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ABSTRACT

4 stochastic method is presented for
dynamic and fatigue analysis of compliant
platforms with nonlinearity in the stiffness.
The wave loading is Idealized as a component of
g multidimensional Markov process, The
differential equation of motion is expressed in
terms o a set of first order stochastic
differential equations, Ito's rule for
stochastic differential is applied to obtain
differential equations for moments after
performing an averaging operation. The
equations are closed using Gaussian and
non-Gaussian closure technilques. The
differential equations for moments are solved
in the time domalin using numerical metheods.
The response 13 modeled as a wmixture
distribution. It is observed that the response
is non-Gaussian and the probability density is
signifiecantly underestimated at the tails by
the Gaussian assumption. The probability
distribution for peak guyline tensicns is
estimated by mapping a Gaussian process into
the non~Gaussian process of guyline tensicns
and estimating the level crossings., The
tension fatigue damage is estimated for a
guyline using Palmgren-Miner's rule., It is
shown that fatigue damage estimation under a
non-Gaussian tension distribution is higher
compared to the Gaussian.

INTRGDUCTICN

A deep water compliant platform is
designed to move with the load. The sway
periods for these structures are kept well
above the design wave periods, thereby reducing
the dynamiec locads. Varicus structural
configurations such as articulated platforms,
tension~leg platforms, and guyed tower
platforms have been used. The response
behavior of such systems can be realistically
estimated if the wave-structure system is
modeled properly. For structural systen
vehavior with large displacements, the
geometrically nonlinear behavior of the
components providing stiffness requires that
the system be idealized as nonlinear. The wave
loading is essentially random and needs to be
modeled as a stochastic process, Analysis of
compliant platforms thus is the analysis of
nonlinear system with stochastic input.

A method i1s developed here for an offshore
guyed tower platform subjected to random waves.
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The platform 1s a slender tower resting con a
flexible foundation held vertical by a number
of guylines attached near the top of the tower
{1). Each guyline is a multicomponent mooring
line consisting of a lead line, . clump weight
and trailing line. Under operating condltlions
the tower does not move appreciably, but during
design storms the clump weights lift off,
making the system "soft" and thus absorbing the
wave energy.

Time~domaln solutions with variocus degrees
of complexity are avallable for dynamic
analyses when the ocean-structure system isg
assumed to be deterministic. For random wave
loading, scme of the approximate methods that
have been developed include steochastic
equivalent linearization of the structure and
waveloading, perturbation and Monte Carlo
simulation. Smith and Sigbjornsson (2}
presented a method to estimate the second order
statistics of compliant platforms using an
iterative method similar to perturbation.
However, phenomena which are typical for
nonlinear structures - such as jump - can be
observed only when higher order statistics are
considered. Monte Carlo simulation {3) has
shown that ‘linearized frequency domain methods
are inadeguate to represent the response of
nonlinear compliant systems. Moreover, this
method requires a significant amcunt of
computer time and is expensive.

A stochastic dynamic analysis of such a
softening nonlinear system such as a guyed
tower under & generalized lcad Is not yet
available. With some approximation fer
loading, the system behavior can be estimated.
Markov process theory can be used here. The
Markov property of a random process refers to
the independence of the future behavior of the
process from its past behavior given the
knowledge of Its present state. It is known
that every stationary Gaussian process with a
rational spectral density (spectral density
with numerator and dencominator containing
polynomials in square of the frequency) can be
represented as a component of a multidimen-
sional Markov process. The spectral density of
the load process can always be approximated to
any desired accuracy by a raticnal funetion.
Thus, if the load process is stationary,
Gaussian and non-Markovian, it can be
approximated by a ccmponent of a multidimen-
sional Markov process of desired accuracy by
varying the dimensions of the Markov process



{(4). This multidimensional Markov process can
be represented by a set of stochastic
differential equations involving the components
of the process and parameters of the rational
spectral density (5,6). Alternatively, this
defines a filter which converts a Gaussian
white noise into the loading (7). The expanded
phase~space including the filter components
will have Markov characteristics and will be
more amenable mathematically. Markov process
theory can be used to estimate the probability
distribution of the response, which spectral
methods are incapable of providing. This
approach is used here to obtain the response
for a nonlinear guyed tower.

The equivalent horizontal stiffness of the
platform provided by the guylines is estimated
using catenary equations (8,9). This nonlinear
stiffness is expressed as a sum of the linear
and cubic terms. The platform is assumed to be
subjected to wave loading which is stationary,
ergodic and zero-mean Gauasian. The spectral
density of the moment of the wave load about
the base is fitted to a .rational spectrum using
the Lavenberg-Marquardt algorithm for least
square estimation of the nonlinear parameters
{(10). As desecribed earlier, this loading is
then expressed as a component of a two=
dimensional Markov process through two
stochastic differential equations deseribing
the filter. FExtending the phase~space of the
system by adding the coordinates deseribing the
processes in the filter, and using Ito's rule
for stochastic differentials (11}, differential
equations for all the moments including the
joint moments up to the fourth order are
derived for this system. The effect of the
cubic nonlinearity in the stiffness is that the
equations for the second order moments contain
terms of the fourth order moments on the right
hand side. Similarly, the equations for the
third order moments and the equations for the
fourth order moments have sixth order moments
on the right hand side, To solve the moment
equation up to the fourth order, fifth and
higher order cumulants are coasidered tc be
equal to zero. This gives the relationship
between moments of the fifth and sixth order in
terms of lower order moments, These
differential equations for moments are then
solved in the time domain using the Runge-
Kutta-Verner method to obtaln the moments of
the response (30). The probability
distribution is then modeled as a mixture
distribution, which 13 the weighted sum of two
known distributions with the same mean and
variance. The optimal welghting factors are
estimated using the third and fourth central
moments.,

Using elementary probablility laws, the
probability distribution for the guyline
tensions is estimated from the probability
distribution of the displacement. To obtain
the probability density of the peaks, a
Gaussian process is mapped into this process by
the double inversion technique and level
crossings are obtained (12), For a narrow band
process, the peak distributicn is considered to
be cne minus the ratio of the expected rate of
crossings at a certain level to that at the
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mean. The probability density is then cobtained
by humerical differentiation. Xnowing the
tension fatigue curves of the guylines in
terms of percentage of breaking load range and
cyeles of failure (13), the cumulative fatigue
damage is estimated by a method similar to the
Palmgren-Miner hypcthesis.

It is shown that the probability density
function of the displacement of the tower
deviates significantly from the Gaussian at the
tails for high sea states, The non-Gaussian
transient response provides jerk load for the
guylines and the estimated guyline fatigue will
be unceonservative if the tower displacements
are assumed to be Gaussian.

MATHEMATICAL MQDEL OF THE PLATFORM SYSTEM

The tower of the platform is modeled as a
rigid coclumn with hinge support at the bottom.
The guylines are assumed tc be circumferential-
ly symmetric. The local dynamics of the cables
are assumed to have no effect on the tower, and
the tower is considered tc be moving in one
plane only.

The horizontal restraint to the tower is
provided by guylines and buoyancy tanks. Each
guyline is a multicomponent mcoring line
comprising a lead line, a clump weight and a
trailing line attached to an anchor pile. The
horizontal restoring forece and vertical
reaction at the point of attachment of the
mooring line to the tower develop when the
tower moves from its original position and can
be estimated using catenary equations for the
cable (8,9). Since the initial geometric
configuration based on initial tension is
known, the angle of rotation of the fower is
estimated by varying the tension in the mooring
line. Knowing the tower rotation, 8, and the
corresponding horizontal resatering force, Ry, a
least square regression analysis is performed
to yield regression constants ¢y and c such
that

R, = ¢.86 + ¢ 93

¥ 1 5 (1)

The vertical reaction at the point of
attachment of the guyline and tower, Ry, is
given by

RZ = c{ + cé 92 (2)

The reason for this particular form of
Eqs. 1 and 2 will be given in the following
section.

DYNAMICS OF THE TOWER

An idealized tower with all the necessary
geometric and loading parameters is shown
schematically in Fig. 1. The equations of
motion, under the assumptions described
earlier, are obtained by taking the moments of
the load and restoring forces about the base.
The governing equation is given by
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= F{t) h (2)

in which @, é,ﬁ = angular displacement,
veloeclty and acceleration of the tower,

el . T

recnant i T o

respectively; J = structural inertia about the
base; ¢ = damping constant; ¢ = half the tower
depth; D = distance between the center of the
platform and the base; Wy = platform weight; wr
= welght per unit length of the tower, Fy =
buoyancy force; zp = moment arm for Fy; F(t) =
wave 1load; and h = moment arm for F(t).
Substituting Fgs. Y and 2 in Eq. 3, the
governing equation of motion with cubie
nenlinearity in the stiffness 1s obtained as

T Ty N . P

) & R + F i
J B+ ed 0+ che1 0 T s bbzb)a

+ zc(c2 - cé) 87 = F{t) h {4y
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MARKOV PROCESS IDEALIZATION OF LOAD

Realistic modeling of waves as a random
process makes the differential equation given
by Eq. 4 a stochastic differential equation
with random right hand side. Waves can be
modeled as a stationary, ergodic, zero mean
Gaussian process characterized by an empirical
wave height spectrum e.g. a Pierson-Moskowitz
spectrum given by

-3 2
- §;1_5E12__s_ exp [=0.78(9/vuw)"]
w (5)

Shh(w)

in which g = aceeleration due to gravity; v =
wind velocity; and w = wave frequency. Using

Airy's Linear wave theory, and Morrison's
equation Tor wave load eakimation

uallh LURU CoOUiGatiln,

the spectral

density for the total moment of the linearized
wave load about the base is given by

N N
SMM(m) a E. ‘-i hih_j[CMiCMjsij‘ii‘{w) +
L=0 g=a L g
CD, CD‘j uiu {w) + CMiCDjSu (w) +
3
CMCD, S, (m)] (6)
in which N = number of sections into which the

tower ia divided to estimate the total moment;
hy = distance between the base of the tower and
the center of the section; CMj = CppVi; Cp =
inertia coefficient, p = mass densxty of water;
Vi = effective volume of the ith section; CDj =
1/2 p Cyhy (B8/% v(y - %)i T4 = drag
coeffiecient, Ay = effective area of the ith
section; Sy;xi (w) = spectral density of ¥ at
the ith locatidn and X' at the jth location; X
and X' are the acceleration and velocities of
water particles dencoted by {i and u,
respectively: X = velocity of the structure;
and oy - %) = standard deviation of relative
velocity.

Knowing the spectral density function of
the moment, a rational spectral density
function can be fitted to it by adjusting its
parameters (14). The algebraic form of the
rational spectral density function used here is

gi von by

mZ
(1)
¥+ (e’

(wz*w

[SJ V] [or )

A
The parameters G, wy and C, can be gbtained by

minimizing

1=

)
[SMM(M.) e

2
1 i SﬂM(wi)] using

i

standard algorithms (10).

Eq. 7 can be written as



lpciw)l 2

3 (w)l=
\0(1m)\2

- (8)

in wnieh Q(x) = zP-[ayzP™? + ... + ap] having
rocts with negative real parts. P(z) = bgz9 +
byz9”1 « + b, and z<p with both the
polynomials having real coefficients. The
randem process M{t) represented by Eq. 8 is an
ARMA {AutoRegressive Moving Average) Gaussian
process, It can be shown that the stationary
Gaussian ARMA process M(t) I3 the first
component of the p-dimensional stationary
elementary Gausslan process M¥(t) = [Mq(t),
Mg(t),...,Mp(t)J satiafying the linear
stochastic equations (5,6)

dMJ(t) = Mj+1(t) de + 3.dw(t), j=1,...,p~1 (9)

J

and

-1
dM = I

(t) dt + B dw(t)
P k=0

2y M (10)

in which w{t) i8 a standard Wiener process (a
normal process with independent increments and
mathematical expectation equal to zero), and
coefficients B4, Bp,...Bp are given by

- [alsp et ap_151] (11)

P31 (12)

8 = § B ., o.a . +b . d=1.1,...p~1 (12
“pmd FECRE il 9] '

and b~1- - b~(p-q-1) =0; qp, 81 = bq~(p~1)

Comparing Egs. 7 and 8, the moment of waveload
about the base can be expressed by two linear
stochastic differentlial equations given by

'/ A
6, dt + G dwit)

de (13}

3"

2 /
dg, = Coeudt = ag B3dt - co 3 dw(ti(14)

in which 8y = moment of wave load about the
base, and gy relates to the derivative of ej3.

APPLICATICN OF THE METHOD OF MOMENT FUNCTIONS

Itc stochastic equations for extended
phase-space (I1.,e. 1lncluding the filfer
coordinates &3 and 8;) of the system (Eq. 4)
are given by

de, = 8 (15)

1

de,, = 5313) at + 93dt (16}
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17

d83 = eudt + |’Go aw(t)

a8, =

2
y ('Coeu -y 63)dt - co /Godw(t)(18)

angular displacement and velocity of
respectively, a = (cd2 + Sha
heppl/des b = (Zgeq = Dwp = DdWwy — zpeq *
szb)/JO’ e = zoleg = cp)/dg, dg = J #
CppVh? erfs herf = height above the base where

87, 62 =
the tower,

all sections

the effective force is acting; ¢ .= b
hd
J=1
0.5 c.pA.0 and JG = ﬁfa .
Ca™y7 (%, )} Vi ¥ ™

Eqs, 15 to 18 can be expressed as

dg = f(g,t) + F(g,t) dw(t) (19)
where § = {8, 6 8. & }T
172 T3 7
If «y{6)> is the Sth ordered mixed moment of 8,
n s
where ${8) = =% & with sy = 0,1,...p, Such
i=1

n
I s84=8, then using Ito's rule for stochastic
i=1

differentials, the differential equation for
the moments can be obtained by averaging

n n
d 3y 1
== wlg) = I £, + 3 I
at =1 1R
2y T
3,06 (FDF)y, {20)

f and F are known from Eq. 19, and D = an nin
diagonal matrix with diagonal elements
<{dw(t))2)> and < » denotes expectation,

SOLUTION OF MOMENT EQUATIONS

From Eq. 20, the first through fourth
order moment equations can be developed. The
total number of equations that can be developed
for a particular order of moment depends on the
dimension of the {dealized Markov process.
When the phase~space is described through four
first order differential equations; as in the
present case (Eqs. 15 through 18}, then ten
second order, twenty third order and
thirty-five fourth order moment equations are
developed. If the probability distribution of
the response is assumed to be Gaussian, only



the first and second order eguations need to be
sclved. However, due to nonlinearity, the
first order moment equations contain third
order moments, and the second order moment
equations contain fourth order moments on the
right hand side. Assumption of a Gaussian
distribution means that cumulant functions of
crder three and higher are zerc. With this
property, the moments of third and fourth corder
can be expressed in terms of the first two
order moments, This is called Gausslian
closure, which is equivalent to the equivalent
linearization technique. When the nonlinearity
is significant, the distributien of the
response may deviate significantly freom the
Gaussian., The non-Gaussian distribution ecan be
characterized if the higher order moments are
known. For this purpose, it is assumed that
the cumulant functions of order five and higher
are zerc, With this assumption, the fifth and
sixth order moments can be written in terms of
the first four moments. This system of
differentlial equaticns is thus closed at the
fourth moment level and can be solved using
numerical techniques in the time domain, After
a sufficlent length of time, it can be seen
that the moments obtained remain almost
constant and can be considered as satationary
moments. Another way to obtain stationary
moments is as follows. The 1left hand side of
Eq. 20 gives the derivatives of the moments and
thus can be considered to be zero.
Consequently, these equatlions now become
noniinear algebralic equations and can be solved
numerically.

However, these nonlinear algebraic
equations can he sensitive to the initial
guess, and criteria based on moment
inequalities must be used to check whether the
correct aclution has been obtained. 1In this
study, the differential equations have been
solved in the time domain and the response is
obtained over a sufficient length of time so
that the moments remain constant. This
procedure also allows examinaticon of the
transient response, Once the moments are
known, the next step is to establish a
probability distribution for the response,

Knowing the first four moments of the
response, the probability distribution can be
modeled as a welghted sum of Gaussian and
non-Gaussian distribution as

L
F = 1t p,F (21)
r 4-0 PR
with
L
p, > 0and I p, = 1.0 (22)
L =0 &

With the Fﬂ's having the same mean and
variance, the weighting factors are obtained
using the information on third and fourth

central moments by minimizing n under the
constraints given by Eq. 22, where (12)

A L2
; (4 = 9,) (23)

=
B
[T e B =

K

in which ¢, $k = dimensionless central moments
of the kth order of the respcnse and the
mixture distribution, respectively.

FATIGUE OF GUYLINES

The guylines are Suojecied

el 3 mAaa =R lr-1 anh 4 oAbk oA tc s Ee
number of tensicon fluctuations and the
poassibility of tension fatigue must be
considered. Cyclie bending of the cables also
ocecurs at the fairleads. This is of small
amplitude and relatively low frequency. Only
tension fatigue is considered here. Platform
response to the waves influences the amplitude
and mean load experienced by the guylines.
Similar to Egs. 1 and 2, additional tension in
the maximally stressed guyline cah be related
to the tower displacement by

T 3

g = ab + RO 6 > 0. (24)

=0 ; 8 < 0,

From the probabillity distribution of the tower
rotation B, the probability density of the
guyline tension, f, and mean and variance of
the tension range in the guyline can be easily
calculated using elementary probability laws
{(15)., Since the tower rotation is non=Gaussian

i i ok
and a nonlinear relationship exists between

tension and tower rotation, the probability
dengilty funection of guyline tensions is
non~Gaussian. To obtain the peak density of
the tension peaks, level crossings for the
non~Gaussian guyline tension process must be
obtained, This c¢an be done by mapping a
Gaussian process Té(t) into Tg(t) such that
(10}

Tr(ty = 6" B~ [T (£)1) (25)
24 T g

g
T (1) = B "ol T (1)1} (26)
E - Ty ol

in wnich Tg(t) = (Tg(t) = ap)/er and ﬁ%(?&(t)
= probability distribution of Tg{t); ¢,°¢ =
Gaussian and inverse Gaussian; and mp,o7 = mean
and standard deviation of tension,
respegtively.

It can be shown that the mean ra
which Tg(t) crosses any threshold level t, v,
with positive siope can be obtained from the
mean rate at which TZ(t) upcrosses the level t!

te a%

Y R
=0 {E? [T (t}= ——1] and can be approximated
g & r

by (10)



oF
Y = ¢{t?)
2n

(27)

o~ i
in which o% = root mean square of T and can be
obtained in a similar way as oT.

The probabpility distribution of the
tension peaks i3 calculated using the heuristic
assumption that for a narrow band process, the
required distribution, Fpr, is given by {16)

() = — (28)

E;‘
pT v

in which vy, vy = expected rate of crossings
at level t and méan, respectively. Knowing the
distribution, the density function can be
obtained by numerical differentiation.

The total number of tension cycles per

year for a particular sea state, N can be
estimated as
N =P vx3.153 x 10° (29)
c osi *

i

in which Pagy = percentage of ocecurrence of sea
state i;

mean rateof crossing of the
platform

hV] =

Data on the fatigue behavior of large
diameter ropes is scant. A modified veraion of
the tension fatigue curve for cable diameter of
8.5 om presented by Waters, Eggar and Plant
{13) is used here. The tension fatigue curve
is presented in terms of load range breaking
load percentage vs. cycles to failure. The
curve is a stralght line on semi~log paper.
Knowing the nominal diameter of the guyline,
the breaking load of the cable can be predicted
using the curves given by Ronson (17). The
fatigue curves presented by Waters, Eggar and
Plant can then be used to estimate the fatigue
damage of the cable using Palmgren-Miner's rule.
The fatlgue curve is represented by

log Np = ¢ + mP (30)

bt

in which Ng¢ = numher of cycles to failure; ¢ =
constant; m = slope of the curve; and Ppy =
percentage of breaking tension.

The totzl damage for a sea state is given

by
100 6 5
Posi v 3.1536x10 p(Pbt)det
4 = N (b3 (31>
f bt
o
in which & = accumulated damage;

p(Pyy) = probabillity density of the
tension in terms of percentage of breaking
tension; and Ne(Ppt) = number of cyeles to
failure at the percentage breaking tension Pyg.

120

Thus, the fatigue damage can be estlmated
for all the sea states and summed to obtain the
annual fatigue damage, The reciprocal of this
will give the fatigue life of the guyline.

RESULTS AND PISCUSSION

An idealized guyed tower platform shown in
Fig. 1 is analyzed for four different sea
states under wind velocity of 30, 40, 70 and 80
ft/sec, The detalils of the platform and the
guying system are shown in Tables 1 and 2. Ask
explained earlier, the platform 1s subjected to
waves characterized by a Pierson-Moskowitz wave
spectrum, The drag and lnertia coefficlents
are assumed to be 1.0 and 1.5, respectively.
Structural damping is assumed to be 5% of the
critical.

Table 1. Platform Data

Equivalent diameter of tower = 60 ft

Force from buoyancy tanks = Fp = 12x10% 1bs.

Moment arm for Fyp = zp, = 100Q ft

Platform weight = Wp = 20x106 1bs

Mass moment of inertia including added mass
about the base = Jy = 2.72x1012 1bs-sec?~
ft

Distance of center of the platform to the base
=D = 1500 ft

Water depth = 1425 ft

Number of cables = 16

DPistance of cable attachment point from base =

Zg = 1300 ft
Weight per unit length of tower = wp =» 4250

lba/ft
Mass density of sea water = 1.988 1bs/sec2/rth

{1 ft = 0.3048 m, 1 1b = 0.4536 kg)

Table 2. Guyline Data

Angle of the cable to horizontal at polint of
attachment = Bg = 28°

Length of lead line = 3560 ft

Weight of lead line = 40 1b/r¢

Length of clump weight = 140 ft

Weight of the clum = 1920 1b/ft

Length of trailing line = 6900 ft

Weight of trailing line = 40 1b/ft

Individual guyline breaking load = 2.2x10% lbs

The spectrum cof the moment of wave load
about the base is obtained by dividing the
tower into segments 25 ft high and estimating
the wave load at the center of each section.
The idealized rational spectral density along
with actual spectral density are shown in Fig.
2 for wind velocity of 80 ft/sec.

Both transient and stationary response
statistics are obtained using numerical
solution of the differential equations of
moments generated by Eq. 20. Runge-Xutta—
Verner's fifth and sixth order method is used
(10)., The initial econditions for platform
motion are assumed to start from rest. Fig. 2
shows the transient and stationary standard
deviation of the platform displacement. The
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root mean square of the deck displacement
remains almost constant after 80 sec., Figs., X4
and 5 show the variation of kurtosis of tower
displacement and veloclity with respect to time,
respectively, The stationary kurtosis of the
displacement is leptokurtic, whereas the
kurtosis of the veloecity is platykurtic. In
the transient state, the standard deviation of
the veloecity inereases monotonically while the
kurtosis oscillates and then reaches a steady
state. Translating this behavior in terms of
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probability density function of the guyline
tensions shows that sudden changes or jerk lecad
on the guylines may be expected in this range.
Table 3 shows the stationary response
statistics of the deck displacement with
Gaussian and non-Gaussian closure techniques,
Even though both methods seem to provide almost
the same second order statisties, at higher sea
states the kurtosis of the response is seen to



Table 3

Stationary Statistics of Deck Displacement

Wind Significant Standard Peviation

Veloeity Wave Height, ft

ft/sec ft G NG
30 5.81 1.87 1.47
il 10.38 4.3% i35
7o 31.84 26.32 26.11
B0 41,58 30.35 30.65

deviate from the Gaussian.

The non-Gaussian

response distributicn is modeled as a weighted

sum of Gaussian and Laplace distributions. The
Laplace density function is given by (18)
1
£,00 = 55 exp(= |xa] /8) (32)

and the mean, variance, coefficient of skewness
and kurtosis are glven by «, 2p2, 0. and 6.0,
respectively. Figs. 6§ and 7 show how the nom-

Gaussian distribution affects the probabllity
density of the response near the mean and at

the talls, respectively. At the tails beyond a
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Fig. 6 Probability density of deck
displacement of normalized variate

normalized variate equal to 3.0, the Gaussian
assumption i{s seen to underestimate the
probability by several orders of magnitude.
This means that for the =same level of
probability density, non-Gaussian density will
predict a higher value of tower displacement
and a Gaussian assumpticen will underestimate
the guyline tension.

The tensicn fatigue curve, represented by
Eq. 30 and used in this study, is shown in Fig.
8. Table 4 shows the fatigue of a guyline
under maximum tension. Both Gaussian closure
and non-Gaussian closure methods are employed
to ahtain the f'af,fgnn n'nmngei It is seen that

the fatigue damage with Gaussian closure is
unconservative at higher sea states compared to
the fatigue damage using a non-Gaussian
distribution for the tower displacement. Since
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Coeft, of Excess P p2
G NG
D. .00 1.00 0.00
0, 0.03 0.99 0.0
a. 0.24 0.92 Q.08
0. 0.36 0.88 0.12

the probability distribution iIs leptokurtic,
this is expected (16,19).

Table 4  Fatigue Damage/Year of Maximum
Stressed Guyline
Sea State Fatigue Damage/Year
Signifi- 4 Occur- Gaussian Non~
cant Wave rence Closure Gaussian
Height, ft Closure
5.81 49.0 0.l644x10"7 0, 4648x107]
10.38 2t.0 0.6067x10~1 0,6087x1071
31.84 2.5 £.1626x10"1 0,2155x107}
41,58 1.0 0.2873x1072 0,3704x1072
0.32
Wind Velocity = 80 frjigec
0.24

Wind Velocity
= 70 ft/sec

0.16twind Veleocity

PROBABILITY DENSITY FUNCTION (xlO_z)

= 30 fr/sec
0.08}
0.0 ‘ L I
-4.0 -3.8 -3.6 ~3.4 =3.12
NORMALIZED VARIATE
Fig. 7 Probability density of deck

displacement of normalized variate

CONCLUSIONS

It is now well known that probabilistic
methods of analysis are very useful tools in
designing safe and reliable systems based con
realistic assumptions. The experience with
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Fig. 8 Tension fatigue curve

Jjacket platforms confirms this., Deepwater
compliant struc¢tures, however, cannot be
analyzed in the same way as jacket platforms
since they behave differently. Nonlinearity is
of Ffundamental importance in the development of
procedures for probablilistic analysis., The
work presented here attempts %o capture the
essential effects of nonlinear behavior on the
response, and is in a sense a modest beginning,
The problem of probabiliastic fatigue analysis
of the meoring lines under nonlinear tension
characteristies has also been addressed. Based
on the work presented here, the following main
conclusions can be drawn:

(i} A stochastic method is developed to
estimate the transient and stationary responses
of a nenlinear compliant platform based on
Markov idealization of the load.

{11} Transient response in terms of
kurtosis shows the possibility of jerk loading
of the guylines.

(iii) Stationary response is non-Gaussian
at higher sea states, Displacement is
leptokurtic while veloclity is platykurtic.

(iv} The probability density function of
displacement is underestimated by a Gaussian
assumption, leading to underestimation of
guyline tension.

(v) The nen—-Gaussian probability
distribution of the tower displacement I3 seen
to affect the prediction of the fatigue
behavior of the guylines. Fatigue of the
guylines is seen to be unconservative using
Gaussian closure,
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