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ABSTRACT

Structural design optimization is
taken to mean the minimization of the
expected pcesent value of the sum of
the initial cost of the structure a“d
the losses incurred due to the
structure entering a certain limit
state. Expressions are derived for
the optimal central safety factor and
for its associated probability of
failure as a function of the
“importance ratio” of the stcuc~ure,

Current limit state design codes
use a discrete “umber of safety
levels. Herein a methodology is
proposed for the selection of these
safety levels a“d to assess their

applicability using a one dimensional
catalog optimization fornmlati o”.
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1NTRODUCTION

The lack of information about the
bebaviour of str”ct”res in service
combined with the use of codes ccm -
taining high safety factors can lead
to the view, still held by some
engineers, naval architects as well as

by manY members of the public, that
absolute safety can be achieved.
Absolute safety is of ccmrse unobtain-
able, and such a goal is also
undesirable, since the attempt to
achie”e absolute safety would consume
too many of our finite resources.

Accordingly, it is “OW widely
recognized that some risk of
undesirable structural performance
must be tolerated. This leads to the
debated and open question of how to
select structural risk levels in order
to obtain optinmm str”ct”ral perfor-
mance, taking into account the
available economical resources a“d
competing demands.

Ducing recent years, a “ew
generation of probability–based design
codes have bet?” formulated (1–5) . The
reliability le”els for these codes
were selected on the basis of
intuition i“fl”enced pactic”larly by
the current, good or bad, level of
per fO, mance of existing str”ct”res.
The load a“d resis,ta”ce factors in
these codes ace functions of the
coefficients of variation of the basic
random variables, and thus reflect a
certain safety level differentiation
with respect to “ncectainty in tbe
“alues specified in the code.
So–called “Importance Factors’, ha”e
been introduced as a practical,
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althouqh intuitive means of achieving
diffece”tiation of safety levels.
Importance factors usually consist of
multiplicative values to be applied to
the standard design values of the
actions or to the specified values of
the resistance in order to modify the
probability of failure.

A practical rationale for the
selection of safety factors for
different structural types is
essentially lacking in the theory of
codified design; this is especially
true in the context of marine
structures. The aim of this paper is
to take a closer look at this problem
and to propose ways to put its
mathematical aspects into a simple
formulae.

UTILITY

The purpose of a structural
design standard is to regulate the
process of production of structures in
a way that is optimum for society. If
all quantities that a structural
standard dealt with were deterministic
it would be possible to optimize the
standard in principle by listing all
possible options in order of
preference and select the option
ranked on the first place. There is,
however, much uncertainty associated
with structural behaviour, so in order
to optimize, a scalar that reflects
society, s intensity of preferences
should be assigned, and the option
associated to the highest value of the
scalar chosen. By definition this
scalar is the utility. When it comes
to quantities that can be measured in
monetary terms, (these are in general
so small for individual choices as
compared with society, s resources)
little error is introduced by assuming
that utility is a linear function of
none y.

The safety parameter of a
structural standard is practically
optimum if it maximizes tbe expected
present value of economic benefits,
and minimizes that of economic losses
for society. For simplicity in this
paper, central safety factors and
their corresponding safety levels
(probabilities of failure) will be tbe
code provisions to optimize.

OBJECTIVE FUNCTION

Any rational economic
optimization study demands the
assessment of initial costs, C, and
potential future damage costs, L, d“e
to structures entering limit states.
1“ tbe case of marine Structures these
costs encompass the following
component costs:

1. Initial Cost
Design Costs

:: Material Costs
c. Construction Costs
d. Cost of Supervision
e. Finishing (Construction

costs which are not
structural]

2. Potential Future Damage Costs

::

::
e.
f.

::

Cost of Investigation
Cost of Strengthening
Damage for Injury or Death
Loss of Revenue
cost of Pollution
Loss of Cargo
Legal Costs
Cost of Removal

Since a linear relation between
utility on one hand and the monetary
equivalent of benefits to society,
costs and losses in the other has been
assumed, additivity of utilities
follows (6) Thus an appropriate
objective function to minimize is:

CT
=C+L (1)

in “hich C and L are the respectively
expected present values of initial
costs and losses, due to structures
entering limit states. Equation (1 )
implies that changes in benefits
derived from the stcucture<s existence
due to changes in design, are
incorporated into C, L or both.

Initial Cost Function

Let the central safety factor, 0,
be defined as the rat~o of the
expected resistance, RL and the
expected load effect, S. In
conventional ship and offshore
structures, little error is induced by
assuming that the initial cost
(whether an entire structute or a
structural element is being
considered) at the neighborhood of the
optimum is a linear function of the
safety factor. Accordingly the
expected present value of the initial
cost, C, may be expressed as:

c=co+cle (2)

where C are constants that
depend %a%c;yp, Of St,”CtU1,

Damage Cost Functions

Actions on marine structures
include wave, wind, ice and current
loads, imposed deformations, wear and
corrosion, etc. They are functions of
time, and so is tbe structural
response Hence, L should be obtained
by integrating with respect to time.
Sometimes however, it is worth
idealizing matters as if tbe
structures were subjected to the
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actions at a fixed time durinq their
lifes pans. Now, assume that the
response can only take place at a
fixed time and that the only mode of
structural damage or failure is a
single limit state. The loss, H, at
the time of failure will be a step
function of the central safety factor,
say at e = 1.0, as shown in Figure 1.
The expected present value of the loss
due to failure or damage involves
multiplication by the probability,
P(9) that the limit state be reached,
then:

L = HP( ’d) (3)

If there is a series of possible
limit states, eithe.f independent of
each other or in cascade, that is,
such that each limit state beyond the
first implies that the stc”cture has
entered the previous one, as shown in
Figure 2, Equation 3 must be replaced
with:

L=: (Hi - Hi_l) P.
1

(4)
i=o

where s“hscript i identifies the ith
limits state ~nd H - 0. If the limit
states are depende~t events, the P. ,s
are conditional probabilities. A’
combination of independent sequential
modes of failure or damaae is also

n

possible.

If H “aries gcad”ally with e–l
say the first portion of the cnrve
Figure 3 the loss function becomes:

.

L=

I
H (:1 de-l (5

0

““der the assumption that each “al”e
of ‘d can only be attained at a fixed
value of time. It is worthwhile to
illustrate practical situations of the
three cases presented.

Consider first the bottom plating
along the forefoot of a ship for which
the only significant limit state is
collapse. Then yielding of the plate
elements or permanent set due to
slamming i“ rough seas may be
irrelevant “p to a critical state
beyond which collapse will take place,
then the idealization of Figure 1 is
adequate

Next, considec a slab in a
concrete offshore platfocn. At small
loads tbe slab would develop hair
cr.s-cks. Their widths are “ot
,mportant so long as they do not
exceed about O .1 mm. In this range
there is at roost an insiqnifica”t

10ss. At Worst, the owner may decide
to repaint the slab, i“ some cases
earlier tba” if the cracks have “ot
appeared. When the load is increased
the crack width grows. Beyond apProx -
irnately 0.1 mm, human reaction is
quite unfavorable to the presence of
cracks, but their precise widths are
not “cry significant, at least up to
0.25 mm. Howe”er, if the slab is
unprotected from the outside e“viro”.
ment, as is the case in offshore
platforms, large cracks may originate
corrosion of the reinforcement bars,
in”olving at some stage a more serious
loss d“e to spalling of concrete. If
the slab is covered with a“ imper-
meable material , large deflections in
the slab nay cause pending. At some
stage the slab may. also vibrate
excessively, finally, at higher loads
or smaller resistances the slab may
collapse . In this case the loss
function may look like Figure 2.

In the case of structural systenw
with large capability of load redis-
tribution followiny an element
failure, the curves increase gradual-

lY, since the structure ca” accomuIo_
date overload with little damaqe
costs. The damage function for those
str”ct”res may look like Figure 3.

OPTINAL SAFETY FACTORS

For simplicity only the first
case (that of a structural element
ha”i”g a single relevant limit state)
will be dealt with in the follo”ing.
However, tbe solution pcocedure is the
same for all three cases described.

After substitution of Equations 2
and 3 i“ Equation 1, the function to
be minimized may be rewritten as:

CT = co + cle + HP

or equivalently, in terms
normalized cost Z = (CT –
following function may be

z=e+GP

(61

of the
Co )/cl, the
rn~”. m,zed,

(7)

where the relation G = H/c. “ill be
called the importance ra”tik of the
Structure and P = P(R < S) is the
failure probability.

Now , consider the conmo”ly used

approximation .Oncer”ing tbe failure
probability (7)

-6
P = m exp (-) (8)

ln(ii/S)

“here ,Xand @ are co”stmts. Equation
8 is a good approxim.atio”, valid i“
the range of relatively small failure

P~Obabilities for . wide variety of
probability distributions of R a“d S.
If both of these variables have

L
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:; ’;O:% ;::ir::u::::;’1;g6’h:h::nge and the optimal (minimum,)
cost:

m= 460 and E. 4.3. If the following
variables are defined:

o = (lnwRw~)l/2,

m, = m (w#wR) -@/2. andw. l+vz
(where v means coefficient of
Variation) , ~quati On 8 may be
transformed .“to:

Equating to zero the derivative of 7,
(Equation 7) with respect to e gives
tbe optimal central safety factor, e ,
as a function of the importance rati8
G, then,

1

90 -)
6/.+1

(10)

normalized

@

G6u’ (6+.)

Zo = (— ) + G=r(Gf3.Zr) (11)
a

Figure 4 shows graphically the
principle of tbe solution. It is
observed that normalized total costs
increase dramatically on the left side
of the minimum but increase only
gradually on the safer side,
Equations 10 and 11 are she”” in
Figures 5 and 6 as a function of the
coefficients of variation of the load,
VS and the importance ratio G, and for
VR = 0.2.
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Generally, G lies between 10 and
103, this range is representative of
most marine and ship structures. Much
lower values may correspond t.
structures whose total cost is very
sensitive to their structural capacity
and whose failure does not usually
entail consequences far beyond the
structure itself, as is the case with
“a”igationai buoys. AS we move from G
= 10 to 1000 we may be going through
the range of small boats to oil
production platforms whose collapse
vo”ld possibly cause the death of
several people or would cause very
high levels of pollution of the sea.

It would be unjust for design
standards to require exceptionally
high reliabilities that such
structures should ha”e, but equally
objectionable not to include clauses
in structural standards that would
force owners of structures claimed to
be exceptionally safe to comply with
appropriate requirements concer”i”g
their reliability. (Typically one
could ha”e star,dards classifv
structures into levels of sa;ety and
contain clauses like “The Naval
Architect /St,:uctural Engineer may
SUPDIV a certificate stating that the
st;~c;ure meets the standard for
safety–level 111 provided its
reliability against local collapse
“ride: the assumptions specifi~~ in
sectxon X is not less than 10 and
against total collapse for th~5sane
assumptions, not less than 10 ,’, and
make some reference to return
periods).

It may be observed in Figure 5
that tbe optimal central safety factor
is very sensiti”e to G and VS. Design
for a fixed safety factor (f~xed reli-
ability) can clearly lead far from tbe
optirmm. Eve” if through an exercise
of e“gi”eeri”g judgeme”t one could say

how e should vary as a function of the
importance of the structure, one would
have to vary 9 as a function of VS,
and this is not generally recognized
in marine design regulations. The
larger v is, the more expensive it is
to attaiil a given level of safety.
The sensitivity increases when the
10ss in case of failure is an
i“creasi”g f“”ct ion of the load acting
at tbe time of collapse.

For regulatory and code
specification purposes and for
practical reasons, it is convenient to
use a discrete set of values of the
safety factor. Selection of tbe
values should be based on the
frequency of occurrence of each design
condition, in this case defined by the
variables G, VR and v , and on the

‘?overall cost to socie y associated to
each safety factor specified. This
consideration leads to a catalog
problem which is described next.

OPTIMAL SELECTION OF SAFETY FACTORS

Simplicity is a most desirable
feature in design standards. It
encourages acceptance of the document
and reduces the probability of errors.
One way to simplify a standacd is by
reducing the number of values that a
9iven parameter c.” take. This may be
accomplished by grouping structures
a“d str”ct”ral elements into types,
each type with a single value of the
code parameter. using a discrete set
of values, though, leads to some
increase in the expected initial cost
(overdesigned structures), or a“
increase in tbe expected present value
of the losses due to potential
entrance into limit states
(underdesigned structures) . From the
standpoint of this paper, the question
of tbe optimum set of values of the
safety parameters or safety levels is:



how many and exactly which values
should be specified in a design
standard of marine structures in order
to minimize the expected costs of
overdesign and u“derdesi~n str”ctuces,
given the distribution of the demand
importance ratio to be expected?
Choice of the number of values
involves quantifying the cost or
utility of cathec intangible concepts
(e.g. hesitation of desiqners to use a
complicated standard, and the increase

on errors d“e to the high number of
values to choose from) , a“d lies
beyond the scope of the present paper.
However,, once the n“mbec of values is
chosen, though, the problem may be
formed under the class of catalog
optimization problems.

catalog Optimization Problem

The general catalog optimization
problem ca” be stated as: Given a
demand vector space x, a probability
~bution of demand f(x) , a“d an
objective functional F(x,x, ): find a
se; of vectors x, = X1,X2, j;. ,x. n),
called the supply set or catalog, a“d
a mapping h(x) with range x,, called

the supply policy, to minimi: , the
expected value F of F(x, h(x)).

The determination of a cataloq of
safety factors or safety le”els may be
viewed as a one-dimensional version of
the catalog optimization problem.
Soiue solutions to solve this problem
have been developed using Calculus

(8), Dynamic Programming (9, 10), ~r
graphical methods (9).

Li”d (11) has show” that there is
a necessary and s“fficie”t co”ditio”
for the boundaries of tbe supply s,”b
domains to be optimal when the numbez,
n, of supply elements have been
decided upon and the bo””daries may be
chosen freely. It is assumed that the
domain, D. is di”ided into “ sub
supply ’domains, one for each eiem”t
of Supply. supply s“bdomai”s are
closed sets and their intersections
are called supply boundaries. It is
also assumed that to each SUDDIV
subdomain the corresoo”dina ~~t~m,”m
value of the supply ~ariab~es” is
assigned. Tbe condition is that the
loss or waste function d“e to
discretizatio” be
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boundaries . A graphical
representation of this condition is
shown in Figure 7. Next section
presents a derivation of a waste
function that can be used in the
selection of a set of cefitral safety
factors.

Catalgg waste Function

The objective at hand is to find
a set of discrete values of tbe
optimal central safety factor that
minimizes the total waste due to
discretization. The waste due to
discretization is the difference
between the value Z(eoi) as is given
by Equation 10 when ‘d IS taken as the
constant e i over a set of structures
represente~ by su!miomain hi of the
importance ratio G, and the value
Z(e 1 when e is made equal to e. for
eac~ structure in the s“bdomain Ai.
From now on this subdomain will be
called the gp liability of central
safety factor 9.. For each
structural tvne khe discretization. .
waste may be expressed as:

w. = (z(eoi) - z(eo)) f(eo) (12)
,

where f(e ) is the demand frequency
for e Xs an example consider a

speci?ied central safety factor
eoi = 2.51 corresponding to the

optimal central safety factor for a
structure with G = 500, VR = VS = 0.2
and let f(eo) = 1, then Wi = 0.679
“hen G = 1; w. = 0.116 when Gi - 100;
and w. = 0.05~ when G = 1000. These
resul$s are shown in Figure 8.

3.1
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2.s
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2.Z

2.1
N2

1.9
1.8
1.7

1.6
1.5
t.4
1.3
1.2

1.1
1

Adding all individual w. , over
the applicability domain Ai &fs Boi
results in the total waste due to the
use of eoi.

‘Ti =
I
(z(eoi) - 219.)) f(eo) (13)

A.1

and the total catalog waste for a
catalog of central safety factors of
size n may be computed by:

I
w“=~ (z(eQi) - z(eo)) f(eo)deo

i=l
Ai

(14)

Now, since e. is a monotonic
increasing function of the importance
ratio, G, and once the values of VR
and V are given (see Equation 10 and
Fig”r~ 5), the total catalog waste may
be alternatively written in terms of G
as,

wn=~
I

(Z(Gi] - Z(G)) f(G)dG
i=i

P.i
(15)

“here Z(G) is the minimum cost of a
structural element designed for an
importance catio G and optimal central

1 1.2 1.4 1,6 1.8 2 2.2 2,4 2.6 2.8

L

e

Figure 8 WASTE DUE TO 01SCRE71ZATION
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safety factor e (G), and Z(Gi) i. tbe
cost of the sam~ element deslgncd with
a specified central safety factor
‘J (G. ), corresponding to a specified
Ll?icr$te value Gi. If the “umber of

cequiced discrete values is fixed, and
the applicability domains are
computed, the determination of the Gi
values that minimize EqU~tion 15 can
be done through mathematical
proyrammi”g algorithms. (FOr a
detailed description of the
conp”tz.tie” of applicabilities and the

aPPlicatOn of the algorithms the
reader is referred to Ferreg”t,
(1986)).

As an example consider a uniform
distributed demand of importance
ratios defined by the region 1<G<1OOO,
and let the design conditions defined
by all structures and structural
elements with VR . v - 0.2. If “ is
taken as three, the ?alues of G. that
minimize Equation 15 ace G = 5? .3, G2
- 267.3 and G3 - 710.5 witi
cocrespcmdi”g optimal central safety
factors e - 2.20, e - 2.42 and eo3
. 2.57, a~~ total cat~?og waste
w - 9.43.
3

Fig”ce 9 shows the
c ntinuous and discrete values of the
demanded central safety factors. If
instead of a uniform demand a beta
distributed demand is used

r(q+rl (G-a) q-l (b_G)r-l
f(Gl - —

r(ql r(r) (b - .)q+C

~,? ..—..—

2.G
I

2

.

central safety factors:
e

c~$a~o~”~~~t~o~ ‘_2~~~6~n~0$0~a;’These
results ace als$ ;hown in Figure
Notice that the central safety factors

27,

9.

computed assuming a beta distributed
demand varv at most 3.1% from the
“alues com~uted using a uniform
demand . Nevertheless, the
applicability of e
same time that the”~p~~~~~~~li~~ ~~e
e“3 expands by a considerable length.

This is due to the skewness of the
right–hand side of the beta
distribution. This result shows that
the total waste due to the use of a
discrete set of values of safety
factors and the safety factors
themsr?lv. s are highly dependent on the
choice of the demand distribution.

CONCLUS1ONS

When establishing optimal
allowahlc safety levels for structural
design, seve,al different sets of
conditions have to be acknowledged and
treated differently. For example,
when it is likely to assume that the
str”ctucc 0. str”ct”ral clcmc. t enters
a“ly a sinqle limit state or never
fails, it is possible to use chart:
such as Figure 4 after convecting
central safety factors into failuce
probabilities.

It has been shown that optimal
levels of safety depend on the value
tak~n by the importance ratio as well
as on the values of the coefficient of
variation on loads and resistances.
These conditions are not currently
recognized in design rules for marine
Sttuct”tcs. Optimal levels of safety
also depend cm the choice of the loss
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function. Since 10s.5 functions are
ill defined for most problems of
practical interest a possible area for
further research would be the study of
suitable loss functions for marine
structures.

If a discrete set of values of
the central safety factors is required
for a design standard, they can be
obtained through the solution of a
catalog problem.

This paper explores a hitherto
neglected subject in structural
design. Tbe subject is very broad and
with many facets that will require
special studies and some new
techniques. The author hoDes this
work will encourage furthe; research
in this direction.
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