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ABSTRACT

This paper describes an attempt to
bring a state of the art methodology to
the state of practice. The methodology
aims at the evaluation of the failure
probability of a steel-jacket platform
under extreme environmental loading
conditions. Of course, this probability
of failure should not be considered as
the "true" probability of failure of
the structure over a particular period
of time, Dbut simply as an overall
safety measure to be used as a decision
tool. I¥n short, it is based on a search
for the most probable component failure
sequences leading to the structure
collapse. Componental failures include
brace buckling, plastification of a
section, and punching of a chord by a
brace.
After each componental failure, the
structural stiffness is locally
medified and component residual
strength is accounted for by applying
equivalent nodal forces on the struc-
ture. The probability of occurrence of
a failure sequence is a joint proba-
bility  whose computation requires
special attention (in particular the
depen~ dency between the individual
component failures involved must be
accounted for). Once the most likely
failure sequences have been identified,
their probabilities of occurrence are
combined in order to estimate the
overall probabkility of failure.

state of the art metho-
state of practice, i.e,
developping a practical tocl that can
be applied to real situations, is not
an easy task. Among the various
problems that have to be solved, the
folliowing must be mentioned

Bringing this
dology to the

. choice of the random variables (and
of the corresponding distributions)
among the many parameters that can
he identified in a realistic situna-
tion {(in particular, the extreme
environmental condition parameters),

. choice of an appropriate structural
analysis method in order to perform
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many reanalyses at the lowest
possible cost (each time a component
fails, a new analysis must be
performed),

accurate computation of joint
probabilities of failure events,

devalopment of a simple and realig-
tic post-failure bhehaviour model for
each type of component failure.

The complete or partial soluticon to
each of the aforementioned prollems is
described and discussed in the paper.

Finally, some application examples are
presented in order to show the capabi-
lities and limitations of the metho-
dology.

INTRODUCTION
In recent years, an important amount of

research work has been devoted to the
development of methodologies for the

reliability analysis of redundant
structures (10, 14). To our knowledge
however, very few practical
applications of these metheodologies

have been presented if not attempted at
all. By practical applications, we mean
applications to real structures,
significantly 1larger than the 2-D
frames on which the proposed methods
are usually applied 4o in the publi-
cations.

The

present a new methodology, but “simply"
to describe an attempt to bring "state
of the art" methodologies to the "state
of practice". 1t is hence mostly a list
of problems with proposed solutions, or
with still to be found solutions. It
also includes general reflexions and
suggestions.

purnose paper 1is not to

General considerations

Steel-jacket platforms are the most
common type of fixed offshore plat-
forms, ranging in height from a dozen
of meters to several hundreds. Our



target Ffor the application of the
existing methodologies is neither the
first type nor the second type of

structure but an Iintermediate type of
about hundred meters.

It is well known that the various loads

applied to an offshore structure
(waves, wind, current) are random in
nature. Moreover, uncertainty and

randomress are present in the structure
itself : material resistance, gecometric
parameters, initial defects,... Also,
some uncertainty is introduced by all
the physical models used to predict the
load effects and the structural res-
ponse. The combination of these random
or uncertain parameters results in a
non-zer¢o probability of something going
wrong, the something ranging from a
single component failure to the total
collapse of the structure.

The structural component failure modes

considered in this paper are the fol-

lowing

. tubular member buckling,
plastification of a section,

. punching of a chord by a brace.

Foundation failures are not discussed
here but they could be considered as
well.

In general, the failure of one compo-
nent does not mean the failure of the
structure, However, because of the load
redistribution that necessarily follows
a first failure, other member failures
can be triggered, eventually leading to
the collapse of the structure. Even
befeore the complete ¢ollapse is
reached, the structure can become unfit
for serviceability reasons le.q.
displacements too large for normal
operation of the platform}.

Needless to say that a complete relia~
bility analysis of such a system is a
formidable task. Even with the analy-
tical tools (Advanced First Order and
Second Order Reliability Methods) now
available (14) , some simplifying
assumptions must be made. Some of them
will be presented in a subsequent
section. As a conseguence, ahy proba-
bility of failure obtained in that
context should not bhe considered as a
"true" probability of failure, but
merely as a safety measure to be used
for decision making.

Brief description of the general
methodology

among the wvarious metheds for struc-
tural system reliability analysis
proposed in the litterature (4, 10,
14}, one class seems more popular that
the octhers. It may be called the
peta-unzipping, the progressive col-
lapse, or the member replacement
method, but it is more or less always
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the same methodology. This 1is the
methodology that was chosen here for
practical applications because it is
basically the probabilistic extension
of the classical deterministic approach
called progressive collapse or static
push-~over (7).

This is probably the reason why it is
the most popular one, but it doesn't
mean that the other methodologies
(stable configurations, ideal plasti-
city) are not valid. The following is a
brief review of the major features of
this methodology.

A major assumption is that all the
member failures, and hence the struc-
ture failure, occur at one instant, for
example when the lateral wave load is
maximum. More precisely, failures are
assumed to occur over a short periecd of
time during which the load is being
applied proportionally, For a given
period such as the life time of the

structure, the distribution of this
extreme load c¢an be obtained from
available oceanographical data. If the

other time varying sources of loading
are included f{e.g. wind and current).
the definition of the extreme loading
conditions is more complex, in parti-
cular if the variocus sources of loading
are correlated (which is generally the
case) .

The advantage of this assumption is
that it makes the reliability problem

time-independent., Of course, fatigue
failures cannot be treated in that
context. However, structural failure

due to the existence of fatigue cracks
can be accounted for, just like any
other static failure mode.

Once a given member failure has
occurred, its stiffness, and hence the
overall structural stiffness is modi-
fied., A residual strength is modelled,

for example by applying appropriate
forces at the nodes of the failed
member, and a new stress calculation is
performed.

After a sufficient number of successive
member failures have occurred, the
structural failure criterion (collapse,

large displacements) is met and a
failure path or failure sequence
identified.

In a reliability analysis context, a
failure path 1is nothing else that a
cut-set. The probability of failure
following a particular failure path is
therefore a joint probability, whose
computation reguires special attention.
Generally, many different failure paths
may lead to the structure failure.
Hence, the probability of structural
failure, i.e. the probability of
occurrence of any possible failure
path, is simply the probability of the
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union of all possible failure paths.

Unfortunately, even for a simple
structure with only a few members, the
number of failure paths is enormous and
a complete listing of them is practi-
cally impossible. It 1s therefore
usually suggested to look only for the
most critical failure paths. Taking the
union o¢f those failure paths and
computing  the probability of the
resulting event provides a lower bound
to the probability of structural
failure. Generally, because those
failure paths are the most likely, it
is a close bound.

Moreover, as will be seen in a sub-
sequent section, the information
gathered during the search for the most
likely failure paths can be usgsed in
order to obtain an upper bound to the
probability of structural failure.

From the state of the art to the state

of practice

When trying to apply the above metho-
deleogy. to practical situations, one
faces several problems which can be
classified as follows :

Loading aspects
. selection of random variables,

. choice of a hydrodynamic force
model.

Mechanical and structural aspects

. choice of the component failure
criteria,

. modelisation of component post-

~failure behaviour,
. minimization of the cost of repeated
stress analyses.

Probabilistic redundancy analysis

. choice of probability density
functions,

. computation of 3joint probabilities
of failures,

. search for
paths.

most likely failure

In the subsequent parts of this paper,

the above mentioned aspects are
addressed successively. In each case
+heo e el = ] PRV 1Tiptn P | PN
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solutions are proposed, illustrated by
several examples,

PROBABILISTIC MODEL OF THE ENVIRON-
MENTAL LOADING

Preliminary comments

As stated in the introduction, the
reliability analysis is performed under
a single extreme event, assuming that

+he correcnandlnos TrnaAd ia armliad
the correspondin g lead is applied
proportionally from an initial wvalue

fe.g. zero or dead load only)
final value.
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In other words, the load acting on the
structure is described by a random
vector and not by a multidimensional
stochastic process. This is why this

type of analysis 1is often called
"time-independent".
Let L of dimension N be this random

vector, where N can vary from 1 to the
totai number cf degrees of frecucm of
the platform structural model.As well
be seen in a subsequent section, the
reliability analysis regquires as input
the random internal forces and moments
in every structural member ({(e.g. beam
element) .

The member replacement method major
advantage 1is that the behavior of the
structure in any damaged state is
obtained by the superposition of
several linear responses. In the intact
state, only the response to the exter-~
nal action 1is considered. In the
damaged  states, the responses to
additional self-equilibrated loads
accounting for residual strength of
failed members are also included. In
this part, only the external actions
are considered.

Let gl be the vector of intevnal forces
and moments in member i. It is linearly
related to the vector L by an equation
such as
st=¢'L (1)

where Ql is the assumed deterministic
influence matrix associated to
member i. Practically, the . probabi-
listic characterisation of 5§~ is not
easy to obtain from the probability
distribution of L, except in special
cases. Those special cases include the
case where the dimension of L is small
and the case where L is gaussian.

Most of the applications published so
far in the litterature correspond to
the first case or to a mixture of both
cases. Typically, the dimension of L is
equal to two,with a component L,
representing the dead lcad - and 4
compeonent L, representing the environ-
mental loa% {deterministic constant
pattern x amplitude}). An
important consequence of such a reduced
randem load space dimension is a large
correlation between all the internal
forces in the structure, As will be
seen later in an example, this may have
a significant influence on the reliabi-
lity estimates.

Eer-Ratelatii
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The following is the brief description
of a method corresponding to the second
case : no limitation on the dimension
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assumption. Under this assumption, only
the expected value of L, E(L), and its
covariance matrix, zﬁy are required.
In order to cbtain E(L) and Ziﬁ , the

gangscian
gausslan



tollowing steps are successively

performed by the program CHARGE (3} :

. stochastic modelling of the marine
environment,

. probabilisation of
equation,

. calculation of the
characterisation of L.

Morison's

second order

Stochastic modelling of the marine
environment

In the extreme Jloading situation, the
structure is subjected to the combined
effects of wind, wind current, tide
current and waves. In order to estimate
the hydrodynamic forces acting on the
structure, the random kinematic pro-
files V (x, y, 2z} corresponding to each
of these external actions must be
described. A possible way to describe
them involves splitting the profile in
a random intensity parameter A and a
random field Wi{x, y. 2} assomed inde-
pendent from A and such that :
E(errzr) = ) -H(xry:z) (2)
For example, in the case of the linear
wave action siandom height H and random
period T), = H/T if V is the velc-
city profile and A= H/T* if V is the
acceleration profile.

The randomness in A represents the
physical uncertainy associated to a
given action while the randomness in W
represents the model uncertainty
associated to a particular wave theory.

With this model, the interaction
between the various sources of loading
are easily accounted for by super-
position of the corresponding profiles,

Probabilisation of Morison's equation

The Morison's equation is a hydro-
dynamic model that transforms kinematic
profiles into drag or inertia forces
through the use of the force coef-
ficients C, and C,,. These coefficients
systematicglly vary with parameters
such as the Keulegan-Carpenter number
and the relative roughness. Random
variations around the systematic
variation can be observed on experi-
mental data. Therefore, C and C

should be treated as random Variables.
What are their distribution functions,
are they independent from each other,
from one member to the other ? Those
questions are difficult to answer at
present.

Second order characterisation of the
loading

Assuming a linear variation of the
profile between the two nodes of an
element, the equivalent nodal £orces
are easily related to_ the action
intensity variables (the A's), to the
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nodal values of the kinematic profiles

{the ®W's), and to the force coef-
ficients {the C's}). Because this
relation is not linear, the second

order characterisation of L reguires a

higher order characterisation of each

cf the above mentioned families of
random variables (each  family is
assumed weakly correlated te the
others).

Considering for example the family of
action intensity variables, it is
necessary to define :

a 4th order charactﬁrisation of each
variable i.e. E{ A;) for m = 1,4

. vario entsg of the type
.Hf ?ﬁ?’ ™ for mi, mj, mk
e 10,1,2, 3} Fuied Bivmjmk =3 or 4.

These moments can be obtained from the
knowledge of the joint distributjon of
the various intensity variables.

In some cases, the necessary infor~
mation is totally lacking (kinematic
profiles, force coefficients) and
additional research is required. In the
meantime simplifying assumptions
{perfect correlation of decorrelaticn)
can be made.

Model reduction

The method described above leads to the
probabilistic characterisation of a
locad vector having a dimension equal to
the number of degrees of freedom of the
structural medel. For realistic medium
size structures this number ranges from

one hundred to one thousand, thus
img%ying a huge correlation matrix
{ L) and lengthy computation to

obtain E(§7) and Z i from E(L) and

Zoe

TheL possibility of reducing the di-
mension of the model was therefore
investigated. A possible method
consists in a diagenalisation of the
correlation matrix followed by a
reduction of the number of eigen-values
{all eigen-values below a given thre-
shold are assumed equal to zero).

The table 1 compares component relia-
bility indices obtained for different
levels of reduction, It is still
difficult to draw general conclusions
from this example but it shows that
such a reduction methed is promising.

Conclusion

The two extreme cases presented in this
part illustrate well the type of
dilemna one has to face when trying teo
apply a model to practical situations.

Do we choose a simple model for which
all the required information is avai-
lable but with a risk of being too
¢crude, cor 4 we choose a sophisticated



model for which some of the reguired
information is lacking and therefore
some assumptions have to be made 7?7
There are no easy answers to this kind
of questions.

May be the reduction method menticned
in the last paragraph will help us

crnlara +he AL T amna e +h - ~F +hka
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probabilistic description of the

environment but as will be seen later
on, other similar dilemna will show up
in the choice of the failure criteria.

MECHANICAL AND STRUCTURAL ASPECTS

As explained in the introduction, the
methodology requires the definition of

anpnnpnf failure nv1+nr1n +ha

Caiplienl L Lo lalad LTl id, e

modelisation of component post-failure
behaviour, and the repeated use of a
stress analysis program. As will be
seen, these three aspects of the
methodeolegy may lead to practical
problems.

The following is a description of the
problems involved and of possible ways
to tackle them.

General considerations

There are no major constraint impeosed
by the probabilistic analysis on the
expression of the failure criteria. In
the case of the First Order Reliability
Methods mentioned earlier, the only
requirements are continuity and diffe-
rentiability with respect to all the
random variables.

A failure criterion can generally be

expressed as an interaction eguation

between internal actions in the member

and resistance wvariables, which, for

tubular members, are functions of

several parameters such as :

. yield stress,

. stain hardening,

. Young's modulus,

. residual stresses,

. section parameters
thickness),

. out~cf-roundness of the section,

. out-of-straightness of the member.

(diameter and

When performing a structural reliabi-
lity analysis the first problems to be
dealt with are the choices of inter-
action equations and the choice of a
set of random variables for each type
of eguation. Those choices are impor-
tant ones because they affect quite
significantly the results of the
reliability analysis.

Regarding the first choice, any one of
the interaction equations given by the
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codes (e.g, AISC, API, DrV) is a priori
adeguate, provided that explicit safety
factors are removed and that model
uncertainty {(see below) is properly
accounted for.

As far as the second choice is concer-
ned, the brutal probabilisation of all
the parameters involved in a PaLLibulaL
failure equation is rarely the best
sclution, and this for two main
reasons. First, it regquires the know-
ledge of the joint density function (or
the appropriate set of conditional
distribution functions}) of all the
variables and this information is
usually not available. Second, it dces
not account for the so-called medel
uncertainty that .i1s reflected by the
dispersion observed when experimental

data are comnared o nradictad Adata
Gata arc compared O Pregiotel Gata.

A better approach is to identify the
most significant (deterministically as
well as probabilistacally) factors of
the interaction egquation and account
for all the other uncertainties as well
as the model uncertainty with an
additional random variable. Concerning
the parameters listed above, it 1is
usually recognized that the uncer-
tainties associated to Young's modulus
and to the gection narameters (diameter

and th1313e333'2¥é negllglble‘;oibared
to those associated to the other
parameters (e.g. yield stress).

In the following, possible choices of
interaction equation and significant
parameters for various failure criteria
are presented. The question of model
uncertainty 1is discussed separately
later on.

The following failure criterion is the
one proposed by Toma and Chen (11) on
the basis of a mechanical model of
imperfect tubular section :

1.0-{M/Mp)-1.18(P/Py)2 = 0 (3}
for 0 < P/Py < 0.65
1.0-0.70(M/Mp)-(P/PY) = 0
for 0.65 < P/Py < 1

where

P plastic axial capacity = A. ¥y

%E plastic moment capacity = Z. Gy
y yield stress

A section area

LI T T R T

2 plastic modulus
P axial load
M bending moment at section

The authors have found the effect of
cut-of-roundness to bhe negligible,
Moreover, residual stresses do not
affect the interaction curve as it
corresponds te a totally yielded
section. Thus, the only remaining
resistance parameter to be considered



is the vield stress. It can be found in
various publications (1, 11} that its
dispersion is well represented by a

positively skewed Gumbel distributicn.
Buckling of a tubular member

Most of the proposed buckling inter-
action equations are of the following
form {(AISC} :

1.0—(P/PU)—(CM.MA)/(Mp.(l—P/PE))=0 (4}
where

buckling strength = k_Py

euler buckling load ©

reduction factor = 0.6-0.4(MB/MA)
, M_ = end moments (M, > M.}

= “function of the reduceﬁ
slenderness ratio

~E QWY
I+] Q%zvic
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This type o¢f formula is obtained by
assuming a linear interaction of thrust
and moment at the most highly loaded
section of the column.

In order to be consistent with the
choices made for the previcus failure
criterion, the yield stress has to be
treated as a random variable. Another
goad candidate is the axial strength
reduction coefficient ko‘

Given the yield stress and the effec-
tive length of a cclumn the uncertainty
observed on k_is due to parameters
such as out-of-roundness of the sec-
tion, out~of straightness of the
column, and residual stresses. A large
number of compressive tests have been
performed to statistically describe k

for different values of slendernes

ratio. As could be expected, the
uncertainty in X_ depends on the value
of the slendernfss ratio. Except for
those of Chen and Ross (2), most of the
tests involved columns different from
the tuhular members used in offshore
structures. The wuse of these results
for the reliability analysis of jacket
structures may therefore bhe difficult
to justify. This is anyway the kind of
information that is required.

The strength of tubular ceolumns have
been studied by Toma and Chen ({11)
using a non-linear finite element model
of tubular columns. The effects of the
parameters listed above were investi-
gated., For example they found that an
increase of out-of-straightness from
0.1% to £.2% leads to a decrease of 15
to 20% of the compressive strength for
the range of slenderness ratios typical
of jacket structures.

This parametric study was not conducted
with the c¢bjective of performing a
statistical analysis of the results
however and it is difficult to draw
from it any practical conclusion
regarding the distribution of ko. Most

174

of the statistical data that such an
analysis would require {joint statis-
tics on the influencial parameters) are
lacking anyway and this is an area were
additienal investigations are urgently
needed.

Punching of a chord by a bracing
Most of the test data available to

attempt a statistical description of
this failure mode are limited to simple

planar Jjoints under simple loading
conditions (i.e. pure axial or pure
bending load). Before additional

information is obtained there is no
reason to select a more complex inter-
action equation than the simple linear

interaction formula proposed for

example by ARSEM (13} :

1.0-(P/Pg) - M, /M, V- /M )} = 0 (5)

where

Py = ultimate axial load capacity of
the joint

M, = in-plane bending moment in the

1

brace

M= out-of-plane bending moment in
the brace

M, ultimate in-plane bending
capacity of the joint

Mou= ultimate out-of-plane bending
capacity of the joint

Ochi, Makino and Kurcbane (8] have

evaluated the ultimate capacity of

unstiffened tubular joints under axial
brace loading (e.g. P8&) for several
types of jeints (X, Y, T and K). Their
method consists in adjusting semi-
-empirical models to experimental
results by multiple regression tech-
nigues. The ultimate strength is
deduced from the leoad deformation
curves by chosing the first peak load.
Using this method, the ultimate axial
capacity PU can generally be expressed
as follows :

By, = £.T2 Gy. £ {6)
where £ is a function of the joint
gecometrical parameters, the axial chord
stress, the vyield stress, and the
ultimate strength of the chord, T is
the chord diameter and & is ah error
term. The form of the function f varies
with the type of load (tension or
compression) and the type of joint.

Using a different method and very few

test results, Wardenier (12) has
derived similar expressions for the
in-plane and out-of-plane capacities
M. and M_ .

iu ou

Hence it seems that a minimum of four
random variables (the yield stress and
three error terms} are necessary if
this failure criterion is to be



included in a reliability analysis.
Model] uncertainty

The three interaction equations pre-
sented above can all be writtenin the
following way :

1 -F =20 {7}
where F is a function of random and
deterministic parameters.

A simple way of

model uncertainty
particular interaction equation
consists in replacing the 1 in the
above equation by a random variable Z,
with its mean, hopefully close to 1,
representing the biais of the model and
its probability density function
representing the model uncertainty.

accounting for the
associated to a

The only way of obtaining the reguired
information is to compare predicted
results to measured results. This type
of investigation is difficult to
perform because it requires careful
statistical treatment. 1In particular,
cne must be sure that the estimated
model uncertainty does not reflect
imperfect knowledge of the interaction
pnna+1nn variable !eigi vlp1d stress).

This type of investigation has recently
been performed by Kotoguchi et al.
{6} on steel beam-cclumns, but in
general the information required for
offshore structure tubular members is

far from complete and additional work
is required.

Remark
Because the above mentioned failure
criteria are to be used in a system

reliability analysis, the problem of
statistical correlation between the
various resistance parameters accross
the structure has to be addressed. It
is probably reasonnable to assume that
all variables (including model uncer-
tainty variables) are decorrelated
except the yield stress but this
assumption has to be confirmed. Without
additional information, an objective

attitude is to vperform the reliagkility
attitude 15 PErICIM TNe YXeiliaplilly

analysis with the two extreme assump-
tions of perfect correlation or perfect
decorrelation., By the way, the yield
stress 1is a priori a random field
accrosss the structure but also within
a member along its length and accross
the section. Therefore, the yield
stress appearing in the expression of
the plastic moment capacity is more or

less an averaged value accrgss a
particular section. It may therefore
have laceg variahas 14+ +hanm
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experimental tests performed on indi-
vidual steel samples.
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MODELLING OF COMPONENT POST-FAILURE
BEHAVIOUR

Component post-failure behaviour is one
of the key factors that determine the
effective redundancy of a structure. It
is hence necessary to properly model it
in a probabilistic analysis that
includes structural redundancy. The
challenging problem here is to compro-
mise between the accuracy of the
deterministic model and its ability to
be used in a probabilistic context.

One class of models that can be easily

incorporated in a probkabilistic ana-~
lysis includes all bi-linear, two-
-states component models. In the
unfailed state, the component is linear

elastic, e.g. a standard beam or truss
element. In the failed state, the
component still behaves linearly, but

with a modified stiffness matrix. More-

over additionnal nodal forces and/or
moments related to the strength (e.qg.
yield stress) of the component are

applied at its nodes.

The resulting formulation is simple if
axial forces and bending moments
interaction is not accounted for. It is
more inveolved if interaction is accoun-

ted for (10}, but still tractable.

With this type of models, various
component  behaviours, ranging from
brittle to perfectly plastic, can be
described (see fig. 1l}. It 9only

regquires linear stress analyses, which
makes the probabilistic formulation
rather simple. More precisely, in any
state of the structure, the stresses in

a non-failed member result from the

superposition of the actual random
loads applied to the structure and the
residual strengths of the failed
members. They can therefore be expli-

citely written in terms of the random
variables in the following way :

i

s* = ¢t (L+R) (8}
k=2 o TR
where
i . .
8§~ = internal forces and moments in
. member i
t"l = TinFliianra makrriv 24+ mamhor 4
C influence matrix at member i
L = external random load vector
R = self-equilibrated random vecteur

of equivalent forces and moments
due to residual strength of
failed members

Because ©f this explicit formulation,
the structural analyses can be per-
formed separately from the reliability
estimatieons, and the computation 1is
greatly reduced.

This class of models is therefore very
attractive. However, the important
guestion to be answered is the
following : how well does it describe



the post-faiiure behaviour of a buckled
brace, a plastified section, or a
punched member ?

One model of this type has been tested
in the case of buckling of 3.D truss

structures (9} and compared
statisfactorily with experimental
results. Only axial forces were

accounted for and the failed state was
described by a zero stiffness and a
residual strength egual to a fraction
of the buckling strength.

Arother class of models includes all
the non~linear models which can of
course be made as accurate as desired.
The drawbacks of such models are
ocbviously a higher computation cost but
aiso a much more complicated probabi-
listic formulation.

This is mostly due to the fact that the
stresses in the members become implicit

functions o©of the random variables.
Therefcore structural analyses and
reliability estimation cannot be
separated,

REPEATED STRESS ANALYSES

Whether the structural component models
{including post-failure behaviour)} are
linear or not, the methodology gene-
rally requires many successive stress
analyses in order to identify the
critical failure sequences of a redun-
dant structure. For a structure of
reasonnable size (several hundreds of
nodes with 6 degrees of freedom each),
the cost o©of those repeated stress
analyses rapidly becomes prohibitive,

in the following, we present
methods aimed at reducing this cost as
much as possible, The first one is
based on a flexibility matrix approach
{(Sherman-Morison algorithm} and the
second one on a stiffnesse matrix

approach (substructuration technique).

PR,
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First method (Sherman-Morison
algorithm)

Most of the structural analysis
computer codes are based on the so-
-called "stiffness method" which
consists first in assembling the
individual eiement stiffness matrices
inte a global structure stiffness
matrix K and second, in solving the

regsulting linear system of eguations
(K.U = F with U the vector of nodal
displacements ané F the vector of nodal
forces) by a a factorisation procedure
(e.g. Cholesky method).

By this inversio
of the stiffness matrix is avoided., I
the dimension of the load vector is N,
the influence matrix of equation (1} is
obtained by solving N successive linear

systems of eguations corresponding to N

FHh 3
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different force vectors. This wiil be
referred to as the direct method.

The  Sherman-Morison (5M) algorithm
{5) provides a quick way of modifying
the inverse of a matrix if one column
of the original matrix is modified. Tke
modified inverse is obtained directly
from the previous inverse without
having to inverse the modified original
matrix. In the context of structural
analysis the inverse of the stiffness
matrix is the flexibility matrix which
is costly to obtain for a realistic
structure. However, if the S-M algo-
rithm can be used, which is the case,
this initial investment might Dbe
worthwile,

indeed, when the stiffness matrix of a
failed beam is modified, twelve columns
of the global structure stiffness
matrix are modified. Therefore by
applying twelve times the 5-M algo-

rithm, the modified flexibility matrix
is guickly obtained., In order to save
even more computer time, the M-§

algorithm can be improved to perform
the twelve modifications at cnce.

Some results are presented on table 2,
They show the reduced computer time
corresponding to the computation of the
modified flexibility matrix according
to the three methods (direct, M-S,
modified M-5), and this for different
numbers of degrees of freedom.

As can be seen, the computer time
reduction becomes more significant as
the number of degrees of freedom
increases. It is therefore expected
that for realistic structural models

FPap—— | hitmArads bk Ansmvase ~F Froano
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dom) , the initial investment of

computing the flexibility matrix will
be rapidly compensated by the saving in
subsequent structural reanalyses.

Second method (substructuration)

The substructuration technique is not
new. It is the base of the so-called
super-elements methods available on
some finite-element codes. Originally,

developped in order to analyse

large structures when computer storage
capabilities were limited.

i+ wac
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In short, it weorks as follows. The
original structure is divided into
substructures of super-elements which
do not overlap (each element, e.qg.
beam, belongs to only one sub-~
structure}l. Those substructures are
connected by some nodes, common to at
least two substructures, and called
primary nodes, All cother neodes, called

—————— P

secondary nodes, belong to alonly one
substructure., Instead of building a
single stiffness matrix for the entire
structure, only substructure stiffness
matrices are built and stored.



First, each submatrix is condensed at
the primary nodes of its substructure
and assembled to a global stifiness
matrix. This global stiffness matrix,
as well as each individual substruc-
tures matrix, is much smaller that the
stiffness matrix that would have been
obtained following a standard proce-
dure.

The global stiffness equation is then
solved at the primary node level.
Finally, each substructures stiffness
equation is solved at the secondary
node level, using the displacements
obtained at the primary nodes.

In our case, the major advantage of the

method is not the reduction of the
central memory space required, but the
fact that substructures stiffness

matrices, and other matrices necessary
to solve the secondary level equations,
can be stored individually. Recall that
each time a new component fails, its
own stiffness matrix is modified, thus
affecting the whole structure stiffness
matrix. Without substructuration, an
entirely new large system of equations
has to be solved. With substructu-
ration, only the stiffness matrix and

tha other v-nn111 red matricas of the

substructure “to which the failed
element belongs have to be modified.
The primary level system of equation is

also modified but it is much smaller

than the system obtained without
substructuration.

The method has been tested on two
different structures : a small one
(50 nodes, i.e. 300 DOF) and a medium
one (300 nodes, i.e. 1800 DOF). In both
cases, the structure has been divided
in three substructures. The results,

expressed in terms of CPU time ratios,
the reference being the case without
substructuration, are given in table 3,
In this table, the expression "new
analysis" means that one element of one
substructure has been modified. Without
substructuration, the cost of a new
analysis is obviously equal toc the cost
of the first analysis.
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must be made
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. the cost of the first analysis is
roughly the same in both cases,

. no significant CPU time is saved in
the new analysis of a small struc-
ture,

. for the medium size structure, the
cost of a new analysis is reduced by
more that 50%,

s o TN e s ] e A oan 1 - ol Tt = | ey 1w T~
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considered as indicators. A different
time reduction would probably be

obtained if the structures were divided
differently into substructures. 1t is
very likely that an optimum substruc-
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turation scheme can be found in each
case. Hence some additionnal work still
needs to be done.

Conclusion

Two methods aimed at reducing the cost
of repeated stress analyses have been
presented. Both methods seem promising
but it is presently not possible to
determine which one is the most effi-
cient. The <comparison is presently
under investigation.

From a probabilistic point of view this
type of investigation 1is not very
motivating but recall that the objec-
tive here is to apply structural system
reliability techniques to ©practical

=i +uati ons and exnarience shows

_______ anc cAperl lellC S0

that in such situations, the repeated
stress analyses account for most of the
cost of a reliability analysis.
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PROBABILISTIC REDUNDANCY ANALYSIS

As explained in the introduction, the
structural failure event can be des-
cribed as a union of intersections of

individual component failure events,
gach intersection corresponding to a
particular failure path. Hence, the
estimation of the probability of

structural failure requires the compu~
tation of individual component failure
probabilities as well as joint failure
probabilities.

These two aspects are briefly discussed
in the following sections. Subse-
quently, a methed £for obtaining the
critical failure sequences and bounds
—~— amebioadid T ity Al Fand Tvava
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presented. Practical aspects are
discussed in view o©f the results oif

application examples.
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COMPUTATION OF COMPONENT AND JOINED
FATLURE PRCOBABILITIES

With the recent developments of First
and Second Order Reliability Methods
the computation of individual compo-
nents as well as joint probabillties

of failures has ceased to be a major
obstacle in structural reliability
analysis,

The next major precblem to tackle is
providing these efficient methods with
the appropriate input data !

Indeed, in order to compute proba-
bilities of failure, some choices must
be made regarding the probability
distribution type ef each random
variable. In most ©f the theoritical
work published in the 1litterature,

distribution types are assumed more cr
less arbitrarily because examples of
application are only given for demons-
tration purposes., In practical appli-



cations however, this becomes an
important 1issue since the computed
probabilities are significantly

influenced by +the choice of distri~
bution laws. It was seen in previcus
sections that the information required
to properly characterise all the random
variables (load, resistance, and model
uncertainties]) is still incomplete.
Except in some cases, the best infor-
mation available reduces to a second
order characterisation.

Should we then assume some distri-
butions based on scme "best enginegring
jugment” or should we restrict the
reliability analysis to a first and
second moment formulation (which is
equivalent to assume that all variables
are normally distributed) ? This is an
other dilemna that becomes crucial in
practical applications. This probliem
will be considered more generally in
the conclusion.

another
for

We now consider
problem : the sgearch
failure paths.

practical
critical

SEARCH FOR CRITICAL FAILURE PATHS

Let us first consider a particular
failure path Fi where each Fi is an
individual component failure event.
Obviously, the following inegualities
hold

P(F1) > P(FIMYF2) > ... > p(QFi) (9)

Ags we proceed along the failure path,
the probability of reaching the succes-
sive steps decreases. This remark
suggests to generate the most likely

failure paths as follows

Starting in the intact state of the
structure, the probabilities of failure
of each component according to each
state of the structure is then changed
according to the most probable initial
failure. If this is a failed state of
the structure {according to a prede-
fined criteria), the algorithm stops.
If not, probabilities of
failures following the previcus one are
computed. These are Jjoint probabilities
of two failure events.

mnhansand
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The most probable failure seguence is

sequences just generated and all the
one-step seqguences previously gene-
rated, except the one Jjust chosen.

Again, after checking that the corres-
ponding state is not a failed state new
sequences are generated and

ciated probabilities computed.

i Mgy I —
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More generally, at any step of the

algorithm, the state of the structure

ig changed according to the most
I
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segquences generated up to that point
and not vyet chosen. Eventuwally, a
failure state 1s reached. The sequence
leading to that state is the most
likely one.

Once the most likely failure path (cr
sequence} has been obtained, the next
most likely one can be found hy pur-
suing the search further on.

As already mentioned, after the first
most likely failure paths have been
found, the prcbhability of their wunion
provides a lower bound tc the proba-
bility of failure of the system,

As the branch and bound algorithm is
gearching for the most likely failure

paths, it generates incomplete failure
paths, from which many complete failure
paths could have been generated.

Because failure paths are intersections
of failure events, the event corres-
ponding to an incomplete failure path
contains all the events corresponding
to all the complete failure paths that
could have been generated from this
incomplete path,

As a consequence, the union of all the
incomplete failure paths, and of the
generated most likely complete paths,
contains the true structural failure
event., Hence, the probability of this
union is an upper bound to¢ the proba-
bility of failure of the structure.

The situation is best illustrated by a
simple example such as the one shown on
figure 2. On this £figure, the tree
generated by the algorithm (each branch
corresponds to a member failure) is
represented as a subtree of the
complete (very small) failure tree. The
three minimal cut-set representations
corresponding to the lower bound, the
true value and the upper bound of the

failure are also

euvetom nrnonhahilityv nf
system probability oI

shown.

Actually, even before having identified
the most 1likely failure path, an upper
bound on the probability of failure can

e mnheainad
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o
¢ at any s
by incomplete failure paths generated
up to that step. In fact, each time a
new damaged state is explored (one new
structural analysis) the number of
incomplete failure paths increases and

i a seemrmaw hasind AAamvanass
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This is shown on fig. 3 in the case of
a small jacket structure. Note that
because the results are shown in terms
of the reliability index . There-
fore the upper bound on the probability
ot failure becomes a lower bound on the
reliaiblity index.



EXAMPLES

The following examples are performed on
the simplified model of a small jacket
structure standing in 30 meters of
water (see fig, 4}). The model is made
0f 52 nodes and 147 beam elements.

Example 1

In this example, only first and second

moments of the load wvariables are
considered. Their statistical
characteristics are the following
{~ denotes the coefficient of
variation) :
Intensity variables
- A = ot A spee oA
3 WWLllld PeTu
E( Aj)= 20 m/s, Vi = 0.08
- -A,= idal current velocity
El A.}) = 0,95 m/s, V3, = 0.14
- ;\3_ wavé action {[velocity“term =
H/T)
E( A = 0.415 m/s, YA, = 0.08
- ;\g= wav action (acceleration term
= H/TZ)
E( A,) =0.02m/s, Va, =0.08
= £AA, Ada = PAsd, =1 others = 0
- All a'gtl.:_\?hs‘T 3 re 'n the same
direction (posiL;ve X - directionj.

Profile variables

- E{El) are given by deterministic
models o©of wave, current and wind
kinematics

~ The coefficients of variations are

assumed constant accross the
structure with the following
values _
Nl = 0.17 ~ 2 = 0.30
w r W_ r
M3 E N géd=0.10

- The W's are assumed fully correlated
accross the structure for each type
of action and uncorrelated from cone
type to another.

Force coefficients

~ mean values and coefficients of
variation are constant accross the
structure
wind : E{Cj) = 1.00 VcD = 0.12
water: E(C ) = Q.60 ~ep © 0.35
E(C } = 2.00 ~Nom < 025
- RAll ceoefficients are decorrelated

accross the structure.,

The methodology described earlier is

used to obtained E(L) and = L where
L is the random nodal force vector
(dimension = 6x52 = 312).

The coefficients of correlation of the
horizontal forces (wave direction} at
node 201 (see figure 4) and other nodes
are given below in table 4.
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Failure criteria

Oonly the plastification
criteria are considered. Faillures are
assumed perfectly brittle (e.g. no
residual strength}).

and buckling

Results
They are given on figure 5. If the
algorithm described in the previous

section is used and stopped after the
first most likely failure mode has been
identified (4306 - 4301) the bounds on
the structure reliability are

Low = 5-07 and . (3, = 5.27
The failure tree generated to obtain
these bounds is guite small (branches
outside the dotted lines) and this is
due mainly to the brittle failure mode
assumption. Given that a member has
failed, +the probability of having a
second failure is almost equal to one.
Hence no increase in the reliability
index can be noticed when going from
the first to the second failure.

This 1is true for all the additional
failures shown on the failure tree
itbranches inside the dotted-lines).

Example 2

In this example, the loading has been
simplified ¢ only twe horizental nodal
forces are applied at nodes 201, 202,

203 and 204. The direction of
application makes a 30 degrees angle
with the positive x « direction. A

constant coefficient of correlation of
50% is assumed bhetween the individual
forces. The failure modes are assumed
plastic (e.g. full residual strength
after failure).
The results are shown 1in
Because of te plastic behaviour
assumption, their is a significant
increase in the reliability index when
going from a first failure to a second
one.

figure 6.

By applying the algorithm wuntil the

first most likely failure mode 1is
identified, the bounds on the structure
reliability are low = 4.16
and = 4,32, Also  shown on the

figure Yi1ow the failure tree is the
evolution o©of the bounds (essentially
the lower bounds} as the number of
structural reanalyses increases.

The effect on the results of the
correlation between the nodal forces is
demonstrated on figure 7. Only a
subtree of the previous failure tree is
shown but it is sufficient to show some
important effects.



As expected, going from Zero
correlation tc full correlation has a
strong influence on the reliability
values. Less expected is the change in
the ordering {in terms of reliability)
cof the taillure sequences.

This clearly demonstrates the necessity
of well describing the correlaticn
between nodal forces on the structure.

CONCLUSIONS

As already stated in the introducticn,
the purpose of this paper was not to
present a new methocdolegy but rather to
present some of the problems one has to
face when trying to apply an existing
methodology to practical situations.

In summary, two types of problems
arise. The first type is linked to the
size of the structure encountered in
practical situations (large dimension
of the load vector, cost of successive
structural analyses, large number of
potential failure sequences). For this
type of problems, some solution have
been proposed (load model reduction,

Sherman Morison algorithm or
substructuration, search for most
likely failure sequences) . Other

solution certainly exist and there is
no doubt that this type of technical
problems can be handled if they are
given enough attention.

The second type of problems is of a
different nature and more fundamental.
Generally speaking it is linked to the
modelling assumptions of any
reliability analysis.

It has been seen several times in the
above discussions that the statistical
information available to perform
reliability analysis of steel-jacket
platforms is far from being complete.

Ideally, the solution is to perform
more tests and collect more data, with
the objective of using them to obtain
statistics. Those tests may be real, or
simulated (by refined non-linear
finite-element analyses for example)
but in any case there are time
consuming and costly. And one cannot
always rely on hypothetical futur
information. It is to be expected
anyway that our extraordinary appetite
for statistical data will never be
satisfied |

In the meantime, given the available
information, the problem is to choose a
probabilistic model that is simple
encugh {so that most of the necessary
input data is available) and still
accounts for the influential factors
such as correlation (in the loads and
in the resistances as well) and
post-failure behaviour.
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In cases where there Is not enough

information to faver a particuiar
agssumption, different assumptions have
to be considered in the reliability

analysis.

Because the purpose of the reliability
analysis is eventually tc help make a
decision (e.g. repair or no repair} it
has to be checked if the decisicn
arrived at is affected or not by the
choice of a particular assumption.

If it is not affected the problem is
solved but if it is affected, there is
no easy solution to the problem, except
tc use our best engineering judgement
or to use ancther model,
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Number
N=312 | N'=10 | N'=20 [ N'=30
1 3.66 3.75 3.69 3.668
2 3.83 3.97 3.88 3.83
3 5.96 6,10 6.01 5.96
Table 1 - Effect of Load Model
Reduction (N'<N) on
component reliability
indices
Number | Direct Sherman | Modified
of DOF Method Morison 5—H
228 1.00 0.41 0.34
300 1.00 .36 0.30
348 1.00 0.31 0.25
Table 2 - Influence of the structural

reanalysis method
(Sherman-Morison) on CPBU
time
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Number without with substructuration
of DOF |substructuration
1st anal. new anal
300 1.0 G.8 Q.7
1800 1.0 1.3 0.4

Table 2 - Influence of the structural
reanalysis method
(substructuration} on CPU
time

Pairs of Correlation
Nodes Coefficient
201 — 208 0.70
201 — 202 0.63
201 — 301 0.81
201 — 401 .65
201 — 501 0.62

Table 4 - Examples of Nodal Forces
Correlations

Ja

F h F ‘—“*°—~"———~—‘——-jfji&——— F

\ plastic

} semi-brittle

- — —J

: brittle
|

' /

.

-
A

Figure 1 ~ Possible models of component
peost failure behaviour
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¢—— beam slesent

—— node

»

Figure 4 - Simplified finite element
model of a small
steel-jacket platform
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5.27 (4306} <
5.27 (4301) w
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I 5.31 (4306)

'
5.33 (102) ‘ee———————35.33 (101 F)
I

I
5,45 (102+P) ———————5.45 (101 P)
I

§ 5.49 {5401)
5.49 (5Los)<
| 5,49 (4308)
e e e e e =
5.50 (5401)
5.72 (302}
5.74 (305) % most likely
fallure path
5.75 (60%)
5.76 (607)

s.ar< B <5

(102 B) : fallure of member 102 by plastification
£102) . Failure of membar 102 by buckling

Figure 5 - Failure tree for example 1



4
4.
4
.52 (3206) éa
\\..h
&
.94 (4301) éa.
4.
1.8% (4306)

i 1 1 1 1

.3

.6

-

- B

.32

.49

o w w

W51

-3

.67

.55

LN S8

5

No. of structural reanalysas

{3206) 7
(4301)

(4306)

(3201}
(4301)

{4306)

(3201)

(3206)

(3201}
(3206)

(4301)

Figure 6 - Failure tree for example 2
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Figure 7 - Influence of nodal forces

correlation
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