtained as

- oT b
D) = (2Ky)* B 1t == 22 C T (14 )

. j; * o (w) fow (w) duw (28)
= (U0 g vz v
(29)
where
2 S ot (w) fw(w) dw
SRR e o your o P R

where T', Vo are the expected value and coefficient of vari-
at’on of storm duration, ¢ is the damping coefficient asso-

ciated with the vibration of the first mode of the structure
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and f;{b) is a function of b (Crandall et al., 1962},
Fatigue failure is assumed to occur when the total
cumulative damage D(t) exceeds a certain value §. & lies
generally between 0.3 and 1.6. It has been shown that §
is a random variable following a log-normal distribution
with & and Vs being the mean value and coeflicient of
variation, respectively. D(t) is also assumed to follow a

log-normal distribution.

Hence, the probability of failure Py(t) can be ob-

tained as

in
Py(t) = P[D(t) > 8] = ‘I’(' J +V5’)“(1+Vrﬂ)
()

where

EVitVp (22)

W 7
NUMERICAL EXAMPLE

The same deep offshore tower analyzed before has
been used herein in order to perform the statistical fatigue
analysis. The variance matrix of the shear forces and the
values of the standard deviation of the base shear force
a1 (W) for various storm wind velocities W, can be easily
computed (Paliou & Shinozuka, 1986). The damping co-
efficient ¢, associated with each vibrational mode is taken
as 5%. The total weight of the structure is G = 107,967
kips {480,453 kN) and the fundamental natura)] frequency
was found to be w, = 1.155 rad/sec, (0.184 Hz).

For the AWS fatigue model {Yang, 1978}, the follow-
ing parameter values are used: b = 4, K-1 = 9.302 x
10~ and Vi = 20%. The fatigue strength reduction
factor K is considered to be 4.0, the yield stressis o, =
36 ksi (0.248 MPa} and an average storm duration of four

hours together with the coefficient of variation 20% is used



for illustrative purposes, i.e., T = 4 hours and Vo = 20%.
It is further assumed that the values § = 1.0 and V;=
0.3. The occurence rate + of stoms is equal to unity, since
we uged the distributions functions of the annual expected
maximum wave height Yi,.. The statistical parameters of
the log-normal distribution function of Yy, for the North
Sea (Yang & Freudenthal, 1977a) are equal to pw = 2.841
and ow = 0.1. Furthermore, since we used the same wave
height spectrum as before, the statistical parameters a;
and f, remained the same. In the present analysis, the co-
efficient of variation V, of the b-th power of ¢ {W) (Eq.
30) has been found to be surprisingly large, V, = 1.67.
This can be explained by the fact that the dispersion of
the base shear force is magnified by the power law b of
the characteristic 5-N curve (Yang, 1978).

Finally, the probability of fatigue failure for twenty-
five years of service life associated with various design
nominal stresses and various applied base shear forces, is

shown in Fig. 4.

RELIABILITY ANALYSIS OF OFFSHORE STRUC-
TURES UNDER RANDOM LOADING AND PERIODIC

INSPECTIONS

Fatigue damage iz revealed in a structure by the ini-
tiation of a visible crack. It has been a practice to pe-
riodically inspect fatigue-sensitive structures in order to
detect such cracks and to repair or replace cracked com-
ponents. Hence, the reliability analysis of fatigue-sensitive
structures under random loading and periodic inspection
is of practical importance. Although the application of re-
liability analysis to offshore structures is emphasized, the
approach discussed in the following is equally applicable to
other fatigue-sensitive structures (Shinozuka, 1976; Yang

& Trapp, 1974).
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The expected number of upcrossings per unit time,
denoted by v {W) for the random stress 5(t) of the fa-
tigue critical point, with standard deviation o5(W), over

& strength level R is
Rl
+ - T 33
vy (R, W) 2 exp[ 20-:';.(W)] (33)

where

os(W) = K;Co1(W) (34)

w; is the apparent frequency of 8(t), C is given in Eq. 17
and Ky in Eq. 19.

Since the response spectrum Sggz(w,W) is narrow-
band, the apparent frequency of the response of deep off-
ghore towers can be approximated by the fundamental fre-
quency w, of the tower. The expected number of upcross-

ings per storm is obtained by

@ = [T st Rw) o (w)du] 4 e (65)
0

Since we are dealing with astorms causing the annual ex-
pected maximum wave height, the occurrence rate of
storms is equal to unity, i.e., one storm per year. There-
fore, Eq. 35 gives the expected number of upcroséings per
service year. This assumption has to be revised in future
study since it may result in an unconservative estimate of
fatigue performance.

The time t to crack initiation is assumed to be a
random variable with a density function following a two-

parameter Weibull distribution

folt) = (3) ()™ eepl-(5)] (30
where a is the shape parameter and 2 the scale parameter.
a and f may be estimated from test results (Eggwertz,
1971}, If test test results are not available, § may be
estimated from the S-N curve and the cumulative damage
hypothesis.

Fracture mechanics theory is applied to cracks of de-



tectable size initiated at a certain time or to preexisting
cracks for the purpose of determining their propagating
size under a stress history. The power law formula of
crack propagation under Gaussian random loading which
has been verified experimentally (Paris, 1964; Rice & Beer,

1965; Rice et al., 1965) will be used

9 _ p(ak) 37)

e
where da/dn = the rate of erack propagation per cycle, a
= the crack size, AK = the range of stress intensity factor,
and D and b = material constants.

The expected value of the b-th power of the range of
stress intensity factor, AK®, can be related to the expected
value of the b-th power of the rise and fall of the stress

S(t) and crack length a as follows

ARbP — 2gb 38}
AK a*s (28}

If the stress process S(t} is a Gaussian process with zero-
mean and standard deviation ¢s, the expected value of
the b-th power of the rise and fall of the random process
8%{t) can be written as
£0
S* = A(205)" = AQREC’ jo ot (w) fw (w) dw

(39)
where A can be determined either by using the approx-
imate analytical techniques proposed in Rice and Beer
(1965) and Yang (1974) or by the rr;ethod of Monte Carlo
simulation {Shinczuka and Jan, 1972; Shinozuka, 1972;
Shinozuka, 1974). Integrating Eq. 37 from the initial
crack size ap to aft) after t service years and using Eqgs.
38 and 39, we obtain

o) = 7 a:l‘:foS”Dt) (40)

in which Ng is the number of cycles per storm (or per

year)

ND:uz“:;’—;-T (41)
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Crack-Stopper Design

In order to prevent the reduction of the critical
strength from reaching an excessive level, a common prac-
tice is to introduce crack stoppers in the structure. The
strength of these structures depends on the particular de-
sign and the residual strength should be determined by
individual analysis and testing. The residual strength af-

ter t,, service years is assumed to be

Rt = B[l - (1 £) (Sln)l=20y)
' as — ag

(42)
where as = maximum allowable crack size and £ = maxi-
mum allowable strength reduction factor at erack size ag,
0 < ¢ < 1. {The above equation was proposed in Yang &
Trapp (1974) to exhibit the trend of limited data given in
Hardrath & Whaley (1957) and Snider et al. (1572)).
Failure of the structure occurs when the residual
strength R(t,) denoted by Ry, is exceeded by the applied
random stress. Then the problem is essentially that of a
first-passage probability with a variable two-sided thresh-
old. The expected failure rate h{t,,Ra) or risk function
asgociated with this first-passage problem can be approx-

imated by (Lin, 1967; Shinozuka, 1976)

weT
k)

A{tn, Ra) = ] ” capl~ B2 /203 ()} fw (w) duo (43)

In this investigation, the initial ultimate strength and
therefore the residual strength are considered normal ran-
dom variables. The density function of the initial ultimate
strength (mean Rq and coefficient of variation V) is given

by

fro(z) = mezp[ko.s(z;é?)z] {44)

Considering this fact, the risk function h{t,) can be com-

puted by



wnT oo -3 }?3
—ﬁ;xVR&f /0 exp{-0.52 " Au)

- 05( ) 17w (w}dw dz (45)

hits) =

=1 (1 g)(2lal=toyn (46)

25 — Qo
The purpose of inspection is to detect the fatigue and
pre-existing cracks in the structural components so that,
before cracks become critical, they can be replaced by
uncracked components to endure their designed initial
strength at least at the time of replacement.

The probability of detecting a fatigue crack at a strue-
tural detail during a rigorous inspection depends on the
probability of inspecting this cracked detail and the res-
olution capability of the particular inspection technique.
Typical presently used NDI techniques include delta scan,
shear wave ultrasonic, magnetic particle, X-ray and mag-
netic rubber (MRI) methods.

Define U; as the probability of inspecting a cracked
detail and Ujy(s) as the probability of detecting a crack of
size a. Then, the probability of detecting a crack of size a

during a rigorous inspection can be obtained by

Fla) = UrUz{a) (47)

where it was assumed that U; and Uy(a} are independent.

Since, at this time, the information on the probabil-
ity of U, is limited, it is assumed in this study that U,
= 1, i.e., every ctritical detail will be inspected. Based
on the experimental and empirical results, however, the

detection probability Uz(a) may be constructed in the fol-
lowing fashion (Yang & Freudenthal, 1977b).
=0

{(a—a1)/(aa — a))]”

=1
= i

a < ay

Us(a) = a1 <a <ay (48)

ae = o
dag < 4

where 1/8 < m < 1/5 for accurate NDI techniques,
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m > 1/5 for more crude NDI techniques, a; = minirum
crack size below which a crack cannot be detected with

the particular detection technique used, a; = maximum

by the same technique.
Following, Paliou & Shinozuka (1986), Shinozuka,

i -r a o, Py

(1978}, Yang & Trapp, {1974) for the development of
this section, let Py be the probability of failure of the
tower within the intended service life T with no inspec-
tion. Then, assuming the time to to crack initiation to

be a random variable with a probability density function

fo(to), the probability of failure can be expressed as

Py =1 — ezp[~Tho - (T/8)*] -

- j;T fo(t) exp[—thy — H(T —t)] dt (49)

where hg is the expected failure rate corresponding to the
threshold Ry or hg = h(tg) in Eq. 46, f{t) is given in Eq.
36 and

tn

H{tn) = j: h(t)dt (50)

Assume now that the structure is subjected to a rigorous

inspection at the end of T service years. The probability

of failure P(j) within the [ 0, jTo] interval (j-1 inspections)

can then be obtained from

J=1 .1y
Pi{:} = P* .T‘f g8 Falli = YT, + t]dt {51)
Fyr= T Lj Gij\t) Jo\d =~ Ldo T @ 94
=10
where j=2,3,... and i=1,2,...,j-1 and the complicated ex-

pressions for P} and q;;(t) can be found in Paliou & Shi-

nozuka (1986).

NUMERICAL EXAMFPLE

A numerical example is carried out using the crack

initiation mode! under crack-ston

nilation INoael UNCer cralk-sia

per design.
g

shows the parameter values used for the numerical com-



putation. Some of these values are assigned on the basis of
experimental evidence, others are chosen to be consistent
with conventional static design practice and still others
are on the basis of engineering judgment.

The crack size and the residual strength as a func-
tion of time t after crack initiation are plotted in Fig. 5.
The conditional failure rate h{t) as a function of time %
after crack initiation and its approximation are displayed
together with the comulative failure rate H{t) in Fig. 6.
P{}) is plotted vs. design service life and number of in-
spections in Fig. 7. Finally, the failure probability P(j)
for the design service life vs. the number of inspections is

given in Fig. 8.

CONCLUSBIONS

Two methods of reliability analysis have been pre-
sented in this study: A ststistical fatigue damage analysis
and a first passage failure probability with periodic inspec-
tions. To compute the structural responses, a nonlinear
dynamit analysis in the frequency domain is performed
by means of equivalent lirearization techniques. The non-
linear drag effect is important and if it is neglected, the
design would be unconservative.

It is shown in Yang & Freudenthal (i977a) that for
deep offshore structures (i.e., over 300 ¢ [91.5 m]}, storm
waves dominate the design criteria, compared to earth-
quake loading or the joint occurrence of both. For shorter
structures, the importance of earthquake design is ex-
pected to increase, but this is a subject for further in-
vestigation.

In the development of the present reliability analy-
ses, various assumnptions have been made but it is believed
that the results presented herein are representative, and

it is not expected that these results would undergo qual-
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itative changes if one or a few of these assumptions were
altered or removed. For simplicity of the analysis, the soil-
pile-structure interaction has been neglected, considering

a firm soil foundation and no pile failure. Such an inter-

action can be taken into consideration, but the computa-
tion for the structural response will become much more

involved, as the interaction is generally nonlinear.

The results of the fatigue damage analysis displayed
in Fig. 4 clearly indicate that the expected cumulative
damage and probability ot; fatigue failure increase as the
design nominal stress, for a given applied base shear force,
increases. Also, for a given design nominal stress, the
decrease as the applied base shear force increases (Fig. 7).

These results are consistent with those displayed in Yang

(1978).

The resulis of the second reliability analysis method,
i.e., first excursion probability with periodic inspections,
are shown in Figs, 7 and 8. As expected, the probability
of failure increases as the design service life increases, It is
important to note that the curve for the failure probabil-
ity under no ingpections consists of two segments. In the
first segment, the failure rate is essentially hy as it takes
approximately six years for a fatigue crack to reach the
maximum allowable crack size ag (Figs. 5 and 6). The
effect of periodic inspections is very little in this first seg-
ment for the purpose of improving the reliability of the
structure. In the second segment, the effect of periodic
inspections is very important as the fatigue crack already
exists. Detection and repair of cracked details improve
dramatically the reliability of the structure at a later ser-
vice time. However, it is ¢learly shown in Figs. 7 and 8
that no significant improvement can be achieved by an ex-
cessive numnber of inspections thug setting a limit at twenty

inspections.



Comparing the results of the two methods for a de-
sign service life of twenty-five years, the following obser-
vation is made. The first method, associated with the
fatigue damage analysis, results in a probability of failure
1.2x10~2 for an applied base shear force equal to 0.2 G
and a design nominal stress equal to 0.45 o,. Using the
same design parameters, by the second method, associ-
ated with the probability of first failure (no inspections),

the same result is obtained.
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TABLE 1. Structural Parameters

Inertia Drag

Depth Mass Volume Area
F#F z M Cum Cp v A
i -75 330 6.0 0.0 - -
2 10 101 115.0 20.5 28750 14643
3 75 146 187.5 27.2 46875 16429
4 205 383 471.0 46.9 117750 33500
5 400 537 757.0 64.8 189250 46286
6 600 665 981.0 €9.8 245250 49857
7 800 1191 1795.0 88.2 448750 63071
Flexibility
K-l 10°¢
7560 6220 531.0 3740 2100 98.2 308
6220 568.0 491.0 357.0 209.0 102.0 336
531.0 491.0 464.0 344.0 207.0 1050 358
3740 357.0 3440 321.0 2050 110.0 40.1
2100 2000 2070 2050 203.0 118.0 46.5
98,2 1020 105.0 110.0 118.0 126.0 53.2
308 336 35.8 401 46.5 53.2 58.8
Units : 2z = ft ; M = kipa sec?/ft ; Cps = kips sec? /it ;
Car = kips sec? fft? ; V = ft* ; A = fi? ; K™! =
fc/kips
Note : 11ft = 0.3048 m ; lkips sec?/ft = 14.6 kN sec?/m ;

TABLE 2. Natural Frequencies - Standard Deviation of
Deck Displacement and Velocity Due to Different

1 ft* = 0.0248 m?;

11t? = 0.093 m? ; 1 ft/kip = 0.685 x 10~* m/N

Average Wind Speeds.

w 25 ft/sec 50 ft/sec
Nat. [P - Ou Ou
Fraq.

[Haz! [Et] [ft/sec] (ft] [ft/sec]
0.18 0.230 0.269 0.506 0.489

0.35 0.209 0.244 0.462 0.445
0.58 0.194 0.226 0.421 0.408
0.82 0.163 0.191 0.340 0.335
1.04 0.119 0.143 0.232 0.237
1.68 0.075 0.095 0.136 0.146
01 N0 0045 0.066 0.064

BRI DRVFF RIS B

75 ft/sec 150 ft/sec

Ty g5 Oy [~ Ty (-

!ft.! [ft. IRM]

itysec

6] [ftjsec) | [ft] [ft/sec]

[

0.872 0.609 1.615 0.809 4.607 1.450
0.800 0,557 1.491 0.742 4.209 1.342
0,726 0.506 1.359 0.673 3.975 1.228
0.570 0.405 1.070 0.530 3.231 0.978
0.371 0.274 0.690 0.347 2.177 0.842
0.205 0.160 0.376 0.194 1.234 0.355
0.079 0.066 0.142 0.075 0.484 0.135

Note : 1t = 0.3048 m
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TABLE 3. Parameter Values for Reliability Analysis Under
Random Loading and Periodic Inspections
Description of Parameters Value
ay Crack size initiated at to 0.04 in
D Material constant 1.9x10°10
b Power in crack prop. law 4.0
C Parameter in Eqs. 16-17 7.5x10"4/in?
w, Fundamental natural frequency 0.184 Hz
T Average storm duration 14400.0 sec
1 Design service life 25 yrs.
Ry Mean value of ult. strength 58 ksi
Vi C.0.V. of ultimate strength 0.1
Ke Crit. stress intensity factor 100 ksi/fin'/?
Ky Strength reduction factor 4.0
) Parameter of wind spectrum 0.0081
fil} Parameter of wind specirum 0,74
o Shape param. of Weibull distr. 4
B Scale param. of Weibull distr. 50.0 years
ay Maximum undetectable crack size 0.02 in
az Minimum detectable crack size 0.3 in
m Parameter in Eq. 48 0.125
as Maximum allowable crack size 7.0in
¢ Residual strength ratio 0.43
B Grayitational acceleration 386.4 in/sec?
j Number of inspections 25
A Parameter appearing in £q. 39 115
Note : 1in = 25.4 mm ; 1 ksi = 6.80 MPa
-+
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A Fixed Offshore Tower and its Model
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