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ABSTRACT

Structural desgign

optimization
optimization
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taken to mean the minimization of the
expected present value of the sum of
the initial cost of the structure and
the losses incurred due to the
structure entering a certain limit
state,
the optimal central safety facter and
for its associated probability of
failure as a function of the
"importance ratio" of the structure.

Current

Expressions are derived for

limit state desian c

sed LS QES1lgn

use a discrete number of safety

levels,

Herein a methodology is

proposed for the selection of these
safety levels and to assess their
applicability using a one dimensional
catalog optimization formulation.

NOMENCLATURE:

C = Expected present value of
initial cost

Cop = Expected value of total cost

€5 = constant

F = Objective functional

£ = Probability density

G = Importance ratio

G = Discrete value of importance
ratio

H = Loss or damage function

L = Expected present value of loss
function

P({*) Probability

q = Parameter of the beta
distribution

R = (Ramdom) resistance

R = Expected value of resistance

r = Parameter of the beta
distribution

S = {Ramdom) load effect

3 = Expected value of load effect

v = Coefficient of variation

w =1 + Vv

W = Total catalog waste

n :

w4 = Waste function

X = Demand variabhle

Xs = Supply variable

pA = Normalized total cost

7, = Optimum normalized total cost
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i rmation about the
behaviour of structures in service
combined with the use of ceodes con-
taining high safety factors can lead
to the view, still held by scme
engineers, naval architects as well as
by many members of the public¢, that
absolute safety can be achieved.
Absolute safety is of course unobtain-
able, and such a gecal is also
undesirable, since the attempt to
achieve absolute safety would consume

too many finite resources.
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Acceordingly, it is now widely
recognized that some risk of
undesirable structural performance
must be tolerated. This leads to the
debated and open question of how to
select structural risk levels in order
te obtain eoptimum structural perfor-
mance, taking into account the
available economical rescurces and
competing demands.

During recent years, a new
generation of probability-based design
codes have been formulated (1-5). The
reliability levels for these codes
were selected on the basig of
intuition influenced particularly by
the current, good or bad, level of
performance of existing structures.
The load and resistance facktors in
these codes are functions of the
coefficients of variation of the basic
random variables, and thus reflect a
certain safety level differentiation
with respect to uncertainty in the
values specified in the code.
Sc-called "Importance Factors” have
been introduced as a practical,



although intuitive means of achieving
differentiation of safety levels.
Importance factors usually consist of
multiplicative values to be applied to
the standard design values of the
actions or to the specified values of
the resistance in crder to medify the
probability of failure.

A practical rationale for the
selection of safety factors for
different structural types is
essentially lacking in the theory of
codified design; this is especially
true in the context of marine
structures. The aim of this paper is
to take a closer look at this problenm
and to propese ways to put its
mathematical aspects into a simple
formulae.

UTILITY
structural

regqulate the
of structures in

The purpose of a
design standard is to
process of production
a way that is optimum for society. 1If
all guantities that a structural
standard dealt with were deterministic
it would be possible to optimize the
standard in principle by listing all
possible options in order cof
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ranked on the first place. There is,
however, much uncertainty asscciated
with structural behaviour, so in order
to optimize, a scalar that reflects
society’s intensity of preferences
should be assigned, and the option
associated to the highest value of the
scalar chosen. By definition this
scalar is the utility. When it comes
to quantities that can be measured in

monetary terms, (these are in general
small for individual choices ag

LI~ RN Y IQ1lViGUal 101C8s 45

compared with society’s resources)
little error is introduced by assuming
that utility is a linear function of
money.

an
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The safety parameter of a
structural standard is practically
optimum if it maximizes the expected
present value of economic benefits,
and minimizes that of economic losses
for society. For simplicity in this
paper, central safety factors and
their corresponding safety levels
{(probabilities of failure) will be the
code provisions to optimize.

OBJECTIVE FUNCTION

Any rational economic
optimization study demands the
assessment of initial costs, C, and
potential future damage costs, L, due
to structures entering limit states.
In the case of marine structures these
costs encompass the following
component costs:
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1. Initial Cost
a. Design Costs
b. Material Costs
¢c. Construction Costs

d. Cost of Supervision
e. Finishing (Construction
costs which are not
structural)
2. Potential Future Damage Costs
a. Cost of Investigation
b. Cost of Strengthening
c. Damage for Injury or Death
d. Loss of Revenue
e. Cost of Pollution
f. Loss of Cargo
g. Legal Costs
k. Cost of Removal
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tility on one hand and the monetary
equivalent of benefits to society,
costs and losses in the other has been
assumed, additivity of utilities
follows (6). Thus an appropriate
objective function to minimize is:
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in which ¢ and L are the respectively
expected present values of initial
costs and losses, due to structures
entering limit states. Equation (1)
implies that changes in benefits
derived from the structure’s existence
due to changes in design, are
incorporated into C, L or both.

Initial Cost Function

Let the central safety factor, 8,
be defined as the ratioc of the

expected resistance, R, and the
expected load effect, §. 1In

conventional ship and offshore
structures, little error is induced by
assuming that the initial cost
(whether an entire structure or a
structural element is being
considered) at the neighborhood of the
optimum is a linear function of the
safety factor. Accordingly the
expected present value of the initial

cost, C, may be expressed as:

C = + . B t2)

C €y * €19 (2)
where cy and c, are constants that

depend 8n the %ype of structure.

Damage Cogt Functions

Actions on marine structures
include wave, wind, ice and current
lcads, imposed deformations, wear and
corrosion, etc. They are functions of
time, and so is the structural
response. Hence, L should be obtained
by integrating with respect to time.
Sometimes however, it is worth
idealizing matters as if the
structures were subjected to the



actions at a fixed time cduring their
lifespans. Now, assume that the
response can only take place at a
fixed time and that the only mode of
structural damage or failure is a
single limit state. The loss, H, at
the time of failure will be a step
function of the central safety factor,
say at 8 = 1.0, as shown in Figure 1,
The expected present value of the loss
due to failure or damage involves
multiplication by the probability,
P(9} that the limit state be reached,
then:

L = HP(@) (3}

If there is a series of possible
limit states, either independent of
each other or in cascade, that is,
such that each limit state beyond the
first implies that the structure has
entered the previous one, as shown in
Figure 2, Equation 3 must be replaced
with:

L=j (B -H ) Py (4}

where subscript i identifies the ith
limits state and H_= 0. 1If the limit
states are dependent events, the P,’'s
are conditicnal probabilities. A 8
combination of independent sequential
modes of failure or damage is alsc
possible.

If H varies gradually with 9_1,
say the first portion of the curve in
Figure 3 the loss function becomes:

L = J H (—‘l?-i de”
de”

e]

1 (5)

under the assumption that each value
of © can conly be attained at a fixed
value of time. It is worthwhile to
illustrate practical situations of the
three cases presented.

Consider first the bottom plating
along the forefoot of a ship for which
the only significant limit state is
collapse. Then yielding of the plate
elements or permanent set due to
slamming in rough seas may be
irrelevant up to a critical state
beyond which collapse will take place,
then the idealization of Figure 1 is
adequate,

Next, consider a slab in a
concrete offshore platform. At small
icads the slab would develop hair
crecks. Their widths are not
impeortant so long as they do not
exceed about 0.1 mm. 1In this range
there is at most an insignificant

loss. At worst, the owner may decide
to repaint the slab, in some cases
earlier than if the c¢racks have not
appeared. When the load is increased
the crack width grows. Beyond approx-
imately 0.1 mm, human reaction is
guite unfavorable teo the presence of
cracks, but their precise widths are

L | + ai
not very significant, at least up to

0.25 mm. However, if the slab is
unprotected from the outside environ-
ment, as is the case in offshore
platferms, large cracks may originate
corrosion of the reinforcement bars,
involving at some stage a more seriocus
loss due to spalling of concrete. If
the slab is covered with an imper-
meable material, large deflections in
the slab may cause ponding. At some
stage the slab may also vibrate
excessively, finally, at higher loads
or smaller resistances the slab may
collapse. In this case the loss

function may loock like Figure 2.

In the case of structural systems
with large capability of load redis-
tribution following an element
failure, the curves increase gradual-
ly, since the structure can accommo-
date overload with little damage
costs. The damage functicn for those
ook like Figure 3.

OPTIMAL SAFETY FACTORS

For simplicity only the first
case (that of a structural element
having a single relevant limit state)
will be dealt with in the following.
However, the solution procedure is the
same for all three cases described.

After substitution of Equations 2
nd 3 in Eguation 1, the function to

a
a
be minimized may be rewritten as:

Cp = Cq * cle + HP (6]
or equivalently, in terms of the
normaligzed cost 2 = (CT - ¢ )/c,, the
following function may be minimIzed:

Z = @ + GP (n
where the relation G = H/cl will be
called the importance ratio of the
structure and P = P(R < §) is the
failure probability.

Now, consider the commonly used
approximation concerning the failure
probability (7}

-B
P = wexp (—) {B)
In(R/5)

where o« and B are constants. Equation
8 is a good approximation, valid in
the range of relatively small failure
probabilities for a wide variety of
probability distributions of R and 5.

If both cof these variables have
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lognormal dig&ributions, inﬁthe range and the coptimal (minimum) normalized

of P from 10 to about 10~ then cost:
a = 460 and B = 4.3. If the folleowing B
variables are defined: -
1,2 GBa’ (B+o)
g = (anRWS) , Z, = | ) + Goa'{GBax') (11)
[+]
@ = o (W /W 17829 cndw o= 1 4+ 2
(where V means coefficient of Figure 4 shows graphically the
Variation), Equation 8 may be principle of the solution. It is
transformed into: observed that normalized total costs
increase dramatically on the left side
P = aref’? (9) of the minimum but increase only
gradually on the safer side.
Equating to zero the derivative of z Equations 10 and 11 are shown in
{Equation 7) with respect to @ gives Figures 5 and 6 as a function of the
the optimal central safety factor, o_, coefficients of variation of the load,
as a function of the importance rati Vg and the importance ratio G, and for
G, then, VR = 0.2,
1
GBu’ B/o+l
9, = ( ) (10)
[+3
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3 Generally, G lies between 10 and
107, this range is representative of
most marine and ship structures. Much
lower values may correspond to
structures whose tetal cost is very
sensitive to their structural capacity
and whose failure does not usually
structure itself, as is the case with
navigational bucys. As we move from G
= 10 to 1000 we may be going through
the range of small boats to oil
production platforms whose collapse
would possibly cause the death of
several people or would cause very
high levels of pellution of the sea.

It would be unjust for design
gstandards to require exceptionally
high reliabilities that such
structures should have, but egually
obiectionable not to include clauses
in structural standards that would
force owners of structures claimed to
be exceptionally safe to comply with
appropriate requirements concerning
their reliability. (Typically ocne
could have standards classify
gtructures into levels of safety and
contain clauses like "The Naval
Architect/Structural Engineer may
supply a certificate stating that the
structure meets the standard for
safety-level I11 provided its
reliability against local collapse
under the assumptions specified in

section X is not less than 10 ° and
against total collapse for thgssame
assumptions, not less than 10 7", and

make some reference tc return
periods).

It may be observed in Figure 5
that the optimal central safety factor
is very sensgitive to G and V_,. Design
for a fixed safety factor (£ixed reli-
ability) can clearly lead far from the
optimum. Even If through an exercise
of engineering judgement one could say

log{G)
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OPTIMAL NORMALIZED TOTAL COSTS, Vq: 0.2

how © should vary as a function of the
importance of the structure, one would
have to vary & as a function of Vv,
and this is not generally recogniZed
in marine design regulations. The
larger V. is, the more expensive it is
to attaig a given level of safety.

The sensitivity increases when
loss in case of failure is an
increasing function of the load acting
at the time of collapse.

iy,
Lile

For regulatory and code
specification purposes and for
practical reasons, it is convenient to
use a discrete set of values of the
safety factor. Selection of the
values should be based on the
frequency of occurrence of each design
condition, in this case defined by the
variables G, V_, and V_., and on the
overall cost to socie%y associated to
each safety factor specified. This
consideration leads to a catalog
problem which is described next.

OPTIMAL SELECTION OF SAFETY FACTORS

Simplicity is a most desirable
feature in design standards. It
encourages acceptance of the document
and reduces the prcbability of errors,
One way to simplify a standard is by
reducing the number of values that a
given parameter can take. This may be
accomplished by grouping structures
and structural elements into types,
rach type with a single value of the
code parameter, Using a discrete set
of values, though, leads to some
increase in the expected initial cost
(overdesigned structures), or an
increase in the expected present value
of the losses due to potential
entrance into limit states
{(underdesigned structures). From the
standpoint of this paper, the guestion
of the optimum set of values of the
safety parameters or safety levels is:



how many and exactly which values
should be specified in a design
standard of marine structures in order
to minimize the expected costs of
overdesign and underdesign structures,
given the distribution of the demand
importance ratio to bhe expected?
Choice of the number of wvalues
involves guantifying the cost or
utility of rather intangible concepts
{e.g. hesitation of designers to use a
complicated standard, and the increase
on errors due to the high number of
values to choose from), and lies
beyond the scope of the present paper.
However, once the number of values is
chosen, though, the problem may be
formed under the class of catalog
optimization problenms.

Catalog Optimization Problem

The general catalog optimization
problem can be stated as: Given a
demand vector space x, a probability
distribution of demand f(x), and an
objective functional F(x,x'}; find a
set of vectors X' = ¥, ,%X,, .-.,% ),
called the supply set or catalog? and
a mapping h(x) with range x’, called

2.8

the supply policy, to minimiz- the
expected value F of Fi(x,h{x)).

The determination of a catalog of
safety factors or safety levels may be
viewed as a one-dimensional version of
the catalog optimization probiem.

Some solutions to solve this problem
have been developed using Calculus
(8), Dynamic Programming (9, 10},
graphical methods (9}.

534

Lind (11) has shown that there is
a necessary and sufficient condition
for the boundaries of the supply sub
domains to be optimal when the number,
n, of supply elements have been
decided upon and the boundaries may be
chosen freely. It is assumed that the
domain, D, is divided into n sub
supply domains, one for each element
of supply. Supply subdomains are
closed sets and their intersections
are called supply boundarieg. It is
also assumed that to each supply
subdomain the corresponding optimum
value of the supply variables is
assigned. The condition is that the
loss or waste function due to
discretization be continuous at supply
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boundaries. A graphical
representation of this condition is
shown in Figqure 7. Next section
presents a derivation of a waste
function that can be used in the
selection of a set of central safety
factors.

Catalog Waste Function

The objective at hand is to find
a set of discrete values of the
optimal central safety factor that
minimizes the total was te
discretization. The waste due to
discretization is the difference
between the value Z(®_,) as is given
by Eguation 10 when ©71s taken as the
constant 8 , over a set of structures
represented by subdomain A, of the
importance ratio G, and thé value
2(8 ) when 8 is made equal to Bo for
each structure in the subdomain Ai.
From now on this subdomain will b&
called the applicability of central
safety factor ©_,. For each
structural type the discretization
waste may be expressed as:

waste due

W.

i (208, - Z(8,1) f(Bo) (12)
where f{8 ) is the demand frequency
for 8 . £Ks an example consider a
speci%ied central safety factor

8,1 = 2.51 corresponding to the

optimal central safety factor fo
structure with G = 500, VR Vs
and let £(86_ ) = 1, then W 0ve
when G 1; 7w, 0.116 whén G; =
and w, = 0.052 when G = 1000.

results are shown in Figure 8.

T
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Adding all individual Wi OvVer
the applicability domain A, Of 8.4
results in the total waste due t& the
use of Boi'

(13)

and the total catalog waste for a
catalog of central safety factors of
size n may be computed by:

W, o= §=1 (Z(eoi) - z{eo)) f(eo)deo
A,
t (14)
Now, Since 8_ 1is a monotonic

increasing function of the importance
ratic, G, and once the values of Vv,
and V_ are given (see Equation 10 and
Figurg By, the total catalog waste may
be alternatively written in terms of G
as,

n
Wy = %;; J (2(G;) - Z(G}) £(G}dG

A,
1 (15)

is the minimum cost of a
element designed for an
ratio G and optimal central

where 2{G)}
structural
importance
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safety factor @ (G}, and Z{(G.) i» the
cost of the sam€ element designed with
a specified central safety factor
8,;(G;), corresponding to a specified
df4créte value G,. If the number of
required discrete values is fixed, and
the applicability domains are
computed, the determination of the G,
values that minimize Equation 15 can”
be done through mathematical
programming algorithms. (For a
detailed description of the
computation of applicabilities and the
applicaton of the algorithms the
reader is referred to Ferregut,
(19861})).

As an example consider a uniform
distributed demand of importance
ratios defined by the region 1<G<1000,
and let the design conditions defined
by all structures and structural
elements with VR = V., = 0.2. If nis
taken as three, the éalues of G. that
minimize Equation 15 are G, = 57.3, G,
- 267.3 and Gy = 710.5 with
correspondingoptimal central safety
factors o = 2.20, o = 2.42 and @
= 2.57, agé total catg}og waste ©
Wy = 9.43. Figure 9 shows the
cgntinuous and discrete values of the
demanded central safety factors. If
instead of a uniform demand a beta
distributed demand is used

3

(6-a)971 (p-gyF?

a)q+r

Flg+r)

rig)rir) (b -

£(G) =

with parameters a = 1, b = 1000, q = 2
and t = 4 the following results are
obtained: G, = 95.5, G, = 248.31, G, =
501.1 with cbrrespondin§ optimal

central safety factors: ®_, = 2.27,
6 , = 2.41, 0., = 2.51 ana’focal
cg%aloq waste°%3 = 5.56. These
results are als® shown in Figure 9.
Notice that the central safety factors
computed assuming a beta distributed
demand vary at most 3.1% from the
values computed using a uniform
demand. wNevertheless, the
applicability of 8,, narrows at the
same time that the gpplicability of
8_, expands by a considerable length.

This is due to the skewness of the
right-hand side of the beta
distributian. This result shows that
the total waste due to the use of a
discrete set of values of safety
factors and the safety factors
themselves are highly dependent on the
choice of the demand distribution.

CONCLUSIONS

When establishing optimal
allowable safety levels for structural
design, several different sets of
conditions have to be acknowledged and
treated differently. For example,
when it is likely to assume that the
structure or structural element enters
only a single limit state or never
fails, it is possible to use charts
such as Figure 4 after converting
central safety factors into failure
probabilities.

It has been shown that optimal
levels of safety depend on the wvalue
taken by the importance ratio as well
as on the values of the coefficient of
variation on loads and resistances.
These conditions are not currently
recognized in design rules for marine
structures. Optimal levels of safetry
also depend on the choice of the loss
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function. Since loss functions are
ill defined for most problems of
practical interest a possible area for
further research would be the study of
suitable loss functions for marine
structures.

If a discrete set of values of
the central safety factors is required
for a design standard, they can be
obtained through the solution of a
catalog problem.

This paper explores a hitherto
neglected subject in structural
design. The subject is very broad and
with many facets that will require
special studies and some new
techniques. The author hopes this
work will encourage further research
in this direction.
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