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INTRODUCTION

For the purpose of determining the random
wave loads acting on offshore structures and
ocean~going vessels, it is often agsumed that
ocean waves can be modeled as a stationary
Gaussian process with zeroc mean, The process
can be of any band-width, although the conser-
vative assumptlon of a narrow-—band spectral
density is usually made for simplifying the
analysis. Based on this prebabilistic model,
the extreme value distribution of the wave
amplitude or the wave load acting on the
structure is detemined using one of several
available methods. The extreme value disgtri-
bution is then, either used to estimate a
design load associated with a prescribed pro-
bability of exceedence or alternatively,
used in reliability amalysis in conjunction

with tha ctranabh ~marasdaricei~ra AF Fha
Wlth TNe STrenginl charalerlstilds O hne

structure [1].

The purpose of this study is to compare
several extreme load distributions and to
determine their impact on the probabilities of
exceedence, The extreme value distribution of
peaks of a staticonary Gaussian process of any-
band width representing the locad on a marine
structure was determined on the basis of four
different methods. In the first, the peaks
were assumed to be statistically independent

ard inAoanba sl Ty A abribatesA T e sy de e
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value distribution of the largest in N-peaks
was determined using classical order statis-
tics, In the second, a discrete point process
was assumed in order to determine the asympto-
tic type~T distribution based on Rice's [2]
initial distribution. Cramer's procedure
[3,4] was used for determining the resulting
asymptotic distribution. Cenventional up-
crossing analysis was used in the third method
for determining the extreme value distribu~
tion. Finally a two—stage description of the
random process which leads to an extrane dis-
tribution derived by Vanmarcke [6] was the
basis for the fourth method.

The four resulting extreme distributions
were then conpared nurerically for the case of
a relatively narrow-band process and typical
values of load parameters determined for an
ocean-~going vessel,
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EXTREME VALUE DISTRIBUTYIONS ASSCCIATED WITH A
STATIONARY GAUSSIAN PROCESS OF ANY BAND-WIDTH

The four methods mentioned in the Intro-
duction to detemmine the extreme value distri-
bution of wave loads acting on a marine struc-
ture will be discussed in this section. In
all cases a general stationary Gaussian pro-
cess of any band width will be consuim:ed to
represent the wave load. 1In the following
sections, special cases of practical interest
will be addressed,

Distribution of the largest peak in a sequence

of N peaks using order statistics

The distribution of the largest peak in a
sequence of N peaks can be detemmined using
standard order statistics. Consider a sequence

of random variahles =
rancom varlat.ies T,

AR
representing the peaks of a load on a marine
structure. Assuming that these peaks are
identically distributed and statistically
independent, the cumulative distribution
function (odf) of the largest cne using order
statistics is given by:

FZN(Z) =P [ max (zl,zz, ,zN) < z]
N
= [FZ(Z,E)-] s
= - L)
Where Fr (e ,8 ) is the cumulative distribu-

tion function of the load peaks {maxima) and
£ is the spectral width parameter defined

as; 1

m,

m0m4

=1-

e

_j o S(@) de , n=024

2
1

{2)
The probability density function (pdf) of the

largest peak is determined by differentiating
equation (1} with respect to ® , thus:

N-1
fZN(z) = N [Fz(z , E)] . fz(z L E)

{3)



where fy( 2 £ ) is the pdf of the load peaks
{see equation (19}).

For linear systems subjected to ocean
waves represented by a Gaussian process, the
loads can be also modeled by a Gaussian pro-
cess (See for example reference (1]}, The
peaks of the Gaussian load process, in
general, follow Rice's distribution given by

[2]: s
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where
2
L.
dm = L j e’
and mg is the mean value of the process.

The spectral width parameter £ is
defined by equation (2)., It should be noted
that the random variable 2 represents the
load peak height above or below the mean value
me, that is, equation {4} includes both
positive and negative maxima.

For a narrow band spectrim S}, the band
width € approaches zerc and equation (4)
reduces to the Rayleigh distribution function.
similarly, for a wide band spectrum, € ap-
proaches one and equation (4) reduces to the
standard Gaussian distribution function, i.e.,
the distribution of the load peak reduces to
the distribution of the load deviation from
the mean value,

Fquations (1) and (3} give the odf and
the pdf of the extreme peak in N peaks, res-
pectively., Eguation )
these two equations as the initial distribu-
tion for a leoad random process of any band

width € and mean valuem
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Asymptotic type I distribution

It is known that as the number of peaks N
increases without bound a limiting or asympto-
tic form of the extreme value distribution
(equaticons (1) and (3)) is reached. The
asymptotic form of an extreme value distribu-
tion does not depend, in general, on the sxact
form of the initial distribution; it depends
only on the tail behavior of the initial dis-
tribution. The parameters of the asymptotic
distribution depend however on the exact form
of the initial distribution [31.

Cramer's method developed in reference
[4] and summarized in [3] can be used to
derive asymptotic distributions in general.
In our case, Rice's distributions given by
equation {4) will be used as the initial dis-

tribution, Following Cramer's method a new
random variable may be defined as:

{ = Nl1-rFaz . 0]

therefore,

(6)
As N becomes large, Cramer has shown that

the asymptotic distribution of Zy is obtained
fram;

.6 e— gz, 8)
F_(z,e) =
Zy

(7}
and
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where g{# ,£) 1s the right side of eguation
(6). Therefore, for large N the asymptotic
distribution function from () and (7) is:

1
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that is, the asymptotic form is double expo-
nential and the cumulative distribution itself
depends on N.
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Several years after the appearance of
Cramer's book Gumbel [5] classified the
asymptotic distribution of extremes in three
types: (type I) a double exponential form,
{type II) an expontial form, and (type III) an
exponential form with an upper bound. Conver-
gence of an initial distribution to one of the
three types depends largely on the tail beha-
vior of the initial distribution., An initial

Aiokrikutinan with an avnonontial 1wy AD{":‘I1HI“[
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tail in direction of the extreme will converge
to type I asymptotic distribution, i.e., the
double exponential form. Egquation (9) ex-
hibits this behavior.

Cuombhaltae :n::'l ficati
Gumeel’s ana rica pPro

rsis lasgsgi
vide another method for ving the asympto-
tic distribution and may be in a form easier
to handle than that given by equation (9).
The cdf of type I asymptotic form as given by
Gumbel is:

and cla inon Nro—
$ and cia on
derivi

E [ e_a"{zu”)]
ZN(z) = expj-

(19)

where uy is the characteristic largest value
of the initial variate Z and &, is an inverse
measure of dispersion of Zy gese para-
meters, Uy and O(... have to be determined and
depend on the form of the initial distri-
bution,

The correspording pdf is given by:

— oy {z~uy ‘GN(Z-UN)]

sz(z) = . cxp[ -€

(11}

The mean and standard deviation of the extreme
value zy are given, respectively, by:

0.5772
=u, + =
uzn N oy
(12)
5. = =l
zn Jg Oy
(133

The parameters uy, and Glywill now be
determined for Rice's distribution given by
equation (4) as an initial distribution,

161

The characteristic largest value uy is
defined as the particular value of the random
load Z such that in a sample of size N the
expected number of sample values larger than
Uy is one, i.e.,

N[ 1 - FZ(uN)] = 1.0

or

(14)

Using equation (4) for the initial distribu-
ti 3
ti )

natinan (14Y haromacs
atloen (14) Decomes:
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Equation (15) is then sclved for ay and yields

1
b, = m *]2m |z o®|\’
N S 0 1
= - O(-m)
(16)
where
Uy — Mg
o =
E mo
and
B = 4[—82' o
(17

The plus sign in equation (16) should be used
if the mean value mg. is positive in order to
obtain the larger characteristic value. It
should be noted that both o and @ contain uy
as defined in (17); therefore, an iterative
procedure must be used for determining uy. To
start the iterative procedure an initial value
for uy is necessary and may be taken as uy =

m o BT e mevrasmeed fme
llls b V‘IT\’!PI“ . FRii— ULLE:W RILIY
d, B, @(-—O‘)an (8) can then be
determined. Equation (16) is then checked to
see if the right side is equal to the left
side, otherwise a new value of Uy equals

the right side of equation (16) should be used
in the second step of the iterative procedure.
Three or four steps are usually sufficient for
convergence,



fased on Cumbel's analysis, the second
parameter oy can be determined from:

o, = NfZ(u

N i

(18)

where £ (u ) is the value of the pdf of the
1mt1a1 dlstrlbutlon of the load Z at the
characteristic largest value uy.

The pdf of the initial distribution
(Rice) is obtained by taking the derivative of
equation (4) with respect te @ and is given
by: 2 3
E - mg I~ My
7] A7)

Using equation {(19) in (i8), the parameter
oly can be written in the form:

ot Y
N e’ Neb e’ D {p)
o, = + .
N nm, J"‘o
(20)
whore of :nﬂ

1t should be noted that uy and &y as
given by equations (16} and (2@), respective-
ly, completely define Gumbel's asymptotic type
T distribution given by nrmai'1nn 1M with
Rice's dlstrlbutlon as an 1n1tlal dlstnbu—
tion.

Extreme value distribution based on upcrossing
analysis

The distribution of the largest peak can
be determined from upcrossing analysis of a
time history of a stationary random process
instead of the peak analysis presented above.
For. example, the number of N peaks can be
changed to & time interval T in the
analysis and the problem of determining the
characteristics of the largest peak in N peaks
becomes that of evaluating the characteristics
of the maximum crest of a stationary ergodic
Caussian random process X{t) during a periocd
T, The assumption of the statistical
independence of the peaks is usually replaced
by the assumption that upcrossing of a level x
by X{t} are statistically independent. This
leads to the Poisson's upcrossing process
which is true only in the asymptotic sense (as
x>200 ] T+00 ).

,,,,,,, nmrnc:w na
LS G iy

From upcrossing analysis it can be shown
{see for example [1]) that the probability
that the largest value exceeds a certain level
x during a period T is given by:
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P[maX(X(t);Ostﬁx)Sx] = €
(21)
where
r v 9
-L(X*ms =
-4 fn;
vi=v e
(22}
and

0 n my

{23)

Therefore the odf of the largest X is
2
X - Mg
Fo{x) = expL—voT < i

(24)

that is, it has a double exponential form

although quite different from egquation (12}
with uy and O(N given by (16} and (26).

Extrame value distribution based on a two-
state description of a random process

Vammarcke [6] estimated the probability
distribution of the time to first passage
across a specified barrier for a Gaussian
stationary random process.

h13+-mn1y XY rel ative to the qnor"lflnd bar=-
rier, Based on his results the distribotion
of the extreme value may be determined from:

A%}

Fx(x) = exp

|- €
_Lx—ms
_2( ma)
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(25)
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In his analysis he
considered a two-state descripticon of the time




where g is a band width parameter defined as

(26)

SPECIAL CASES OF THE EXTREME VALUE
DISTRIBUTIONS

The extreme value distributions represen-
ting the load cn a marine structure discussed
above are applicable to stationary Gaussian
processes of any band width, These distribu-
tions can be simplified if one considers the
special cases of a narrow and wide band pro-
cesses. The former special case is parti-
cularly important for practical applications
and usually gives a conservative estimate of
the calculated probabilities of exceedence,
In this section both cases will be briefly
discussed.

Narrow-band wave load process

Each of the extreme value distributions
is reduced to the special case of a narrow-
band Gaussian process in this section, Star-
ting with the extreme value distribution based
on the largest peak in a sequence of H-peaks,
we notice that for the narrow-band case £ =+
@. Equations (1) and (3) defining the form
of the extreme distribution remain unaltered.
However, eguations (4) and (19) which define
the initial (Rice) distribution reduce to
Rayleigh distribution upon substituting £ =
#, i.e.,

¥}
FZ (Z,O) - 1 - e
(27)
and
2
Z—m,
==
z - my 2(Jm—o)
@0 = —4—-e

{28)

For the case of asymptotic type I distri-
bution, the narrow-band case can be alsc
developed by inserting & = @, Cramer's
method for determining the extreme value dis-
tribution thus yields (equation (9) with € =

[ (i;ﬂ‘}\

FZ\'(Z,C?) = exp\—hl ™M} j
R 1+ €

oy

(29}
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Cumbel's general asymptotic distribution
given by equations (18) and {1l1) remain un-
altered, The parameter u, and dN given by

equations (16) and (20), respectively, reduce
to:

Uy = mg + meO InN

(3@)

and

2 InN

(31)

Equations (3¢) and (31) for u, and &, are
identical to those published 1in the litera-
ture, e.d., in reference (3].

The extreme distribution based on upcros-
sing analysis given by equation (24) as well
as that based on a two-state description of
the random process (equation (25)) remain
unaltered. In both cases the fact that the
process is a narrow-band process is reflected
in the number of zero crossing T, which is
in this case, equal to the number of peaks N.
The value of ™" in equation (25) also ref-
lects the band width of the process.

wide-band wave lcad process

In this case the band width parameter
approaches one, The extreme value distribu-
tion based on the largest peak in a sequence
of N peaks is thus given by equations (1) and
(3) but with an initial distribution obtained
by substituting £ = 1 in Rice's equations
(4) and (19). These equations reduce to the
Gaussian distributions, i.e.,

{7

€ dz

3

FZ(Z‘ = —1l
ey

|
b r—n

.
=P |[—/—=
( mo) (32)
and
2
1 Z*ms
£zl = e
z 1’211:n1,_,
(33}

Cramer's method for determing the
asymptotic extreme distribution yields for the
wide band case { £ = 1 in equaticn (9)):



lTlS—Z
Fz(z,l) = exp -ND ‘/:D

(34)

Gumbel's general asymptotic distribution
given by equations {10} and (11) remains unal-
tered. The parameter uy can be determined
from equations (16) or more easily from (15}
by substituting £ = 1. The parameter &
is detemmined from equation (2¢}. These egua-~
tions reduce to:

u = mg -Jm_o (1}‘1(.1\1[.)

(35)

and l(“ﬂ'msi
« JUR

V2 (36)

Equations (35) and (36} are not identical
to equations given by Cramer for these two
parameters (see for exc—mple [3], page 200).
Cramer's solution for these parameters which
becames accurate as N =00 is (for a process

of mean mg and variance mg}:

InlnN + In41|::|

- 2N -
uy = mg +gm [ 242N

(37}
ard
,21nN
. =
N \, m,
(38)

Equations (35) and (37} for Wy were coim-
pared numerical ly for the case of zero mean
"m " and any variance M. Several values of N
were considered in the comparison. In all
cases the difference between the values of U
obtained from the two equations was less than
one percent. We will consider this to be
satisfactory for confirming the Uy equations
givn by (35) and (37), If the UN equatlon
given by Cramer {equation 37) is substituted
in the first of equaticns (36) for ofy, an

identical result as that given by equation
(38) is obtained. This confirms the validity
of eguation (36). It should be noted that
Cramer's equation (38) for o in this case

{ € =1) is identical to &, for a narrow-
band process ( £ = @) as can ge seen by
comparing (38) and (31). Comparing the values
of UN for the narrow and wide band cases it is
seen that equation {37) differs only from
equation (3@) because of the presence of a
second term in the bracket,

The extreme distributions based on up-
cressing analysis given by (24) as well as

Phad hacoad An o L
that based on a two-state descr:ptmn of the

rardom process given by (25) remain unchanged.
It should be noted that in both cases T is
generally not equal to the number of peaks N.

COMPARTISON OF THE EXTREME VALUE DISTRIBUTIONS

The extreme value distributions of the
wave loads discussed above differ from each
other in their basic derivation and underlying
assunptions, The forms of their equations are
draqtlcallv different as can be seen by com—
paring equations (1) and {2); (9); (lﬁ) and
(11); (24); and (25), It would be interesting
now to compare same typical results cbtained
fram the different methods when applied to a
marine structure. For this purpose a tanker
of length = 763 feet, breadth = 125 feet and
depth = 54.5 feet is considered. We will
compare the distribution of the extreme wave
bending moment acting on the tanker under a
storm condition specified by a significant
wave height of 29.0 feet and an average wave
period of 1@.1 seconds, The storm is assumed
to be stationary under these conditions for a
period of one hour. The following parameters
were canputed for an earlier application given
in [1]:

Still water bending mamnent (full load)
m, = 669,837 ft-tons

RMS of wave bending mament
Iy

216,45@ ft-tons
Average wave mament period = 12.1 seconds

Band width parameter of wave moment spectral
density £ = 0,337

Nunber of wave mament peaks in one hour
= 6@ x 66 = 297.5
12,1

The application given in reference [1]
showed that if £ is assumed to be zero
(ideal narrow-band) instead of the #.337 given
above, the resulting error in the expected
maximun wave bending mament in N peaks is less
than #.5 percent., This gives an indication
that for = #,337, it is sufficiently ac-
curate to use the ideal narrow-band equations
for our comparison.

Using this assumption and the above
values for m., Jm; and N, a camparison is
made of the cumulative distribution functions
of four extreme value distributions. These



four distributions are:
Distribution (A)}: Largest peak in N-peaks as
given by equations (1) and
(27}

Distribution (B): Asymptotic type I distri-
bution as given by egua-
tions {1@), (3¢) and (31)
Distribution (C): Upcreossing analysis as
given by equation (24)
with WUT = N
pistribution {D): A two-state description as
given by equation (25]
with wT = N and g
values = #,35 and 6.25

The results of the camparison are shown
in Table 1 and are plotted on a standard
extrane probability paper and on a regular

graph paper in figure 1 and 2, respectively.

The probability density function of dis~
tribution (A) as given by eguations (3), (27)
and (28); distribution (B) as given by {(11),
{3%} and (31); and distribution () as 31vcﬂ
by the derivative of equation (24) with res-
pect to X are plotted in figure 3.

DISCUSSION OF THE RESULTS AND CONCLUDING

REMADWC
ALMARND

Based on the results given in Table 1 and
Figures 1 and 2 one surprising conclusion can
be drawn., All extreme value distributions of
the wave loads considered produce similar
results even though their basic assumptions
and derivations differ drastically. In fact,
if one inspects the equations representing the
cuanulative distribution functions of these
distributions {equations (1) and (27); (14¢),
(39) and (31); (24); and (25)) one sees that
these equations are not similar in form and
may conclude errcnecusly that they would pro-
duce very differernt results.

The extreame distributions based on the
largest peak in N peaks {(distribution &),
upcrossing analysis {distribution B) and a
two-state description {(distribution C) preduce
almost identical results as far as the proba-
bility of exceedence is concerned as can be
seen by inspecting figures 1 and 2. The
asymptotic type I distribution (distribution
B) results in slightly higher values of pro-
bability of exceedence, This is to be ex-
pected since the asymptotic distribution is an
uppet bound extreme distribution and becomes
more accurate as the number of load peaks
approaches infinity. In the example shown for
the tanker, the number of wave bending moment
peaks N is approximately 298.

As an exanple of the difference between
the asymptotic distribution and the other
distributions, the probability of exceedence
of a total bending moment of 2,069,000 ft-ton
{including still water bending manent of
669,000 ft-~ton) is 0,006 according to the
asymptotic distribution (B) and £.802 accor-

o

"

ding to the other three distributions (&, C
and D) as can be seen from Table 1. The
insensitivity of the probability of exceedence
given by distribution D {twc-stage descrip-
tion) to the value cf the band width parameter
"gq" is to be noted.

To sumnarize the main points in this
study, four extreme value distributions of
wave loads acting on a marine structure and
modeled as a general stationary Gaussi.c —ro-
cess of any band width have been considered.
The peaks of the wave loads thus follow a
general distribution given by Rice [2].
extrane value distributions were then
evaluated and, in partic—ular, Gunbel's type I
asymptotic distribution parameter was deter-
mined using Rice's distribution as an initial
distribution. The extreme value distributions
were then applied to represent wave loads on a
tanker where the spectral band width was

Tha results
The resuits

The

determined to be narrow. show
that Gumbel's asymptotic distribution may be
used for conservative upper bound analysis
while the other three extreme distributions
give slightly lower values. Of these three
distributions, the one based on upcrossing

analyﬂ:c h-'l1u:-hr1'hn+10n C’ e(ﬂndat1nn '7.&\ Seans

to be the easiest to handle.
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TABLE 1 - COMPARISON OF EXTREME VALUE DISTRIBUTIONS OF WAVE BENDING MOMENT ON A TANKER

CUMULATIVE DISTRIBUTION FUNCTIONS

Totzal Bending Distribution Distribution Distribution Distribution Distribution
Moment in A B c D D
ft-tons with g = ,35 with g = .25
1469602 1554 x 1673 | 1.461 x 1873 | 3.762 x 1673 | s.488 x 1070 | 9.018 x 1¢73
15190049 7.0834 4,326 0.034 ¢.,042 g.d956
1569@09 g.137 $.132 B.138 g.155 #.180
161909¢ #.324 g.324 B.324 0,343 3.372
1669038 M.537 3,534 @.537 @.552 3,575
17198040 ¢g.717 2.785 #3.717 d.727 G.741
1769900 §.842 4,832 7.842 ¢.846G 7.855
1819808 8.917 R.8%7 #.917 0.919 #.923
1869020 ?#.958 9.942 3,958 @.959 7.961
19190660 #.9806 3.967 9.980 F.981 2.981
1969602 3.991 3,982 7.991 4,991 6.991
2019600 #.996 #.990 0,996 3.996 7.996
2069000 9,998 3.994 7.998 3,998 3,998
21690006 1.9¢03 3.998 1,004 1.929a 1.900
2269002 1.060d #.999 1,880 l.00¢ 1,602
23694060 1.088 1.00d 1,008 1.034 1.090
2369
2269 [=
2160 E Distribution |8 '
2069 = . i -
5 E pd /
18— - ,!" /
E‘l%g - Distribuifons
g = e / A CanfD
£ - A
: E 1L
1869 |- A A
g = P
2 = o
£ E 1
1768 -
= /V
E
= pd
1669 £ /V
= z
= Z
3 |/
- yd
1569 - 77//
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Probability CDF

FIGURE 1 - Standard Extremal Variate - Bending Moment on a Tanker
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FIGURE 2 - Cumutative Distribution Functions of Extreme

Bending Moment on a Tanker
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FIGURE 3 - Probability Density Function of Extreme
Total Bending Moment on a Tanker
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