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lNTRODUCTIUN

For the purpose of determining the randun
wave loads actirq on offshoce structures exxl
ocean-goinq vessels, it is often assuned that
wean waves can be mcdeled as a stationary
Caussian process with zero mean. The process
can W of any band-width, althouqh the conser-
“ati”e assumption of a narco”-batis~tr.al
density is “sua1ly made for simplifying the
analysis. lk+sedon this probabilistic nvcdel,
the extrae value distribution of tbe wane
amplitude or the wane load acting on the
structure is detetmind using one of several
available methcds. The extreme “al”e distri-
bution is than, either used to estimate a
design load asscciat~ “ith a prescribed pEo-
babi1ity of exce-ede”c+or alter”atively,
used in leliability analysis in conjunction
with the strength characteristics of the
structure [1].

The p“zpse of this study is to canpare
several extrane load distributionsand to
determine their impact o“ the pzobabi1ities of
excedence. The extrene “al we distribution of
peaks of a stationary Gaussian prccess of any-
band width representing the load on a marine
structure was determined on the basis of four
difEerent rrrethds. ln the first, the peaks
were assured to be statistically independent
and identical 1y di.strib”teif,and the extreme
“al.e distributio” of the largest in N-psaks
was detenni”ed using classical order statis-
tics. In the seeond, a discrete ~int prccess
was assuned in order to deteuni”e the asymptot-
ic type-1 distribution based o“ Rice,s [2]
initial distribution. Craergs prcced”re
[3,4] was used for detenni”ing the resulting
asymptotic distribution. conventional un-
crossing analysis was used in the thicd methti
fox detenni”ing the extrene value distribu-
tion. Finally a two-stage description of the
randm process which leads to a“ extrae dis-
tribution deKived by Vamnarcke [6] was the
basis for the fourth rnethoi

The four res.1ti”g extreme distrib.tions
were ttnencompared “innerically for the case of
a relati”ely “arropband press a“d typical
“al.es of load parameters detenni”ed for a“
ccean-goinq vessel.

EXTREME VALUE DISTRIBOMUNS ASSCCIATDJ WITR A
STATIONARY GAUSSIAN PRIXESS OF ANY BA??-NIDTH

The four methcds !nention& in the Intro-
duction to determine the extreme value distri-
bution of wane loads acting on a marine str.c-
ture wi11 be discussed in this section. In
al1 cases a general stationary Gaussian pro-
cess of any band width wi11 be consider~ to
rep~esent the wave load. In the fol1owing
sections, s~ia 1 cases of practica 1 interest

wi11 be addressed.

Di.strib”tionof the largest Wak .. a sq.ence
of N peaks using ader statistics

The distribution of the largest peak in a
sequence of N Faks, can be detenuined “si”g
standard order statistics. Consider a sequence
of randun variables Z, ,Z-=, . z.
representing the peaks of a load on a marine
structure. Assuning that these !p?aksare
identica11y distribute and statistically
independent,the cumulative distribution
function (calf)of the largest one using order
statistics is gi”en by.

[
FZN(Z). P mm (z,,.2 ...,ZN)$ z

1

= [FZ(Z.E)]N
(1)

Wnere FZ ( z , .S) is the cwnulative distribu-
tion function of the load peaks (maxima)and
E is the spectra1 width parameter defind

as: 1

~z=,–a

r“om4

mn=~a”,(co)dm , n=0,2.4
(2)

The probabi1ity density function (@f) of the
largest peak is determined by differentiating
equation (1)with reswt to z , thus:

(3)
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where fz( z ,E ) is the @f of the load esaks
(see equation (19)).

For 1inear systems subjected to ccean
waves repKeSente5 by a Gaussian process, the
loads can be also mcdeld by a Caussian pro-
cess (see for exanple reference [11). The
peaks of the Gaussian load Prccess, in
~eneral, follow Riceqsdistribution given by

tiere

ati m~ is the man value of the process.

Tbe spectral width paraneter E is
defined by equation (2). It should be notd
that the ramdcm variable z represents the
load psak height stave or telow the mean value
m~, ,that is, equation (4) includes toth
p3s1tive acd negative maxima.

For a narrow band s~trun S(w), the band
width E approaches zero and equation (4)
reduces to the my 1eigh distribution function.
Similar 1y, for a wide band srx.ctrun,E ap-
proaches one and equation (4) reduces to the
statiard Gaussian distribution function, i.e.,
the distribution of the load Wk rduces to
the distribution of the load deviation frcm
tbe mean value.

Equations (1) and (3) give the mlf amd
the @f of the extrews peak in N peaks, res-
pectively. Equation (4) is to be used in
these two equations as the initial distribu-
tion for a load rarhhn pro=ess of any band
width & and mean value m~.

ASWIIPtotic typs I distribution

It is known that as the nmic.?rof paks N
increases without bound a 1imiticg or asympto-
tic form of the extreme value distribution
(equations (1)and (3))is reached. The
asymptotic fofm of an extreme value distribu-
teon dces not deper-d,in genera1, on the exact
form of the initial distributicm; it de~nds
only on the tail behavior of the initial dis-
trib”tio”. The parameters of the asymptotic
distribution -d hohever on the exact form
of the initial distribution [31.

Cramer’smethcxf develow in reference
[4] and sunnazized in [31 can be used to
derive asymptotic distributions in general.
In OUK case, Rice’s distributions given by
eWatlO. (4) Wil I M Usd as. the initial dis-

tribution. Followimg Cramer’smethcd a .&
randan variable may be defined as:

CN = N[l-Fz(zm, e)]

where

()_L~’

(1 ‘6
‘z(z”’e)=o% -G’ e

“+%+ ,5)

therefore,

[ II.@G.*
‘G

(6)

As N tecanes large, Craner has shmm that
the asymptotic distribution of ZN is obtained
fran:

F%(z,e s e-g(z’e)

(7)

and

dg(z,E) e- g(z.$
fz(z,e) = -~
.

(8)

where g(? ,E ) is the right side of eWatiOn
(61. Therefore, for large N the asymptotic
distrib”tio” fmction frm (6) and (7) is:

.(=fi)l}

(9)

that is, the asymptotic fotm is double expc-
rkentialand the cumulative distribution itself
depends o“ N.
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severs1 years after the appearance of
Cramer’sbook Gwnbel [51 classifid the
asymptotic distribution of extremes in three
types: (type 1) a double exponential fotm,
[type 11) an expntial fo?m, and (tyF 111) an
exponential form with an up~r bmmd. Conver-
gence of an initial distribution to one of the
three types depends 1arge1Y on the tai1 beha-
“ior of the initial distribution. A. initial
distribution with an expmentia 1ly decaying
tail in direction of the extreme will converge
to type I asymptotic distribution, i.e.,the
double expmential form. Equation (9) ex-
bihits this behavior.

Gumbel Ss amlysis and classification pro-
v ide another rnethcd for der ivimg the asympto-
tic distribution and may b-e in a form easier
to handle than that given by equation (9).
The cdf of type I asymptotic form as given by
Gunbel is:

[
-%(. -..)

F (Z)= exp-e
% 1

(10)

whexe UV is the characteristic largest value
of the Initial variate Z and d is an inverse

Imeasure of dispersion of ZW T ese Para-
meters, “N and .X~, have to be detemina and
depnd on the form of the initial distzi-
bution.

Tbe corcespetiing @f is given bfi

-%(.-.”)
fzN(.)= aN e [

-.N(Z-UJ
.exp -e

1

(11)

The characteristic largest value UN 1S
defined as the particular value of the randar
load Z such that in a sample of size N the
expected nwoker of sample values larger than
uN is one, i.e.,

N[l -lyuN)] = ,.0

0,

FZ(UJ = l-~

(14)

using equation (4)for the initial distribu-
tion Fz(.), equatiOn (14)becemss:

{)

2
_,~

()

‘h

(

~=-~e .~~.~

r’“’0 e A,

,_*
(15)

Equation (15) is then solved for UN and yields

u“‘“S’{2”QK=
(16)

where

~=%-ms_

JE%i
and

The mean and standard deviation of the extrens
value ZN are given, respectively, by

~n=”N+g

aN

(12)

(13)

The ~ramet:rs UN ,and~ “i11 now ke
determmed for RlceOs distribution givsn by
equation (4)as an initial distribution.

(17)

The plus sign in equation (16)should be wed
if the mean valwe m~ is positive in order to
obtain the larger characteristic value. It
should be noted that both d and @ contain UN
as defined i“ (17);therefore, an iteratiw
prccedure nmst be wed for determining UN. To
start the iterative prccedure an initial val.e
for “N is necessary ati may be taken .s “N =

m~+-. The correspa?di”g “al“es of

d, “P , @(-d) and @(@) cantbenbe
detenni”ed. Equation (16) is then checked to
see if the right side is equal to the left
side, other”ise a new value of UN equals
the right side of equation (16)should be used
1. the second step of the iter.ati”eprocedure.
Three or four steps are “s”al1y s“fficie”t for
convergence.
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%sed on mnbel’s analysis, the second
parameter d. can k determined Fran:

aN = N fz(UN)
p[m~(Xt)OStS’J< ’l=e”:T

(18)

where f~(UNI is the value Of the ~f Of the (21)
initial distribution of the load z at the
characteristic lar9eSt val.e uN. where

The @f of the initial distribution

(Rice)is obtained by taking the derivative of
equation (4] with res~t to a ati is give.

by:
v+= v ,-+[=)2

-4*T Q,=) “4%T x 0
fz(.e)=

tie ‘G’&e
(

Q(=”%) (,,) ad

J
vo=~~ 1 Isec

using equation (19) in (18), the ~r~ete~
tiN can be writteG in the form:

(22)

, .s32 ,

. — .-%

‘“ J% ‘$+’2 ‘.@(E?)

(20)

where d and @ are defined earlier by
equations (17).

It should be noted that UN and dN as
given by equatims (16)and (20), respectivs-
lY,,Ccmplet:ly define WI’s asymptotic type
1 distribution given by eqmation (10)with
Rice’s distribution as an initial distribu-
tion.

Extreme value distribution based on upcrossinq
analysis

The distribution of the largest peak can
b detetmi~ frcm upmossing analysis of a
time history of a stationary randcm prccess
instead of the paak analysis presentd above.
For ex.mpl e, the number of N peaks can be
changd to a time interval T in the u~rossing
analysis and the problem of determining tbe
characteristics of the laxgest peak in N peaks
Wanes that of evaluating the characteristics
of the maxi,nxmcrest of a stationary ergcdic
Gaussian randcm pIoc@ss X(t) durimg a pericd
T. The assumption of the statistical
i“dependence of the peaks is usua11y replac6d
by the assmnption that u~rossing of a level x
by x(t) are statistica1lY independent. This
leads to the Poisson’su~rossing process
tiich is true only in the as~ptotic sense (as
x+co; T+oo).

TbeKefore the cdf of the largest X is

[[l -~z
Fx(x) = exp -vo Te

(23)

(24)

that is, it has a double exponential fotm
although quite different fran ~at ion (10)
with UN and dN given by (16) and (20).

ExtlErE value distribution basal on a twc-
state description of a randcm process

Vamnarcke [6] estimate.ithe pmhabi 1ity
distribution of the time to first passage
across a Specifid barrier for a Gaussian
stationary randmn pmaess. In his analysis he
considered a two-state description of the time
history X(t) relative to the specified bar-
rier. Basti on his results the distribution
of the extra. value may be determined fran:

I I[)-L’ z
]-e

Fx (x). exp –v,T

[)

x–”’,‘

-+ T
l-e

Fran uvrossing analysis it can b showm
(s= for exanple [11) that the probabi1itY
that the largest “alue exceeds a certain level
x during a &x?ri& T is given by:
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where q is a band “idth parameter defined as

(26)

SPECIAL CASES OF THE EXTREME VALUE
D1STR1BUTIONS

The extreme value distributions represen-
ting the load on a marine structure discussed
above are applicable to statiomry Caussian
processes of any hand width. These distribu-
tions can te simplified if one considers the
SP2Cial cases of a narrow and wide band prc-
cesses. The former special case is parti-
cularly impxtant for practical applications
and usually gives a conservative estimate of
the calculated probabi1ities of exceedence.
In this section tath cases will t“?briefly
discussed.

Narrw.v-band“.”. load prccess

Each of the extreme value distributions
is reducd to the special case of a narrow-
tsti G.mssian process in this section. star-
ting with the extrae value distribution based
on the 1zrgest Fak in a sequence of N-peaks,
we notice that for the narrow-hand case E .8
0. Equations (1)and (3) definirrgthe form
of the extreme distribution remain unaltered.
H0w2vex, equations (4) and (19) which define
the initial (Rice)distribution reduce to
Rayleigh distribution upm substituting ‘i=
0, i.e.,

‘( )
2

z-m,
__—

2G
FZ(Z, O) = l-e

(27)

a“d

()
*

.1 5
z-m~ 26

fz(z,o) = —e
mo

(28)

For the case of asymptotic tyF 1 distri-
bution. the narrow-band case can be also
de”el;p.sdby inserting E = 0. Cramer$s
mthcd for determining the extreme value dis-
tribution thus yields (equation (9) with E =
0):

F,xzO=eP{-N[+~;(fill)

(29)

Gumkelvs general asymptotic distribution
given by q.ations (10)a“d (11) rexain .n-
.1tered. The parameter UN and @iN 9iven by
~tiOns (16)and (20),res~ctively, reduce

u
‘=”s+-

(30)

(31)

@ations (30) and (31) for UN and ~N are

identical to those published In the 1itera-
ture, e.g.,in reference [31.

The extreme distribution based o“ upxos-
sing analysis given by equation (24)as ?..?11
as that based on a tmo-state description of
the randcunprccess (equation (25))renain
una1t2red. In both cases the fact that the
process is a narrow-bad prccess is reflectd
in tbe number of zero crossing +-T, which is
in this case, equal to the number of p?aks N.
‘rhevalue of “@ in equation (25)also ref-
lects the band width of the process.

Wid+bati wave load process

In this case the bad width paranete~
approaches oma The extreme value distrib”-
tlon based on the largest peak in a sequence
of N peaks is thus given by equations (1)and
(3)but with an initial distribution obtained
by ?.Ubstit”ting E = 1 in Rice,s equations
(4)and (19). These equations reduce to the
Gaussian distributions, i.e.,

()’i ‘-+2d’Fz(z,l)= & _

.@

ard

(32)

_()
2

~ z–m,
__—

=6
“(’”)‘ k e

(33)

Cramer’smethcd for determing the
asymptotic extrae distribution yields for the
wide band case ( C = 1 in equation (9)):
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‘z(z’)“XP[-N+H

(34)

G-l’s general asymptotic distribution
qiven by ecruations(10) and (11)remains unal-
iered. “rbe-parameter UN can ~ dete~in~
from equations (16)or nrxe easily frcm (15)
by s“bstit.timg & = 1. The Paraneter CXN
is determine+ frcm equation (20). These ecPl?.-
ti ons reduce to:

‘N
. In,-&+)

(35)

and [–)_L “.- m,’

Zfi
.N= f&e

.++]2

J%e (36)

Equations (35)and (36)are not identical
to equations given by Cramer for these two
~rameters (see for exanple [3], page 200).
Cramr’s solution for these parameters which
becamss accurate as N +rn is (for a process
of mean mS and variance mJ:

(37)

ati

F21n N
aN = %

(38 )

Eguations (35)and (37) for uN were cmn-
Prd naerical ly for the case of zero mean
‘Tn~VSand any variance mo. several values of N
here considerti in the canparison. In al1
cases the difference betw=en the V.lUeS .f UN
obtained frcm the two equations was less than
one ~rcent. we wi11 consider this to be
satisfactory for confirming the UN Wations
givn by (35) and (37). If the UN equatiOn
given by Cramer (equation37) is substituted
in the first of equations (36) for @ ~, a.

identica 1 result as that given by eq.at ion
(38I is obtained. This confirms the validity
of equation (36). lt should be noted that
Cramer’s equation (38) for dN in this case
( E = 1) is identical to a for a w,,,ow-

Bband process ( & = 0) as can e seen by

~Prin9 (38)ati (31). Conp.ari”gthe val.es
of UN for the narrow and wide band cases it is
seen that equation (37)differs only frcm
equation (30)tecause of the pzesence of a
second term in the bracket.

The extrere distributions based on un-
crossing analysis given by (24)as WS1l as
that based on a twc-state description of the
randan prccess given by (25)remain unchacqed.
It should & notGd that in both cases *OT is
gexral 1y not equal to tte nunker of peaks N.

CWPkRISON OF THE EXTREME VALUE DISTRISUTIeNS

‘rheextren-evalue distributions of the
wave leads discussed above differ fran each
other in their basic derivation and utirlyimg
assumptions. The fomns of their equations ace
drastically different as can te seen by c-
paring equations (1)and (2); (9); (10)and
(11); (24);and (25). It would be interesting
now to canpare sane typica1 results obtained
fmn the different methds when a~l id to a
marine structure. For this purpse a tanker
of length = 763 feet, breadth = 125 feet ati
depth = 54.5 feet is considered. We wi11
canpare the distribution of the extrene wave
tetiicq iwrm?ntacting on the tanker under a
storm ccndition specifid by a significant
wave height of 29.0 feet and an average wave
pericd of 10.1 seconds. The storm is asstxned
to be stationary under these corrlitionsfor a
pericd of one hour. The f01lowing pamneters
here canputed for an ear1ier application given
in [1]:

still water Ming manent (ful1 load)
m$ = 669,037 ft-tons

m of wave bendirq manent
w = 216,45L3ft-tons

average wave manent *ricd = 12.1 secorx3s

mti width parameter of ~ve mcment smtral
density 6 = 0.337

NLEO&r of wave marent peaks in ow hour
N = - = 297.5

12.1

The application given in reference Ill
showed that if & is assumed to be zero
(ideal narrow-bad) instead of the 0.337 given
above, the resulting error in the ex~ted
maximmn wave bending mawnt in N ~aks is less
than 0.5 Frcent. This gives an indication
that for E = 0.337, it is sufficiently ac-
cuate to use the ideal marro”–knnd equations
for OUE canparison.

using this assumption and the above
values for ms, ~ ad N, a comparison is
made of the c!nnulativedistribution functions
of four extrsne value distributions. These
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four distributions

Distribution (A):

Distribution (B):

Distribution (C):

Distribution (D):

The results of

,,e:

Largest peak in N-peaks as
given by equations (1)ard
(27)

Asymptotic type 1 distri-
bution as given by equa-
tions (10), (30)and (31)

u~rossing analysis as
given by equation (24)
with 4.T = N

A two-state description as
gi;; by equation (251

tiOT= N and q
“al”es = 0.35 and 0.25

the canparison are shown
in Table 1 ad are plotted & a statiard
extrene probabi1ity pawr and on a regular
graph paper in figure 1 and 2, respectively.

The probabi1ity density function of dis-
tribution (A) as give. by s.quations(3), (27)
and (28);distribution (B) as qiven by (11),
(30)and (31);and distribution (c)as given
by the derivative of equation (24)with res-
pect to X are plotted in figure 3.

D1SCUSS1ON OF THE RESULTS .4NUCOl’CLUD1hC
REMARKS

13asedon the results given in Table 1 and
Figures 1 ati 2 one surprising conclusion can
be drawn. all extrae value distributions of
the wave loads consider@3 prtiuce simiIar
results even though their basic assumptions
and derivations differ drasticallY. In fact,
if one ins~ts the equations representing the
cumulative distribution functions of these
distributions (equations (1) and (27); (10),
(30) and (31); (24);and (25))one sees that
these equations are not similar in form and
may conclude erroneously that they would pm-
dwe “cry different results.

The extrcrnedistributions bas@5 on the
largest peak in N Feaks (distributionA),
upxossing analysis (distributionB) and a
two-state description (distributionC) prcduce
almost identica1 results as far as the proba-
bi1ity of exceedence is concerne.5as can b?
seen by ins~ting figures 1 and 2. The
asymptotic type 1 distribution (distribution
B) results in S1ightly higher values of prc-
babi1ity of exceedence. This is to be ex-
~cted since the asymptotic distribution is an
upp=r bound extreme distributim and tx+ccxnes
more accurate as the nunbe.rof load peaks
approaches infinity. In the example sho?m foK
the tanker, the ntmber of wave bending manent
peaks N is approximately 298.

As an exanple of the differenee between
the asymptotic distribution and the other
distributions, the probabi1ity of exceedenw
of a total bm?dimq mcment of 2,069,000ft-ton
(including sti11 water becdimg manent of
669,0047ft-to.) is @.006 according to the
asymptotic distribution (5) and 0.002 accor–

ding to the other three distributions [A, C
and D) as can be seen from Table 1. The
insensitivity of the probabi1ity of exceedence
gi“en by distribution D (two-stagedescriw
tion) to the v.lw? of the band width paraveter
“q” is to be noted.

To .mnmnarizethe main points in *’lis
stw.ty,four extreme value distributions of
wave loads acting on a marine structure and
mcdeled as a general stationary Gaussi. .:3
cess of any band width have been considerd.
The Peaks of the wave loads thus follow a
general distribution given by Rice [21. The
extrae value distributions were then
evaluated and, in particular, Gumkel’s type 1
aspptotic distribution paraneter was deter-
mined using Rice’sdistribution as an initial
distrib”ticm. The extreme value distributions
wxe then applied to represent wave loads on a
tanker where the s~tral band width was
determined to be narrow. TIIeresults show
that Guubel’s asymptotic distribution may be
used for conservative “Pper bound analysis
wbi1. the other three extreme distributions
give slightly lo=r values. Of these three
distributions, the one basal on .Fcrossing
analysis (distributionC, equation 24) smns
to be the easiest to handle.
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TABLE 1 - COMPARISON OF EXTREME VALUE D1STR1BUTIONSOF WAVE BENDING MOMENT ON A TANKER
CUMULATIVE DISTR1BUTION FUNCTIONS

X.1 Bending
Ncinent,.
ft-tons

2269000
2369000

~istcibution
A

3.554 x 10-3
0.034
0.137
0,324
0.537
0.717
0.842
0.917
0.958
0.980
0.991
0.996
0.998
1.00@
1.000
1.000

Distribution
B

1.461 X l@-3
0.026
0.132

Distrib.tion
c

3.762 x 10-3
0.034
0.138
0.324
0.531
@.717
0.842
0.917
0.958
0.980
0.991
0.996
0.998
1.000
1.000
1.000

I

,..
,/,

,, /

,,.”’
,,,’

,,,

/ “

—.

Distrib.tion—
D

with q = .35

5.480 X lQ-3
0.042
0.155
0.343
0.552
0.727
!3.846
0.919
0.959
0.981
0.991

Distrib.tie”
“

with q = .25

9.018 x 10-3
0.056
0.180
0.372
0.575
0.741
9.e55

1.000
1.000
1.000

D,t,lbtiion0

\
,,

/
,,-’

,,,
,,

,.
,/,

/,” 4,.,
D,st,bu!0“s,,, A,C eniD

/

.001,01 .10.20.30 ,50 .70 .80 ,90 .95 .97.98 .99 .995 .9975 .999

ProbabtityCDF

FIGURE 1 - Standard Extremal Variate Bending Moment on a Tanker
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FIGURE 2 Cumulative DistributionFunctions ofExtreme
Bending Moment on a Tanker
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FIGURE 3 Probability Density Function of Extreme
Total Bending Moment on a Tanker
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