
@

(@’J THE SOCIETYOF NAVALARCHITECTSANO MARINEENGINEERS
601PwoniaAwmIe, suite400,.JwseyWY, NewJersey07306

,.,.,,r.,,.!.d .! m. ..r,.. S!w.!.r.l ..,,..,,, ,Ymmwm, S“.,.!.. .,!,.”.! ..,.,. ,,,.,,0., wrwa. OZ!.,.r 5-0, ,967

A Markovian Approach to
Offshore Platforms
Hari B. Kanegaonksr and Achintya Haldar,Georgia Instituteof Technology, Atlanta,Georgia

ABSTRACT

A stochastic method is presented for
dynamic and fatigue a“alysia of compliant
platforms with nonlinearity i“ the stiffness.
The wave loading 1s Idealized as a component of
a multtdimen. ion.l Markov process. The

differential equation of motion is expressed in
terms o a set of first order stochastic
diffe~e”tial equations. Ito, s rule for
stochastic differential is applied ‘COobtain
differential equations for moments after
performing an averaging operation. The
eQuations are closed “sl. E Gaussian and
n On-Gaussian closure techniques. The

differential equations for moments are solved
in the time domain “=fng nume, ical methods.
The response is modeled as a mixture
distl’ib”tio“. It is observed that tbe response
is non-Gaussian and the probability density 1s
significantly underestimated at tbe tails by
the Gaussian assumption. The probability

distribution for peak guyline te”sio”s is
estimatea by mapping a Ga.s3ia” process into
tne nOn-Gaussian process of g.yltne tensions
and estimating tbe level crossings. The

tension fatigue damage is estimated for a
guyline using Paling.en-Miner’s rule. It is

shown that fatigue damage estimation under a
“on-Ga”sslan te”slo” distribution is higher
compared to the Gaussian.

INTRODUCTION

A deep water compliant platform is
designed to move with tbe load. The SWFly

period. fOr these structures are kept well
above the design wave periods, thereby reducing
the dynamic loads. Vari o”, ,t, uct”, al

configurations such as articulated platforms,
tension-leg Platforms, and guyed tONe,
platforms have been used. The response
behavior of such systems can be realistically
estimated if the wave-structure system is
modeled properly. For st~uctu?al system
behavior with large displaceme”ta, the

geOmetrically nOnl inear bebavi Or of the
components providing Stiffne.= requires that
the system be idealized as nonlinear. The wave
loading is essentially random a“d needs to be
modeled as a stochastic Process. AnalYsi9 Of
compliant platforms thus is the analy3is of
nonlinear system with stochastic input.

A method is developed here for an offshore
WYed tower Platfor. subjected to random waves.

The platform 1s a slender tower resting on a
flexible foundation held vertical by a “umber
of guylines attached “ear the top of the tower
(l). Each guYllne is a multi component mooring
line consisting of a lead line, .clump weisht
and trailing line. Under operating conditions
the tower floesnot move appreciably, but during
design storms the clump weights lift off,
naking tbe system ,,soft!!ana thus absorbing the
i+aveenergy.

Time-domain Solutions with various degrees
of complexity are available for dynamic
analyses when the ‘acean-structure system is
assumed to be deterministic. For random wave
loading, some of the approximate methods that
have been developed Include stochastic
equivalent linearization of the structure and
waveloading, perturbation and Monte Carlo
sim”latl on. Smith and Sigbjornsso” (2)
presented a method to estimate tbe second order
statistics of compliant platforms “sing an
iterative method similar to perturbation.
However, pnenome”a which are typical fOr
nonlinear structures - such as jump - can be
observed only when higher orde~ statistics are
considered. Monte Carlo S,im”latio” (3) has
show” that llneari zed freq”e”cy domain methods
are inadequate to represent the response of
no”line.ar compliant systems. Moreover, tnis
fnetbod requires a significant amount of
computer time and is expensive.

A stochastic dynamic analysis of such a
softening nonlinear system such as a guyed
tower under a 8e”e Fa1ized load is “ot yet
available. With some approximation for
loading, the system behavior ca” be estimated.
Markov process theory can be used here. The
Markov property of a random process refers to
the independence of the future behavior of the
process from its past behavior given the
knowledge of its present state. It i, know”

that evePy stationary Ga”s, ia. process with a
rational spectral density (spectral de”aity
with numerator and denominator co”tai”ing
polynomials in square of the frequency) can be
represented .3 a .Ompo”e”t of a multidimen-
sional Markov procesz. Tbe 3pectra1 density of
tn. load process can always be approximated to
any desired accuracy by a rational function.
Thus, if the load process is stationary,
Gaussian and no”- Markovi a”, it ..” be
approximated by a component of a mult.idime”-
aional Markov process of ‘desired accuracy by
varying the dimensions of the I<arkov process
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(4). This multidimensional M?.rkov process can
be represented by a set of stochastic
differential equations involving the components
of the process and parameters of the rational
spectral density (5,6) . Alternatively, this
defines a filter which converts a Gaussian
white noise into the loading (7). The expanded
phase-space including the filter components
will have Mark’av characteristics and will be
mo.e amenable mathematically. Mark.. Process
theory can be used to estimate the probability
distribution of the response, which spectral
methods are incapable of providing. This

approach is used here to obtain the re.sponae
for a nonlinear guyed tower.

The equivalent horizontal stiffness of the
platform provided by the g“yllnes is estimated
.,ins catenary equations (8,9). This nonlinear
stiffness is expressed as a sum of the linear
a“d cubic terms. The platform i, assumed to be
subjected to wave loading which is stationary,
et’godic and zero-mean Gaussian. The spectral
density of the moment of the wave load about
the base 1.5fitted to a rational apectr”m “sing
the Lavenberg-Marqua rdt algorithm for least
square estimation of the nonlinear parameter’s
(10). As described earlier, this loadlng is
then expressed as a component 0? a twO-
dimensional Markov process through two
stochastic differential e.q”ations describing
the filta’. Extending the phase-space of the
system by adding the coordinates describing the
processes in the filter, and using Itovs rule
for stochastic differentials (11), differential
equations for all the moments including the
joint moments “p to the fourth order are
det’ived for this system. The effect of the
cubic nonlinearity in the Stiffness is that the
equations for the second order moments contain
terms of the fourth order moments on the right
hand side. Similarly, the equations for the
third order moments and the equations for the
fourth order moments have sixth order moments
on the ri8ht hand side. To solve the moment
equation up to the fourth order, fifth and
higher order c.m”lants are considered to be
equal to zero. This gives the relationship
between moments of the fifth and sixth order in
terms of lower order moments. These
differential equations for moments are then
,olved in the time domain using the Runge-
K“tta-Verner method to obtain the moments of
the resp0n3e (10). The probability
di.stributiom is then modeled as a mixture
distribution, which is the weighted sum of two
known distributions with the same mean and
variance. The optimal weighting factors are
estimated using the third and fourth central
moments.

U.?i”g elementary probability laws, the
probability distribution for the g.yline
tension, is estimated from the probability
distribution of the displacement. To obtain
the probability density of the peaks, a
Gaussian process is mapped into this process by
tbe double inversion technique and level
crossings are obtained (12). FOr a narrow band
process, the peak distribution 13 considered to
be one minus the ratio of the expected rate of
croasi”g, at a certain level to that at the

mea”. The pmb.ability density is the” obtained

bY ..merical diffepe. tiat ion. Kn0win8 the
tension fatigue curves of the guylines i“
terms of percentage of breaking load ran~e and
cycle. of failure (13), the c“m.lative fatigue
damage is estimated by a method similar to the
Palmgre”-Minerhypothesis.

It 1s show” that the probability density
f.”ctio” of the displacement of the tower
deviates significantly fmn the Gaussian at the
tails for high sea states. The no”-Ga.sslan
tra”sie. t response p.ovide, jerk load for the
guyline. and tbe estimated guyline fatigue will
be unconservative if the tower displacements
are assumed to be Gaussian.

MATHEMATICAL MODEL OF THE PLATFORM SYSTEM

The tower of the platform is modeled as a
rigid col”m” Hlth hinge Support at the bottom.
The g“ylines are assumed to be circ”mferentlal-
ly ayrnmetric. The local dynamics of the cables
are ass”rnedto have no effect on the tower, and
the tower is considered to be moving in one
plane .“1y.

The horizontal restraint to the tower is
provided by guylines and buoyancy tanks. Each

guyline 13 a multi component mooring line
comprising a lead line, a clump weight and a
trailing line attached to an anchor pile. The
horizontal restoring force and vertical
reaction at the point of attachment of the
moo, i”g line to the towe, develop when the
towep ~oves from its opiginal position and can

be estimated using eaten.ary equations for the
cable (8,9). Since the initial geometric
configuration based o“ initial tension is
k“..”, the angle of POtatio” of the tower is
estimated by varying the tension in the mooring
line. Knowing the tower votation, e, and the
corresponding horizontal restoring force, Rx, a
least square regression a“alys.lsis performed
to yield regression constants c1 and .2 such
that

Rx = Cle + c2e3 (1)

The ve, tical reaction at the point of
attachment of the guyli”e and tow., , RZ , is
given by

The reason for this particular form of
Eqs. 1 and 2 will be given in the following
section.

DYNAMICS OF THE TOWER

An fdeali zed tower with all the necessary
geometric and loadlng parameters is shown
schematically in Fig. 1. Tbe equations of
Illoti o”,under the assumptions described
earlier, are obtained by taking the moments of
the load and restoring forces about the base.
The governing equatto” is given by
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Fig. 1 Idealized tower

~6+cd26+z R
- (DWP + DdwT + ZCRZ - Fbzb]c3. .

= F(t) h (3)

in which e, “0, 0 = angular displacement,
velocity and acceleration of the tower,
respectively; J = Structural inertia about the
base; c = damping constant; d = half the tower
dePth; D = dista”c.s between the Center of the
platform anflthe base; Wp = platfOrm weight; WT
= wei~ht per unit length of the toweP, Fb .
buoyancy for-w; zb = moment at-mfor Fb; F(t) .
wave load; and h = moment arm for F(t) .

S.bstitutinR Eqs. 1 and 2 in Eq. 3, the
governing equation of motion with cubic
nonlinearity in the stiffness is obtained as

J 6 + Cdzb + (zccl - DWP - DdwT - ZCRZ + FbZb)O

+. ~(c2 - c>) 03 . F(t) n (4)

MARKOV PROCESS IDEALIZATION OF LOAD

Realistic modeling of waves as a r’andom
process makes the differential equation Sive”
by Eq . 4 a stochastic differential equation
with random right hand side waves can be
modeled as a stationary, ergadic, zero mean
Ga.sw a“ pPocess character zed by a“ emplrl ..1
wave height spectrum e.g. a Pierson-Moskowitz
spectrum giVen by

Snh(d -
8.1 x 10-sgz

5
exp [-D.74(91vu)4]

.
(5)

In which g - acceleration due to gravity; v =
wind velooity; a“d u . wave frequency. Using
kiry~s Linear wave theory, and Morrisonts
equation for wave load estimation, the spectral
densi ty for the total moment of the linearized
wave 10ad about the base is Eiven by

NN

‘m(w)= L E hihj[CMiCM.S...,(u) +
1=1 j-l J Uiuj

CDiCD S. (u) + CM CD S,. (u) +
J .f.j i j Uiuj

CMjCDiSti..ti(u)] (6)

IJ

in which N = “umber of sections Into which the
tower is divided to estimate the total moment;

hi = 61stance between the base of the tOWeI.a“d
the center of the section; CMi . Cmpvi; cm =

inertia coefficient, P . mass aensity of ~ater;
‘i = effective volume of the if.h ~ectio”t CDi .
112p Cd AL~O (fi. i); Cd = drag
coefficient, ~i - effeCtiVe area of the Lth
section; SX<X. (u) . spectFal density of x at
tfleith lot?.tidnand X, at the Jth Io.at.i.n; x

and XV are the accele~atio” a“d velocities of
water’ particles denoted by ti and i,
l’espectively; i = velocity of the structure;
and o(~ - i) = standard deviatlo” of relative
velocity.

Knowing the spectral density function of
tne Irlome”t, a rational spectral denzity
f“”ctio” ca” be fitted to it by adj”sti”g its
PaYanletePs (1b) The algebraic form or the
rati...1 Spectval density function “Sealhe~e is
giVen by

(7)

The pat.amete,s ~, to.and CO can be obtained by

N
minimizing Z [2MM(idi)- S,4M(tii)12 .s1”8

1=1

standard algo.ithns (10).

Eq. 7 can be written as

—
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(8)

in which Q(x) = zp-[alzp-l + ... + apl having
r-ootawith negative real Parts. P(z) . bozq +
b, Zq-l + .. . + bq and Z.P with both the
polynomials having real coefficients. The
random process M(t) represented by Eq. 8 is an
ARMA (A.toRegressi V. Moving Average) Gaussian
process . It ca” be Shown that the stationary
Gaussian ARMA p,ocess M(t) 13 the ~irst
component of the p-dimensional stationary
elementary Gaussian process M*(t) - [f41(t) ,
M2(t), ....Mp(t)l satisfying the linear
stochastic equations (5,6)

dMj(t) = M~+1(t) dt + Bjdw(t), j-1,....l-l (9)

and

p-1
d)+=za -k Mk+l(t) dt + 8pdw(t)
P

(lo)
~=o P

in which w(t) is a standard Wiener process (a
normal process with Independent increments and
mathematical expectation equal to zero) , and
coefficient3 BI, tl~,...6P are given by

6P = [a1Bp3j..+ ap. jB1 ] (11)

and b-l- ...- b-(p-q-l) - O; q P, 61 - bq-(p.l)

comparing Eqs. 7 and 8, the !mment of waveload
about the base can be expressed by two linear
stochastl c dlf ferent ial equations 8iVen by

de, - e, dt + ~dw(t) (13)

di?u - - Co9@t - tio2@3dt- Cofidw(t)(14)

in which eq . moment of wave load about the
base, and 94 relates to the derivative of 83.

APPL1CATION OF THE METHOD OF MOMENT FUNCTIONS

lto stochastic equations for extended
pha3e-3pace (i .e. including the filter
coordinates es and Eq) of the SYSteM (Eq. 4)
are given by

de, = S2dt (15)

de2 = (-ae2 - be, - se,3, dt + 83dt (16)

d83 = Oudt + @ dW(t) (17)

d84 = (-Coe U - uo283)dt - Co @(t)( 18)

el, 62 = an8.lar displacement and velocitY of
the tower, respectively, a = (cd2 + ~IIti
hef~)l Jo; b = (ZCC, - DWP - DdwT - zecl +
Fbzb )/Jo; c = ZC(C2 - c2)IJ0, Jo = J +
cmpvh2erf; heff = height above the base where

all sections
the effective force is acting; Chd=

~!l

Eqs. 15 to 18 ca” be expressed as

d% = f(~, t) + F(~, tl dw(t) (19)

where y = [e, e2 e3 eu}T

If <$(0)> is the Sth ordered mixed m~~t of e,

n
Si

where v(e) . n 8 with St - 0,1,...P. such
1=1

n
Z si-S, then using Itors rule for stochastl.
1-1

dlf’fer’entials,the differential equation for
the mcments can be obtained by averaging

(20)

f and F are known from Eq. 19, and ~ - an nxn
diagonal matrix with diagonal elements

.(d!.it))2). and < . denotes expectation.

SOLUTION UF MOMENT EQUATIONS

From Eq. 20, the first through fourth
order moment equations can be developed. The
total number of equations that can be developed
for a partic”la. order of moment depends 0. the
dimension of the idealized Mark.. process.
When the phase-space 1s described through four
first order differential equations; as in the
present case (Eqs. 15 through 18), then ten
second order, twenty third order and
thirty-five fourth order moment equations are
developed. If the probability distribution of
the res Do.se is ?.ss”med to be G.a”s3ian, only



the first and second order equations need to be
solved. However, due to nonlinearity, the
first .Fder moment equations contain thlr’d
order moments, and the second .Fder moment
equati0n3 contain fourth orde, moments on the
right hand zi de. Ass”m Dtion of a Ga.ssia”
distributionmeans that cumulant functions of
order three and higher are zero. with this
property, the moments of thi,d and ro.rth Orde,
can be expressed 1. terms of the first two
order moments. This is called Cau,q.qian
closure, which is equivalent to the equivalent
linearization technique. When the nonlinearity
is sig”iflca”t, the distribution of the
response may deviate Significantly fpom the
Gaussian. The “on-Ga.ssia” di.9trib”tionc.” be
characterized If the higher cu’dermoments are
known. For this P“r POse, it iS assumed that
the CUmulant f.”ctlons of .Pder five a“d higher
are zero. With this assumption, the fifth and
,ixth order mcments m“ be vmitten i“ terms of
the first four moments. This system of
dlffe.entlal eq”atio”s is thus closed at the
fourth moment level and can be solved “sing
numerical techniques i“ the time domain. .4rte,
a Sufficient length 0? time, it can be seen
that the moments obtained remain almoat
constant and can be Co”side?ed as Statio”a?y
moments. Another way to obtain Stationary
moments is as follows. The left hand side of

~h.u2,0gives the derivatives or the m.c,m,.t,anti
can be considered to be zero.

Consequently, these equations now become
nonli”e.ar al~ebraic equations and can be ,ol.t?d
numerically.

However, these “o”li”ear algebraic
equations ca” be Se”sitlve to the initial
guess, and criteria based .“ moment
inequalitiesMat be used to check whether- the
correct solution has bee” obtained. 1. this
study, the differential equations have bee”
solved i“ the ttme domain and the response is
obtained Ove, a S.fficie”t length of time so
that the moment= remain constant. This
procedure also allows ex?.minatio” of the
transient response. Once the moments ape
known, the next step is to establish a
probability distribution for the t’espouse.

RESPONSE PROBABILITY DISTR1 BUTION

K“owi”g the fivst four n1001e”ts of the
Pesponse, the probability distribution c.” be
modeled .?, a weighted sum of Gaussian a“d
non-Gaus8i.a”distrib.tie” as

with

pL. Da”d ;~=o PL = 1.0 (22)

With the Fl, s havins the same mean a“d
variance, the weight ins factors are obtained
.sl”g the infopms.tie” on thi. d and fourth

cent Pal mmne”ts by minimizing n under the
.O”strainta give” by Eq. 22, where (12)

4
n-x (+k-tk)

2
(23)

k=3

i“ which e, $k = dimensionless central .Cments
of the kth OPder of the response and the
mixture distr’ib.tie”,respectively.

FATIGUE OF GUYLINES

The guyllnes are subjected to a large
number of te”sio” fluctuations and the
pOsslbflfty of tension fatigue must be
considered. Cyclic bending or the cables also
OCCUFS at the f airheads. This is of small
amplitude and relatively low frequency. Only
tension fatigue is Con.qideped here. Platform
response to the wavea influences the amplitude
and mean load experienced by t,heguyli”ea.
Similar to Eqa. 1 a“d 2, additional tension in
the maximally stressed E.yli”e can be related
to the tower displacement by

Tg . .8 + @83 e>o.

}

(24)

=0 e<o.

From the probability distrib”tio” of the tower
POtatlo” B, the p,obabllity density of the
8.Yli.e tension, fT, and mean and variance of
the tension range in the g.yli”e can be easily
calculated “sing elementary probability laws
(15). Since the tower rotation la “On-Ga.s.sia“
ana a “o”lineav relationship exists between
tension and tower rotation, the probability
density function of guyline tensions i?,
no”-Gauss la”. To obtain the peak density of
the tension peaks, level crossings fo, the
non-Gawsia” g.yli”e tension process m“3t be
obtained. This can be done by mappl”g 3
Ga.zsia” process T:(t) into Tg(t) such that
(lU)

T:(t) = 0-’[$ [Tg(t)l] (25)
8

TE(t) = *T ‘1{4[T~(t)l) (26)
8

in which ~g(t) - (Tg(t) - mT)/’oTa“d #-(? (t)
%4=. probability distribution of Tg(t) ; @, @

Ga.ssia” a.”dinverse Ga”ssia”; and mT,oT - mea”
a“d sta”dat.d deviation of tension,
respectively.

It can be show” that the mean rate at
which Tg(t) creases any threshold level t, Vt,
with po,itive slope can be obtained from the
mea” rate at which Tg’(t)“pcrozse3 the level t,

t-mT
. 0-l\$ [Tg(t). —] I and m“ be approximated

6 ‘T

by (10)
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“T “ --7= ‘(t’) (27)

.
in which OF = root mean square of T and can be
obtained in a similar way as OT.

The probability distribution of the
tension peaks 13 calculated using the heuristic
assumpti on that for a narrow band process, the
required distribution, FPT, is given bY (16)

FpT(t) = 1 - : (28)

?

in which VT, ~T . expected rate of crossings
at level t and mean, respectively. Knowing the
distribution, the density function can be
obtained by numerical differentiation.

The total number of tension cycles per
year for a particular sea state, N can be
estimated as

N . Poai V X 3.1536 X 105 (29)
Ci

In which Posi - percentage of occurrence of sea
state i;

v . mean rateof crossing of tbe
platfo~m

Data on the fatigue behavior of large
diameter ropes is scant. A modified version of
the tension fatigue curve for cable diameter of
8.5 cm presented by Waters, Eggar and Plant
(13) 1s used here. The tension fatigue curve
is presented in terms of load range breaking
load percentage vs. cycles to failure. The
curve is a straight line on semi-log paper.
K“owlng the nominal diameter of the guyllne,
the breaking load of the cable can be predicted
using the curves given by RonSon (17). The
fatigue curves presented by Waters, Egg&r and
Plant can then be used to estimate the fatigue
damage of the cable using Palmgren-Miner’srule.
The fbtlgue Curve is represented by

10gl~Nf . . + ~pbt (30)

in which Nf . number of cycles to failure; c =
constant; m - slope of the curve; and pbt =
percentage of breaking tension.

The total damage for a sea state is given

bY

100

~

PoSi V 3. 1536x 105p(Fbt)dPbt
A= Nf(Dbt) (31)

in which A = acc”m”lated damage;
p(Pbt) . probability densitY of the

tension in terms of percentage of breaking
te”sio.; ana Nf(Pbc) = number of cYcle S t.
failure at the percentage breaking tension Pbt.

Thus, the fatig”e damage can be estimated
for all the sea states and summed to obtain the
annual ratig.e damage. The reciprocal of this
will give the fatigue life of the guyllne.

RESULTS AND DISCUSSION

An idealized guyed tower platfOrm shown in
Fig. 1 is analyzed for four different sea
,tates ““der wind velocity of 30, UD, 10 and 8D
ft{seo. The details of the platform and the

guying system are shown in Tables 1 and 2. Ask
explained earlier, the platfQPm is subjected to
waves characterized by a Pierson-Moskowltzwave
spectrum. The drag and inertia c0efficlent3
are assumed to be 1.0 and 1.5, respectively.
Str.ct”ral damping 1s aaa”med to be 5% of the
critical.

T8b1e 1. Platform Data

Equivalent diameter of tower . 60 ft
Force fran buoyancy tanks - Fb = 12xI06 lb, .
Mcment arm for Fb . zb = 1000 ft
Platform weight = w~ - 2OX1O6 lbs
Mass moment of inertia includin added mass

Fabout the base . JO = 2.72x10 2 1bs-sec2-
ft

Distance of center of the platform to the base
- D - 1500 ft

Water depth = 1U25 ft
Number of cables = 16
Distance of cable attachment point from base =

Zc - 1300 ft
weight per mit length of tower . WT - 4250

lbslrt
Mass density of sea water = 1.988 lbs/sec2/ft4

(1 ft = D.3048 m, 1 lb = 0.4536 kg)

Table 2. G“yline Data

Angle of the cable to horizontal
attachment = ee . 28°

Length of lead line = 356D ft
Weight of lead line - 40 lb/ft
Length of clump weight . 1UD ft
weight.of the clum = 1920 lb/ft
Length of trailing line = 69o0ft
Weight of trailing line - 40 lb/ft
1ndividual guyline breaking 1oad =

at point of

2.2x106 lb,

The spectrum of the moment of wave load
about the base is obtained by dividing the
tower into segments 25 ft high and estimating
the wave load at the center of each section.
The idealized rational spectral density along
with actual spectral density are shown in Pig.
2 for wind velocity of 80 ftlsec.

Both transient and Stationary response
statistics are obtained using ““merit.1
solution of the differential equations of
mcments generated by Eq. 20. Runge-Kutta-
!lemrer,zfifth and sixth order methOd i, used
(lo). The initial conditions for platform
motion are assumed to start from rest. Fig. 3

shows tbe t,ansient and Stationary standard
deviation of the platform displacement. The
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Fig, 3 S.D. of deck displacement for
wind velocity of 80 ft/sec (Non-

Ga. ssi.an closure)

Foot mean square or the deck displacement
remains almost constant after 80 sec. Fig, . 4
and 5 show the va. iation of kut.tosis of tow?
displacement and velocity with respect to time,
respectively. The stationary ku?tosts of the
displacement i.q leptokurtic, whereas the
kurtosis of the velocity i3 platyk. rtic. In
the transient state, the standard deviation of
the velocity increases monotonically while the
kurto, is oscillates and the” reaches a steady
state. Translating this behavior in terms or

Wind Velocity = 80 fcl se.

I I 1 I I

0 20 40 60 80’ 100 120

TIME (SEC)

Fig. 4 K.rtosis of tower displacement

3.OC

2.76

\

Wind Velocity . 80 itlsec

0 2.0 40 60 80 100 120

TIME (SEC)

Fig. 5 Kurtosis of tower velocit~

Probability density function of the g.yline
te”sio”s ahowa that Suoden changes or j erk load
0“ the g.ylines may be expected i“ this range.
Table 3 Show3 the stationary 1’e.5Po”,e
statiatica of the deck displace rne”t with
Ga.ssia.”and “on-Ga.ussia” C1OSLI?. techniques.
Even though both methods aeenlto Provide almost
the same ,econd order statistics, at higher sea
states the kur’toais of the reaDo”se is seen to
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Table 3 Stationary Statistics of Deck DisP1acemt?nt

Hind
velocity
ftlSeo

30

40

70

80

Significant Standard Deviation
Wave Height, Pt

f?. G NC

5.81 1.47 7.47

10.38 4.35 4.35

31.80 26.32 26.41

41.58 30.35 30.65

deviate from the Gaussian. The no”-Ga”ssia”
?espo”se distribution is mocfeled as a weighted
sum of Gaussian and Laplace distributions. The
Laplace density function is given by (18)

fL(x) = & -P(- lx-. ] /6) (32)

and the mean, variance, coefficient of skewness
ana kurtosis are given by o, 2B2, O. and 6.0,
respectively. Figs. 6 and 7 show how the non-
Ga.ssian distribution affects the probability
density or the response near the mean ana at
the tails, respectively. &t the tails beyond a

-0.8 -0.4 0.0 0.4 0.8~
c? NORMALIZED VARIATE

2
Fis. 6 Probability density of deck

displecemenc of normalized variate

normalized variate equal to 3.0, the Gaussian
assumption is seen to underestimate the
probability by several orders of magnitude.
This means that for the same level of
probability density, non-Gaussian density will
predict a higher value of tower displacement
and a Gaussian assumption will underestimate
the guyline tension.

The tensi o“ f’atig”e C“r.e, represented by
Eq. 30 and used in this study, is show” 1“ Fig.
8. Table 4 shows the fstigue of a g“yline
under maximum tension. Both Gaussian closure
and non-Ga”ssi an closure methods are employed
t. obtain the ratig”e damage. It is seen that
the fatigue damage with Gaussian closure is
unco”sevvative at higher sea states comparea to
the fatigue damage using a non-Gaussian
distribution for the tower displacement. Since

Cmff . or Excess PI

G NC

0. 0.00 1.00

0. 0.03 0.99

0. 0.24 D.92

0. 0.36 0.88

P2

0.00

0.01

D.08

0.12

the probability di$trib”tion 1s leptok”rtic,
this is expected (16,19).

Table 4 Fat1~U~ Damage/Year of Maxinlum
Stressed GUyli“e

Sea State F.atig”eDamage/Year

Sig”ifi- % Occ”r- Ga”s?,ia“ Non-
cant Wave rence Closure Ga”ssia”
Height, ft Closure

5.81 49.0 0.U644X10-1 0.4644x10-1

10.38 21.0 0.6067,10-1 0.6087x10-1

31.84 2.5 0.1626x10-1 L3.2155x10-1

41.58 1.0 0.2873x10-2 0.3’/04x10-2

.

L?!
Wind Velocity = 80 fc ..

0 0.24H
. Wi. d Velocity
~ = 70 ft/s. c

k
0.16 ind “elocicy

E
= 30 f[/s, c

;
z
x

~ 0.08
.

2

z
: 0.0
0
K –4.0 -3.8 -3.6 -3.4 -3.2
A

NORMALIZED VARIATE

Fig. 7 Probability density of deck
displacement of normalized variate

CONCLUS1ONS

It is “OW well known that probabilistic
methods of analysis are very useful tools in
Oesignl”& safe and reliable systems baaed on
realistlc assumptions. The expedience with
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jacket platforms confirms this. Deepwater
compliant .stvuctur es, howeve?, cannot be
analyzed f. the same way as jacket platform
since they behave differently. Nonlinearity is
of fundamental importance in the development of
Procedures r.r probabilistic analysis. The
work Q?esented here attempts to caDtul’e the
essential effectz of no”li”ear behayior o“ the
Pespo”.5e, and is in a sense a modest beginning.
The p,oblernof probabilistic fatigue analysis
of the Inoor in&Ii”es under “0”1 inear tension
characteristics has .130 bee” addresaed. Ba.?ed
o“ the wo?k pre~e”ted here, the following main
CO.CIUSI0“s can be drawn:

(i) A St.chaStlc method is developed to
estimate the tt’ansfe”tand stationary responses
of a “onli”ear compliant platform based o“
Markov idealiz,atio”of tba load.

(ii) ‘fransient response in terms of
kurtosis shows the possibility of jerk loading
Of the EUYli”eS.

(iii) Stationary ,esponae is “on-Ga.ssia”
at higher sea states. Displaaement is
leptokurtic while velocity is platykurtic.

(iv) The probability density function of
di?,D1acement iz U“dereatimated bv 2.Gaus.sia”
.Sshpti ml, leadl”g to “nderes~imatlo” of
Euyline tension.

(v) The non- Gau3s ian p?obabillty
distribution of the tower displacement is seen
to affect the prediction of the fatigue
beha,ior of the gUYli”e, . Fatigue of ihe
8.Yli. es is see. to be unconservative using
Ga.saian closure.
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