Sixth

PROGRESS REPORT (Project SR-110)

on

INFLUENCE OF SILICON AND ALUMINUM ON THE PROPERTIES OF HOT-ROLLED STEEL

by

R. H. FRAZIER, F. W. BOULGER and C. H. LORIG Battelle Memorial Institute

Transmitted through

NATIONAL RESEARCH COUNCIL'S COMMITTEE ON SHIP STEEL

Advisory to

SHIP STRUCTURE COMMITTEE

Division of Engineering and Industrial Research National Academy of Sciences - National Research Council Washington, D. C.

SERIAL NO. SSC-88 Bušhips Project NS-011-078

July 1, 1955

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES: BUREAU OF SHIPS, DEPT. OF NAVY MILITARY SEA TRANSPORTATION BERVICE, DEPT. OF NAVY United States Coast Guard, Treasury Dept, Maritime Administration, Dept. of Commerce American Bureau of Shipping ADDRESS CORRESPONDENCE TO: BECRETARY SHIP STRUCTURE COMMITTEE U. S. COAST GUARD HEADQUARTERS WASHINGTON 28, D. C.

July 1, 1955

Dear Sir:

As part of its research program related to the improvement of hull structures of ships, the Ship Structure Committee is sponsoring an investigation of the influence of deoxidation and composition on properties of semikilled steel ship plate at the Battelle Memorial Institute. Herewith is a copy of the Sixth Progress Report, SSC-88, of the investigation entitled "Influence of Silicon and Aluminum on the Properties of Hot-Rolled Steel" by R. H. Frazier, F. W. Boulger and C. H. Lorig.

The project is being conducted with the advisory assistance of the Committee on Ship Steel of the National Academy of Sciences-National Research Council.

Any questions, comments, criticism or other matters pertaining to the report should be addressed to the Secretary, Ship Structure Committee.

This report is being distributed to those individuals and agencies associated with and interested in the work of the Ship Structure Committee.

Yours sincerely,

CKCourterh

K. K. COWART Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee

SIXTH Progress Report (Project SR-110)

on

INFLUENCE OF SILICON AND ALUMINUM ON THE PROPERTIES OF HOT-ROLLED STEEL

by

R. H. Frazier, F. W. Boulger, C. H. Lorig

Battelle Memorial Institute

under

Department of the Navy Bureau of Ships NObs-53239 BuShips Project No. NS-011-078

for

SHIP STRUCTURE COMMITTEE

.

TABLE OF CONTENTS

٠

4

٠

.

Pa	.ge
List of Figures	ii
List of Tables	.ii
Introduction	l
Materials and Testing Methods	2
Effect of Silicon and Aluminum on Ferrite Grain Size	10
Effect of Silicon and Aluminum on the Austenite Grain- Coarsening Temperature	12
Effect of Silicon and Aluminum on the Tensile Properties	13
Effect of Silicon and Aluminum on Charpy Properties	21
Effect of Silicon and Aluminum on the Tear Test Properties.	33
Conclusions	42
References	4 4
Appendix	46

1

LIST OF FIGURES

<u>Title</u> No. Page 1(a) Influence of Silicon on the 12 Ft-Lb Keyhole Charpy Transition Temperatures of Three Types of Steel. . . 26 1(b) Effect of Silicon on the 12 Ft-Lb Keyhole Charpy Transition Temperatures of Two Kinds of Aluminum-Free Steel 27 2 Influence of Aluminum on the 12 Ft-Lb Keyhole Charpy Transition Temperatures of Six Types of Steel. . . . 28 3 Influence of Silicon on the Keyhole Charpy Transition Temperature of Steels Containing 0.21% Carbon, 0.75% 4 Influence of Silicon on Transition Temperature as Reported by Rinebolt and Harris and Battelle 31 5(a) Influence of Silicon on P=0.5 Tear Test Transition 5(b) Effect of Silicon on P=0.5 Tear Test Transition Temperatures of Two Kinds of Aluminum-Free Steel . . 39 6 Influence of Aluminum on the P=0.5 Tear Test Transi-

ii

LIST OF TABLES

`

-

1

.

•

f

 \mathbf{i}

-

<u>No .</u>	Title	<u>Page</u>
1	Nominal Compositions of Various Types of Steels Studie	ed。 3
2	Chemical Composition, Ferrite Grain Size, and Austenia Grain-Coarsening Temperature of Experimental Steels	te • • 5
3	Properties of Laboratory Steels with Various Silicon Contents	。 <u>,</u>]4
4	Properties of Laboratory Steels with Various Aluminum Contents	• • 17
5	Equations for Calculating the Tensile Strength and Yie Strength of Hot-Rolled Steels with Different Silicon Contents	eld n 20
6	Formulas for Calculating Keyhole Charpy Transition Temperatures for Hot-Rolled Steels with Different Silicon Contents	• • 23
7	Formulas for Calculating Keyhole Charpy Transition Temperatures for Hot-Rolled Steels with Different Aluminum Contents	25
8	Formulas for Calculating Tear Test Transition Tempera- tures for Hot-Rolled Steels with Different Silicon Contents	• • 35
9	Formulas for Calculating Tear Test Transition Tempera- tures for Hot-Rolled Steels with Different Aluminum Contents	• • • 37

<u>iii</u>

<u>INFLUENCE OF SILICON AND ALUMINUM ON</u> <u>THE PROPERTIES OF HOT-ROLLED STEEL</u>

INTRODUCTION

There are both advantages and disadvantages in using semikilled steels in place of killed steels for structural applications. One advantage of semikilled steels is that they provide a higher ingot to product yield. This is especially important to shipbuilders in the time of national emergency. By using semikilled steel for hull plates, a greater number of ships can be built from the same ingot tonnage. However, unless these semikilled steel plates do not fail in service, the advantage of the higher product yield is of no importance.

The performance of hull plates is closely associated with the ductile-to-brittle transition temperature, and this in turn is dependent on the composition and degree of deoxidation of the steel. A low transition temperature is desirable because it indicates that the steel structure is less likely to fail under multiaxial stress condition that can develop at low ambient temperatures.

Killed steels are known to have lower transition temperatures than semikilled steels. It is believed that the better qualities of killed steels in this respect are due mainly to the low oxygen contents of the steel. The principal deoxidizers, aluminum, silicon, and manganese, lower the oxygen content. Fundamental studies^(1,2) have shown that the oxygen content remaining after the addition of one of these three elements is influenced by the residual amounts of the other two present. In the current study, therefore, various amounts of silicon and aluminum were added to steels containing different manganese contents for the purpose of studying the influence of silicon and aluminum on the notchedbar properties of hot-rolled steels.

Eleven types of steels were studied of the nominal compositions shown in Table 1. Both the Navy tear test and the keyhole Charpy test were used in this investigation. The temperature at which the plates were finish rolled was carefully controlled at 1850 F, and all plates were rolled to 3/4-in. thickness, followed by testing in the as-rolled condition.

MATERIALS AND TESTING METHODS

The total number of steels prepared in the laboratory for this study was ninety-five. The charge consisting of ingot iron and ferrosilicon equivalent to 0.10 per cent silicon was melted in a 200-1b. induction furnace under an atmosphere of argon to insure low, uniform nitrogen contents. After the charge was melted and the desired temperature was obtained, the melt was partly deoxidized with either silicomanganese or aluminum. Aluminum was used for this purpose in only those steels with very low silicon contents, where the finished steel was to contain some aluminum. This initial deoxidizing addition was made to obtain consistent recoveries of subsequent additions of

 Type		No	ominal Com	position.	per cei	nt	
No.	C	Mn	Si	P	S	N	Al
I	0.25	0.45	Various	0.015	0.025	0.004	None
II	0.21	0.60	Various	0.015	0.025	0.004	None
III	0.21	0.75	Various	0.015	0.025	0.004	None
IV	0.19	1.00	Various	0.015	0.025	0.004	None
V	0.21	0.75	Various	0.015	0.025	0.004	O.O3
VI	0.25	0.45	0.01	0.015	0.025	0.004	Various
VII	0.25	0.45	0.05	0.015	0.025	0.004	Various
VIII	0.25	0.75	0.10	0.015	0.025	0.004	Various
IX	0.21	0.75	0.01	0.015	0.025	0.004	Various
X	0.21	0.75	0.05	0.015	0.025	0.004	Various
XI	0.21	0.75	0.10	0.015	0.025	0.004	Various

,

TABLE 1. NOMINAL COMPOSITIONS OF VARIOUS TYPES OF STEELS STUDIED

-

ferromanganese, ferrosilicon, and aluminum. Carbon, in the form of graphite, was added either just prior to tap or to the final aluminum addition. The entire heat of 200 lb. was poured directly into a 6 by 6-in. big-end-up mold. The ingots of semikilled steel were capped with a steel plate. The killed steels, on the other hand, were poured with a hot-top containing 14 per cent of the total volume of the ingot.

The ingots were processed by heating to 2250 F, followed by forging to slabs 1 3/4 in. thick and 6 in. wide. After reheating to 2250 F, the slabs were rolled to 0.9-in. gage, using reductions of approximately 1/6 in. per pass. The 0.9-in. thick plates were immediately recharged in a furnace held at 1850 F. After 30 minutes in the furnace ε t 1850 F, the plates were rolled to 3/4 in. in one pass. Following the final pass, the plates were stacked on edge on a brick floor with a brick separating one from another, where they were allowed to cool in air.

Drillings for chemical analysis were taken from the plates at locations corresponding to the top and bottom of each ingot. Carbon, manganese, silicon, phosphorus, sulfur, and nitrogen contents of each sample were determined. The averages of the two analyses for each ingot are given in Table 2. The analysis of each steel was carefully controlled, so that the contents of phosphorus, sulfur, and nitrogen varied only slightly from average values of 0.017, 0.027, and 0.004 per cent, respectively, for these elements. In some cases, as could be expected, carbon

-4-

TABLE 2. CHEMICAL COMPOSITION, FERRITE GRAIN SIZE, AND AUSTENITE GRAIN-COARSENING TEMPERATURE OF EXPERIMENTAL STEELS

Heat Number	C	Chemic Mn	al Com Si	position. P	, per ce S	ent N	- <u>Al</u> (1)	Number of Ferrite Grains/ Sq. In. at 100X	Austenite Grain- Coarsening Temp, F
			Ty	pe I (0.2	2 <u>5% C, C</u>	.45% Mn)	Steel	<u>s</u>	
A6602 A7663 A6650 A7449 A8132	0.23 0.22 0.22 0.20 0.20	0.51 0.44 0.46 0.43 0.44	0.02 0.03 0.04 0.04 0.04	0.010 0.015 0.012 0.014 0.015	0.018 0.027 0.023 0.022 0.027	0.003 0.003 0.004 0.004 0.005		71 84 101 91 77	1515 1505 1510 1515 1470
A6556 A6705 A6555 A6594 A665 7	0.23 0.21 0.22 0.21 0.23	0.44 0.49 0.47 0.48 0.48	0.05 0.05 0.06 0.11 0.14	0.017 0.016 0.016 0.018 0.016	0.025 0.025 0.024 0.027 0.027	0.004 0.004 0.003 0.003 0.004		103 85 88 79 73	1500 1505 1510 1545 1525
A7526 A8728 A8922 A8747 B865	0.25 0.25 0.25 0.25 0.25	0.43 0.44 0.45 0.44 0.44 0.54	0.20 0.20 0.22 0.26 0.29	0.017 0.016 0.020 0.020 0.015	0.027 0.030 0.026 0.026 0.032	0.004 0.005 0.003 0.002 0.005		75 96 89 79 72	1515 1515 1515 1505
A6696 A8729 B866 A8923 B867	0.21 0.28 0.22 0.25 0.25	0.54 0.44 0.54 0.49 0.55	0.31 0.38 0.38 0.48 0.54	0.015 0.015 0.016 0.021 0.025	0.023 0.030 0.031 0.024 0.030	0.005 0.005 0.005 0.003 0.005		75 99 79 104 92	1540 1530 1530
			Ty	pe II (0.	.21% C,	0. 60% Mn) Stee	<u>ls</u>	
A8151 A9265 A8375 A9266 A8376 A8376 A9275	0.20 0.20 0.21 0.21 0.21 0.21 0.20	0.57 0.60 0.61 0.61 0.65	0.10 0.12 0.17 0.20 0.26 0.39	0.016 0.020 0.015 0.021 0.015 0.015	0.030 0.029 0.028 0.031 0.028 0.033	0.00l4 0.003 0.00l4 0.00l4 0.00l4 0.00l4	- - - -	82 614 68 83 79 73	1515 1515 1515 1540 1565

· ---- --- ---

-

- --

.

· · ·· · · · · · · · · · · · · · · ·

TABLE 2	. (CONT	INUED)

								Number of	Austenite
Heat		Chemica	1 Comp	osition.	per cer	it		Grains/ Sq.	Coarsening
Number	C	Mn	Si	P	S	Ň	<u>AI(1)</u>	In. at 100X	Temp, F
Type III (0.21% C, 0.75% Mn) Steels									
A6651 A6603 A7664 A6641 A6588	0.19 0.21 0.18 0.19 0.21	0.74 0.84 0.69 0.81 0.79	0.01 0.02 0.03 0.04 0.06	0.017 0.017 0.015 0.016 0.011	0.023 0.022 0.026 0.022 0.022 0.024	0.005 0.003 0.003 0.004 0.004		72 85 83 71 64	1505 1530 1525 1510 1525
A6557 A6584 A7450 A6595 A8378	0.22 0.20 0.21 0.20 0.18	0.75 0.76 0.76 0.81 0.74	0.07 0.07 0.12 0.13	0.016 0.014 0.016 0.017 0.018	0.025 0.022 0.025 0.025 0.024 0.029	0.005 0.004 0.004 0.004 0.004	- - - -	94 92 78 85 80	1525 1515 1540 1510 -
A6695 A9262 A7528 A6697 B868	0.19 0.18 0.20 0.19 0.19	0.84 0.76 0.74 0.85 0.84	0.16 0.17 0.20 0.29 0.31	0.015 0.022 0.017 0.015 0.018	0.023 0.028 0.029 0.023 0.030	0.004 0.003 0.004 0.005 0.006	- - - -	74 88 87 69 74	1525 1535 1530 1535 -
A8730 B869 B8 7 0	0.20 0.18 0.18	0.72 0.86 0.86	0.38 0.42 0.52	0.015 0.013 0.016	0.030 0.031 0.030	0.004 0.004 0.006	- - -	82 77 78	1530
			Ty	pe IV (0.	<u>19% C,</u>	1.00% M	<u>n) Steel</u>	<u>s</u>	
A9271 A9272 A9273 A9274	0.18 0.17 0.18 0.20	1.06 1.02 1.06 1.36	0.06 0.15 0.24 0.34	0.017 0.016 0.018 0.019	0.030 0.030 0.029 0.031	0.003 0.004 0.004 0.005	- - - -	59 67 73 79	1520 1530 1530 -
			$\underline{\mathbf{Ty}}$	pe V (0.2	<u>1% C, O</u>	•75% Mn.	<u>0.03%</u>	Al(1)) Steels	3
A8904 A7319 A7662 A8905 A8906	0.20 0.18 0.20 0.20 0.20	0.72 0.81 0.75 0.74 0.74	0.02 0.02 0.05 0.08 0.14	0.017 0.017 0.016 0.018 0.020	0.029 0.022 0.028 0.029 0.029	0.004 0.004 0.003 0.003 0.004	0.026 0.032 0.033 0.036 0.038	84 92 80 89 97	1760 1750 1730 1760 1775

TABLE 2. (CONTINUED)

`

-

.

-

. .

.

Heat Number	C	hemica Mn	1 Compo Si	osition.	per cen	t	<u>(l)</u>	Number of Ferrite Grains/ Sq. In. at 100X	Austenite Grain- Coarsening Temp, F
A8907 A8908 A8909 B871 B872	0.20 0.20 0.20 0.19 0.19	0.75 0.77 0.77 0.86 0.86	0.20 0.20 0.32 0.37 0.47	0.018 0.018 0.018 0.018 0.015	0.028 0.028 0.028 0.028 0.028 0.028	0.005 0.005 0.004 0.006 0.005	0.034 0.039 0.035 0.042 0.043	86 77 76 77 85	1770 1770 1750 -
в8 73	0.18	0.87	0 .57	0.014	0.032	0.005	0.039	96	-
			Ţу	pe VI (O	.25% C,	<u>0.45% м</u>	n, 0.01	% Si) Steels	
A6648 A8736 A8737 A6707 A9263	0.27 0.22 0.20 0.20 0.21	0.59 0.46 0.40 0.50 0.45	0.01 0.01 0.01 0.01 0.01	0.016 0.019 0.021 0.019 0.020	0.021 0.024 0.028 0.025 0.028	0.004 0.004 0.004 0.003 0.003	0.001 0.002 0.006 0.027 0.028	58 77 85 73 90	1540 1540 1535 1670 1720
A92 6 4 A6708 A8142 A8143 A6709	0.20 0.21 0.21 0.24 0.21	0.47 0.52 0.46 0.46 0.53	0.01 0.01 0.02 0.02 0.01	0.019 0.020 0.016 0.016 0.018	0.028 0.025 0.028 0.030 0.025	0.003 0.004 0.004 0.004 0.004	0.031 0.046 0.073 0.038 0.127	84 93 82 91 87	1725 1690 1705 1685 1785
			<u>Ty</u>	<u>pe VII ((</u>).25% C,	0.45%	Mn, 0.09	5% Si) Steels	3
A7531 A8136 A7322 A7661 A8137	0.22 0.25 0.25 0.21 0.21	0.48 0.47 0.51 0.45 0.45	0.05 0.04 0.05 0.05 0.05	0.016 0.017 0.015 0.016 0.016	0.032 0.027 0.023 0.033 0.029	0.003 0.004 0.005 0.003 0.003	0.006 0.019 0.030 0.034 0.061	78 68 83 88 91	1510 1665 1690 1680
А7529 А8745	0.25 0.25	0.41 0.52	0.05 0.05	0.016 0.017	0.028 0.026	0.004 0.003	0.091 0.211	89 78	1655 1705
			Typ	De VIII (<u>0.25% c</u>	<u>, 0.45%</u>	Mn, 0.1	LO% Si) Steel	Ls
A8738 A8350 A8739 A8351 A8740	0.23 0.24 0.23 0.24 0.24 0.24	0.47 0.46 0.46 0.49 0.47	0.10 0.09 0.09 0.09 0.09	0.018 0.015 0.017 0.016 0.018	0.030 0.028 0.031 0.029 0.031	0.004 0.003 0.006 0.003 0.003	0.059 0.099 0.128 0.166 0.260	88 75 85 92 84	1725 1690 1600

.

Heat Number	C	hemica Mn	l Compo Si	sition, P	per cen	t	<u>Al</u> (1)	Number of Ferrite Grains/ Sq. In. at 100X	Austenite Grain- Coarsening Temp, F
			Type	IX (0.2	21% C, O	<u>.75% Mn</u>	, 0.01%	Si) Steels	
A6649 A8145 A7320 A8146	0.22 0.18 0.20 0.19	0.87 0.72 0.85 0.78	0.01 0.01 0.02 0.01	0.015 0.018 0.016 0.019	0.022 0.028 0.025 0.028	0.004 0.003 0.004 0.002	0.001 0.016 0.019 0.064	91 86 74 85	1495 1625 1710 1740
Type X (0.21% C, 0.75% Mn, 0.05% Si) Steels									
А7660 А8144 А7530 А8141 А8746	0.20 0.21 0.21 0.19 0.19	0.74 0.79 0.71 0.77 0.64	0.05 0.04 0.05 0.04 0.01	0.017 0.018 0.018 0.017 0.017	0.032 0.028 0.027 0.029 0.027	0.003 0.003 0.003 0.004 0.003	0.004 0.019 0.084 0.150 0.192	84 86 93 95 84	1720 1765 1645 1720
			Type	XI (0.2	21% C, O	•75% Mn	, 0.10%	<u>Si) Steels</u>	
A8741 A8352 A8742 A8353 A8743	0.20 0.20 0.21 0.21 0.22	0.73 0.74 0.77 0.66 0.76	0.09 0.09 0.09 0.09 0.10	0.016 0.018 0.018 0.014 0.019	0.028 0.029 0.028 0.027 0.028	0.00l 0.00l 0.00l 0.00l 0.00l	0.062 0.093 0.131 0.167 0.269	74 92 84 73 91	1775

.

TABLE 2. (CONTINUED)

(1) Acid-soluble aluminum contents.

-

`

and manganese were slightly above or below the nominal composition for a particular type of steel. Silicon and also aluminum, when present, were varied intentionally within a series of steels of a given type.

Duplicate standard strip tensile specimens, using full thickness of the plate, were prepared from each heat. Using these specimens, the upper and lower yield strengths, the tensile strength, and the elongation values were determined. The upper yield strength was taken as the highest strength obtained before the drop of beam, while the lower yield strength was taken as the lowest strength after the drop of beam and before the ultimate strength was reached. The elongation was measured over an 8-in. gage length.

The tear tests were made using the type of specimen and procedure described by Kahn and Imbembo⁽³⁾. The specimens were prepared from the 6-in. wide hot-rolled plates after cutting them down the center to give strips 3 in. wide. The specimens were taken parallel to the direction of rolling and notched from the edge opposite the cut surface. This was done to insure that the sections to be tested had cooled from the hot-rolling temperature without having been affected by the more rapid cooling of the edges. The plates had been placed on edge and cooled in still air after the final hotrolling pass.

The tear test transition temperature was defined by two different methods. One definition, developed by Kahn and Imbembo⁽³⁾, defines transition temperature as the highest temperature at which

-9-

one or more in a group of four test specimens exhibited a fracture area having less than 50 per cent of the ductile-shear type of fracture. This transition temperature, referred to later as the Kahn transition temperature, can be determined by as few as five test specimens. Another definition of transition temperature, more suitable for research work but requiring more test specimens, is based on the 50 per cent probability of brittle specimens. Here four specimens are tested at 10 F intervals throughout the transition. In all cases, a specimen was classified as brittle if less than 50 per cent of the fractured area showed the dull, ductile-shear type of fracture.

Keyhole Charpy specimens were taken parallel to the direction of rolling and notched normal to the surface of the plate. Four tests were made at intervals of 10 F, using a pendulum with an available striking energy of 220 ft-lb and a velocity of 18.1 ft. per second. The transition temperature can be defined in these tests as the temperature at which the average energy-temperature curve crosses within the 12 or 20 ft-lb level. The transition temperatures at both energy levels are reported in the present investigation.

EFFECT OF SILICON AND ALUMINUM ON FERRITE GRAIN SIZE

The ferrite grain size of each steel was determined by the grain-counting method $^{(4)}$. The grain counts given in Table 2 show the average number of ferrite grains per 0.000l sq. in. of

-10-

steel. For steels with equal amounts of ferrite, the larger numbers indicate smaller ferrite grains. The average ferrite grain count of the ninety-five steels studied was 82 ferrite grains per 0.0001 sq. in. of steel. The maximum deviation from this average for the ninety-five steels was 24 grains, which is equivalent to approximately 1/2 ASTM grain-size number. Silicon and aluminum appeared to have no influence on ferrite grain size of the experimental steels air cooled after a finishing pass at 1850 F.

These plates had been heated to 2250 F before rolling; during rolling they cooled to 1850 F. There is little doubt that all of the plates had a coarse austenite grain size at the end of this rolling operation. All of the plates had a coarse ferrite grain size after cooling to room temperature. Therefore, questions arose concerning the effect of reheating and air cooling on the ferrite grain size of the plates containing different amounts of silicon and aluminum. For this reason, the ferrite grain size of seven ABS semikilled Class B steels and seven aluminum-treated Class C steels were determined before and after normalizing at 1650 F. There was no difference in the ferrite grain size between the two grades of steel in the as-rolled condition. For both grades of steel, normalizing produced finer ferrite grain sizes. On the average, the ferrite grain size of Class B steels increased one ASTM number, while the grain size of Class C steels increased 1.8 ASTM numbers. An increase in the ASTM number

-11-

indicates a smaller grain size.

Ferrite grain size is known to influence the Charpy transition temperature of the steel ⁽¹²⁾. Epstein ⁽⁸⁾ reported average decreases of 38 F in keyhole Charpy transition temperature by normalizing Class B steel and 65 F by normalizing Class C steel. The transition temperature of both classes of steel changed proportionally with the change in ferrite grain size.

These experiments indicate that the major benefits of finegrained deoxidation practices are obtained in normalized rather than in hot-rolled plates. Variations in deoxidation practice do not seem to have a marked influence on the ferrite grain size of plates in the rolled condition if they are rolled by identical practices.

EFFECT OF SILICON AND ALUMINUM ON THE AUSTENITE GRAIN-COARSENING TEMPERATURE

Specimens 1/2 by 5/8 by 5 in. were heated for four hours in a temperature-gradient furnace similar to the one used by Halley⁽⁵⁾. The hot end of the specimen was over 1900 F, while the cold end was under 1500 F. This provided a temperature differential of more than 400 F in five inches of specimen. All specimens were oil quenched after the four-hour treatment. The specimens were then sectioned longitudinally, polished, and etched. Knowing the temperature gradient and the position of each specimen within the furnace, the grain-coarsening temperature could be determined by examining the etched surface for change in grain size.

-12-

The grain-coarsening temperatures for a number of experimental steels are reported in Table 2. Silicon had no effect on the austenite grain-coarsening temperature.

The average coarsening temperature of the steels containing no aluminum and various amounts of silicon was 1524 F. Aluminum contents over 0.01 per cent raised the coarsening temperature approximately 200 F to an average temperature of 1725 F. It must be remembered that, before rolling, the experimental plates were heated to 2250 F; much higher than the highest grain-coarsening temperature determined. The experimental steels, therefore, probably had coarse austenite grains during and after the final rolling reduction.

EFFECT OF SILICON AND ALUMINUM ON THE TENSILE PROPERTIES

Duplicate strip tensile tests were made from the 3/4-in. plates rolled from the ninety-five experimental steels. Test data for each test specimen are given in Tables A-1 through A-11 of the Appendix. A summary of the tensile properties is given in Tables 3 and 4.

Formulas given in Table 5, showing the influence of silicon on tensile and yield point, were determined by multiple-correlation methods. The data used to determine these formulas were corrected for small variations in carbon and manganese of each steel in question from the nominal composition of its type. The factors used in making these minor corrections were derived from a comprehensive

-13-

	نیروست بور _ا بر امروس ا					Charp	y Propertie)s	Tear-T	est Transition
		Tens	sile Prop	erties		Energy			Tem	perature, F
	Silicon	Tensile	li	eld	Elong	Absorbed	Tra	nsition		Probability of
Heat	Content,	Strength,	Point,	<u>psi</u>	in 8",	at 60 F,	Tempera	ature, F		50% Brittle
Number	70	DS1.	Upper	Lower	10	ft-1b	12 1t-15	20 ft-16	Kahn	Specimens
			·	Type I	(0.25% (. 0.45% Mn)	Steels	• • •	•	:
A6602	0.02	60.000	33,550	32,950	30.5	31	0	*1)ı	80	72
A7663	0.03	61,100	35,050	34,500	31.5	31	+2	+23	80	75
A6650	0.04	60,550	35,600	34,250	28.0	32	+4	÷25	80	72
А7ЦЦ9	0.04	60,750	35,600	34,200	31.5	31	-1	416	70	70
A8132	0.04	61,000	36,450	34,500	30.5	29	+9	+33	100	93
A6556	0.05	61,600	37,950	35,000	31.0	31	-7	+4	70	70
A6705	0.05	63,000	37,050	35,900	24.5	31	-15	+5	90	63
A6555	0.06	62,700	· 38 , 850	36,050	27.5	32	-3	+12	80	68
A6594	0.11	62,450	37,100	35,700	30.0	33	-29	-7 `	80	62
A6657	0.14	63 , 350	34 , 200	33 , 650	26.5	34	-28	-2	70	64
A7526	0.20	65,000	36,950	34,900	29.0	32	-34	-12	70	71
A872.8	0,20	. 66, 600	39,300	38 , 400	28,5	30	-38	, 12	80	74
A8922	0.22	900وو65	38,100	35,900	27.5	30	- 36	-14	100	85
A8747	0.26	66,100	37,100	35,850	28,5	30	-41	-17	90	78
вобу	0.29	66 , 850	38,200	36 , 200	26.0	30	-23	-3	90	79
A6696	0.31	67,200	37,400	36,650	26.0	32	- 56	-28	70	68
A8729	0.38	73,450	40,650	39,300	27.0	25	-38	+5	90	85
B866	0.38	68,500	39,500	37,500	27.0	29	-40	-17	60	60
A8923	0.48	70,400	39,800	39,300	28.5	28	-59	-21	100	94
B867	0,54	70 , 600	40,300	200 , 200	26 . 5	28	-64	-33	80 .	75
				Type I	E (0.21%	C, 0.60% Mn) Steels			
A8151	0.10	60,300	35,550	34,100	30.5	33	-38	-24	70	55
A9265	0.12	61,200	750 و 35	34,250	28.5	·	-1.7	-5	90	71
A8375	0.17	62,100	36,650	35,250	28 _. 0	35	, 3 7	-31	60	54
A9266	0.20	63,600	36,700 .	35,400	29.0	-	-33	-18	50	46
A8376	0.26	64,300	37,050	36,200	28.0	36	-27	-11	70	54
A9275	0.39	67,350	40,100	39 , 500	24•5	32	-51	-22	80	60

TABLE 3. PROPERTIES OF LABORATORY STEELS WITH VARIOUS SILICON CONTENTS

-1¹+-

. .

;

		Ten	sile Pror	perties		Charg	oy Properti	es	Tear-1	est Transition
Heat Number	Silicon Content, %	Tensile Strength, psi	Yj Point. Upper	leld , psi	Elong in 8",	Absorbed at 80 F,	Tran: Tempera	sition ture, F	Kahn	Probability of 50% Brittle
				Type I		C, 0.75% I	(n) Steels	20 1 0=10		Speciments
A6651 A6603 A7664 A6641 A6588	0.01 0.02 0.03 0.04 0.06	62,300 64,900 62,300 62,850 62,350	37,200 37,550 36,100 36,550 35,550	35,700 36,850 34,800 35,350 34,900	28.5 23.0 29.5 24.0 28.0	38 37 34 38 37	-32 -44 -19 -36 -33	-24 -29 ⊷7 -25 -20	70 80 80 80 60	60 65 69 65 55
A6557 A6584 A7450 A6595 A8378	0.07 0.07 0.07 0.12 0.13	61,700 61,950 61,550 63,400 61,800	36,200 36,350 35,050 38,350 37,950	35,500 35,400 34,200 36,150 35,150	30.0 30.5 32.5 27.5 31.5	40 39 33 42 39	-33 -27 -26 -58 -46	-13 -6 -13 -43 -30	.70 70 60 40 60	57 55 50 26 45
A6695 A9262 A7528 A6697 B868	0.16 0.17 0.20 0.29 0.31	64,300 63,050 63,650 66,950 66,700	38,450 39,000 36,350 39,050 40.200	36,700 36,250 35,950 37,800 39,150	26.5 27.5 32.5 29.5 27.5	39 144 43 37	-77 -55 -55 -45 -23	-57 -44 -40 -29 -6	30 50 50 60 70	27 29 45 50 60
A8730 B869 B870	0•38 0•112 0•52	67,350 67,700 69,650	38,800 40,450 42,700	37,850 39,200 41,700	29.0 26.5 27.0	35 38 33	-27 -12 -26	-11 +1 -10	70 80 70	64 65 64
				Type IV	1 (0.19%	C, 1.00% Mr	n) Steels			
A9271 A9272 A9273 A9274	0.06 0.15 0.21 0.34	63,400 64,700 67,000 75,900	37,350 37,500 39,450 46,250	36,250 37,050 37,750 45,150	29•5 30•0 28•0 24•5	42 40	=39 =48 =43 =55	28 37 26 10	40 50 60	34 42 43

-L T T

, ,

TABLE 3. ((CONTINUED)
------------	-------------

1

Heat Number	Silicon Content, %	Ten Tensile Strength, psi	sile Pro Y Point Upper	perties ield , psi Lower	Elong in 8", %	Charr Energy Absorbed at 80 F, ft-lb	by Propertie Tran Tempera 12 ft-1b	es sition ture, F 20 ft-1b	Tear-Te Temp F Kahn	est Transition erature, F robability of 50% Brittle Specimens
				Type V	(0.21% (C, 0.75% Mn,	0.03% Al)	Steels		
A8904 A7319 A7662 A8905 A8906	0.02 0.02 0.05 0.08 0.14	63,100 59,250 62,450 64,000 64,950	36,250 35,200 36,300 37,750 38,100	35,200 33,850 34,450 35,950 36,150	29•5 30•0 28•5 28•5 29•5	ца 38 36 Ца	-29 -36 -42 -54 -55	-13 -24 -29 -46 -42	70 80 60 70	72 69 55 51 57
A8907 A8908 A8909 B871 B872 B873	0.20 0.20 0.32 0.37 0.47 0.57	64,600 65,050 66,600 67,700 69,450 71,000	37,600 38,750 40,750 40,000 43,050 43,850	36,350 36,750 38,850 39,950 41,800 42,700	29•0 30•5 23•5 23•5 26•0 25•5	40 11 39 11 11 40	-70 -77 -86 -88 -98 -98	-51 -60 -68 -80 -73 -65	60 70 50 70 60 80	45 54 43 57 58 61

-

٠

-16-

.

•

2 2 2 3 S

.

۰.

۰.

.

	ion of						
	st Transit lerature, F robability 50% Britt Specimen		100 104 104 105 76	84083		72 72 72 72	50 C 66
	Tear-To Temo F Rahn		100 110 80 80 80 80	88780 89780 807800 80780 80780 80780 80780 80780 807800 807800 807800 807800 807800 807800000000		80000 80000 80000	583 0
	ies msition ature, F 20 ft-1b	Steels	4 [↓] 420 419 44	다 이 가 이 다 다 이 가 이 다 다 이 가 이 다) Steels	*16 *14 *14	4 27 27
	y, Propert Tra Temper 12 ft-1h	0.01% Si)	30000 10000 11		0.05% Si		-13 -10 -10
	Chary Energy Absorbed at 80 F _s	0.45% Mn.	35 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 00 00 00 00 00 00 00 00 00 00 00 00 0	, 0.45% Mn.	ኯ፟ኇኇኯ፟	31 31 31
	Elong in 8 ¹¹ , %		22 28 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	33.00 33.00 33.50	(0.25% 0	32,50 32,50 31,503	31.0 28.0 28.0
	erties ield psi Lower	Type VI	37,200 32,200 31,550 33,400 33,850	31, 650 35, 150 32, 800 33, 550 34, 150	Type VII	34,980 33,950 34,150 33,800	33,450 34,800 34, 700
	sile Prop Y Point Upper		38,000 33,750 32,550 32,400 34,450	33,500 38,350 35,150 35,150 35,150 35,150		36,910 35,550 35,950 33,150 33,150	35, 250 37, 750 36 , 800
	Tensile Strength, psi		65,800 57,800 57,100 59,000 58,400	58,200 61,550 58,350 61,100 59,850		61, 600 60, 550 63, 400 59, 800	60,800 62,450 63,750
	Aluminum Content,		0.001 0.002 0.006 0.027 0.028	0.031 0.0146 0.073 0.038 0.127		• 0•000 0•006 0•019 0•030 0•034	0,061 0,091 0,211
,	Heat Number		A6648 A8736 A8737 A8737 A6707 A9263	А9264 А6708 А8142 А8143 А6709		Avg 6 steels A7531 A8136 A7322 A7661	AB137 A7529 A8745

TABLE 4. PROPERTIES OF LABORATORY STEELS WITH VARIOUS ALUMINUM CONTENTS

•

.

- - - --- - - -----

-17-

			• • •			Char	py Propert	Les	Tear-Te	est Transition
Heat Number	Aluminum Content, %	Tensile Strength, psi	ile Prop Yi Point Upper	erties eld , psi Lower	Elong in 8", %	Energy Absorbed at 80 F, ft-1b	Trans Temperat 12 ft-1b	ition ture, F 20 ft-1b	Temr I Kahn	Probability of 50% Brittle Specimens
				Type VI	I (0.25%	C, 0.45% M	n, 0.10% S	i) Steels		
A6594 A8738 A8350 A8739 A8351 A8351 A8740	0.000 0.059 0.099 0.128 0.166 0.260	62,450 63,550 63,100 62,500 63,600 64,300	37,100 37,250 36,450 36,700 36,250 36,350	35,700 34,700 34,800 34,550 35,150 35,250	30.0 31.0 30.0 32.0 30.0 29.0	33 32 34 33 33 35	-29 -24 -38 -32 -55 -57	-7 ~10 ~20 -13 -30 -34	80 80 90 60 40	62 72 67 52 45 40
				Type IX	(0.21% C,	0.75% Mn,	0.01% Si)	Steels	•	
A6649 A8145 A7320 A7319 A8146	0.001 0.016 0.019 0.032 0.064	64,700 59,550 59,950 59,250 60,600	37,700 34,550 34,400 35,200 34,750	36,850 33,100 33,400 33,850 34,000	24.0 32.0 31.5 30.0 31.5	36 39 山 山 山 山	-27 -15 -40 -36 -47	-19 -8 -24 -24 -42	80 80 70 80 60	75 75 70 69 56
				Type X (0.21% C,	0.75% Mn,	0.05% Si) :	Steels		
Avg 2 steel: A7660 A8144 A7662 A7530 A8141 A8746	5 0.000 0.004 0.019 0.033 0.084 0.150 0.192	62,600 61,400 62,150 62,450 62,550 62,650 57,800	36,050 36,050 36,100 36,300 36,600 37,950 33,100	35,120 34,600 33,850 34,450 35,400 36,150 32,450	26.0 31.0 25.5 28.5 31.0 28.5 33.0	37 40 38 38 42 40 44	-34 -34 -36 -42 -74 -66 -69	≈22 ≈22 ≈25 ~29 ~61 ~48 ~58	70 70 50 60 10 30	60 65 55 55 55 55 55 55 55 55 55 55 55 55

- .

÷

TABLE 4.	(CONTINUED)	

•

• • •

.

TABLE 4. (CONTINUED)

ŧ

:

÷

ł

	Tensile Properties					Charpy Properties Energy			Tear-Test Transition Temperature, F	
Heat	Aluminum Content,	Tensile Strength,	Yie Point	ld , psi	Elong in 8",	Absorbed at 80 F,	Trans Tempera	ition ture, F		Probability of 50% Brittle
Number	1/2	<u>psi</u>	Upper	Lower	%	<u>ft-lb</u>	12 ft-1b	20 ft-1b	Kahn	Specimens
				Type XI	(0.21% C	: 0.75% Mn,	0.10% Si)	Steels		
Avg 5 steels A8905 A8741 A8352 A8742	s 0.000 0.036 0.062 0.093 0.131	62,080 64,000 62,200 63,400 64,300	36,780 37,750 35,850 37,350 37,050	35,280 35,950 34,200 35,800 36,400	30.5 28.5 27.5 32.5 30.5	39 36 40 36 36	-38 -54 -48 -60 -76	-21 -46 -37 -32 -59	60 60 60 70 40	47 51 54 46 42
A8353 A874 3	0.167 0.269	63,100 63,550	36.500 36,650	35,400 35,350	30.5 30.0	39 36	83 68	-60 -64	20 80	19 80
ander (1995 Australia, 19										

-19-

;

TABLE 5. EQUATIONS FOR CALCULATING THE TENSILE STRENGTH AND YIELD STRENGTH OF HOT-ROLLED STEELS WITH DIFFERENT SILICON CONTENTS

.

4

Type c Steel	of N . H	o. of eats	Range of Silico per cent	n, Equation
Type I		20	0.02-0.54	Tensile Strength, psi = 63,464 + 15,311 x % Si Standard Error of Estimate = 1385 psi
				Upper Yield Point, psi = 36,701 + 6,389 x % Si Standard Error of Estimate = 1579 psi
Type I	I	6	0.10-0.39	Tensile Strength, psi = 59,336 + 20,614 x % Si Standard Error of Estimate = 532 psi
				Upper Yield Point, psi = 34,372 + 13,324 x % Si Standard Error of Estimate = 578 psi
Type I	11	18	0.01-0.52	Tensile Point, psi = 62,476 + 16,624 x % Si Standard Error of Estimate = 1497 psi
				Upper Yield Point, psi = 36,313 + 11,217 x % Si Standard Error of Estimate = 1258 psi
Type I	V	4	0.02-0.57	Tensile Strength, psi = 62,586 + 21,865 x % Si Standard Error of Estimate = 647 psi
				Upper Yield Point, psi = 35,429 + 20,777 x % Si Standard Error of Estimate = 1044 psi
Type V		11	0.02-0.57	Tensile Point, psi = 62,964 + 15,637 x % Si Standard Error of Estimate = 920 psi
				Upper Yield Point, psi = 36,233 + 13,475 x % Si Standard Error of Estimate = 698 psi

.

-20-

•

1

study⁽⁹⁾ of the influence of carbon and manganese in semikilled steel. These factors were in good agreement with those determined by other investigators^(6,7) from studies of killed steels. The factors were therefore applied to the high silicon and high aluminum steels in the present study. Such steels would also be of the killed type.

The formulas in Table 5 for steels of Types I, III, and V are in good agreement. The averages for these steels show that 0.01 per cent silicon raises the ultimate strength approximately 155 psi and the yield point 130 psi. These values agree with those reported for hot-rolled steel by other investigators (6,7). Fewer steels of Types II and IV were tested, and no explanation for the apparently more pronounced effect of silicon in such steels is available.

Aluminum in the range studied had no effect on either the tensile or the yield point.

EFFECT OF SILICON AND ALUMINUM ON CHARPY PROPERTIES

The silicon content was independently varied in five types of steels, while the aluminum content was varied in six. Four of the five types of steel with varying silicon contents had no aluminum added, while the fifth type contained approximately 0.03 per cent acid-soluble aluminum. This amount of aluminum is normally found in steels made by fine-grained practice. The effect of aluminum was studied in steels containing three different amounts of silicon, each at two levels of manganese contents.

Test data for each specimen are given in Tables A-23 through A-33 of the Appendix. The average energy-temperature curve was determined for each steel. From these curves, the temperatures shown in Tables 3 and 4 at the 12 and 20 ft-1b values were obtained.

The energy absorbed at room temperature is shown in Tables 3 and 4. Neither silicon nor aluminum in the steels affected the energy absorbed in breaking Charpy specimens at room temperature.

After adjusting the transition temperatures for small unintentional variations in carbon and manganese, regression equations shown in Tables 6 and 7 were derived by multiplecorrelation methods. The small standard errors of estimate for each equation indicate that these formulas fit the data very well. Figs. 1(a) and 2 show the adjusted 12 ft-1b temperatures and the trend lines calculated from the appropriate equation. Fig. 1(b) presents some supplementary data obtained on two steels with other manganese contents.

The Charpy transition temperature was shown by the data to be lowered by small amounts of silicon, except for Type IV steels in Fig. 1(b) where the data are few and indicate no significant effect of silicon. After reaching a minumum value, the transition temperature remained constant or increased with additional silicon. The silicon content at which a minimum

-22-

TABLE 6. FORMULAS FOR CALCULATING KEYHOLE CHARPY TRANSITION TEMPERATURES FOR HOT-ROLLED STEELS WITH DIFFERENT SILICON CONTENTS

Type of Steel	Silicon Range, per cent	Formula
	<u>12-Foot-Pou</u>	und Keyhole Charpy Transition Temperature
Type I	0.02 - 0.54	Trans. Temp, F = 15.57 - 274 x % Si + 296 x (% Si) ² Standard Error of Estimate = 10.60 F
Type II	0.10 - 0.39	Trans. Temp, F = -22.25 - 48 x % Si Standard Error of Estimate = 10.10
Type III	0.01 - 0.20	Trans. Temp, F = -20.78 - 183 x % Si Standard Error of Estimate = 9.02 F
Type III	0.16 - 0.52	Trans. Temp, $F = -78.46 + 154 \times \%$ Si Standard Error of Estimate = 13.16 F
Type IV	0.06 - 0.34	Trans. Temp, F = -26.79 - 139 % Si + 362 (% Si)2 Standard Error of Estimate = 3.59 F
Type V	0.02 - 0.57	Trans. Temp, F = -24.56 - 284 x % Si + 335 x (% Si)2 Standard Error of Estimate = 4.90 F
	20-Foot-Pou	nd Keyhole Charpy Transition Temperature
Type I	0.02 - 0.54	Trans. Temp, F = 36.55 - 263 x % Si + 333 x (% Si)2 Standard Error of Estimate = 11.05 F
Type II	0.10 - 0.39	Trans. Temp, F = -17.98 + 8 x % Si Standard Error of Estimate = 11.42 F
Type III	0.01 - 0.20	Trans. Temp, F = -6.80 - 158 x % Si Standard Error of Estimate = 9.03 F
Type III	0.16 - 0.52	Trans. Temp, $F = -61.34 + 159 \times \%$ Si Standard Error of Estimate = 12.63 F

٠.

.

.

TABLE 6.FORMULAS FOR CALCULATING KEYHOLE CHARPY TRANSITIONTEMPERATURES FOR HOT-ROLLED STEELS WITH DIFFERENTSILICON CONTENTS (Continued)

۰.

Type of Steel	Silicon Range, per cent	Formula
	<u>20-Foot-Pou</u>	nd Kevhole Charpy Transition Temperature
Type IV	0.06 - 0.34	Trans. Temp, F = -25.22 + 24 x % Si Standard Error of Estimate = 5.40 F
Type V	0.02 - 0.57	Trans. Temp, F = -8.46 - 308 x % Si + 429 x (% Si)2 Standard Error of Estimate = 5.69 F

TABLE 7. FORMULAS FOR CALCULATING KEYHOLE CHARPY TRANSITION TEMPERATURES FOR HOT-ROLLED STEELS WITH DIFFERENT ALUMINUM CONTENTS

Type of Steel	Alumin per	um Range, cent	Formula
	<u>12-</u>]	Foot-Pound	Kevhole Charpy Transition Temperature
Type VI	0.001	- 0.127	Trans. Temp, F = 12.47 - 363 x % Al Standard Error of Estimate = 7.16 F
Type VI	I 0.000	- 0.211	Trans. Temp, F = -5.26 - 155 x % Al Standard Error of Estimate = 7.52 F
Type VI	II 0.000	- 0.260	Trans. Temp, F = -14.71 - 157 x % Al Standard Error of Estimate = 7.34 F
Type IX	0.001	- 0.064	Trans. Temp, $F = -16.29 - 3^{1}+5 \times \%$ Al Standard Error of Estimate = 8.81 F
Туре Х	0.000	- 0.192	Trans. Temp, F = -35.41 - 211 x % Al Standard Error of Estimate = 13.23 F
Type XI	0.000	- 0.269	Trans. Temp, F = -50.66 - 117 x % Al Standard Error of Estimate = 12.03 F
	<u>20-</u> I	Foot-Pound	Keyhole Charpy Transition Temperature
Type VI	0.001	- 0.127	Trans. Temp, $F = 32.09 - 380 \times \%$ Al Standard Error of Estimate = 4.90 F
Type VI:	L 0.000	- 0.211	Trans. Temp, F = 12.61 - 175 x % Al Standard Error of Estimate = 5.89 F
Type VI	II 0.000	- 0.260	Trans. Temp, $F = 6.61 - 147 \times \%$ Al Standard Error of Estimate = 6.28 F
Type IX	0.001	- 0.064	Trans. Temp, F = -3.47 -384 x % Al Standard Error of Estimate = 9.15 F
Type X	0.000	- 0.192	Trans. Temp, F =-22.69 - 191 x % Al Standard Error of Estimate = 14.54 F
Type XI	0.000	- 0.269	Trans. Temp, $F = -32.06 - 143 \times \%$ Al Standard Error of Estimate = 10.18 F

-26-

.

.

:

Т

;

FIGURE 1(b) EFFECT OF SILICON ON THE 12 FT-LB KEYHOLE CHARPY TRANSITION TEMPERATURES OF TWO KINDS OF ALUMINUM-FREE STEEL.

۰.

.

.

FIGURE 2 INFLUENCE OF ALUMINUM ON THE 12-FOOT-POUND KEYHOLE CHARPY TRANSITION TEMPERATURES OF SIX TYPES OF STEEL All transition temperatures corrected to correspond to the nominal composition of each type of steel.

:

transition temperature occurred depended on other constituents in the steel. For example, comparing the curves in Fig. 1(a) for Type I and Type III steels the inflection point(or minimum) was shifted to a lower silicon content when the manganese was increased.

The chart for Type III steels in Figure 1(a) indicates that there is an optimum silicon content for this grade of steel. The formulas in Table 6 for steels of Types I, IV, and V indicate that their transition temperatures increase after some critical silicon content is exceeded. The experimental data indicate, however, that if this inversion occurs, it takes place at higher silicon levels than those of interest in ship plate.

Data for the highest silicon contents investigated did not establish unequivocally whether or not high silicon contents are deleterious. In order to choose the shape of the trend lines plotted in Fig. 1, equations for both straight and curved lines expressing the relationship between silicon and keyhole Charpy transition temperatures were obtained by multiple-correlation analysis. The equations fitting the data better, on the basis of the "F" test and smaller standard errors, were used for plotting trend lines in Fig. 1.

The Type III steels give strong evidence that the effect of silicon on Charpy transition temperature reverses at a critical silicon content. Furthermore, the data for the Type I and Type V steels fit the trend lines reasonably well up to silicon contents

-29-

where a point of inflection would be expected from the equations.

For these reasons, some speculations about behavior which could account for a reversal in the effect of silicon seem justified. Small amounts of silicon tend to deoxidize the steel, while larger amounts can serve as alloy additions as well. Iron alloys with low oxygen contents are known to have low transition temperatures⁽¹³⁾, so that the first small additions of silicon to semikilled grades of steel may be expected to lower the transition temperature. Additions of silicon large enough to have a difinite alloying effect have been shown to raise the transition temperature⁽¹⁰⁾. Hence, the minimum transition temperatures indicated in the curves of Fig. 1 are expected to occur at silicon contents where the alloying effect offsets the deoxidizing influence of silicon.

In the presence of increasing amounts of manganese, less silicon is required to arrive at a minimum transition temperature, an indication of an interrelation in the deoxidizing effects of silicon and manganese.

Based on the results for aluminum-free steels, the 12 ft-1b Charpy transition temperature was lowered approximately 2 F by each increase of 0.01 per cent silicon up to about 0.20 per cent. In the low-manganese steels this beneficial effect of silicon continued up to about 0.50 per cent silicon.

The presence of 0.03 per cent aluminum lowered the Charpy transition temperatures of the steels studied. Figures 1(a) and 3

-30-

-31-

ζ.

show that the change produced by this small amount of aluminum depended on the silicon content of the steel. The addition of 0.03 per cent aluminum lowered the transition temperature 82 F in steels with 0.50 per cent silicon but only 11 F in steels with less than 0.17 per cent silicon. The data suggest that there was an interaction between the effects of silicon and aluminum on the Charpy transition temperature. That is, the optimum silicon content for minimum transition temperature apparently depended on the aluminum content as well as the amount of manganese present in the killed steel.

Rinebolt and Harris^(10,11) concluded that variations in silicon contents up to 0.62 per cent had practically no influence on the 15 ft-lb V-notch Charpy transition temperature of aluminum-killed steels. Nevertheless, their data replotted in Fig. 4 show a drop of 36 F in the transition temperature by raising the silicon content to 0.45 per cent. Their tests showed that larger amounts of silicon raised the transition temperature rapidly. The trend line for their V-notch Charpy data and those for the keyhole Charpy data obtained in this investigation, as shown in the figure, were almost identical.

Fig. 2 shows that increasing the aluminum content lowered the Charpy transition temperatures of the experimental steels. The six types of steel used to study the effects of aluminum all contained 0.10 per cent silicon or less. Formulas for calculating the 12 and 20 ft-lb transition temperature for steels containing various amounts of aluminum are given in Table 7. Transition

-32-

temperatures determined by both criteria responded similarly to increases in aluminum. The transition temperatures of steels containing 0.01 per cent silicon were reduced more by aluminum than those of steels containing 0.10 per cent silicon. On the average, each increase of 0.01 per cent aluminum in steels containing 0.01, 0.05, and 0.10 per cent silicon lowered the Charpy transition temperature 3.7, 1.8, and 1.4 F, respectively.

EFFECT OF SILICON AND ALUMINUM ON THE TEAR TEST PROPERTIES

Four tear test specimens of each steel were broken at each 10 F interval throughout the transition zone. Data from each specimen, given in Tables A-12 through A-22 of the Appendix, were used to determine the transition temperature by two criteria. 0ne criterion, developed by Kahn, defines the transition temperature as the highest temperature at which one or more of four specimens breaks with a brittle fracture. A brittle fracture is defined as one having less than 50 per cent of the fractured area exhibiting a dull, fibrous, ductile texture. A transition temperature by this criterion is based on the performance of only one specimen. This criterion sometimes gives an abnormally high transition temperature. For research purposes, such as for this investigation, a criterion based on the probability of 50 per cent brittle specimens seemed more desirable. This criterion takes into consideration the performance of every specimen tested. In the present study, transition temperatures by both criteria were reported and

-33-

in most cases showed the same trends. However, the standard errors for the regression equations, based on the second criterion, were much smaller than those for equations based on . transition temperatures set by Kahn's definition.

The transition temperatures shown in Tables 3 and 4 were adjusted for small unintentional variations in the carbon and manganese. Using the adjusted data and multiple-correlation methods, regression equations for calculating the influence of silicon and aluminum on tear test transition temperatures were determined. These formulas, shown in Tables 8 and 9, were used to establish the trend lines in Fig. 5 and 6. The choice of using either straight or curved trend lines was made on the basis of the type of equation giving the smallest standard error.

As in the Charpy tests, increasing the silicon content in the range up to 0.20 per cent lowered the transition temperatures in tear tests. This was true for all types of steel studied when the transition temperature was considered to be the temperature corresponding to equal probabilities for ductile or for brittle fracture. The use of the Kahn definition suggested that the transition temperatures of steels, Types II and IV shown in Fig. 5(b), were not improved by increasing amounts of silicon. These two exceptions were not considered important because the apparent changes in transition temperature were either too small or based on too few data to be significant.

-34-

TABLE 8. FORMULAS FOR CALCULATING TEAR-TEST TRANSITION TEMPERATURES FOR HOT-ROLLED STEELS WITH DIFFERENT SILICON CONTENTS

.

:

--

+

.

Type of Steel	Silicon Range, per cent	• Formula
	<u>Kahn Tear-Te</u> :	st Transition Temperature
Type I	0.02 - 0.54	Trans. Temp, F = 94.25 - 83 x % Si + 155 x (% Si)2 Standard Error of Estimate = 11.35 F
Type II	0.10 - 0.39	Trans. Temp, F = 68.42 + 17 x % Si Standard Error of Estimate = 17.51 F
Type III	0.01 - 0.20	Trans. Temp, F = 83.85 - 191 x % Si Standard Error of Estimate = 10.71 F
Type III	0.16 - 0.52	Trans. Temp, F = 33.82 + 112 x % Si Standard Error of Estimate = 9.80 F
Type IV	0.06 - 0.34	Trans. Temp, F = 31.70 + 171 x % Si Standard Error of Estimate = 6.92 F
Type V	0.02 - 0.57	Trans. Temp, F = 79.34 - 123 % Si + 249 x (% Si)2 Standard Error of Estimate = 10.25 F
<u>Fifty Pe</u>	r Cent Probability	of Brittle Specimens Transition Temperature
Type I	0.02 - 0.54	Trans. Temp, F = 87.50 - 93 x % Si + 189 x (% Si)2 Standard Error of Estimate = 7.69 F
Type II	0.10 - 0.39	Trans. Temp, F = 94.69 - 356 x % Si + 717 x (% Si)2 Standard Error of Estimate = 9.66 F
Type III	0.01 - 0.20	Trans. Temp, F = 71.14 - 178 x % Si Standard Error of Estimate = 9.88 F

TABLE 8. FORMULAS FOR CALCULATING TEAR-TEST TRANSITION TEM-PERATURES FOR HOT-ROLLED STEELS WITH DIFFERENT SILICON CONTENTS (Continued)

Type of Steel	Silicon Range, per cent	. Formula
<u>Fifty Per</u>	Cent Probability	of Brittle Specimens Transition Temperature
Type III	0.16 - 0.52	Trans. Temp, F = 23.22 + 119 x % Si Standard Error of Estimate = 6.04 F
Type IV	0.06 - 0.34	Trans. Temp, F = 50.34 - 196 x % Si + 916 x (% Si)2 Standard Error of Estimate = 12.27 F
Type V	0.02 - 0.57	Trans. Temp, F = 73.96 - 154 x % Si + 286 x (% Si)2 Standard Error of Estimate = 7.73 F

TABLE 9. FORMULAS FOR CALCULATING TEAR-TEST TRANSITION TEM-PERATURES FOR HOT-ROLLED STEELS WITH DIFFERENT ALUMINUM CONTENTS

Type of Steel	f Range of Aluminum, per cent	Formula
	<u>Kahn Tear-Test</u>	Transition Temperature
Type V	0.001 - 0.127	Trans. Temp, F = 113.47-416 x % Al Standard Error of Estimate = 12.34 F
Type VI	II 0.000 - 0.211	Trans. Temp, F = 88.38-159 x % Al Standard Error of Estimate = 27.73 F
Type VI	III 0.000 - 0.260	Trans. Temp, F = 98.93-230 x % Al Standard Error of Estimate = 12.80 F
Type I	0.001 - 0.064	Trans. Temp, F = 85.86-207 x % Al Standard Error of Estimate = 9.85 F
Type X	0.000 - 0.192	Trans. Temp, F = 65.56+241 x % Al Standard Error of Estimate = 11.11 F
Type XI	0.000 - 0.200	Trans. Temp, F = 74.71-258 x % Al Standard Error of Estimate = 14.33 F
<u>Fifty I</u>	<u>er Cent Probability c</u>	f Brittle Specimens Transition Temperature
Type VI	0.001 - 0.127	Trans. Temp, F = 108.19-377 x % Al Standard Error of Estimate = 8.43 F
Type VI	I 0.000 - 0.211	Trans. Temp, F = 86.50-222 x % Al Standard Error of Estimate = 6.93 F
Type V)	II 0.000 - 0.260	Trans. Temp, F = 82.31-156 x % Al Standard Error of Estimate = 5.81 F
Туре I)	0.001 - 0.064	Trans. Temp, F = 81.15-203 x % Al Standard Error of Estimate = 7.67 F
Туре Х	0.000 - 0.192	Trans. Temp, F = 63.56-196 x % Al Standard Error of Estimate = 8.55 F
Type XI	0.000 - 0.200	Trans. Temp, F = 60.79-189 x % Al Standard Error of Estimate = 10.35 F

÷

٠

A-14561

.

.

.

FIGURE 5(b) EFFECT OF SILICON ON p = 0.5 TEAR TEST TRANSITION TEMPERATURES OF TWO KINDS OF ALUMINUM-FREE STEEL

.

FIGURE 6 INFLUENCE OF ALUMINUM ON THE P = 0.5 TEAR-TEST TRANSITION TEMPERATURES OF SIX TYPES OF STEEL

a.

All transition temperatures corrected to correspond to the nominal composition of each type of steel.

-0-1-0-

Increasing the silicon content over 0.2 per cent seemed to raise the transition temperature in the tear test.

Fig. 6 shows that the tear test transition temperatures decreased as the aluminum contents of the experimental steels increased up to 0.20 per cent. On the average, as increase of 0.01 per cent aluminum lowered the transition temperature in tear tests about 2.2 F. This factor was slightly different for steels with different silicon contents, as shown by the variations between slopes of the trend lines in Fig. 6. Aluminum seems to have had the most pronounced effect in steels with 0.01 per cent silicon. These conclusions support those based on Charpy data obtained on the same materials.

It should be noted that considerable amounts of aluminum were required to produce appreciable changes in transition temperature. Aluminum contents of about 0.10 per cent seem to be necessary to lower the transition temperature about 20 F from the level for hot-rolled aluminum-free steel. This quantity of aluminum is considerably larger than that of most commercial steels. The normal aluminum content of "fine-grained" steels would not be expected to significantly improve the transition temperature of hot-rolled plates. In this regard, the data for the Type III and the Type V steels in Fig. 5(a) are important. The presence of 0.03 per cent aluminum in the Type V did not significantly affect the transition temperature of steels containing less than 0.2 per cent silicon. In fact, in this case,

-41-

the tear test transition temperatures tended to be slightly higher for the steels containing aluminum.

The transition temperatures for the steels with 0.21 per cent carbon, 0.75 per cent manganese, and 0.10 per cent silicon (Type XI) are especially interesting. Fig. 6 shows that the transition temperature of this type of steel appears to have been significantly higher when the aluminum content was 0.269 per cent than when it was between 0.09 and 0.17 per cent. The trend line was drawn to indicate that the effect of aluminum on this type of steel reverses at about 0.2 per cent aluminum. The Charpy data for the same materials, shown in Fig. 2, lend some support to this interpretation. Perhaps there is an optimum aluminum content which produces the lowest transition temperature. This is consistent with the data showing the effect of silicon on transition temperature, but the data for aluminum are too scanty to justify a strong opinion on this point.

CONCLUSIONS

This study on the effects of variations in silicon and aluminum contents on the properties of steels made in an induction furnace and hot-rolled in the laboratory leads to the following conclusions:

1. Small amounts of silicon lowered the transition temperatures of the experimental steels in Charpy and tear tests. The keyhole Charpy data indicated that the 12 ft-1b transition temperature decreased about 1.5 F for each increase of 0.01 per cent

-42-

silicon up to the following silicon contents:

0.50% silicon in steels with 0.25% C, 0.45% Mn, no Al

0.40% silicon in steels with 0.21% C, 0.75% Mn, 0.03% Al

0.17% silicon in steels with 0.21% C, 0.75% Mn, no Al Increasing the silicon content above 0.17% tended to raise the Charpy transition temperature of steels containing 0.21% C and 0.75% Mn.

The data suggest that variations in silicon content within the narrow range characteristic of semikilled steels have no significant effect on their notched-bar transition temperatures.

2. Increases in aluminum contents up to about 0.20 per cent lowered the Charpy and tear test transition temperatures of steels made and processed in the laboratory. In this range, each increase of 0.01 per cent aluminum lowered the transition temperature about 2.2 F in tear tests. The extent to which the Charpy transition temperature was lowered by adding aluminum depended on the silicon content of the experimental steels. In steels containing 0.03 per cent silicon or less, each increase of 0.01 per cent aluminum lowered the Charpy transition temperature about 3.7 F. Equal amounts of aluminum were only about half as effective in lowering the Charpy transition temperatures of steels containing 0.05 to 0.13 per cent silicon.

The quantity of aluminum normally present in steels made by fine-grained practice did not have a significant effect on the transition temperatures of the experimental steels tested in the hotrolled condition.

-43-

3. For these hot-rolled steels, each increase of 0.01 per cent silicon raised the yield point approximately 130 psi and the tensile strength approximately 150 psi.

4. Variations in aluminum contents up to 0.27 per cent did not influence the tensile properties of the hot-rolled plates.

5. Neither silicon nor aluminum influenced the ferrite grain size of the hot-rolled experimental steels. Apparently, the ferrite grain size was controlled by the hot-rolling practice. All plates were finished at 1850 F.

6. Normalizing from 1650 F produced a finer ferrite grain size in Class C ship plate steels (containing aluminum) than in semikilled Class B steels.

7. Variations in silicon content up to 0.58 per cent had no effect on the austenite grain-coarsening temperature. Aluminum, on the other hand, had a pronounced effect on grain-growth characteristics. The presence of 0.01 per cent aluminum, or more, raised the coarsening temperature about 200 F. All of the experimental steels, however, had coarsening temperatures below 1850 F, the temperature of the plates during the final rolling reduction.

REFERENCES

- 1. Hilty, D. C., and Crafts, Walter. "The Solubility of Oxygen in Liquid Iron Containing Aluminum," <u>Journal of Metals</u>, vol. 188, no. 2, pp. 414-424, 1950.
- 2. —. "Solubility of Oxygen in Liquid Iron Containing Silicon and Manganese," <u>Ibid</u>, pp. 425--436.
- 3. Kahn, N. A., and Imbembo, E. A. "Notch Sensitivity of Steel Evaluated by Tear Tests," <u>The Welding Journal</u>, Res. Suppl., April 1949, pp. 153-s--166-s.

-44-

- 4. Campbell, J. E., Frazier, R. H., and McIntire, H. O. "Ferrite-Grain-Size Measurements for Ship Plate Steel," <u>The Welding Journal</u>, Res. Suppl., February 1952, pp. 78-s--94-s.
- 5. Halley, J. W. "Grain-Growth Inhibitors in Steel," <u>Metals</u> <u>Technology</u>, vol. 13, no. 4, June 1946. Technical Publication No. 2030.
- 6. Rogers, W. T. "Statistical Analysis of the Effect of Alloying Elements on Mechanical Properties of Seamless Tubes," <u>Trans. A. S. M.</u>, vol 43, pp. 1126--1143, 1951.
- 7. McWilliam, Andrew. "Influence of Some Elements on the Tenacity of Basic Steel," <u>Journal of Iron and Steel In-</u> <u>stitute</u>, vol. 98, pp. 43--55, 1918.
- 8. Epstein, Samuel. "Notch Resistance of Carbon Steel Ship Plate," American Iron and Steel Institute, Regional Technical Meetings, pp. 139--183.
- 9. Boulger, F. W., and Frazier, R. H. "The Influence of Carbon and Manganese on the Properties of Semikilled Hot-Rolled Steel," Journal of Metals, vol. 6, no. 5, pp. 645--652, 1954.
- 10. Rinebolt, J. A., and Harris, W. J., Jr. "Effect of Alloying Elements on Notch Toughness of Pearlitic Steels," <u>Trans. A. S. M</u>., vol. 43, pp. 1175--1201, 1951.
- 11. ——. "Statistical Analysis of Tests of Charpy V-Notch and Keyhole Bars," <u>The Welding Journal</u>, Res. Suppl., April 1951.
- 12. Frazier, R. H., Boulger, F. W., and Lorig, C. H. "The Influence of Heat Treatment on the Notched-Bar Properties of Semikilled Steel Plate," Third Progress Report, Ship Structure Committee Report, Serial No. SSC-71, March 15, 1954.
- 13. Rees, W. P., and Hopkins, B. E. "Intergranular Brittleness in Iron-Oxygen Alloys," <u>Journal Iron and Steel Institute</u>, vol. 172, pp. 403-409, December 1952.

.

· · ·

APPENDIX

х Х

-

.

٠

4

		Yield Strength, psi		Tensile	Eleventies in
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A8728	1	38,600	37,400	66,600	29.0
	2	40,000	39,400	66,600	28.5
A8922	1	37,000	3 5,600	65,900	27.5
	2	39,200	36,200	65,900	28.0
A8747	1	36, 100	3 5, 800	66,100	29.0
	2	38, 100	3 5, 900	66,100	28.0
B865	1	38,300	35,250	66,900	25.5
	2	38,100	37,200	66,800	26.5
A8729	1	39,900	38,600	72,900	27.5
	2	41,400	40,000	74,000	26.5
B866	1	39,500	37,500	6 8, 500	27.0
	2	39,500	37,500	6 8, 500	27.5
A 89 23	1	39,900	39,400	70,400	29.0
	2	39,800	39,200	70,400	28.5
B867	1	40,500	39,200	71,200	28.5
	2	40,100	39,200	70,000	24.5

TABLE A-1. TENSILE-TEST DATA FOR TYPE I STEELS WITH VARIOUS SILICON CONTENTS

TABLE A-2. TENSILE-TEST DATA FOR TYPE II STEELS WITH VARIOUS SILICON CONTENTS

		Yield Str	ength, psl	Tensile	Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A81 51	1	35,500	34,600	60, 500	30.0
	2	35,600	33,600	60, 100	31.0
A9265	1	36,300	34,500	61,400	28.5
	2	3 5,200	34,000	61,000	29.0
A8375	1	37,200	3 5,600	62,300	28.0
	2	36,100	34,900	61,900	28.5
A9266	1	36,400	35,400	63,600	29.0
	2	37,000	35,400	63,600	29.0
A8376	1	37,500	36,500	64,400	28.0
	2	36,600	35,900	64,200	28.0
A9275	1 2	40,600 39,600	38,000 39,000	67,600 67,100	23.0 26.0

TABLE	A-3.	TENSILE-	TEST	DATA	FOR	TYPE	111	STEELS	WITH	•
		VARIOUS	SILIC	ON CO	NTEN	TS				

		Yield Streng	pth, psi	Tensile	Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A8378	1	38,400	34,800	61,800	33.0
	2	37,500	35,500	61,800	30.0
A9262	1	38,400	36,400	63,000	27.5
	2	39,600	36,100	63,100	27.5
B868	1	40,300	38,900	67,000	26.5
	2	40,100	39,400	66,400	28.0
A8730	1	39,000	38,100	67,400	29.0
	2	38,600	37,600	67,300	29.0
B869	1	40,400	39,100	67,400	26.0
	2	40,500	39,300	68,000	27.0
B870	1 2	43,000 42,400	42,400 41,000	69,500 69,800	27.0 27.5

		Yield Stre	ength, psi	Tensile	Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A927 1	1	36,700	36,300	63,500	30.0
	2	38,000	36,200	63,300	29.0
A9272	1	37,800	37,000	64,700	30.0
	2	37,200	37,100	64,700	30.0
A9273	1	39,700	37,100	66,800	29.0
	2	39,200	38,400	67,200	27.0
A9274	1	46,300	45,300	76,600	25.0
	2	46,200	45,000	75,200	24.0

TABLE A-4.TENSILE-TEST DATA FOR TYPE IV STEELS WITH
VARIOUS SILICON CONTENTS

TABLE A-5. TENSILE-TEST DATA FOR TYPE V STEELS WITH VARIOUS SILICON CONTENTS

		Yield Str	ength, psi	Tensile	<u> </u>
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A8904	1	36,200	35,200	63,200	30.5
	-	00,000	55,200	63,000	29.0
A8705	1	38,000	35,800	64,100	26.5
	2	37,500	36,100	63,900	30.5
A8906	1	38,600	35,800	64.900	30.0
	2	37,600	36,500	6 5,000	29.0
A 8907	1	37,300	36,300	64.400	30.0
	2	37,900	36,400	64,800	28.5
A890 8	I	38,600	37.000	6.5.100	310
	2	38,900	36,500	6 5,000	30.0
A8909	ו	40,700	38,800	67 000	25.0
	2	40,800	38,900	66,200	22.5
B871	1	40,900	39,900	67.300	23.5
	2	41,100	40,000	68,100	24.0
B872	1	43,500	42.000	69 500	26.0
	2	42,600	41,600	69,400	26.5
B 873	1	44,200	42.900	71.400	26.0
<u> </u>	2	43,500	42,500	70,600	24.5

TABLE A-6.TENSILE-TEST DATA FOR TYPE VI STEELS WITH
VARIOUS ALUMINUM CONTENTS

		Yield Str	ength, psi	Tensile	Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	8 inches, %
A8736	- 12	33,800 33,700	32,500 31,900	58,200 57,400	25.0 27.5
A8737	1	31,700	31,200	56,600	31.0
	2	33,400	31,900	57,600	28.5
A9263	1	33,600	32,700	58,600	32.5
	2	35,300	34,000	58,200	31.0
A9264	1	32,800	31,900	58,100	33.5
	2	33,800	31,400	58,300	32.8
A8142	1	34,400	32,800	58,500	29.0
	2	33,300	32,800	58,200	25.5
A8143	1 2	35,600 34,700	33,300 33,800	61,600 61,300	32.0 31.5

		Yield Strength, psi		Tensile	Elongation in
Heat	Specimen	Upper *	Lower	Strength, psi	8 Inches, %
A8136	1	35,800	34,100	63,400	30.5
	2	36,100	34,200	63,400	31.5
A7322	1	33,600	34,400	60,800	31.5
	2	34,000	35,900	61,500	30.5
A8137	1	35,700	33, 700	60,800	31.0
	2	34,800	33,200	60,800	31.0
A8745	1 2	36,700 36,900	34,700 34,700	63,900 63,600	26.5 29.5

 TABLE A-7.
 TENSILE-TEST DATA FOR TYPE VII STEELS WITH VARIOUS ALUMINUM CONTENTS

TABLE A-8. TENSILE-TEST DATA FOR TYPE VIII STEELS WITH VARIOUS ALUMINUM CONTENTS

.

		Yield Str	Yield Strength, psi		Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A8738	1	37,800	34,500	62,800	33.0
	2	36,700	34,900	64,300	29.5
A8350	1	36,100	34,900	62,700	32.0
	2	36,800	34,700	63,500	28.0
A8739	1	36,400	34,400	62,500	32.0
	2	37,000	34,700	62,500	32,5
A8351	1	36,800	35,100	63,700	31.0
	2	35,700	35,200	63,500	29,0
A8740	1	36,300	35,600	65,000	29.0
	2	36,400	34,900	63,600	29.5

TABLE A-9. TENSILE-TEST DATA FOR TYPE IX STEELS WITH VARIOUS ALUMINUM CONTENTS

		Yield Str	ength, psi	Tensile	Elongation i
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %
A8145	1 2	34,600 34,500	32,900 33,300	59,500 59,600	33.0 31.5
A7320	1 2	33,500 33,300	34,600 34,200	60,200 59,700	32.0 31.5
A7319	1 2	33,900 33,800	35,100 35,300	58,900 59,600	30.0 29 . 9
AB146	1 2	34,900 34,600	33,900 34,100	60,600 60,600	33.5 30.0

`

. •

· · ·

.

.

.

.

		Yield Strength, psi		Tensile	Elongation in	
Heat	Specimen	Upper	Lower	Strength, psi	8 Inches, %	
A8144	1 2	36,100 36,100	33,900 33,800	61,600 62,500	24.0 27.0	
A8141	1 2	37,800 38,100	36,300 36,000	62,800 62,500	28.0 29.5	
A8746	1 2	33,100 33,100	32,500 32,400	58,000 57,600	34.0 32.5	

TABLE A-10. TENSILE-TEST DATA FOR TYPE X STEELS WITH VARIOUS ALUMINUM CONTENTS

TABLE A-11, TENSILE-TEST DATA FOR TYPE XI STEELS WITH VARIOUS ALUMINUM CONTENTS

		Yield Stro	ength, psi	Tensile	Elongation in
Heat	Specimen	Upper	Lower	Strength, psi	B inches, %
A8741	1	36,300	34,200	6 2,000	27.5
	2	35,400	34,200	6 2,400	27.5
A8352	1	37,700	35,800	63,300	3 2.5
	2	37,000	35,800	63,500	32.5
A8742	1	37,000	36,500	64,500	31.0
	2	37,100	36,300	64,100	30.0
A8353	1	36,500	35,600	63,200	32.0
	2	36,500	35,200	63,000	29.0
A8743	1	36,900	3 <i>5,5</i> 00	63,000	29.0
	2	36,400	35,200	64,100	31.0

.

.

n

· .

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-lb	% Sheat in Fracture
(-)						
A6602(0)	A2	60	36,950	842	58	2
	B1 B2	60 60	36,850	833	33	3 7
	pz	00	36,700	750		1
	Ċ1	70	37,000	866	67	5
	C2	80	36,350	850	125	10
А7663 ^(b)	T 1	90	36,350	700	633	100
	Т2	90	36,450	690	92	15
A66 50 ^(a)	X2	60	37,400	824	450	45
	P2	70	36,100	790	642	100
	<u>U2</u>	70	37,650	800	75	3
	wī.	70	35,950	815	642	87
	W2	70	35,950	766	808	100
	X1	70	36,750	800	824	100
	MI	70	36,250	725	42	2
	N2	80	36,550	800	609	100
	QI	80	36,250	775	633	100
	R1 R2	80 80	36,300	775 740	600 133	97 14
				, 40		
	<u>\$2</u>	90	35,300	800	541	100
	11	90	38,100	800	775	100
	ប៉ាំ	90	37,450	808	734	100
1700		(0	27,000	f 00	00	F
A/449	R I 97	00	37,400	2 U8 824	92	5 5
	SI	60	36,650	725	50	3
	\$2	60	36,650	784	83	5
	P2	70	36,700	790	67	5
	QI	70	35,550	734	6.50	100
	Q2	70	35,850	740	616	95
	MI	70	37,650	709	117	10
	M2	80	36,700	791	715	100
	NI	80	36,000	692	600	95
	N2	80	36,000	725	616	90
	61	80	36,100	7 15	600	100
A8132	К1	70	38,400	725	108	5
	К2	80	38,100	757	58	8
	B1	80	36,850	700	100	10
	B2	80 80	35,900	690 642	58 67	5
	-		55,500	042		
	A1 A2	90	37,750	984	600	100
	្រឹ	90	37,200	740	665	100
	Ľ2	90	37,050	790	83	15
	M)	100	36.650	800	616	95
	M2	100	37,100	815	584	95
	11	100	36,650	800	690	100
	N2	100	37,000	784	117	15
	P1	110	37,350	790	650	100
	P2	1 10	37,550	800	700	100
	QI	110	36,850	757	600	100
	ų∡	110	37,750	866	609	100
A6556 ^(a)	A1	50	37,600	766	58	3
	A2	50	37,700	815	42	5

36,950 38,250 39,350 37,400

.. ----

TABLE A-12.NAVY TEAR-TEST DATA FOR TYPE I STEELSWITH VARIOUS SILICON CONTENTS

.

、

 \mathbf{i}

81 82 T1 F1

	TABLE A-12.	(Continued)
е,	Maximum Load, pounds	Energy to Start Fracture, ft-lb

,

		Testing Temperature,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear in
Heat	Specimen	F	pounds	ft-lb	ft-1b	Fracture
A6556 ^(a)	G1	70	37,300	775	83	3
	L2	70	36,150	650	625	7
	MI	80	36,300	750	559	99
	S1	80 90	36,350	734 784	6 16 609	100
	T 2	80	37,050	740	609	99
A6705 ^(a)	₩2	60	37,650	715	740	100
	L2	70	36,900	740	75	5
	W 1	80	36,800	740	658	100
	MI N1	80	36,600	/90	584	100
	N2	80	35,700	665	58	15
	E2	90	36,150	833	625	94
	٧١	90	36,000	700	665	100
	V2	90	36,200	684	690	100
	Q1	90	36,300	684	234	49
	R2	100	36.300	725	625	100
	DĨ	100	37,500	700	565	95
	D2	100	38,350	757	559	100
	El	100	38,400	766	492	60
A6555 ^(a)	A1	50	36,800	775	83	5
	A2 B1	50 50	36,800 37,250	700 775	234 83	5
	82	60	37 300	944	600	00
	V2	60	37,500	833	600	85
	MI	60	37,500	707	600	70
	\$1	60	37,900	808	66	4
	<u>\$2</u>	70	39,100	935	616	98
	TI	70	37,200	734	150	10
	Т2	80	36,250	690	650	100
	01	80	37,050	975	642	100
	VI	80	36,800	757	675	100
A6594 ^(a)	B1	50	37,450	790	600	88
	в2	60	37,900	866	684	95
	P 1	60	37,550	800	584	75
	Τl	60	38,600	824	584	100
	Τ2	70	37,900	842	575	100
	UI	80	38, 150	850	609	100
	U2 F2	80 80	37,700 37,850	775 824	625 633	100
A 4 4 67 (a)	D1	50	29 400	940	142	5
A0037	B2	50	39,900	875	150	ž
	ĊĪ	50	39,150	815	100	5
	C2	50	39,600	850	58	3
	R2	60	39,150	815	117	5
	52	00	38,050	/00	404	
/L)	TI	70	38,000	815	600	100
A7526 ⁽⁰⁾	R2	50	39,800	715	83	15
	Q1	60	39,500	715	67	3
	C17	60	39,050	0/5	117	2
	R2	60	39,500	7 15	142	12

÷.

•

*

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-lb	% Shear In Fracture
A7526 ^(b)	A2	70	39,200	665	183	20
	B1	70	39,800	690	616	100
	B2	70	39,850	715	142	10
A8728	A1	60	39,750	757	158	10
	A2	60	39,800	707	133	10
	T1	60	39,900	715	75	3
	J1	60	39,500	815	50	7
	K2	70	38,850	775	193	18
	R1	70	38,550	707	575	100
	T2	70	39,300	725	550	98
	J2	70	39,150	750	117	10
	K1	80	37,950	684	1 17	15
	R2	80	38,100	707	584	100
	\$1	80	38,600	725	658	100
	\$2	80	38,550	707	609	100
	P 1	90	38,000	715	642	100
	P 2	90	37,700	700	642	100
	Q 1	90	38,200	775	559	90
	Q2	90	39,200	950	650	100
A8922	או	70	37,600	690	4 17	62
	דו	70	40,000	757	67	10
	ד2	70	39,400	725	600	100
	טו	70	39,650	725	158	15
	M2	80	37,850	675	584	98
	N1	80	38,150	650	108	35
	U2	80	38,000	642	50	12
	V1	80	38,450	700	225	23
	N2	90	38,300	675	6 16	100
	B2	90	37,500	684	584	100
	P1	90	38,100	700	200	23
	V2	90	38,600	766	725	100
	P2	100	37,850	665	550	100
	Q1	100	37,100	642	575	100
	Q2	100	38,050	665	633	100
	R1	100	37,700	665	250	45
	R2	110	37,250	616	642	100
	S1	110	37,300	642	642	100
	S2	110	37,900	700	575	100
	B1	110	38,250	757	665	100
A8747	U 1	60	38,850	665	466	83
	U2	60	39,000	690	58	3
	V1	60	39,100	675	250	15
	V2	60	38,850	690	133	10
	B1	70	38,700	675	150	10
	B2	70	38,100	665	684	100
	C1	70	38,150	707	75	7
	M1	70	37,200	684	300	45
	C2	80	38,750	725	633	100
	M2	80	37,550	650	565	95
	N1	80	37,650	684	600	100
	N2	80	38,900	757	150	25
	P1	90	37,900	700	584	100
	P2	90	37,500	690	575	100
	Q1	90	37,050	690	258	37
	T2	90	36,950	665	200	33
	Q2	100	37,600	707	633	100
	R1	100	37,500	700	633	100
	R2	100	37,400	650	525	100
	T1	100	37,050	642	600	100

.

. .

.

:

.

.

.

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft+lb	Energy to Propagate Fracture, ít-1b	% Shear in Fracture
B865	AT I	60	40,250	790	216	18
	Q1	60	41,050	910	92	3
	Q2	60	40,900	860	83	7
	RI	60	40,850	842	100	3
	A2	70	39,550	750	750	100
	E 1	70	40,100	/84	92	8
	· P2	70	39,850	815	75	7
	50	90	20 700	700	(00	100
	FI	80	40,200	808	150	100
	 і и	80	40,650	800	715	100
	N2	80	40,400	875	625	85
	F2	90	39,200	757	57.5	100
	H1	90	39,950	775	584	100
	H2	90	40,400	800	609	100
	נר	90	39,900	800	208	20
	2٤	100	39,800	766	600	100
	K1	100	38,950	757	600	100
	K2	100	39,750	790	616	100
1.5	R2	100	39,850	842	665	100
A6696 ^(a)	<u>c1</u>	50	41,550	833	100	2
	C2	50 50	41,500	815	100	3
	D1	20	41,450	201	83	3
	52	60	40,350	790	125	4
	B1 B2	60 (0	41,500	875	616	100
	04	bV	40,430	757	009	100
	P2	70	39,750	815	575	100
	ω∠ T2	70	39,150	725	83 142	10
	-		37,400	750	142	15
A87 29	A1	70	41,000	625	83	10
		70 70	42,000	675	183	15
	v2	70	41,200	616	150	45 10
	02	80	40 350	400	541	100
	RÎ	80	39,600	625	100	15
	R2	80	39,950	658	258	31
	11	80	40,550	740	158	15
	J2	90	40,400	665	158	15
	Ql	90	40,500	690	584	100
	51 52	90 90	40,200 40,400	675	650 541	100
			40,400	665	J4 (100
	KI	100	39,500	684	616	100
	MI	100	39,900	684 647	660 574	100
	M2	100	39,800	658	508	100
B866	Fl	50	41 500	790	109	7
	H2	50	40,600	800	67	5
	11	50	41,150	750	117	8
	J2	50	40,600	784	83	. 5
	A2	60	41,600	824	559	98
	E2	60	41,550	850	650	100
	F1 F2	00 60	41,950	800 875	367	43
			- 4,000	0/3	100	5
	A1 C1	70	40,300	784	584	100
	62	70 70	41,250	750	665	100
	ห้า	70	40,750	740	6∠3 600	100
	•••		-0,000	7 54	007	100

TABLE A-12. (Continued)

TABLE A-12. (Continued)

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Stort Fracture, ft-lb	Energy to Propagate Fracture, ft-lb	%.Shear In Fracture
48072	<u> </u>	80	38 000	690	83	
~~~~~	¥1	90	40,200	757	42	10
	22	80	40,200	707	107	20
	N1	90	41,050	659	272	20
	R I	ÇÜ	41,050	350	225	20
	\$1	90	38,650	725	108	18
	M1	90	39,950	690	650	100
	M2	90	40,000	658	650	100
	N2	90	40,800	743	250	25
	114					-
	P1	100	39,600	675	633	100
	\$1	100	39,750	775	576	100
	\$2	100	39,150	675	565	100
	P2	100	40,000	684	316	42
	01	110	10 100	575	58.4	100
		110	39 150	675	000	100
	DÎ	110	39,400	458	616	07
	D2	130	70 150	450	003	100
	N-		47,130	000	005	100
B867	A1	60	41,350	8 15	117	7
	A2	60	42,200	833	83	7
	Bl	60	42,750	850	108	5
	82	60	41,800	790	67	7
	1.2	70	42.050	775	117	a
		70	42,030	775	117	10
	T2	70	41,400	740	20.0	10
	14	70	41,300	730	200	100
	KI	70	42,300	615	590	100
	L1	80	40,950	750	565	100
	Q1	80	41,200	808	225	25
	\$1	80	41,850	775	750	100
	<b>\$</b> 2	80	42,050	824	715	100
	22	90	41.050	757	534	100
	02	50 00	41,030	737	234 E76	100
	44	70	41,/50	740	3/3	100
	K!	70	41,450	734	/34	100
	R∡	70	41,700	/ 34	020	100

(a) Test data for other specimens from this steel were reported in the Appendix of the First Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 49.

(b) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on " An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 53.*

. ..

ŝ

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-1b	% Shear in Fracture
	C1		39 400	925		
ABIŞI	C2	30	38,900	935	67	3
	DI	30	39,000	940	108	3 3
	D2	30	40,000	961	108	5
	El	40	39,150	940	108	5
	В2	40	37,600	850	75	2
	<u>†1</u>	40	39,750	915	83	3
	12	40	40, 150	1000	590	98
	A1	50	38,100	915	001	10
	A2	50	37,750	815	684	100
	R2	50	38,800	935	325	33
	\$1	60 60	38,750	900	790	100
	\$2	60 60	38,250	860	100	5 100
	vi	60	38,700	842	325	25
				0.10	***	~
		70	38,900	910	208	20
	w1	70	38,050	875	707	100
	₩2	70	38,950	866	700	100
	1.2	80	29.060	005	49.4	100
	<u>м1</u>	80	38,000	842	790	100
	M2	80	37,100	790	700	100
	R1	80	39, 250	1067	784	100
A9265	ĨL	40	37,100	808	67	5
	וד	50	39,000	860	92	3
	Ť2	50	38,200	842	100	4
	UI	50	38,500	875	167	5
	]2	50	38,550	990	158	18
	κĭ	60	37,400	842	292	32
	A2	60	38,400	824	50	5
	El	60	38,300	866	625	100
	E2	00	38,450	808	/00	100
	K2	70	37,200	808	642	100
	LI	70	36,800	824	658	100
	L2	70	36,550	824	667	100
	WI	70	37,900	600	75	12
	M2	80	37,500	935	17	12
	BI	80	37,450	891	600	98
	C1	80	38,050	961	038 7 15	100
	RI	90	37,350	815	725	100
	C2	90	37,430	800	325	100
	ĎĨ	90	38,300	961	757	100
	e 1	100	27 250	0.04	445	100
	52	100	37,000	815	633	100
	ĂĪ	100	37,350	833	757	100
	D2	100	36,500	790	700	100
A8375	A1	40	38,600	940	25	2
	A2	40	38,700	1080	150	10
	<u>V1</u>	40	38,550	824	400	43
	¥2	40	39,450	1060	133	5
	W 1	50	39,350	875	616	100
	L2	50	39,800	950	92	2
	<u>T1</u>	50	39,350	900	133	7
	<b>T</b> 2	50	37,750	766	6 I Ó	100

U1 U2 L1 M1

38,700 38,500 39,000 39,250

### TABLE A-13. NAVY TEAR-TEST DATA FOR TYPE II STEELS WITH VARIOUS SILICON CONTENTS

¥.

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-1b	% Shear In Fracture
A8375	M2 R1 S1 S2	70 70 70 70	38,900 39,700 40,050	590 1020 1020 915	650 690 665 445	100 100 100
A9266	El	20	42,750	935	158	3
	E2	30	42,300	958	83	3
	U1	30	42,350	950	100	3
	U2	30	41,600	866	125	3
	V1	30	42,250	975	258	20
	\$2	40	40,900	910	675	99
	T1	40	40,400	891	275	20
	L1	40	40,250	842	83	5
	51	40	40,350	900	75	2
	V2	50	40,850	885	200	21
	T2	50	40,700	925	684	100
	L2	50	40,900	925	600	100
	M1	50	40,200	850	225	17
	K2	60	40,550	891	665	100
	M2	60	40,350	875	650	100
	N1	60	40,000	860	534	77
	N2	60	39,800	860	534	85
	KI	70	40,400	900	790	100
A8376	D2	40	39,550	950	83	5
	E1	40	40,150	891	117	5
	E2	40	40,650	885	242	13
	F1	40	40,150	850	216	10
	C1	50	38,900	935	175	8
	C2	50	39,000	950	117	5
	D1	50	40,750	935	725	100
	M1	50	40,150	875	408	50
	L 2	60	41,350	958	690	100
	M2	60	40,300	891	625	100
	R2	60	41,200	975	108	11
	V1	60	40,550	866	575	90
	S1	70	39,700	915	216	25
	V2	70	40,300	875	675	100
	W1	70	40,150	891	633	100
	W2	70	40,450	875	658	100
	52	80	39,900	925	684	100
	11	80	39,650	940	633	100
	72	80	39,200	950	658	100
	U1	80	39,400	860	665	100
A9275	E1	40	43,800	1080	142	5
	E2	40	43,450	958	125	7
	F1	40	43,000	1010	200	7
	K1	40	42,250	800	58	2
	J2	50	42,700	885	525	72
	K2	50	42,400	958	400	37
	F2	50	42,600	940	142	5
	T1	50	42,250	866	83	3
	T2	60	42,100	860	800	100
	J1	60	41,100	775	690	100
	L1	60	40,550	842	658	96
	L2	60	41,300	915	100	3
	M1	70	41,400	925	700	100
	M2	70	40,500	800	824	100
	R1	70	41,050	860	690	100
	R2	70	41,500	910	167	7
	51	80	40,250	833	408	45
	52	80	41,150	9 10	824	100
A9275	N1	90	42, 100	842	800	100
	N2	90	40, 550	775	658	100
	P1	90	42, 600	958	690	100
	P2	90	42, 700	866	700	100

TABLE A-13. (Continued)

Ha-1	Special-	Testing Temperature,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear in
	Specimen	F	pounas	TT-ID	ft-16	t facture
A6651(0)	\$1	50	39,250	935	565	85
	X2	60	39,600	715	740	100
	QI	60	38,700	866	891	100
	W1	70	39,100	1000	766	100
	W2 X1	70 70	39,200	958 840	725	100
	ĥ2	70	38,950	910	83	8
A6603 ^(a)	TI	40	40.550	875	167	7
	Т2	40	40,700	915	100	5
	U1 112	40 40	42,750 42,400	1150	142	10 12
					107	12
	BI B2	50 50	39,750 40,400	885	183	9
	çī	50	39, 100	1000	590	78
	C2	60	37.900	800	766	67
	D1	60	38,950	1010	175	7
	D2	80	3.8.500	833	690	100
	E1	80	38,500	935	750	100
	E2	80	38,200	950	824	100
A7664 ^(b)	បា	70	37,500	824	725	100
	\$2	80	37.700	824	734	100
	T1	80	36,900	790	715	100
(-)	12	80	38,300	866	7 40	100
A6641 ^(a)	X2	80	39,850	1077	665	100
A6588 ^(a)	C2	40	40,200	984	308	25
		40	38,050	815	133	5
	N2	40	38,650	915	475	49 49
	B2	50	38 450	900	133	5
	čī	50	39,750	10 20	658	92
	A1	60	38.500	815	9 10	100
	A2	60	38,650	990	400	35
	BI	60	39,950	990	250	20
A6557 ^(a)	B2	50	38,500	975	58	3
	K2 51	50 50	38,900 41.200	850 1025	1358	100
	40	-				
	BI	60	40,300	950	818 650	95 95
	63	70	40,400	1077	1.50	10
(-)	AI	70	40,000	1077	158	12
A6584 ^(a)	X1 X2	50 50	40,150	950	125	5
	~~	50	40,430	1025	0/5	100
	W1 W2	70 70	39,800	1040	715	100
			37,100	764	707	100
A7450	U2 N2	40 40	38,300	790 825	408	30
	PI	40	40,350	950	192	20
	UI	40	39,350	866	242	20
	NI	50	38,950	850	675	100
	P2 V1	50 50	40,250 37.400	940 735	117	10
	v2	50	39,500	815	258	20
	QI	60	38,400	833	833	10.0
	Q2	60	39,550	875	900	100
	R] Rウ	60 60	38,250 39,250	791	692	100
	N=		J 7,200	000	142	10

TABLE A-14. (Continued)

	S!	Testing Temperature,	Maximum Load,	Energy to Start Frocture,	Energy to Propagate Fracture,	% Shear
	Specimen	F	pounds	FT-1D	11-ID	racture
A7450	M2	70 70	37,650	809	709	100
	51	70	40,000	915	650	100
	52	70	39,800	850	766	100
A6595 ^(a)	זט	10	41,550	1020	133	3
	U2	10	41,850	1000	225	15
	V1 V2	10	41,950 42,550	1000	715 92	100
	<b>61</b>	20	42 800	1077	550	40
	L2	20	40,650	9 58	584	77
	P1	20	41,450	990	117	3
	RI	20	41,450	1025	142	5
	Q2	30	40,600	935	158	2
	T1	40	41,350	1025	158	9
	B2	40	42,350	1080	715	100
A 8378	E1	20	A1 350	1033	67	2
A0370	E2	20	40,950	1025	92	4
	Fl	20	41,750	990	108	3
	MI	20	41,600	1010	100	5
	L2	30	41,800	1140	815	100
	M2 F2	30 30	39,500	958	283	20
	GĨ	30	40,550	10 20	83	3
	LI	40	41,150	1033	833	100
	RI	40	41,300	1125	800	100
	51	40	40,200	1067	383	35
	\$1	50	40,850	1 100	7 15	100
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	50	41,600	1175	757	100
	ul .	50	40,750	1077	167	10
	U2	60	40,000	990	83	5
	G2	60	40,700	1033	1915	100
	X1 X2	60 60	40,800	1040	67 740	100
	~		57,000	1000		100
	¥1	70	41,250	1220	392	99 100
	w1	0	40,000	1033	734	100
	W2	<b>'</b> 0	39,400	1020	675	100
A6695 ^(a)	Qĩ	10	42,000	940	125	5
	- NI	10	42,000	900	258	8
	PI	10	41,500	935	142	3
	S1	20	41,850	97,5	125	2
	T1	20	42,850	1040	442	50
	Т2	30	42,600	1020	117	2
	U1 U2	30	42,200	1033	133	3
A9262	G2	10	42,000	1077	158	5
	HI	10	42,650	1033	83	I
	HZ	10	41,750	1025	A 10	100
	F1	20	41,600	1025	258	25
	G1	20	40,800	1077	584	95
	E1	20	41,500	990	108	4
	к	30	40,100	900	100	8
	E2	30 30	40,300	961 075	650 658	100
	U2	30	40,000	975	625	

	S	Testing Temperature,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear In
nedt	Specimen	F	pounds		m-10	Fracture
A9262	V1	40	40,900	935	183	. 9
	V2	40	41,350	1033	734	100
	K2	40	39,300	833	408	45
	. 1	EÁ	20.000	076	450	100
	\$1	50	39,100	891	7.40	100
	52	50	39,150	925	658	100
	L2	50	39,500	910	83	5
	MI	60	39,300	891	725	100
	M2	60	39,300	9 50	684	100
	NI	60	39,500	915	725	100
	N2	60	39,200	950	675	100
A7528 ^(b)	в2	20	42,700	1040	167	7
	ĨA	30	42,400	950	1150	100
	A2	30	44,000	1025	208	10
	81	30	42,450	984	83	3
	R I	20	41,200	000	475	57
	R2	40	41,350	9 50	6 58	100
	\$1	40	41,600	875	757	100
	52	40	40,750	833	227	97
A6697 ^(a)	T]	30	44,750	1080	142	5
	U1 T2	30	44,750	1090	150	3
	12	30	43,300	1077	173	15
	B1	40	43,150	961	690	100
	B2 C1	40	42,900	984	158	5
			44,000	1007	100	,
	C2	50	43,800	1 1 10	6 58	100
	D1	60	43,250	1077	675	100
	D2 52	60 60	43,000 41,250	1067 975	715	100
B868	P1 02	40	42,000	1033	92	3
	01	40	41,050	1120	20.8	17
	Q2	40	41,900	1050	665	95
	141	50	42 900	075	117	
	M2	50	43, 100	1040	117	5
	N1	50	43,100	1010	175	13
	N2	50	43, 250	1010	6.42	90
	A1	60	40,850	1040	684	99
	A2	60	43,250	1020	75	5
	л Ц	60 60	42,000	940 1250	142	100
	El	70	42,159	1010	675	100
	E2 H2	70	41,200	900	183	10 97
	JT	70	42,500	1010	575	93
	F]	80	41.400	975	6.42	98
	F2	80	41,650	961	715	100
	G1	80	41,500	9 58	625	100
	62	80	41,700	950	707	100
A8730	បា	50	42,600	891	408	47
	U2 V1	50	43,150	940	234	17
	v2	50	42,500	925	193	28 15
						••
	G2 S2	60 60	41,500	900 88 s	707 800	99 100
	TI	60	42,000	885	92	4
	T2	60	42,600	950	6 25	95

TABLE A-14. (Continued)

Heat	Specimen	Testing Temperature, F	Maximum Lood, pounds	Energy to Start Fracture, ft-lb	Energy to Propagate Fracture, ft-1b	% Shear in Fracture
A8730	RI	70	41,900	935	7 50	100
	31	70	41,200	950	/34	100
	NZ	70	41,950	0/2	005	83
	LI	70	41,200	875	400	49
	К1	80	41,150	900	684	100
	L2	80	41,050	885	600	100
	Ql	80	40,850	860	665	100
	RI	80 -	40,850	800	584	99
B 849	អា	50	43 300	915	10.8	,
0007	Н2	50	43 650	1025	200	10
		50	44.050	984	108	10
	J2	50	43,950	1060	133	5
					·	_
	F1	60	43,600	1050	658	93
	F2	60	43,600	1160	625	98
	GI	6U	43,050	990	83	3
	62	ου	00 کم 43	1077 %	400	45
	¥1	70	42,500	9 40	707	100
	٧2	70	41,900	900	258	25
	W1	70	43,000	1060	1 50	10
	₩2	70	4 2, 100	935	690	100
	MI	80	4 2, 450	9 50	83	8
	52	80	42,900	950	740	100
	บเ	80	42,850	915	740	100
	U2	80	42,750	915	665	100
	м2	90	41 900	915	584	97
	RI	90	41.000	8.50	616	97
	R2	90	42,100	961	658	100
	SI	90	41,400	900	675	100
0.070	un	50	44.000	1040		-
Bein	MZ NI	50	44,000	1040	92	3
	ראן ליא	50	44,500	740	175	3
	P1	50	45,000	1090	125	1
	M1	60	44,400	975	107	98
	H2	60	43,600	1010	658	100
	1L	60	43,550	935	784	100
	JZ	00	43,900	915	83	3
	E1	70	42,150	891	208	15
	Gl	70	43,900	1000	600	100
	G2	70	4 5,000	1100	650	100
	HI	70	43,350	958	292	15
	A2	80	42,300	7 84	734	100
	E2	80	42,800	9 40	609	98
	Fl	80	42,300	. 891	684	100
	F2	80	43,350	9 40	757	100
	A1	90	43,700	9 40	658	100

TABLE A-14. (Continued)

(a) Test data for other specimens from this steel were reported in the Appendix of the First Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 49.

(b) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 53.

· ---

Heat	Specimen	Testing Temperature, F	Maximum Load, pound≤	Energy to Start Fracture, ft-lb	Energy to Propagate Fracture, ft-1b	% Shear In Fracture
4.66.71		10	44.450	1 125		40
A92/1	W2 F1	10	45,600	1180	75	40
	Ē2	10	45,500	1150	175	7
	F1	10	45,600	1175	108	2
	٧2	20	43,600	1170	766	100
	U2	20	44,050	1120	92	2
	\ 1 ₩1	20 20	43,500 43,800	1067	300 150	28 3
						-
	M2	30	43,250	1110	142	2
	N2	30	42,600	10.60	67	5
	\$1	30	43,200	1077	125	5
	52	40	42,800	1080	815	100
	TI	40	42,300	1020	3 50	12
	T2	40	42,700	1080	534	49
	K)	40	42,230	730	334	27
	К2	50	42,050	10 20	860	100
	12	50	40,500	885	842 842	100
	Ъ́т	50	40,700	860	833	100
A 9272	ы	20	4 5, 250	1175	125	1
	H2	20	44,800	1150	117	ź
	11	20	46,350	1258	150	2
	E1	20	43,700	1455	107	5
	E2	30	44,200	1033	125	2
	F1 F7	30	44,150	1033	740	100
	к2	30	43,900	1125	442	49
	12	40	44.7.50	1 240	117	5
	ĸī	40	42,750	984	7 50	95
	L1	40	43,350	1060	150	5
	12	<b>4</b> 0 _.	42,750	925	150	2
	52	50	42,500	961	824	100
	T1	50	43,250	1110	757	100
	M1	50	42,450	1023	316	28
	· 10	40	42 200	10.00	0.50	100
•	M2 N1	60	43,200	1040	757	100
	N2	60	43,450	1125	766	100
	51	60	42,750	1025	734	100
A9 273	<b>\$2</b>	20	44,600	900	142	3
	T1	20	45,900	1 1 50	150	11
	G2	20	46,800	1 175	183	3 8
	10	20	44.400	1022	010	100
	\$1 \$1	30	45,100	1 100	283	12
	17	40	44 760	1025	716	00
	M2	40	43,700	935	125	4
•	RI	40	44,650	1067	784	100
	R2	40	42,850	891	7 50	100
	K1	50	43,850	1025	175	8
	E2	50	44,550	1100	775	100
	F2 G1	50	45,500 44,950	1067	372 842	40 100
		, <b>,</b>	10		000	
	L12	60 60	43,700	1020	442	42
	Т2	60	44,500	1 100	800	100
κž	К2	60	44,600	1067	167	10

- . . .

TABLE A-15. NAVY TEAR-TEST DATA FOR TYPE IV STEELS WITH VARIOUS SILICON CONTENTS

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-lb	Energy to Propagate Fracture, ft-1b	% Shear In Fracture
AQ 272		70	43.300	035	815	100
M7 2/ 3	12	70	43 300	961	840	100
	ភ្ន	70	43 050	058	808	100
	Êİ	70	43,950	1050	833	100
A9 27 4	к2	50	49,600	1120	67	5
	Lİ	60	49,800	1 130	216	13
	L2	70	49,350	1120	125	10
	M1	80	48,450	1000	425	35
	A1	80	48,950	707	167	20
	A2	80	52,400	1067	50	15
	BI	80	50,250	1100	100	15
	B2	90	49,450	1 2 2 0	833	100
	M2	90	48,850	935	790	100
	NI	90	47,750	940	815	100
	N2	90	49,150	1000	325	20
	51	100	49,700	1080	833	100
	\$2	100	47,300	910	800	100
	ŢĨ	100	49,050	1060	750	100
	Т2	100	49,150	1090	740	100

....

------

...

_ _ _ - - - -

. .... -

TABLE A-15. (Continued)

`

<u></u>	C	Testing Temperatura,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear in
Meat	Specimen	r	pounds	ff-1D	tt-1b	Fracture
A8904	Q2	60	40,300	961	158	15
	RZ 51	60 60	38,400	6 24 9 6 6	200	49
	ĸī	60	39,500	915	125	10
	J2	70	40,200	1067	83	10
	jī	70	39,200	975	142	10
	RI	70	40,150	958	75	5
	\$2	70	39,500	866	675	100
	K2	80	39,200	885	600	90
		80	39,500	984	600	90
	Q1	80	39,300	900	675	100
4 \$0/15	A1	30	42 900	1047	200	16
A0703	Â2	30	41,700	925	1.83	7
	vī	30	42,500	10 20	258	30
	٧2	30	41,400	935	1 17	2
	т1	40	41,650	1033	590	80
	T2	40	41,700	940	117	5
	01	40 40	41,400	1000	108	4
	04		47,000	1020	125	5
	R1	50 50	40,500	875	658 67	95
	51	50	40,500	910	609	91
	זר	50	40,300	990	1 33	15
	J2	60	39,700	984	665	100
	K1	60	40,7.0	10 80	675	100
	K2 52	60 60	41,250 40,150	1060 915	1 17 750	12 100
	LI 19	70	40,400	910	658 647	100
	MĨ	70	40,200	935	625	98
	M2	70	40,300	900	675	100
A8906	LI	30	41,000	950	300	26
	L2	40	40,850	891	392	46
	BI	50	41.300	140	665	100
	B2	50	41,850	1000	142	5
	U1	50	42,000	1050	125	5
	U2	50	41,150	940	665	100
	A1	60	41,500	1077	66	5
	A2	60 60	40,250	875	12 20	100
	ĸĩ	60	40,650	891	234	32
	ot	70	<i>4</i> 1.000	<b>0</b> 59	A 59	100
	Q2	70	40,200	915	690	100
	К2	70	40,900	925	158	21
	TI	70	40,450	885	725	100
	RI	80	38,600	842	616	100
	R2	80 \$0	40,750	9 15	6 16 6 7 F	100
	\$2	80	39,550	915	625	100
A8907	J2	20	41,950	958	250	20
	17	20	40.000	015	-	
	LI LI	30	42,700	875	275	26
	K1	40	42.250	975	700	100
	Ĺ2	40	42,350	961	100	7
	B1	40	43,300	10 <i>5</i> 0	208	20

-64-

`

+

Ν.

	1	~	
-	n	Ь	-
	~	1	

TABLE A-16. (Continued)

Heat	Snecimen	Testing Temperature,	Maximum Load, nounds	Energy to Start Fracture, fwib	Energy to Propagate Fracture, feature	% Shear In Frantuse
11801	opection		pounda			11021018
A8907	K2	50	41,850	915	665	90 100
	Q2	50	42,000	900	833	100
	ŘĪ	50	41,450	900	14.2	15
	R2	60	41,650	958	283	38
	T1	60	41,500	9 25	715	100
	T2	60	41,400	940	625	98
	B2	60	42,100	10/25	1225	100
	A1	70	41,350	10 10	648	100
	A2 \$1	70	41,300	935	750	100
	\$2	70	40,900	961	650	100
A8908	К2	30	42,850	975	142	10
	к1	40	42,250	1077	808	100
	Q	40	41,950	885	125	. 7
	A1	40	42,200	10 20	1090	100
	R]	50	41,150	875	734	98
		50 50	42,200	915	866	95
	Q2	50	43,000	1020	234	7
	т1	60	41.900	900	242	20
	Å2	60	40,900	910	150	Ĩ
	B1	60	41,500	935	425	47
	82	60	42,400	1000	7 25	100
	R2	70	41 ,6 50	961	690	100
	\$1	70	41,450	990	609	80
	52 T2	70 70	42,000 40,750	1020	824 400	100 36
	101	80	41.100	944	775	100
	Ü2	80	41,900	990	900	100
	¥1	80	41,450	900	633	97
	V2	80	41,250	900	/5/	100
A8909	V1	20	45,250	961	193	10
	VZ WI	20	45,000	0001	308	23
	W2	20	45,050	950	234	18
	TI	30	44,350	910	584	85
	Τ2	30	43,350	1010	133	10
	U1 U2	30 30	44,900 45.000	1077 1040	75 266	3 20
			40,000		200	20
	L2 M1	40 40	43,750	990	700	98 5
	M2	40	43, 150	9,58	1 25	6
	RI	40	44,400	1080	125	3
	ні	50	42,650	940	316	27
	R2	50	43,100	984	92	15
	\$1 \$2	50 50	42,850	935 940	675	95 93
	82	60	43 500	10.60	659	100
	K1	60	44,900	1125	707	100
	К2	60	43,850	1033	7 15	100
	LI	60	42,700	984	508	100
B871	11	40	45,200	1 100	584	90
	KJ 75	40 40	44,200	1000	266	15.
	K2	40	42,550	1050	133	5
	G2	50	43.500	1040	216	20
	HI	50	43,950	1077	700	97
	H2 M1	50	42,900	1 170 1047	757	100
	40.1	00	~4,100	1007	173	10

• --
Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-lb	% Shear In Fracture
B871	G1	60	44,450	1077	242	25
	M2	60	43,750	990	67	10
	V1	60	43,500	1020	984	100
	V2	60	42,750	984	75	7
	U1	70	43,150	1025	740	100
	U2	70	42,700	961	108	10
	R1	70	42,000	958	715	100
	R2	70	43,100	984	193	15
	51	80	42,700	1040	885	100
	52	80	42,650	990	961	100
	T1	80	43,000	940	725	100
	T2	80	43,650	1033	658	100
B872	L1	50	43,700	1000	175	17
	T2	50	44,950	1110	67	2
	U2	50	45,050	1067	117	5
	U1	50	44,750	1100	200	12
	L2	60	43,400	950	815	100
	M1	60	43,700	1020	740	100
	M2	60	42,700	940	915	100
	R1	60	44,400	1033	425	42
	R2	70	43,750	990	707	100
	\$1	70	44,300	1000	690	100
	\$2	70	44,000	975	700	100
	T1	70	43,150	990	684	100
B873	L2 V2 W1 W2	30 30 30 30	44,900 45,200 44,800 45,900	860 950 1160 1170	133 108 117 325	5 3 27
	L1	40	46,400	1025	650	99
	M1	40	45,200	990	83	5
	V1	40	45,450	1010	258	7
	M2	50	46,100	1077	642	100
	R1	50	45,350	1050	292	33
	J2	50	45,000	958	100	3
	R2	60	44,800	10.20	650	100
	S1	60	45,550	10.50	158	15
	J1	60	43,850	860	283	30
	T1 T2 U1	70 70 70 70	45,550 44,6 <b>5</b> 0 45,100	1050 1050 961 935	642 940 158	100 - 100 - 15
	U2	80	45,400	1000	200	20
	H1	80	44,050	842	234	15
	H2	80	44,050	935	707	100
	F1	90	44,300	990	725	100
	F2	90	44,350	940	808	100
	G1	90	43,750	891	775	100
	G2	90	43,750	935	725	100

TABLE A-16. (Continued)

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-Ib	Energy to Propagate Fracture, ft-1b	% Shear In Fracture
A6648 ^(a)	P1	90	38, 100	824	92	12
	Q2	90	37,650	815	92	10
	T1	90	37,600	707	42	15
	T2	100	36,950	675	559	95
	U1	100	36,950	658	590	100
	U2	100	36,250	734	42	10
A8736	D2	70	35,650	715	42	1
	E 1	70	36,350	775	50	2
	E2	70	36,850	824	92	3
	A1	80	33,650	684	609	70
	A2	80	34,600	707	83	10
	B2	80	34,650	790	250	15
	C1	80	35,000	757	67	3
	C2	~ 90	35, 150	757	50	5
	L1	90	36,750	961	75	10
	V1	90	36,600	1210	690	75
	L2	100	35,350	891	75	15
	V2	100	34,400	925	824	92
	W1	100	34,150	1033	975	100
	W2	100	35,600	1125	833	100
	M1	110	35,950	940	183	26
	T1	110	33,900	950	824	90
	T2	110	34,450	958	775	100
	V2	110	34,600	1020	925	100
	M2	120	34,750	915	684	100
	R1	120	33,750	940	866	100
	S1	120	34,700	1067	757	100
	S2	120	34,950	1060	775	100
A8737	В1	80	33,950	707	58	8
	В2	80	35,700	766	50	3
	С1	80	35,700	775	100	5
	К 1	80	36,400	775	33	8
	J1	90	35,700	1060	609	98
	J2	90	35,150	910	42	11
	A1	90	31,950	633	658	85
	C2	90	35,950	808	83	8
	A2	100	32, 150	541	242	25
	U1	100	34,350	885	842	97
	U2	100	35, 150	1067	885	100
	K2	100	34,750	915	417	49
	V1 V2 L1 L2	1 10 1 10 1 10 1 10 1 10	34,050 33,300 35,150 34,800	975 891 900 900	815 925 633 216	99 100 87 20
	M1	120	35,100	990	650	100
	M2	120	34,350	940	690	96
	R1	120	34,950	975	750	96
	R2	120	33,800	885	475	49
	51	130	33,450	866	784	94
	52	130	33,400	850	875	100
	T1	130	33,000	891	833	100
	T2	130	35,150	1150	715	95
A6707 ^(a)	B1	70	36,000	850	83	10
	C1	70	37,750	940	308	25
	C2	70	37,050	961	275	25
	82	80	37,500	1000	100	8
	P 2	80	37,750	950	1350	100
	R2	80	35,850	885	700	100

.. . .

.

#### TABLE A-17. NAVY TEAR-TEST DATA FOR TYPE VI STEELS CONTAINING VARIOUS AMOUNTS OF ALUMINUM

:

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-lb	% Shear in Fracture
A6707 ^(a)	\$2	90	<b>35,900</b>	866	675	100
	U2	90	35,400	815	690	85
A9263	U 1 U2 V1 V2	60 60 60	37,500 36,750 37,100 36,500	915 940 891 885	83 25 417 75	4 3 43 5
	\$2	70	36,200	860	525	67
	N2	70	35,600	815	50	8
	\$1	70	37,000	990	92	10
	T1	70	35,800	842	92	8
	L 1	80	36,050	860	600	93
	L 2	80	36,100	885	625	100
	M1	80	36,300	866	175	15
	T2	80	36,100	940	100	10
	К 1	90	36,500	910	766	92
	К2	90	36,600	915	1100	100
	М2	90	36,000	866	700	100
	М1	90	36,550	915	590	100
A9264	51	70	36,800	900	75	6
	52	70	36,800	860	92	5
	T1	70	36,650	940	58	8
	T2	70	37,300	940	75	15
	U1	80	36,650	958	725	100
	U2	80	37,350	1050	600	100
	L1	80	36,000	910	433	47
	Q1	80	36,650	900	100	10
	L2	90	35, 150	8 15	725	100
	Q2	90	36,350	860	1125	100
	R1	90	36,850	975	658	98
	R2	90	36,800	89 1	625	100
A6708 ^(a)	T1	50	36,600	790	83	5
	T2	50	37,600	950	92	7
	U1	50	39,000	940	193	5
	Ų2	50	38,900	900	75	3
	B1	60	37,650	866	100	7
	B2	60	40,100	1140	665	100
	C1	60	38,150	900	92	8
	C2	70	38,300	915	92	12
	V1	70	37,100	875	92	6
	¥2	80	36,900	784	1160	100
A8142	к1 К1	50	38,650 36,500	925 842	358	6 43
	K2	60	38,000	900	67	5
	P1	60	37,050	833	75	4
	T2	60	37,750	940	100	6
	P2	60	36,750	850	100	8
	J2	70	37,400	815	725	100
	L1	70	37,250	850	766	100
	L2	70	37,250	891	715	100
	M1	70	37,550	935	292	45
	J1	80	35,000	850	690	100
	M2	80	37,600	900	775	100
	N1	80	37,850	940	650	98
	N2	80	38,350	96 1	690	100
A8143	L2	70	36,750	757	58	3
	M1	70	36,950	734	4 17	5
	M2	70	36,600	725	75	3
	N1	70	36,300	784	75	4

-68-

1

TABLE A-17. (Continued)

Heat	Specimen	Testing Temperature, F	Maximum Lood, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-lb	% Shear in Fracture
A8 143	N2	80	36,200	766	283	30
	P1	80	36,650	734	83	15
	P2	80	38,000	891	142	15
	J2	80	35,800	815	92	10
	JI	⁻ 90	37,700	842	690	100
	<u>k</u> 1	90	37,250	860	516	73
	K2	90	38,200	800	658	86
	ÊÎ	90	37,250	824	508	100
A6709 ^(a)	BI	20	39,850	950	108	3
	B2	30	39,150	925	83	2
	C1	30	39,500	940	75	3
	C2	30	38,800	900	100	4

TABLE A-17. (Continued)

 (a) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 53.

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-16	Energy to Propagate Fracture, filb	% Shear in Fracture
A7531 ^(a)	52	50	38,750	842	108	5
	B1	50	39,450	850	100	5
	B2 C1	50 50	39,350 39,100	850 935	92 83	5 5
		40	37,000	700	1/7	-
N	P1	60	38,000	850	33	3
	51	60	38,500	850	67	2
	C2	70	38,150	808	1140	100
	<u>T1</u>	70	37,750	790	690	96
	τ2 U1	70	38,150 37,900	815 815	67 108	5 5
40174	ыт	80	39 750	450	50	10
A8 (30	RÌ	80	38,000	734	108	10
	R2	80	38,250	766	208	12
	51	80	37,500	700	50	10
	M2	90	38,000	766	17	15
	\$2 01	90	37,250	734	633	100
	Q2	90	37,350	734 766	67 83	15
	NĬ	100	38 500	850	035	10.0
	N2	100	39,000	940	800	100
	P1	100	37,800	790	665	100
	P2	100	38,200	9 10	650	100
A7322	ні	40	39,050	984	100	5
	H2	50	38,850	9 15	150	10
	11 L	60	38,550	875	108	5
	\$2	60 60	39,600 38,200	891	58 58	8 3
	C2	70	41 100	1077	484	100
	J2	70	38,350	868	990	100
	K1	70	38,450	934	167	10
	K2	80	38,500	940	10 10	100
	12	80	37,300	833	659	100
	ñī	80	38,050	833	75	10
	M2	90	37.700	833	641	85
	MI	90	38,200	860	691	100
	N1 C2	90 90	37,500	809	250	12
			50,400	750	/0/	100
	A1 42	100	37,850	868	709	100
	BI	100	38,050	875	/ <u>25</u> 675	100
	B2	100	39,700	950	875	100
A766 I ^(a)	UI	50	39, 150	940	83	4
	U2	50	38,700	915	83	5
	¥1 ¥2	50	38,750 38,200	950 958	83 58	5
	<b>A</b> 1	60	37 000	944	( <b>-</b> )	E
	ÂŻ	60	37,550	750	67	15
	BI	60	37,800	866	642	<b>9</b> 7
	B2 S1	70 70	38,200 38,500	885 866	734 675	100
	57	80	27 000		1010	100
	ŢĨ	80	37,800	885	690	100
	Т2	80	38,600	958	92	12
A8137	K2	50	39,350	915	50	11
	Q2	50	39,000	885	4∠ 58	3
	น้ำ	50	38,600	850	75	7

TABLE A-18. NAVY TEAR-TEST DATA FOR TYPE VII STEELS Containing various amounts of Aluminum

1

	\	Testing Temperature,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear in
Heat	Specimen	F	pounds	ft-lb	ft-16	Fracture
A8137	кı	60	39,450	850	665	100
	M1	60	39,400	900	600	98
	M2	60	39,450	1077	58	4
	U2	60	38,400	808	609	92
	И1	70	38,900	808	642	100
	N2	70	38,500	875	200	20
	V1	70	39,050	910	92	15
	V2	70	38,150	824	193	20
	L.]	80	38,450	885	625	100
	L 2	80	38,100	866	690	100
	PI	80	38,400	900	575	100
	P2	80	37,450	850	516	100
A7529 ^(a)	ΥI	50	39,200	885	58	3
	V2	50	39,400	815	108	5
	W 1	50	39,400	784	92	5
	₩2	50	39,350	740	158	5
	Q2	60	37,450	734	133	10
	UI	60	39,250	808	142	10
	U2	60	39, 100	784	559	86
	R1	70	37,450	766	665	100
	R2	70	37,400	715	584	93
	\$1	70	38,300	808	83	7
	<b>S</b> 2	80	37,350	725	584	100
	Τl	80	37,450	707	833	100
	T2	80	36,950	675	734	100
A8745	A1	20	39,900	750	316	37
	J1	20	39,750	740	75	3
	H2	30	39,500	833	609	100
	J2	30	39,500	734	292	25
	A2	30	40,900	833	83	3
	TI	30	40,000	815	283	33
	<u>н</u> 1	40	40,050	824	584	100
	52	40	39,600	800	575	90
	NI	40	39,950	860	175	16
	12	40	39,750	860	665	100
	N2	50	39,000	750	565	99
	P1	50	37,950	800	616	100
	Ç1	50	39,750	815	550	100
	<u></u>	<b>6</b>	20.000			100
	Q4 D1	¢U 40	38,900	850	508	100
	60	00 A0	30,330	/84	000	y/ 100
	S1	60	37,630	850	24.I 600	100
		········				

(a) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 53.

AFT-10         CPU-00         (1-10)         (1-10)         (1-10)         (1-10)         (1-10)         (1-10)         (1-10)         (1-10)         A           AF738         A1         60         37,900         885         106         5           B1         60         39,900         875         142         6           M2         70         34,450         650         675         100           N1         70         34,650         650         664         100           N12         70         34,650         750         306         52         44           N12         70         34,650         750         306         52         44         100         2           A8330         E1         50         38,650         770         664         100         2           A1         50         38,650         770         664         100         2         4           A1         70         38,650         770         664         100         10           K1         60         38,600         770         777         32         4           A2         60         37,700         766<	Hest	Specimen	Testing Temperature,	Maximum Load,	Energy to Start Fracture,	Energy to Propagate Fracture,	% Shear in
A8738         A1         60         37,400         815         100         5           B1         60         39,800         833         167         13           M2         70         34,450         650         673         100           M2         70         34,450         650         673         100           M2         70         34,450         650         673         100           A8330         E1         50         39,650         775         922         42           A1         50         39,650         775         922         42         40         100         2           A8330         E1         50         39,650         850         464         100         2           A2         60         39,550         760         100         10         10         2           A2         60         39,550         775         643         100         10         10           A2         60         39,550         775         643         100         10         10         10         10         10         10         10         10         10         10         10	11401	Specimen	F	pounds	11-10	0141	Fracture
A2 B2 B2 C         60 C         33,900 S3,900 B2 C         885 C         106 C         3 C           A3 A530         M2 P1         70 C         34,450 A4,200 C         675 C         100 C         675 C         100 C           A8330         F1         70 C         34,450 A4,200 C         700 C         675 C         100 C           A8330         F1         70 C         34,650 C         770 C         675 C         100 C           A8330         F1         50 C         33,050 C         770 C         646 C         100 C           A1         50 C         35,050 C         770 C         646 C         100 C         100 C           B1         60 C         35,550 C         770 C         646 C         100 C         100 C           B1         60 C         35,550 C         770 C         645 C         100 C         100 C	A8738	<u>A1</u>	60	39,400	815	100	5
B1         60         33,800         833         167         142         13           N1         70         34,450         650         673         100           N1         70         34,450         650         673         100           N2         70         34,450         650         673         100           N2         70         34,450         650         673         100           A3390         E1         50         39,050         775         300         2           A1         50         39,050         775         300         2         2           A1         50         39,050         775         300         2         2           A2         60         39,500         850         723         100         117         1           A2         60         39,500         775         372         46         100           K2         60         39,500         775         373         2         10           K2         60         39,500         775         373         100         10           L1         70         38,600         775         30		A2	60 (0	39,900	885	108	5
AB32         B0         B7,800         B7,5         142         6           N1         70         34,450         500         675         100           N1         70         34,450         500         664         100           N1         70         34,450         700         675         100           AB350         E1         50         33,050         775         300         24           A1         50         33,050         775         300         24         24           A1         50         33,050         770         664         100         20           A2         60         35,500         770         664         100         20           A2         60         35,500         770         6414         100         20           A2         60         35,500         770         643         100         20           A1         70         38,600         750         615         100         20           A1         80         37,500         776         643         100         20         24         21         20         21         20         21         20		B1	60	39,300	833	167	13
A8350         A530         A530 <t< td=""><td></td><td>B2</td><td>00</td><td>39,800</td><td>8/5</td><td>142</td><td>6</td></t<>		B2	00	39,800	8/5	142	6
N1         70         36,200         850         684         100           A8350         F2         70         32,850         770         675         100           A8350         F2         50         33,050         775         93         24           A1         50         33,050         775         93         24           A1         50         33,050         775         93         24           A1         50         33,050         775         93         24           A2         60         33,050         770         8540         100         2           A2         60         33,050         770         840         100         840         100           B1         60         33,050         770         840         107         14           L1         70         38,450         850         722         12         100           C1         70         38,000         750         615         100         100           D1         20         80         33,000         750         615         100           L2         90         38,000         775         392 </td <td></td> <td>M2</td> <td>70</td> <td>34,450</td> <td>650</td> <td>675</td> <td>100</td>		M2	70	34,450	650	675	100
N2         70         34,200         707         757         100           A8350         E1         50         39,050         750         308         32           A1         50         39,050         824         10         22           A1         50         39,050         824         10         22           A2         60         38,050         790         864         100         2           A2         60         38,050         790         864         100         100           B1         60         38,050         790         864         100         10           K2         60         38,050         790         864         100         10           K2         70         38,050         790         616         100         10           K2         70         38,050         790         613         100         10           L2         80         37,050         755         323         100         10           L2         80         37,050         765         325         100         10         100         100         100         100         100         100 <td></td> <td>NI</td> <td>70</td> <td>36,200</td> <td>850</td> <td>684</td> <td>100</td>		NI	70	36,200	850	684	100
AB350         F30         B73         B73 </td <td></td> <td>N2 D1</td> <td>70</td> <td>34,200</td> <td>707</td> <td>757</td> <td>100</td>		N2 D1	70	34,200	707	757	100
A8350         E1         50         33,050         750         308         32           A1         50         33,050         750         922         4           A2         60         33,600         850         650         100           B2         60         33,600         850         600         100           B2         60         33,500         770         622         12           L1         70         38,450         850         92         12           M1         70         38,450         850         92         12           M1         70         38,450         850         92         12           M1         70         38,450         850         92         12           M2         80         37,550         775         633         100           M2         80         38,000         800         655         100           M2         80         38,000         800         625         100           M2         90         38,400         800         722         100           M2         90         37,550         775         633         100		• •	70	55,659	730	673	100
Af 1         50         33,000         775         921         4           A1         50         37,000         824         10         2           A1         60         38,000         850         616         100         2           A1         60         38,500         7790         100         10         2           A1         70         38,600         7790         10         10         10           A1         70         38,600         850         916         100         10           A1         70         38,600         700         616         100         10         10           A1         70         38,600         750         915         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<	A8350	E1	50	38,050	750	308	32
A1         50         37,500         800         600         2           A2         60         38,600         750         64.6         100           B2         60         38,500         750         64.6         100           B2         60         38,500         750         64.6         100           B2         60         38,500         750         64.6         100           C1         70         38,450         850         92         12           M1         70         38,500         750         64.3         98           D1         80         38,500         750         915         100           D2         80         37,500         750         6433         100           D2         80         37,500         750         6433         100           D2         80         38,500         8000         6725         100           D2         80         38,600         8000         6725         100           D2         90         38,600         800         675         100           D2         90         37,550         764         609         100		E2	50	38,050	775	92	4
A7         60         37,800         60.4         10         2           A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A <t< td=""><td></td><td>K I</td><td>50</td><td>39,600</td><td>800</td><td>650</td><td>100</td></t<>		K I	50	39,600	800	650	100
Af         2         60         38,800         850         616         100           B1         60         38,500         790         860         117         4           L1         70         38,450         850         92         12           M1         70         38,450         850         92         12           M1         70         38,000         790         623         98           D1         80         38,500         790         623         98           D1         80         38,000         750         915         100           M2         80         37,500         750         933         46           N1         80         38,000         750         915         100           M2         80         37,500         756         623         100           M2         80         38,000         800         625         100           M2         90         38,650         800         625         100           M2         90         38,050         800         675         100           M2         100         37,750         764         609			50	\$7,700	024	10	2
AB1         A00         38,500         790         B666         100           K2         60         39,950         860         117         1           L1         70         38,650         790         613         100           L1         70         38,650         790         613         100           C2         70         38,650         790         613         100           D1         80         37,500         755         633         100           M2         80         38,500         775         633         100           M2         80         38,500         842         625         100           M2         80         38,500         842         625         100           M2         90         38,500         842         605         100           M2         90         38,500         800         666         100           M2         90         38,500         800         609         100           Q2         100         37,750         784         234         255           Q1         100         37,750         755         100         100 <td></td> <td>A2</td> <td>60</td> <td>38,800</td> <td>850</td> <td>616</td> <td>100</td>		A2	60	38,800	850	616	100
AF3         60         35,500         700         100         10         10           L1         70         38,490         850         92         12           L1         70         38,290         775         625         100           D1         80         38,290         755         915         100           D2         80         37,500         755         392         46           M1         80         38,700         842         625         100           M2         80         37,500         755         392         46           M1         80         38,700         842         625         100           M2         80         37,500         756         915         100           M2         90         38,050         800         675         100           M2         90         38,050         800         665         100           P1         90         37,750         766         609         100           Q1         100         37,750         766         605         100           Q1         100         37,750         833         7         7 </td <td></td> <td>BI</td> <td>60</td> <td>38,500</td> <td>790</td> <td>866</td> <td>100</td>		BI	60	38,500	790	866	100
Atra         CC         D, 150         D, 00         11, 1         4           L1         70         38, 450         790         616         100           C2         70         38, 250         775         625         98           D1         80         38, 700         808         650         100           D2         80         37, 550         750         633         100           M2         80         38, 750         750         633         100           M2         80         38, 550         775         392         48           N1         80         38, 650         800         675         100           M2         90         38, 650         800         675         100           N2         90         38, 650         800         665         100           P1         90         38, 650         800         722         100           Q1         100         37, 750         766         666         100           Q1         100         39, 900         915         133         3         7           X1         30         39, 900         940         83 <td></td> <td>₽4 K2</td> <td>00</td> <td>38,300</td> <td>790</td> <td>100</td> <td>10</td>		₽4 K2	00	38,300	790	100	10
A8739         L1 12 70         38,450 38,250         850 775         92 642         12 100           D1         80         38,000         750         915         100           D2         80         37,500         755         3322         148           N1         80         38,000         750         915         100           M2         80         38,700         842         625         100           M1         80         38,700         842         625         100           M2         80         38,700         800         722         100           M2         90         38,600         800         722         100           M2         90         38,700         800         722         100           M2         90         38,700         800         722         100           M2         100         37,750         764         609         100           M2         100         38,700         915         83         7           M2         30         39,700         744         7         7           M2         30         39,450         915         833         <			••	07,730	000	117	4
AF739         D1         30         39,400         790         616         100           L2         70         38,700         808         655         100           D1         80         38,000         755         633         100           D1         80         38,000         755         633         100           M1         80         38,500         775         622         100           M2         80         38,500         775         623         100           M1         80         38,500         800         675         100           M2         90         38,500         800         675         100           M2         90         38,500         800         665         100           M2         90         37,850         779         664         609         100           Q2         100         38,100         79         615         100         100           Q2         100         39,400         891         133         3         3           M2         30         39,450         950         175         100           M2         40         39		LI	70	38,450	850	92	12
A8739         C1         70         38,200         808         650         100           D1         80         38,000         750         915         100           D2         80         37,500         755         633         100           M42         80         38,500         7750         633         100           M42         80         38,500         7750         6433         100           M42         80         38,500         800         6755         100           M42         90         38,500         800         6755         100           M42         90         35,500         800         6655         100           P2         90         37,500         766         609         100           Q1         100         37,750         76         83         3           Q1         30         39,400         900         559 <td></td> <td>MI Cl</td> <td>70</td> <td>38,000</td> <td>790</td> <td>616</td> <td>100</td>		MI Cl	70	38,000	790	616	100
A8739         D1         30         39,000         8911         100           A8739         D1         50         38,050         750         613         100           A8739         D1         20         38,050         37,500         755         622         100           A8739         D1         20         38,050         38,050         800         675         100           A8739         D1         100         37,750         766         609         100           A8739         D1         30         39,300         8911         133         3           A8739         D1         30         39,300         8911         133         3           X1         30         39,400         950         755         90           A8739         D1         30         39,300         8911         133         3           X2         30         39,400         950         175         83         7           A8739         D1         30         39,400         9500         1755         90         90         915         142         10         100         7         35         55         90         33<			70	38,250	2/5	625	98
AF739         D1         80         33,000         750         915         100           AF739         D1         80         33,550         775         392         43           AF739         D1         90         33,650         800         775         100           AF739         D1         90         33,650         800         766         609         100           AF739         D1         90         33,650         770         616         100           Q2         100         37,750         784         234         25           Q2         100         37,750         786         609         100           Q2         100         37,750         766         609         100           Q2         30         39,300         901         133         3           X2         30         39,500         915         83         7           X2         30         39,500         915         142         10           A2         40         39,650         950         175         90           B2         40         38,650         833         142         7           <		-		00,700	000	030	100
AF739         D1 N1         80 80         33,500 38,500         750 842         633 525         100 755           AF739         0         34,050         800         675         100           N1         80         38,700         842         625         100           N2         90         38,400         800         675         100           P1         90         38,500         800         665         100           P2         90         37,550         784         234         25           Q1         100         37,750         766         609         100           U2         100         38,100         790         616         1000           U2         100         38,100         790         616         1000           U2         100         38,100         790         616         1000           U2         100         39,300         891         133         3         3           X1         30         39,400         900         555         90           B1         40         39,400         900         555         90           B1         40         38,450		D1	80	38,000	750	915	100
AF2         B0         33,330         775         392         46           N1         B0         38,700         B42         625         100           N2         90         38,400         800         722         100           P1         90         38,400         800         722         100           P2         90         37,550         784         234         25           Q1         100         37,750         766         609         100           Q2         100         38,100         790         616         100           U1         100         37,750         766         609         100           U2         100         38,150         -         -         -         100           X1         30         39,450         915         83         3         3           X2         30         39,450         915         133         3         3           X2         30         39,450         950         175         10           A6739         B1         40         39,450         950         175         90           B2         40         38,450		D2	80	37,500	750	633	100
AFT         00         35,700         642         6,25         100           N1         00         35,700         642         6,25         100           N2         90         38,600         800         7722         100           P1         90         38,500         800         7222         100           Q1         100         37,750         764         609         100           Q2         100         38,100         790         616         100           Q2         100         38,150         -         -         100           U2         100         39,200         891         133         3           X1         30         39,900         915         83         7           X2         30         39,650         950         175         100           X2         30         39,650         950         155         90           B1         40         39,650         950         175         10           B2         40         38,650         833         142         7           K1         50         38,650         833         142         7 <t< td=""><td></td><td>MZ NI</td><td>80</td><td>38,550</td><td>775</td><td>392</td><td>48</td></t<>		MZ NI	80	38,550	775	392	48
L2         90         33,650         800         775         100           P1         90         33,600         800         722         100           P2         90         37,850         784         234         25           Q1         100         37,750         786         609         100           Q2         100         38,000         766         609         100           Q2         100         38,000         70         616         100           Q2         100         37,750         784         234         25           Q2         100         37,950         766         609         100           U1         100         39,900         915         83         3           X1         30         39,900         940         83         7           X2         30         40,500         950         142         10           A2         40         39,650         950         155         90           B1         40         39,650         950         175         90           B2         40         38,950         842         100         7		<b>N</b> 1	00	38,700	842	625	100
N2         90         38,400         800         722         100           P1         90         38,500         800         665         100           Q1         100         37,750         766         609         100           Q2         100         38,100         790         616         100           U1         100         37,750         766         609         100           U2         100         38,100         790         616         100           U1         100         37,750         766         609         100           U2         100         39,450         915         83         3           X2         30         39,450         915         142         10           A2         40         39,400         906         559         90           B1         40         39,400         906         559         90           C2         40         38,950         866         117         7           R1         50         38,650         833         142         7           R1         50         38,400         860         75         5 <tr< td=""><td></td><td>L2</td><td>90</td><td>38,050</td><td>800</td><td>675</td><td>100</td></tr<>		L2	90	38,050	800	675	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N2	90	38,400	800	722	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P1 P2	90	38,500	800	665	100
Q1         100         37,750         766         609         100           Q2         100         38,100         790         616         100           U1         100         39,200         -         -         100           U2         30         39,300         891         133         3           X1         30         39,450         915         83         7           X2         30         39,650         950         755         90           X1         30         39,650         950         755         90           X2         40         39,650         866         117         7           X2         40         38,950         866         177         3           X2         50         38,350         842         100         7           R		F2	30	37,850	/84	234	25
Q2         100         38,100         790         616         100           U2         100         39,200         -         -         -         100           A8739         D1         30         39,300         891         133         3           X2         30         39,450         915         83         3           X2         30         39,650         915         142         10           A2         40         39,650         950         175         10           B1         40         39,650         950         175         10           B2         40         39,650         866         1177         7           C2         40         38,550         842         100         7           B2         40         38,550         842         100         7           C1         50         38,650         842         100         7           R2         50         38,550         850         75         5           S1         50         38,650         866         616         100           K1         60         36,950         756         35 <t< td=""><td></td><td>Q1</td><td>100</td><td>37,750</td><td>766</td><td>609</td><td>100</td></t<>		Q1	100	37,750	766	609	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q2	100	38, 100	790	616	100
A8739         D1         30         39,300         8911         133         3           X1         30         39,450         915         83         3           X1         30         39,900         940         83         7           X2         30         40,500         915         142         10           A2         40         39,650         950         175         10           B1         40         39,650         950         175         10           B2         40         38,950         866         1177         7           C2         40         38,950         842         100         7           C2         40         38,850         833         142         7           R2         50         38,350         842         100         7           R2         50         38,450         850         75         5           S1         50         38,600         860         616         100           K1         60         38,600         808         990         100           K1         70         37,550         808         600         97 <td></td> <td>U ( 112</td> <td>100</td> <td>39,200</td> <td>-</td> <td>-</td> <td>100</td>		U ( 112	100	39,200	-	-	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		02	100	30, 150	-	-	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A8739	DI	30	39,300	891	133	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D2	30	39,450	915	83	3
A2         50         40,500         915         1422         10           A2         40         39,650         950         175         10           B1         40         39,650         900         559         90           B2         40         38,950         866         117         7           C2         40         38,250         790         67         3           C1         50         38,650         833         142         7           R1         50         38,350         842         100         7           S1         50         38,350         850         75         5           S1         50         38,400         860         616         100           T1         60         38,400         860         616         100           T2         60         37,600         808         990         100           K1         60         38,400         860         616         100           K1         60         38,600         808         600         97           L2         70         37,750         833         609         100		X1 X2	30	39,900	940	83	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		~-		40,000	715	142	ΙŲ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A2	40	39,650	950	175	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1	40	39,400	900	559	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C2	40	38,950	866	117	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				56,230	790	87	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>C1</u>	50	38,650	833	142	7
$K_2^2$ $50$ $38,350$ $850$ $75$ $5$ $51$ $50$ $38,050$ $800$ $475$ $85$ $52$ $60$ $36,950$ $766$ $466$ $66$ $11$ $60$ $38,400$ $860$ $616$ $100$ $12$ $60$ $37,600$ $808$ $990$ $100$ $K1$ $60$ $38,600$ $850$ $108$ $3$ $K2$ $70$ $37,750$ $833$ $609$ $100$ $L1$ $70$ $37,750$ $808$ $600$ $97$ $L2$ $70$ $37,950$ $784$ $616$ $94$ $Q1$ $70$ $36,900$ $715$ $658$ $100$ A8351 $K2$ $10$ $40,350$ $790$ $83$ $12$ $K1$ $20$ $41,300$ $866$ $616$ $100$ $L1$ $20$ $39,700$ $  2$ $20$ $39,650$ $784$ $58$ $3$	•		50	38,350	842	100	7
S2         60         36,950         766         466         66           T1         60         38,400         860         616         100           T2         60         37,600         808         990         100           K1         60         38,600         850         108         3           K2         70         37,750         833         609         100           L1         70         37,550         808         600         97           L2         70         37,950         784         616         94           Q1         70         36,900         715         658         100           A8351         K2         10         40,350         790         83         12           K1         20         41,300         866         616         100           L1         20         39,700         -         -         2         2           P2         20         39,650         784         58         3		S1	50	38,350	850	75	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•••	••	00,000	800	4/3	85
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		52	60	36,950	766	466	**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TI	60	38,400	860	6 16	100
K1         60         38,600         850         108         3           K2         70         37,750         833         609         100           L1         70         37,550         808         600         97           L2         70         37,950         784         616         94           Q1         70         36,900         715         658         100           A8351         K2         10         40,350         790         83         12           K1         20         41,300         866         616         100           L1         20         39,700         -         -         2           P2         20         39,650         784         58         3		T2	60 ()	37,600	808	990	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K I	00	38,600	850	108	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K2	70	37,750	833	609	100
L27037,95078461694Q17036,900715658100A8351K21040,3507908312 $K1$ 2041,300866616100L12039,7002P22039,650784583		LI	70	37,550	808	600	97
K1         20         41,300         866         616         100           K1         20         41,300         866         616         100           L1         20         39,700         -         -         2           P2         20         39,650         784         58         3		L2 01	70	37,950	784	616	94
A8351         K2         10         40,350         790         83         12           K1         20         41,300         866         616         100           L1         20         39,700         -         -         2           P2         20         39,650         784         58         3		νης i	70	30,900	/ 15	658	100
K1 20 41,300 866 616 100 L1 20 39,700 – – 2 P2 20 39,650 784 58 3	A8351	К2	10	40,350	790	83	12
L1 20 39,700 – – 2 P2 20 39,650 784 58 3		<u>K1</u>	20	41,300	866	616	100
r 2 20 39,650 784 58 3		L1	20	39,700		-	2
		F4	20	37,050	/84	58	3

- -

TABLE A-19.NAVY TEAR-TEST DATA FOR TYPE VIII STEELS<br/>CONTAINING VARIOUS AMOUNTS OF ALUMINUM

ŧ

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-lb	Energy to Propagate Fracture, ft-1b	% Shear in Fracture
A8351	QI	30	39,800	800	150	4
	Q2	30	39,500	740	75	3
	ບ່າ	30	39,700	800	292	30
	L2	30	40,700	833	100	2
	MI	40	38,500	700	58	2
	U2	40	39,500	885	158	8
	V1	40	39,250	824	242	27
	٧2	40	39, 250	842	75	4
	M2	50	39,550	757	650	100
	И1	50	40,000	784	450	100
	N2	50	35,750	815	550	70
	PÌ	50	39,500	757	625	100
A8740	I A	30	41.650	984	117	3
	A2	30	39,900	800	150	5
	Т2	30	38,600	734	100	3
	R2	30	39,550	790	283	28
	51	40	39,000	775	334	42
	š2	40	39,200	750	584	100
	Ť1	40	39.750	790	67.5	100
	ĹĨ	40	40,100	775	50	4
	к2	50	39,400	833	665	100
	<u>0</u> 1	50	38,200	784	417	100
	02	50	39,100	766	633	100
	ติโ	50	39,150	559	565	100

4

7

TABLE A-19. (Continued)

Heat	Speciment	Testing Temperature, F	Maximum Load,	Energy to Start Fracture, ft.lb	Energy to Propagate Fracture,	% Shear in Frantus
······································					TT*1D	racture
A0047	נא וא	60 60	38,450 37,900	700 715	58 75	2
	V2	60	38,650	7 25	75	3
	E1	70	40, 400	885	650	100
	E2	70	39,650	842	75	10
	M2	70	39,450	833	133	12
	NI B2	80	40,350	1025	642	100
	K2	QU	39,700	920	6/5	98
A8145	V1 V2	60 60	38,450	975 1077	42	3
	พ่า	60	38,750	1010	83	2
	₩2	60	39,450	1090	108	5
	L2	70	39,600	1025	1 17	01
	Q2	70 70	37,750 37,950	910	142	6
	RI	70	38,250	984	42	3
	1.1	80	38,050	915	740	02
	Mi	80	38,550	950	784	99
	M2 B2	80 80	38,750	1070	133	15
	( <b>1</b> 4		07,200	2 -10	,,,,	,,
	N1 N2	90	37,900	935	750	100
	P1	90	38,050	990	790	100
	P2	90	38,500	950	833	100
A7320	т2	40	40,500	1040	125	5
	DI	40	41,500	1080	108	5
	D2 Т1	40	40,000	1060	150	57
	<b>C</b> 1	50	40 7 60	1000	4.40	04
	BÎ	50	40,750	1125	234	20
	B2	50	41,400	1140	915	100
	ÇI	50	41,430	1100	63	8
	J2	60 60	40,000	10.50	208	10
	P1	60	41,200	1190	108	5
	P2	60	39,850	1025	67	5
	ΓL	70	40,350	1090	850	100
	K1	70 70	39,350	1000	715	85
	NÎ	70	39,600	1080	117	10
	1.1	80	39,100	990	775	05
	Ľ2	80	38,600	965	875	100
	M1 M2	80 80	38,350	990 934	800 784	98
						,5
A7319	E1 F2	50 50	41,650	1225	100 125	5
	DI	50	40,600	1 180	83	3
	D2	50	40,200	1040	133	3
	BI	60	41,900	1400	1320	100
	62 C1	60 60	40,450 40,150	1210	92	7 5
	C2	60	40,450	1200	183	12
	L2	70	39,750	1067	475	45
	M1	70	39,650	1080	766	90
	M2 N1	70	39,000	1033	750	100
	u .	80	38 800	o∡n	1010	100
	N2	80	38,800	1110	860	98
	P1 P2	80 80	39,100	1050	766	98

•

#### TABLE A-20. NAVY TEAR-TEST DATA FOR TYPE IX STEELS WITH VARIOUS ALUMINUM CONTENTS

'n.

t

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, f⊱lb	% Shear In Fracture
A8146	v1	40	39,750	1000	50	2
	V2	40	37,850	940	175	7
	W1	40	39,950	1040	167	5
	W2	40	39,400	1025	83	2
	N2	50	40,000	1020	100	5
	PI	50	39,250	9 40	408	40
	P2	50	39,300	885	367	25
	QI	50	38,700	875	7 57	88
	∟2	60	39,400	984	408	45
	Q2	60	39,050	1000	83	5
	R)	60	39,100	940	808	100
	R2	60	37,600	891	167	12
	L1	70	39,250	975	715	95
	<b>M</b> 1	70	39,650	950	707	87
	M2	70	40,150	990	715	98
	NI	70	39,750	975	500	75

TABLE A-20. (Continued)

(a) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilied Steel", Ship Structure Report No. 53.

Ń

Heat	Specimen	Testing Temperature, F	Maximum Lood, pounds	Energy to Start Fracture, ft-1b	Energy to Propagate Fracture, ft-1b	% Shear in Fracture
A7660 ^(a)	T1 B1 B2 C1	50 50 50 50 50	40,700 39,900 40,100 40,600	975 984 958 984	92 92 58 100	4 5 3 5
	T2	60	39,850	961	75	3
	U1	60	40,000	940	700	100
	U2	60	40,450	1033	117	6
	V1	60	40,200	990	167	10
	V2	70	40,100	940	850	100
	W1	70	40,500	990	750	100
	W2	70	40,950	1060	757	100
A8 144	P1	40	41,100	950	100	3
	N2	40	40,850	910	266	22
	P2	40	40,150	891	242	14
	Q1	40	40,450	875	75	3
	Q2	50	40,550	940	125	4
	R1	50	40,350	935	367	29
	R2	50	39,750	850	334	30
	L2	50	42,100	1025	117	5
	L 1	60	40,000	1000	633	92
	M 1	60	40,850	984	565	80
	M2	60	42,000	1040	740	100
	N 1	60	41,050	1010	915	100
A7662 ^(¤)	V1	40	40,050	990	425	30
	U2	40	40,000	10 10	100	5
	V1	40	40,150	958	300	12
	V2	40	40,350	10 25	175	10
	Q2	50	40,000	990	150	4
	R1	50	40,100	940	684	97
	R2	50	40,300	990	740	94
	S1	50	39,150	900	·75	2
	52	60	39,300	885	690	100
	T 1	60	39,800	935	158	12
	T 2	60	39,750	975	766	100
A7530 ^(a)	P2	30	41,700	940	83	4
	Q1	30	41,300	925	167	3
	Q2	30	41,700	735	167	5
	R1	30	41,600	875	117	3
	V1	40	41,450	984	75	2
	V2	40	40,300	885	83	2
	B1	40	40,950	935	108	3
	B2	40	40,700	940	125	3
A8141	K 1	10	42,500	1060	316	24
	N 1	10	41,150	975	358	32
	N 2	10	41,300	950	183	10
	L 2	10	41,350	1000	58	3
	J1	20	4 1,900	1067	609	76
	J2	20	4 1,650	950	935	100
	K2	20	4 1,500	990	633	80
	L1	20	4 1,500	990	860	100
A8746	J1	20	41,350	1280	67	5
	51	20	39,400	1100	383	41
	R2	20	38,500	1000	100	8
	52	20	39,450	1125	425	34
	J2 K1 K2 P2	30 30 30 30	39,600 38,750 39,200 39,550	1100 1077 1110 1170	800 609 500	100 100 70 49
A8746	P 1 Q1 Q2 R1	40 40 40 40	38,600 39,000 38,300 38,350	1090 1080 1090 1120	784 790 790 625	100 100 100 100

#### TABLE A-21. NAVY TEAR-TEST DATA FOR TYPE X STEELS CONTAINING VARIOUS AMOUNTS OF ALUMINUM

1

l

.

(a) Test data for other specimens from this steel were reported in the Appendix of the Second Progress Report on "An Investigation of the Influence of Deaxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 53.

- ..

ς.

.

x

		Testing	Maximum	Energy to	Energy to	% Shear
		Temperature,	Load,	Start Fracture,	Propagate Fracture,	in in
Heat	Specimen	F	pounds	11-10	11-10	* Fracture
	10	10	41 450	075	150	8
A8741	A2 D1	40	41,000	97	247	22
	51	40	41,400	501 00 <i>4</i>	105	32
	82	40	40,500	704	123	2
	C I	40	41,000	940	,,	
	12	50	40 550	875	133	<b>11</b>
	02	50	40,050	0/0	642	100
	Q2 D1	50	40,050	900	684	87
	67	50	40,030	,00		05
	R4	20	40,100			,.
	17	60	39 100	860	675	02
	51	60	39,100	940	125	10
	¢ 1	60	39,650	915	600	90
	57	00	37,000	. 933	707	02
	32	00	37,100	000	10,	70
	<b>K</b> 1	70	38 400	874	650	100
	K2	70	38,900	833	690	100
	P2	70	39,850	975	625	100
	01	70	39 100	891	690	100
			57,100	071	0.00	100
A8352	ומ	30	41,000	950	790	100
	D2	30	41,050	915	525	80
	ĔĨ	30	40,900	891	260	20
	Ĕ2	30	41,250	10 25	133	7
			.,	· · · <del></del>		-
	C1	40	40.300	958	707	100
	Č2	40	40,400	958	58	2
	ĸī	40	41.500	940	342	45
	Å1	40	40.550	891	633	90
		.+		0,1	0	
	⊾1	50	41,150	900	216	20
	Ā2	50	39,400	784	984	100
	BÎ	50	39 750	842	75	10
	B2	50	40.700	910	633	100
	0-	~~	40,700	710	000	100
	К2	60	41.050	935	466	. 65
	i 2	60	40,800	940	500	70
	<b>M</b> 2	60	39 850	940	42	22
	111	60	40 400	875	75	5
	•			0.0		-
	м1	70	39.450	850	707	100
	M1	70	39,600	875	242	22
	N2	70	40,100	850	784	100
	U2	70	41,150	935	658	92
			-			
	P1 (	80	40,050	866	590	83
	P2	80	40,400	915	690	100
	Ql	80	40,100	866	750	100
	Q2	80	39,750	875	684	100
A8742	L2	30	39,200	915	92	2
	QI	30	38,300	866	266	26
	Q2	30	39,550	900	283	28
	RI	30	39,550	891	133	3
	- 4					_
	R2	40	39,700	900	175	8
	\$1	40	40,750	885	616	100
	\$2	40	38,850	800	484	49
	J2	40	39,150	9 10	17	5
	11	50	39,650	910	590	97
	KI	50	39,600	940	625	98
	K2	50	40,150	940	633	93
	L I	50	39,400	925	725	88
40253	<b>F1</b>	10	10 000	000		
A8353	E	10	42,200	990	292	2/
	EZ	10	41,500	875	6 16	74
	RZ	10	40,600	885	559	85
	51	10	41,650	866	108	2
	53	20	11 100	000	1/7	F
	52	20	41,450	900	10/	5
	11	20	42,000	940	100	4
	14	20	40,550	042	204 105	7
	r4	ΔJ	41,000	201	125	0

# TABLE A-22.NAVY TEAR-TEST DATA FOR TYPE XI STEELS<br/>CONTAINING VARIOUS AMOUNTS OF ALUMINUM

Heat	Specimen	Testing Temperature, F	Maximum Load, pounds	Energy to Stort Fracture, ft-1b	Energy to Propagate Fracture, ft-1b	% Shear in Fracture
A8353	P1	30	41,350	850	757	100
	· Q1	30	41,750	990	658	95
	Q2	30	40,650	850	725	100
	RI	30	41,200	885	757	100
	К2	40	41,800	915	784	100
,	ĸı	50	41,500	866	784	100
A8743	ΓL	20	42,400	875	484	49
	J2	30	42,150	975	784	100
	<u>K1</u>	30	41,850	975	100	5
	К2	40	41,350	1025	642	100
	Ĺ1	40	41,400	950	684	100
	L2	40	40,600	935	4 17	48
	Q1	50	45,650	885	442	49
	Q2	60	40,450	900	35B	46
	<b>51</b>	70	40,450	885	175	32
	81	70	39,500	833	117	20
	62	70	39,900	875	158	20
	C1	70	39,700	850	200	23
	- R1	80	39,500	800	675	97
	R2	80	40,050	833	392	36
	C2	80	38,500	757	700	96
	<b>\$2</b>	80	38,450	784	325	30
	D1	90	38,700	833	584	96
	D2	90	39,000	8 24	642	95
	T1	90	39,750	940	590	95
	Т2	90	. 39, 700	833	600	97

TABLE A-22. (Continued)

,

. ·

	Testing Temperature,		Charpy Impact S	Strength, ft-lb	
Heat	F	lst Tost	2nd Test	3rd Test	4th Test
A6657 ^(a)	-30 -10	4 26	19 23	21 26	18 25
A8728	80 0 10 20 30 40 50 60	31 24 17 18 17 15 4 3	30 20 22 21 17 16 6 5	- 23 20 21 15 4 3 3	21 20 19 17 17 10 2
A8922	80 0 	- 32 22 23 17 17 16 7 6 3	28 23 19 19 17 19 3 6 2	22 21 21 11 7 12 5	22 19 8 18 4 5 3
A8747	80 10 - 10 - 20 - 30 - 40 - 50 - 60 - 70	29 24 23 22 19 19 8 3 6 4	32 - 21 22 18 6 16 6 4 4	- 20 22 16 19 16 9 4	24 20 22 18 18 11 6
B865	80 20 - 10 20 30 40 50	30 26 18 21 19 5 17 16	30 23 22 22 4 16 4 3	- 23 19 19 4 4 3	- 23 5 4 4 3 3 3
A6696 ^(a)	-50 -60	17 20	8 8	18 5	-
A8729	80 30 20 0 10 20 40 50 60	26 20 19 18 19 17 20 18 12 4	25 23 21 20 20 19 18 6 -	- 20 22 20 19 19 19 - 20 - 9	21 20 19 20 19 - 18 - 3
B866	80 20 10 20 30 40 50	31 24 23 21 21 4 4 3	28 25 23 22 20 20 6 14	- 20 20 18 3 -	23 18 16 19
A8923	80 0 10 20 30 40 50 60 70	29 22 21 20 20 9 20 16 5	27 22 20 20 20 20 18 6 10	20 22 18 22 18 7 14 7	21 20 19 20 19 17 15 6
B867	80 80 30 40 50 60 70 80	4 31 21 18 18 18 17 10 5	 31 21 18 3 18 9 10		19 19 10 18 2 -

KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE I STEELS WITH VARIOUS SILICON CONTENTS TABLE A-23.

(a) Test data for other specimens from this steel were reported in the Appendix of the First Progress Report on "An Investiga-tion of the influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 49.

-

---

---

. . ..

----

_--

-----

	Testing Temperature,	Charpy Impact Strength, ft-1b				
Heat	F	1st Test	2nd Test	3rd Test	4th Test	
A8151	80	33	33			
	'n	26 -	25	20	34	
	- 10	22	24	24	20	
	- 10	12	24	49 00	23	
	-20	~~~~	24	22	23	
	-30	4	12	21	14	
	-40	3	8	9	7	
	-50	13	3	-	-	
A9265	0	25	22	22	22	
	-10	21	5	19	24	
	20	4	5	5	23	
	-30	20	Ĩ.	Ă		
	-40		5	7	ž	
	-50	3	3	3	3	
10075			20			
A83/5	80	33	38			
	U .	25	24	25	28	
	-10	24	23	23	27	
	20	22	1.7	17	20	
	-30	24	17	22	19	
	-40	5	4	3	3	
A9766	0	23	26	24	16	
	10	24	25	24	20	
	-10	21	24		20	
	-20	21	40	0		
	-30	2		22	20	
	-40	4	5	4	22	
	-50	3	3	4	10	
A8376	80	38	34	_	_	
	0	25	24	23	22	
	- 10	27	25	24	23	
	-20	17	~	15	21	
	30		22		20	
	-40	Ă.	4	-	-	
A9275	\$0	22	20			
	00	32	32	-	-	
	U aa	23	22	_		
	-20	21	20	22	23	
	-30	5	22	18	22	
	-40	16	18	9	19	
	-50	3	19	11	18	
	-60	3	4	3	. 3	

TABLE A-24. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE II STEELS WITH VARIOUS SILICON CONTENTS

.

. .

	Testing Temperature,	Charpy Impact Strength, ft-lb				
Heat	F	1st Test	2nd Test	3rd Test	4th Test	
A8378	80 0 10	36 28 25	42 32 24			
	-20 -30 -40 -50	26 4 4 25	26 23 24 26	30 21 25 5	26 28 4 26	
	-60	3	3	23	-	
A6695 ^(a)	-60 -70 -90	7 25 17	25 9 2	25 2 -	24 14 	
A9262	0 40 50 60 70 80 90	27 27 4 19 8 2 2	29 27 23 3 3 3 3 2	- 16 14 4 16 2	- 28 4 3 23 2	
A6697 ^(a)	50 60	6 24	8 7	25 27	-	
B868	80 20 0 10 20 30 40	37 29 18 25 9 4 4	38 26 23 18 21 17 3	- 24 22 19 8 3	- 23 7 8 6 5	
A8730	80 10 0 10 20 30 40 50	37 26 26 25 4 4 4 10	34 30 29 25 19 11 17 5	- 29 28 6 20 4 21 4	- 31 15 24 24 12 20 3	
B869	80 20 10 0 10 20 30 40	40 24 17 11 13 4 5 4	36 23 21 21 16 10 4 8	- 27 21 18 10 -	- 22 18 25 5 -	
B870	80 20 0 10 20 30 40	33 28 23 21 24 5 4	33 28 24 14 12 14 3	- 22 23 6 19 6	- 22 14 6 24 5	

TABLE A-25. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE III STEELS WITH VARIOUS SILICON CONTENTS

(a) Test data for other specimens from this steel were reported in the Appendix of the First Progress Report on "An Investigation of the Influence of Deoxidation and Chemical Composition on Notched-Bar Properties of Semikilled Steel", Ship Structure Report No. 49.

 $\mathbf{N}$ 

a

	Testing Temperature		Charpy Impact S	Strength, ft-lb	
Heat	F F	1st Test	2nd Test	3rd Test	4th Test
A9271	10	42	42		-
	0	31	24	-	-
	-10	30	30	27	30
	-20	27	8	24	29
	-30	24	26	25	
	- 40	26	-4		22
	- 50	3	3	3	-4
A9272	0	30	29	_	_
	20	27	28	26	26
	-30	26	29	17	25
	-40	23	4	4	-7
	-50	24	3	17	20
	_60	3	19	24	- - -
	-70	2	3	-	-
A9273	80	39	42	_	-
	0	25	31	-	-
	<del>~</del> 20	31	23	28	18
	- 30	24	5	25	20
	40	4	24	21	4
	÷- 50	5	3	4	24
	60	8	6	3	5
A9274	0	29	26	_	-
	-20	28	26	30	30
	-30	28	20	29	5
	40	26	3	24	26
	-50	5	23	13	-6
	-60	29	3	17	17
	-70	3	3	· →	-
<u> </u>					

·· ·

## TABLE A-26. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE IV STEELS WITH VARIOUS SILICON CONTENTS

.

1

¢

*

	Testing Temperature,		Charpy Impac	t Strength, ft-Ib	
Heat	F	lst Test	2nd Test	3rd Test	4th Test
A8904	20 0 10 20 30 40 50	33 26 24 14 5 14 3	31 29 22 18 19 22 3		- 5 25 5 12 3
A8905	80 0 30 40 50 60 70	37 30 26 24 23 3 4	36 28 25 28 22 .3 3	- 28 25 5 17 3	- 25 23 16 3 2
A890 <i>6</i>	80 -30 -40 -50 -60 -70	37 31 23 14 8 8 3	46 33 25 23 23 20 6	- 27 24 7 13 14	- 25 22 19 3 11
A8907	80 30 40 50 60 70	38 30 25 24 23 6 19	43 30 25 19 13 15 22	- 25 26 23 21 21	- 26 23 22 8 20
A8908	80 0 40 50 60 70 80 90	42 28 22 25 20 5 17 4	41 28 25 24 21 18 3 7	- - 13 21 19 2 8	- 21 21 21 21 3
A8909	80 0 40 60 70 80 90 100	38 27 25 23 21 20 2 3	41 29 25 22 19 18 20 5	- - 13 13 13	- 23 15 8 15
B871	80 40 70 80 90 100 110 120	40 23 24 21 5 3 8 2	43 25 23 19 3 15 4 2	- 27 22 20 16 5 5	_ 25 23 22 9 5 9 -
B872	80 40 60 70 80 90 100 110 120	41 24 24 3 22 13 17 8 7	42 26 22 24 21 10 4 11 3	24 23 22 19 6 4	27 18 22 15 6
B873	80 40 60 70 80 100 110 120	38 26 22 21 19 18 5 8 14	42 19 24 6 7 8 12 8 2	26 20 21 6 22 19	24  21 8 8 5 5

## TABLE A-27. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE V STEELS WITH VARIOUS SILICON CONTENTS

~

1

-

٩

<u></u>	Testing Temperature,	Charpy Impact Strength, ft-1b				
Heat	F	lst Test	2nd Test	3rd Test	4th Test	
A8736	80 40 30 20 10 0	35 30 8 23 5 5	35 28 28 31 29 23	- - 18 19 5 5	- 27 29 16 5	
	- 10	4	6	4	7	
A8737	80 30 20 10 - 10 - 40	32 28 13 18 15 4 3	32 34 23 13 12 9 3	31 23 15 4 16	- 26 27 8 9 5	
A9263	80 20 10 - 10 - 20 - 30	35 26 25 22 10 11 3	33 24 23 23 16 20 4	- 6 13 19 8 3	- 24 16 15 4	
A9264	80 20 10 0 -10 -20 -30	35 25 23 22 7 4 6	37 26 28 22 7 4 5		- 24 21 9 9 9	
A8 142	80 10 - 10 - 20 - 30 - 40	38 29 23 4 6 16 3	35 28 24 6 21 4 7	- 24 5 16 17 4	- 25 20 21 5 4	
A8 143	80 30 20 10 0 -10 -20	31 23 10 21 7 8	30 23 19 18 7 8 19	23 22 12 10 6	- 26 17 21 11 11 -	

þ

÷

### TABLE A-28.KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE VI<br/>STEELS WITH VARIOUS ALUMINUM CONTENTS

TABLE A-29.KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE VII<br/>STEELS WITH VARIOUS ALUMINUM CONTENTS

	Testing Temperature,	Charpy Impact Strength, ft-1b				
Heat	F	lst Test	2nd Test	3rd Test	4th Test	
A8136	80	29	30	28	30	
	40	26	27	a		
	20	24	20	19	23	
	10	21	22	22	21	
	0	19	5	18	13	
A7322	80	33	38	_	-	
	10	28	28	27	27	
	ò	21	23	25	14	
	-10	22	14	25	6	
	-20	23	18	23	19	
	-30	13	6	9	5	
A8137	80	34	33	_	-	
	20	28	26	_	-	
	10	23	22	23	24	
	0	23	18	13	5	
	-10	20	15	20	21	
	-20	19	5	12	8	
	-30	3	6	4	5	
A8745	80	33	35	-	_	
	ō	26	26	_	-	
	~ 20	24	24	74	20	
	-30	22	22	8	22	
	-40			ň	19	
		5	17		10	
	-60	7	14	7	7	

 $\sim$ 

	Testing Temperature,	· · · · · · · · · · · ·	Charpy Impact	Strength, ft-lb	
Heat	<u> </u>	lst Test	2nd Test	3rd Test	4th Test
A8738	80 10 0	33 26 26	31 24 24 22	- - 25	
	- 10 - 20 - 30 - 40	18 5 8	7 12 6	7 15 9	20 7 7
A8350	80 0 - 10 - 20 - 30 - 40 - 50	35 24 25 19 • 20 8 7	34 23 21 18 18 16 	25 25 1º 18 9	- 23 23 20 21 14 -
A8739	80 0 - 10 - 20 - 30 - 40 - 50	33 26 21 22 7 4 3	33 23 18 21 11 14 4	27 20 21 19 5	24 22 6 20 8
A8351	80 40 0 -20 -30 -40 -50 -60	32 30 24 25 21 20 20 11	34 30 24 22 15 6 3	31 23 3 21 11 3	- 22 12 13 21 2
A8740	80 0 -20 -30 -40 -50 -60	36 28 23 21 10 15 3	34 24 23 22 21 17 7	- 23 20 19 14 20	- 23 22 20 18 12

4

- - --

#### TABLE A-30. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE VIII STEELS WITH VARIOUS ALUMINUM CONTENTS

#### TABLE A-31.KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE IX<br/>STEELS WITH VARIOUS ALUMINUM CONTENTS

Heat         F         Ist Test         2nd Test         3rd Test         4           A8145         80         38         40         -           10         32         29         31           0         24         20         29           -10         22         24         19           -20         8         7         6           -36         23         4         4           -40         3         5         -           A7320         80         40         43         -           -10         33         8         -         -           -20         7         27         31         -           -30         6         24         11         -           -30         6         24         11         -           -40         28         20         7         -           -50         10         32         8         -           -70         34         32         -         -           -10         32         8         35         -           -10         32         8         35         -		Testing Temperature,		Charpy Impact	Strength, ft-lb	
A8145       80 10       38 32       40 29	eat	Ĩ	Ist Test	2nd Test	3rd Test	4th Test
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145	80	38	40	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	32	29	31	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	24	20	29	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 10	22	24	19	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-20	8	7	6	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-30	23	4	4	- 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-40	3	5	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320	80	40	43	_	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	32	24	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 10	33	8	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-20	7	27	31	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-30	6	24	11	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-40	28	20	7	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	10	22	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60	3	3	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	319	80	42	41	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	37	36	-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Û	14	35	34	36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	34	32	~	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-10	32	8	35	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-20	31	6	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-4C	6	25	21	6
A8146         80         46         45            0         32         30            -20         27         -         -           -30         27         27         24           -40         12         28         20           -50         4         6         4		-50	3	3	8	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	146	80	46	45	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ô	32	30	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-20	27	_	-	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-30	27	27	24	12
-50 4 6 4		-40	12	28	20	24
		50	4	6	4	5
-60 8 5 6		-60	8	5	6	5
-80 2 3 -		- 80	2	3	-	-

- -

- -

	Testing				
Heat	F	1st Test	2nd Test	3rd Test	4th Test
A8144	80	39	38		
	0	31	27		_
	- 10	27	29	28	28
	- 20	25	26	29	11
	- 30	18	7	16	22
	- 40	5	4	9	19
	- 50	3	7	-	-
	-80	3	4	-	-
A8141	80	39	41	_	-
	0	29	32	-	_
	- 40	25	26	24	20
	50	24	22	5	25
	-60	20	9	23	13
	70	3	23	4	3
	80	3	3	9	-
A8746	80	43	46	_	-
	ō	39	35	_	_
	- 40	30	26	30	31
	50	25	28	28	7
	-60	7	7	26	24
	70	19	24	12	20
	80	8	3	3	3

ķ.

1

----

### TABLE A-32. KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE XSTEELS WITH VARIOUS ALUMINUM CONTENTS

### TABLE A-33.KEYHOLE CHARPY IMPACT-TEST DATA FOR TYPE XI<br/>STEELS WITH VARIOUS ALUMINUM CONTENTS

	Testing Temperature,	Charpy Impact Stringth, ft-lb				
Heat	F	lst Test	2nd Test	3rd Test	4th Test	
A874 1	80 0 - 20 - 30 - 40 - 50 - 60	39 29 22 25 9 19 7	41 30 27 20 24 5 4	- 25 26 22 4 6	- 27 25 10 5 5	
A8352	80 0 20 30 40 50 60	37 28 27 24 4 3 23	35 27 23 25 4 21 10	- 21 5 24 16 11	- 25 21 5 20 13	
A8742	80 0 40 50 60 70 80 90	38 28 24 21 22 11 5 3	35 27 24 22 20 3 5 2	- - 20 3 7 13	- - 21 4 17 3	
A8353	80 0 40 60 70 80 90	37 31 23 21 19 21 12	41 31 26 24 5 19 2	- - 25 21 11 8	- - 24 14 11 3	
A8743	80 0 -20 -30 -40 - - - 50 -60 -70 -80	35 26 28 26 25 25 25 24 22 3 3 3	37 28 27 27 7 2 24 14 20 3	28 26 22 24 4 4 5	28 23 26 	