Seventh

## PROGRESS REPORT

(Project SR-110)

on

# EFFECT OF ACCELERATED COOLING AFTER HOT ROLLING ON THE NOTCHED-BAR PROPERTIES OF SHIP PLATE STEEL

by

### R. H. FRAZIER, F. W. BOULGER and C. H. LORIG Battelle Memorial Institute

Transmitted through

NATIONAL RESEARCH COUNCIL'S COMMITTEE ON SHIP STEEL

Advisory to

## SHIP STRUCTURE COMMITTEE

Division of Engineering and Industrial Research National Academy of Sciences - National Research Council Washington, D. C.

SERIAL NO. SSC-89 BuShips Project NS-011-078

#### July 1, 1955

## SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS. DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY United States Coast Guard, Treasury Dept, Maritime Administration, Dept. of Commerce American Bureau of Shipping ADDRESS CORRESPONDENCE TO: SECRETARY SHIP STRUCTURE COMMITTEE U. S. COAST GUARD HEADQUARTERS WASHINGTON 25, D. C.

July 1, 1955

Dear Sir:

As part of its research program related to the improvement of hull structures of ships, the Ship Structure Committee is sponsoring an investigation of the influence of deoxidation and composition on properties of semikilled steel ship plate at the Battelle Memorial Institute. Herewith is a copy of the Seventh Progress Report, SSC-89, of the investigation entitled "Effect of Accelerated Cooling after Hot-Rolling on the Notched-Bar Properties of Ship-Plate Steel" by R. H. Frazier, F. W. Boulger and C. H. Lorig.

The project is being conducted with the advisory assistance of the Committee on Ship Steel of the National Academy of Sciences-National Research Council.

Any questions, comments, criticism or other matters pertaining to the report should be addressed to the Secretary, Ship Structure Committee.

This report is being distributed to those individuals and agencies associated with and interested in the work of the Ship Structure Committee.

Yours sincerely,

K Coevarh

K. K. COWART Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee

## SEVENTH Progress Report (Project SR-110)

on

# EFFECT OF ACCELERATED COOLING AFTER HOT-ROLLING ON THE NOTCHED-BAR PROPERTIES OF SHIP PLATE STEEL

by

## R. H. Frazier, F. W. Boulger, C. H. Lorig Battelle Memorial Institute

under

Department of the Navy Bureau of Ships NObs-53239 BuShips Project No. NS-011-078

for

## SHIP STRUCTURE COMMITTEE

## TABLE OF CONTENTS

ð

ì

1

ì

|            |      |     |     | •  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | <u>1</u> | <u>age</u> |
|------------|------|-----|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|------------|
| List of Fi | gui  | res | 5.  | •  | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | u | • | • | • | 0 | • | ۵        | ii         |
| List of Ta | ıble | es  | v   | •  | o | • | • | • | • | • | • | ۰ | • | • | • | • | • | ٠ | • | • | • | • | • | •        | iï         |
| Introducti | .on  |     | •   | ç  | • | • | • | • | • | • | 0 | ٠ | • | • | • | • | • | • | • | • | • | 0 | • | ¢        | 1          |
| Experiment | al   | Wo  | ork | Ξ. | • | • | U | • | • | • | • | • | • | ¢ | • | ٠ | • | ٠ | • | • | • | 9 | • | ۰        | 2          |
| Summary.   | •    | •   | •   | •  | • | • | • | • | ٠ | • | • | ٠ | • | • | • | • | • | ٠ | ٠ | ٠ | D | • | • | •        | 15         |
| References | ;.   | •   | •   | ¢  | • | • | • | e | • | • | Ð | • | • | • | • | • | ٠ | 3 | Ģ | • | • | ¢ | • | n        | 16         |
| Appendix . | 9    | •   | ů   | 0  | ٠ | ٠ | • | • | • | • | • | • | • | ٠ | • | • | • | ٠ | • | • | • | • | • | ٥        | 17         |

## LIST OF FIGURES

| <u>No</u> . | <u>Title</u>                                                                                                                                  | <u>Pa</u> | ige |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 1           | Test Plate for Cooling-Rate Determination                                                                                                     | •         | 3   |
| 2           | Cooling Curves for Water-Quenched and Air-Cooled<br>3/4-in. Steel Plates                                                                      | ٠         | 3   |
| 3           | Photomicrographs of Longitudinal Cross Sections of<br>Air-Cooled 3/4-in. Plates from Steels W-1 and W-5                                       | ٠         | 5   |
| <b>4</b>    | Microstructure of the Low-Manganese W-1 Steel Plate<br>Water-Quenched for Various Time Intervals and the<br>Air-Cooled to Room Temperature    | n<br>•    | 7   |
| 5           | Microstructure of the Higher Manganese W-5 Steel<br>Plate Water-Quenched for Various Time Intervals an<br>then Air-Cooled to Room Temperature | nd<br>•   | 8   |
| 6           | Keyhole Charpy Transition Curves for Steels W-1 and<br>W-5 Air-Cooled from 1850 F                                                             | •         | 12  |
| 7           | Effect of Interrupted Water Quenching on Keyhole<br>Charpy Transition Curves for Steels W-1 and W-5.                                          | •         | 12  |
|             | LIST OF TABLES                                                                                                                                |           |     |
| <u>No</u> . | * <u>Title</u>                                                                                                                                | Pa        | ıge |
| l           | Chemical Composition of Experimental Open-Hearth<br>Steels                                                                                    | •         | դ   |
| 2           | Average Hardness of Experimental 3/4-in. Steel Plate                                                                                          | ₽.        | 9   |
| 3           | Summary of Keyhole Charpy Data for Plates Time-<br>Quenched from the Last Hot-Rolling Pass                                                    | •         | 11  |

11

¥

# EFFECT OF ACCELERATED COOLING AFTER HOT-ROLLING ON THE NOTCHED-BAR PROPERTIES OF SHIP PLATE STEEL\*

### INFRODUCTION

The notched-bar properties of ship plate steels reheated to temperatures above 1500 F are affected by the rate at which they cool to room temperature. Previous work at Bettelle<sup>(1)</sup> showed that cooling in an air blast produced better properties than slower cooling rates. This suggested that faster cooling from the hot-rolling operation might improve the properties of ship plate steels. Work at Inland Steel Company(2) indicated that changing the rate of cooling between 1100 and 125 F does not significantly affect the properties of semikilled steels. It appeared, therefore, that cooling rates at temperatures above 1100 F were of greatest interest.

With this background the effect of accelerated cooling from the final rolling pass was investigated. Two open-hearth steels of conventional ship plate composition were used for the experiments. The plates were time-quenched as they left the rolling mill at 1850 F. The quenching periods were kept short in order to develop a microstructure of ferrite and pearlite in the final plate. The plates were cooled to room temperature in air after the time-quenching treatment. Keyhole Charpy and tear tests were made on samples from plates cooled from the final rolling pass at four different rates.

\*Ed. Note: Attention is directed to the fact that the Bethlehem Steel Company may have filed an application for patents on a process for improving the notch toughness of ship plate steel by accelerated cooling from the finishing pass in the hot-rolling operation.

#### EXPERIMENTAL WORK

<u>Cooling Rates</u>. Before planning the experimental work, it seemed desirable to estimate the cooling rates produced by quenching and air cooling 3/4-in. plates. For this purpose a thermocouple was welded in the bottom of a hole drilled to the center of a 6- by 12-by 3/4-in. plate, as shown in Fig. 1. Temperature measurements by this method gave the cooling curves shown in Fig. 2. Water quenching gave an average rate of 20 F per second, compared with 0.7 F per second for air cooling in the range from 1850 to 1300 F.

The broken lines in Fig. 2 show cooling rates estimated for three interrupted quenches. Subsequently, stock for the investigation was produced by immersing hot-rolled plates for 6, 10, and 25 seconds in water and then cooling in still air.

<u>Materials and Heat Treatments</u>. Two semikilled steels were used in the study. These steels were made in a commercial openhearth furnace and cast into large commercial sized molds. The ingots were rolled to 1 3/4-in. thick plate in a commercial rolling mill. Sections of the plate from one ingot were received at Battelle. The chemical compositions of the steels are shown in Table 1. Steel W-1 would meet the ABS Class A specification had it been rolled to plates 1/2 in. thick and lighter. The other steel could have been rolled to plates over 1/2 in. to 1 in. thick, inclusive, to meet the ABS Class B specification.

--2--



FIGURE I. TEST PLATE FOR COOLING-RATE DETERMINATION



| Heat             | Battelle-<br>Assigned<br>Heat | Composition, per cent |              |              |                |                |  |  |  |  |
|------------------|-------------------------------|-----------------------|--------------|--------------|----------------|----------------|--|--|--|--|
| Number           | Number                        | Carbon                | Manganese    | Silicon      | Phosphorus     | Sulfur         |  |  |  |  |
| 64C623<br>67C658 | W-1<br>W-5                    | 0.23<br>0.23          | 0.52<br>0.78 | 0.09<br>0.09 | 0.013<br>0.012 | 0.037<br>0.025 |  |  |  |  |

TABLE 1. CHEMICAL COMPOSITION OF EXPERIMENTAL OPEN-HEARTH STEELS

Note: No aluminum was added to either steel.

The sections of 1 3/4-in. plate were heated to 2250 F and rolled to 0.9-in. gage, using reduction of approximately 1/6 in. per pass. In order to insure a uniform finishing temperature, the 0.9-in. sections were immediately recharged in a furnace held at 1850 F. After 30 minutes in the furnace at 1850 F, the plates were reduced to 3/4 in. in one pass. Following this final pass, one plate from each steel was placed on edge on a brick floor, with a brick separating each plate, and allowed to air cool. Another plate from each steel was immersed immediately in a water bath. After six seconds the plate was removed from the water bath and air cooled to room temperature. A third plate from each steel was quenched for 10 seconds, and a fourth plate was quenched for 25 seconds. The estimated cooling curves for each plate are given in Fig. 2.

<u>Microstructure</u>. Fig. 3 shows photomicrographs of the structures of air-cooled steel plates used in this study. The



Steel W-1



Steel W-5

FIGURE 3 PHOTOMICROGRAPHS OF LONGITUDINAL CROSS SECTIONS OF AIR-COOLED 3/4-IN. PLATES FROM STEELS W-1 AND W-5 air-cooled material had a ferrite-pearlite microstructure closely resembling that of a hot-rolled mild carbon steel plate. Steel W-5 shows somewhat more banding of the pearlitic areas due probably to its higher manganese content.

The microstructure of the quenched plates was different at the surface than at the center. Typical microstructures from near the surface and at the center of the plate from both steels quenched for various times are shown in Fig. 4 and 5.

The microstructure in the surface layer of the W-l steel plate quenched for six seconds consists of unresolved finely divided carbides in a matrix of ferrite. Some patches of pearlite were also observed. After longer times in the quenching bath, the microstructure in the surface layer consisted of bainite with some tempered martensite. The longer quenching time produced more tempered martensite. The microstructure at the center of the W-l. steel plate quenched for six seconds is very similar to that for the air-cooled plate. Longer quenching times produced bainite in the center of what were the original austenitic grains. The bainite is outlined by free ferrite.

Plates of Steel W-5, quenched for six seconds, had a ferritepearlite microstructure throughout the plate thickness. The ferrite grains and the pearlite patches were much smaller near the surface than at the center of the plate. The microstructure of the W-5 steel plates quenched for 10 and 25 seconds was bainite

-6-



Picral Etch 180X Picral Etch Water Quenched for 10 Seconds



Picral Etch



Picral Etch

Water Quenched for 25 Seconds

FIGURE 4 MICROSTRUCTURE OF THE LOW-MANGANESE W-1 STEEL PLATE WATER-QUENCHED FOR VARIOUS TIME INTERVALS AND THEN AIR-COOLED TO ROOM TEMPERATURE



FIGURE 5 MICROSTRUCTURE OF THE HIGHER MANGANESE W-5 STEEL PLATE WATER-QUENCHED FOR VARIOUS TIME INTERVALS AND THEN AIR-COOLED TO ROOM TEMPERATURE

-8-

surrounded by free ferrite, with the ferrite outlining what were originally the austenitic grains. More free ferrite grains existed in the center of these plates than near the surface.

<u>Hardness</u>. The average hardnesses of the air-cooled plates were 69 and 71 Rockwell B for Steels W-1 and W-5, respectively. These plates had uniform hardnesses from one surface to the other and from edge to edge, whereas the water-quenched plates were not of uniform hardness. In the latter the surfaces and edges showed a higher hardness than the center. The average hardnesses at the center and surfaces of the various plates from the two steels are shown in Table 2. The hardness of the water-quenched plates

| Type of Cooling From                                                                      | Hard                 | ness, Rockwell B       |
|-------------------------------------------------------------------------------------------|----------------------|------------------------|
| Last Hot-Rolling Pass                                                                     | Center               | Édges and Surfaces     |
| γ                                                                                         | <u>Steel W-1</u>     |                        |
| As rolled<br>Quenched for 6 seconds<br>Quenched for 10 seconds<br>Quenched for 25 seconds | 69<br>70<br>88<br>88 | 69<br>95<br>105<br>105 |
|                                                                                           | <u>Steel W-5</u>     |                        |
| As rolled<br>Quenched for 6 seconds<br>Quenched for 10 seconds<br>Quenched for 25 seconds | 71<br>67<br>78<br>88 | 71<br>90<br>95<br>100  |

TABLE 2. AVERAGE HARDNESS OF EXPERIMENTAL 3/4-IN. STEEL PLATE

decreased gradually from the surface toward the center, with the hardness gradient extending inward about 3/16 in. from both surfaces. The edge hardening, on the other hand, extended somewhat more than one inch before the hardness reached that of the center. The tear tests were taken so that the notches cut through this hardened edge. The harder surfaces were present in all specimens of the water-quenched steel, since they represent the full thickness of the plate.

The Charpy specimens were taken from the center of the plate so that some of the hardened surface area of the water-quenched steel specimens was removed. However, the surface hardness of some thirty specimens from these steels averaged 96 Rockwell B, while six of the thirty had surface hardnesses over 100 Rockwell B. This higher hardness of the six specimens probably influenced their Charpy values but not the shape of the average Charpy value curves of the steels. The Charpy specimens with hard surfaces represented only about one-fifth of the bars tested.

<u>Keyhole Charpy Tests</u>. Four keyhole Charpy specimens from each plate were broken at each 10 F interval throughout the ductile-brittle transition range. Smooth curves were drawn through the averages of the results at each temperature. From these curves the temperatures at the 12 and 20 ft-1b energy levels were determined as criteria for the transition. All specimens were parallel to the rolling direction and notched perpendicular to plate surface.

-10--

The keyhole Charpy transition curves and individual test values for the two air-cooled steels are shown in Fig. 6. The temperatures at the 12 ft-1b level for Steels W-1 and W-5 are -10 and -23 F, respectively. When the 20 ft-1b criterion is used, the transition temperatures are +6 and -11 F for aircooled plates from the Steels W-1 and W-5, respectively. The transition temperatures measured by the same criteria for the water-quenched plates are given in Table 3. The average energy values of duplicate specimens tested at +80 F are also shown for comparison. The transition temperature at the 12 ft-1b level was lowered by increasing the quenching time. In the case of Steel W-1, the transition temperature at the 20 ft-1b energy level did not change in a consistent manner with the time at quench. This seemed to result from the fact that quenching for different lengths of time profoundly altered the character of the keyhole Charpy transition curve as shown in Fig. 7.

TABLE 3. SUMMARY OF KEYHOLE CHARPY DATA FOR PLATES TIME-QUENCHED FROM THE LAST HOT-ROLLING PASS

| Stee | 1                       | <u>Transition</u><br>12<br>Ft-1b | <u>Temperature, F</u><br>20<br>Ft-1b | Impact<br>Value<br>at 80 F<br>Ft-1b |
|------|-------------------------|----------------------------------|--------------------------------------|-------------------------------------|
| W-1  | Air_cooled              | -10                              | +6                                   | 34.5                                |
|      | Quenched for 6 seconds  | -30                              | -25                                  | 42.0                                |
|      | Quenched for 10 seconds | -36                              | -15                                  | 44.0                                |
|      | Quenched for 25 seconds | -45                              | -6                                   | 25.5                                |
| ₩-5  | Air-cooled              | -23                              | -11                                  | 37.0                                |
|      | Quenched for 6 seconds  | -26                              | -14                                  | 31.5                                |
|      | Quenched for 10 seconds | -31                              | -20                                  | 31.5                                |
|      | Quenched for 25 seconds | -35                              | -26                                  | 37.0                                |

-11-





-12-

One important observation was that the transition temperatures for the quenched plates were always lower than those for the air-cooled plates.

The keyhole notch Charpy properties of 3/4-in. semikilled steel plate were, therefore, improved by time-quenching in water for time intervals of 25 seconds or less.

Influence of Quenching on Tear Test Properties. Sixteen tear tests were also made on stock from plates representing each condition. These specimens were broken at various temperatures to determine the transition temperatures. For this purpose the transition temperature was defined as the highest temperature where at least one specimen was brittle. No more than four specimens were tested at one temperature. Brittle specimens were those with fractures indicating that more than half of the cross section failed by cleavage rather than shear. This criterion for defining the transition temperature has been used by many investigators and was used in this investigation in order to conserve stock. The information obtained in each test is shown in Table A-4 of the Appendix. The tear test data are summarized in Table 4.

In most cases time-quenching the hot-rolled plates in water lowered the transition temperature determined by tear tests. The maximum improvements amounted to 30 F for Steel W-1 and 40 F for Steel W-5. In general, increasing the length of the quenching time lowered the transition temperature. The exception to this statement

-13-

| Treatment Load*, pounds ft-1b<br>Steel W-1 (0.52 Per Cent<br>Air-cooled 38,490 | ft-1b<br>(0.52 Per Cent Mange<br>879<br>875<br>477                | f°-1b<br>nese)<br>1021 | Temperature <sup>k</sup> F   |     |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|------------------------------|-----|
| Air-cooled 28,490 38,490 708                                                   | (0.52 Per Cent Manga<br>708<br>879<br>477                         | mese)<br>667<br>1021   |                              |     |
| Air-cooled 38,490 708                                                          | 2008<br>8779<br>8779<br>8779<br>8779<br>8779<br>8779<br>8779<br>8 | 1.021                  |                              |     |
| quenched for 10 seconds 56,480 417                                             |                                                                   | 250                    | 0000<br>0000<br>0000<br>0000 |     |
| Steel W-5 (0.78 Per Cent                                                       | (0.78 Per Cent Manga                                              | <u>meşe</u> )          |                              |     |
| Aîr-cooled 39,940 825<br>Quenched for 5 seconds 38.790 650                     | 825<br>650                                                        | 638<br>642             |                              | -14 |
| Quenched for 10 seconds 51,690<br>Quenched for 25 seconds 51,030<br>666        | 666<br>666                                                        | 716<br>708             | 20                           | -   |

SUMMARY OF TRAR TEST DATA TABLE 4.

\*Average of all tests made. \*\*Average of tests made 10 F above transition temperature. {Transition temperature is defined as the highest temperature where one or more specimens out of four showed more than 50 per cent cleavage type of fracture.

is the plate of W-1 which was quenched in water for 25 seconds before air-cooling. This plate had a higher transition temperature than the plates which had been quenched for shorter times or air-cooled from the last hot-rolling pass. The transition temperature for the plate of W-5 which had been quenched for 6 seconds could not be determined because of a shortage of material.

#### SUMMARY

The results of this work may be summarized as follows:

- (1) Water quenching 3/4-in. plates for six seconds did not raise the hardness in the center of the plate. Longer quenching times increased the center hardness, an indication that the ultimate strength of the plate was increased. The hardness at the edge of all plates quenched was approximately 95 R<sub>B</sub>, with the higher carbon steel having the highest surface hardness.
- (2) The microstructure of the center of plates, quenched for periods longer than six seconds, was no longer typical of as-rolled steel but, instead, tended to show ferrite outlining the original austenite grain areas. The centers of the quenched plates also showed some Widmanstätten structures.

- (3) The transition temperature, when the 12 ft-1b keyhole notch Charpy criterion was used, was lowered by quenching the plates from the last hot-rolling pass. Longer quenching times gave lower transition temperatures. The higher manganese Steel W-5 appeared to be more adaptable to quenching than Steel W-1, since the shape of the keyhole Charpy transition curves for Steel W-5 was not altered by quenching.
- (4) In general, increasing the length of the quenching time lowered the tear test transition temperature. An exception was the plate of Steel W-1 which was quenched in water for 25 seconds before being air-cooled. This plate had a higher transition temperature than the plates which had been quenched for shorter times or air-cooled from the last hot-rolling pass.

#### REFERENCES

- Frazier, R. H., Boulger, F. W., and Lorig, C. H. "The Influence of Heat Treatment on the Notched-Bar Properties of Semikilled Steel Plate," Third Progress Report, Ship Structure Committee Report, Serial No. SSC-71, March 15, 1954.
- 2. Mair, L. "Effect of Cooling Rate on Transition Temperature," Inland Steel Company's Final Report to Subcommittee on Project SR-110, June 11, 1952.

APPENDIX

| Steel<br>Number | Testing<br>Temperature,<br>F                   | Test 1                                | Char<br>Test 2              | <u>py Value</u><br>Test 3      | <u>ft-1b</u><br>Test 4               | Average                                                    |
|-----------------|------------------------------------------------|---------------------------------------|-----------------------------|--------------------------------|--------------------------------------|------------------------------------------------------------|
| 8W l            | -30<br>-20<br>-10<br>0<br>10<br>20<br>30<br>80 | 4<br>18<br>18<br>19<br>22<br>27<br>35 | 546<br>19<br>24<br>26<br>34 | 4<br>3<br>17<br>25<br>21<br>28 | 8<br>6<br>20<br>18<br>20<br>13<br>30 | 5.3<br>4.3<br>11.5<br>18.0<br>22.0<br>20.8<br>27.8<br>34.5 |
| 8w 5            | -50<br>-40<br>-30<br>-20<br>-10<br>0<br>80     | 3<br>7<br>19<br>22<br>40              | 555<br>554<br>264<br>3      | 3<br>4<br>18<br>29<br>24       | 3<br>4<br>5<br>13<br>23<br>27        | 3.5<br>5.0<br>4.8<br>13.8<br>20.5<br>24.8<br>37.0          |

----

\_..\_ <del>\_</del>

\_ --

TABLE A-1. KEYHOLE CHARPY TEST DATA FOR AIR-COOLED STEELS

.

۰,

|                         |                                                | Energ                    | y, ft-1b                    |                              |    |
|-------------------------|------------------------------------------------|--------------------------|-----------------------------|------------------------------|----|
| Testing<br>Temperature, | Maximum<br>Load,<br>F Pounds                   | To<br>Start<br>Fracture  | To<br>Propagate<br>Fracture | Per Cent Shear :<br>Fracture | in |
|                         |                                                | <u>Steel 8W</u>          | ]                           |                              |    |
| 50                      | 41,650                                         | 961                      | 334                         | 30                           |    |
| 50                      | 41,150                                         | 950                      | 117                         | 3                            |    |
| 50                      | 41,200                                         | 961                      | 142                         | 5                            |    |
| 50                      | 41,900                                         | 961                      | 508                         | 60                           |    |
| 60                      | 37,350                                         | 790                      | 125                         | 5                            |    |
| 60                      | 38,050                                         | 833                      | 167                         | 16                           |    |
| 60                      | 37,700                                         | 842                      | 492                         | 55                           |    |
| 60                      | 37,950                                         | 750                      | 75                          | 5                            |    |
| 70                      | 40,700                                         | 875                      | 700                         | 90                           |    |
| 70                      | 39,850                                         | 790                      | 750                         | 100                          |    |
| 70                      | 38,700                                         | 891                      | 450                         | 53                           |    |
| 70                      | 38,650                                         | 775                      | 83                          | 18                           |    |
| 80                      | 37,500                                         | 808                      | 508                         | 68                           |    |
| 80                      | 37,500                                         | 700                      | 665                         | 89                           |    |
| 80                      | 37,150                                         | 790                      | 665                         | 88                           |    |
| 80                      | 38,100                                         | 750                      | 100                         | 30                           |    |
| 90                      | 39,750                                         | 824                      | 725                         | 100                          |    |
| 90                      | 40,350                                         | 891                      | 665                         | 95                           |    |
| 90                      | 36,200                                         | 734                      | 675                         | 83                           |    |
| 90                      | 3?,500                                         | 725                      | 200                         | 33                           |    |
| 100                     | 36,400                                         | 757                      | 700                         | 98                           |    |
| 100                     | 37,150                                         | 725                      | 633                         | 83                           |    |
| 100                     | 35,200                                         | 707                      | 650                         | 90                           |    |
| 100                     | 36,000                                         | 642                      | 684                         | 95                           |    |
|                         |                                                | <u>Steel 8w</u>          | ž                           |                              |    |
| 40<br>40<br>40<br>40    | 41,200<br>41,150<br>41,150<br>41,150<br>40,850 | 833<br>876<br>833<br>833 | 590<br>675<br>665<br>500    | 68<br>90<br>91<br>52         |    |

----

and a second second

TABLE A-2. TEAR TEST DATA FOR AIR-COOLED STEELS

-19-

.

| Maximum<br>Testing Load,<br>Temperature, F Pounds |                                      | <u>Energy</u><br>To<br>Start<br>Fracture | r, ft <u>-lb</u><br>To<br>Propagate<br>Fracture | Per Cent Shear in<br>Fracture                  |  |  |
|---------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------|--|--|
|                                                   |                                      | <u>Steel 8W</u>                          | 5                                               | <u>,, ^, , , , , , , , , , , , , , , , , ,</u> |  |  |
| 50<br>50<br>50<br>50                              | 35,550<br>36,200<br>37,700<br>41,350 | 715<br>750<br>790<br>860                 | 616<br>600<br>625<br>725                        | 99<br>95<br>90<br>92                           |  |  |
| 60<br>60<br>60<br>60                              | 40,250<br>40,900<br>40,850<br>42,050 | 833<br>860<br>885<br>925                 | 700<br>658<br>690<br>316                        | 83<br>83<br>90<br>30                           |  |  |
| 70<br>70<br>70<br>70                              | 39,200<br>39,800<br>39,600<br>41,200 | 784<br>790<br>900                        | 715<br>675<br>675                               | 86<br>88<br>96<br>87                           |  |  |

TABLE A-2. (Continued)

| Steel  | Testing<br>Temperature,                          |                                      | Char                                         | py Value,               | ît-lb                      |                                                                     |
|--------|--------------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------|----------------------------|---------------------------------------------------------------------|
| Number | F                                                | Test 1                               | Test 2                                       | Test 3                  | Test 4                     | Average                                                             |
|        | Qu                                               | enched fo                            | o <u>r Six Se</u> d                          | cond s                  |                            |                                                                     |
| A8W1   | -50<br>-40<br>-30<br>-20<br>-10<br>0<br>80       | 395<br>27<br>29<br>39                | 3480995<br>23295                             | 3<br>10<br>25<br>25     | 5<br>4<br>6<br>21<br>26    | 3.5<br>6.8<br>11.0<br>25.8<br>26.8<br>29.0<br>42.0                  |
| a8w 5  | -40<br>-30<br>-20<br>-10<br>0<br>80              | 6<br>8<br>19<br>12<br>21<br>28<br>30 | 4<br>5<br>12<br>20<br>15<br>26<br>33         | 5<br>14<br>21<br>27     | 6<br>22<br>8<br>26<br>27   | 5.3<br>13.3<br>11.8<br>20.8<br>27.0<br>31.5                         |
|        | <u>Qu</u>                                        | enched fo                            | <u>r Ten Sec</u>                             | ond s                   |                            |                                                                     |
| 38w1   | -60<br>-50<br>-40<br>-20<br>-10<br>0<br>10<br>80 | 57<br>286<br>39<br>245<br>245        | 10<br>216<br>264<br>288<br>288<br>288<br>243 | 3534-69<br>292<br>32    | 34<br>55<br>29<br>35<br>35 | 57.4000<br>14000<br>14000<br>100<br>100<br>100<br>100<br>100<br>100 |
| 38W 5  | -50<br>-40<br>-30<br>-20<br>-10<br>0<br>80       | 4<br>54<br>26<br>93<br>32<br>32      | 3<br>14<br>31<br>30<br>32<br>32<br>31        | 5<br>6<br>5<br>31<br>33 | 3<br>28<br>32<br>31<br>30  | 3.8<br>7.3<br>16.5<br>18.0<br>25.8<br>31.3<br>31.5                  |

. .\_\_\_

.

- - - - --

TABLE A-3. KEYHOLE CHARPY DATA FOR STEELS QUENCHED IN WATER AND THEN AIR-COOLED

| Steel<br>Number | Testing<br>Temperature,<br>F                           | Magt 1                                           | Charr                                             | v Value, :                                | ft-1b                                            |                                                                     |
|-----------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|
|                 |                                                        | rest r                                           |                                                   |                                           |                                                  |                                                                     |
| <b>C</b> 8W1    | -60<br>-50<br>-40<br>-20<br>-10<br>0<br>10<br>20<br>80 | 9<br>22<br>6<br>15<br>10<br>18<br>13<br>17<br>24 | 4<br>11<br>14<br>20<br>29<br>30<br>14<br>14<br>27 | 5<br>6<br>9<br>11<br>27<br>26<br>20<br>18 | 0110 <u>8</u><br>20<br>11<br>27<br>20<br>8<br>25 | 5.3<br>14.8<br>10.0<br>18.3<br>21.5<br>20.5<br>18.0<br>16.0<br>25.5 |
| C8W 5           | -50<br>-40<br>-30<br>-20<br>-10<br>0<br>80             | 4<br>56<br>12<br>30<br>32<br>36                  | 4<br>7<br>23<br>24<br>29<br>36<br>38              | 5<br>4<br>14<br>33<br>33                  | 4<br>26<br>6<br>27<br>32                         | 4.3<br>10.5<br>12.3<br>24.0<br>31.0<br>34.0<br>37.0                 |

**~** ·

TABLE A-3. (Continued)

| Steel<br>Number | Testing<br>Temperature,<br>F    | Maximum<br>Load,<br>Pounds                               | To<br>To<br>Start<br>Fracture          | <u>v, ft-1b</u><br>To<br>Propagate<br>Fracture | Per Cent<br>Shear<br>in<br>Fracture |
|-----------------|---------------------------------|----------------------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------|
|                 | G                               | uenched fo                                               | r <u>Six Seco</u>                      | nd s                                           | - <u></u>                           |
| A8W 1           | 40                              | 44,600                                                   | 900                                    | 133                                            | 3                                   |
|                 | 50                              | 45,200                                                   | 918<br>833                             | 768<br>768                                     | 75                                  |
|                 | 60                              | 40,200                                                   | 800<br>766                             | 500<br>533                                     | 55                                  |
|                 | 70                              | 41,800                                                   | 961<br>935                             | 133<br>734                                     | 18                                  |
|                 | 80                              | 40,700<br>43,600<br>45,300                               | 875<br>958<br>885                      | 734<br>92<br>885                               | 100<br>23<br>100                    |
|                 | 90                              | 41,290<br>42,000<br>41,550<br>41,450<br>40,800           | 919<br>824<br>915<br>815<br>961        | 800<br>800<br>891<br>860<br>1533               | 82<br>97<br>98<br>99<br>97          |
| A8W 5           | -30<br>-20                      | 39,350<br>38,000<br>37,150<br>37,400                     | 808<br>584<br>600<br>665               | 117<br>590<br>690<br>633                       | 7<br>59<br>63<br>73                 |
|                 | -10                             | 42,000<br>39,200<br>42,000<br>38,550<br>38,200           | 766<br>842<br>725<br>750               | 133<br>383<br>600<br>725                       | 5<br>30<br>83<br>80                 |
|                 | 0<br>10<br>20<br>30<br>40<br>50 | 39,450<br>37,350<br>40,600<br>36,500<br>38,700<br>37,450 | 650<br>684<br>633<br>665<br>600<br>534 | 642<br>642<br>766<br>658<br>642<br>633         | 80<br>80<br>90<br>94<br>85<br>93    |
|                 | Q                               | uenched for                                              | <u>r Ten Secor</u>                     | nd s                                           |                                     |
| B8W1            | 30                              | 64,200<br>65,000<br>69,400                               | 866<br>800<br>1100                     | 67<br>100<br>133                               | 5<br>6<br>1                         |

TABLE A-4. TEAR TEST DATA FOR STEELS QUENCHED IN WATER AND THEN AIR-COOLED

``

v

.

:

X

-

•

|                 |                                    |                                                                    | Energy, ft-1b                                 |                                            | Per Cent                      |  |  |  |
|-----------------|------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------|--|--|--|
| Steel<br>Number | Testing<br>Temperature,<br>F       | Maximum<br>Load,<br>Pounds                                         | To<br>Start<br>Fracture                       | To<br>Propagate<br>Fracture                | Shear<br>in<br>Fracture       |  |  |  |
|                 | G                                  | <u>Quenched for Ten Seconds (Continued)</u>                        |                                               |                                            |                               |  |  |  |
| B8w1            | 40                                 | 61,600<br>61,800                                                   | 1000<br>665                                   | 534<br>133                                 | 63                            |  |  |  |
|                 | 50                                 | 49,500<br>61,600                                                   | 707<br>900                                    | 750<br>167                                 | 95<br>11                      |  |  |  |
|                 | 60                                 | 58,400<br>60,200<br>67,000                                         | 900<br>800<br>800                             | 67<br>700<br>133<br>231                    | 15<br>93<br>8                 |  |  |  |
|                 | 70                                 | 51,400<br>50,000<br>57,800<br>58,200                               | 700<br>766<br>766<br>866                      | 700<br>766<br>800<br>800                   | 90<br>97<br>88<br>100         |  |  |  |
| B8W 5           | 30                                 | 44,800<br>54,400<br>59,600<br>54,400                               | 800<br>633<br>665<br>565                      | 734<br>400<br>67<br>33                     | 100<br>45<br>3                |  |  |  |
|                 | <sup>1</sup> +0                    | 57,200<br>54,200<br>50,400<br>57,200                               | 565<br>500<br>734<br>600                      | 100<br>633<br>367<br>133                   | 15<br>97<br>13<br>4           |  |  |  |
|                 | 50                                 | 51,600<br>47,500<br>51,000<br>53,400                               | 766<br>1020<br>600<br>466                     | 665<br>775<br>734<br>433                   | 100<br>100<br>100<br>44       |  |  |  |
|                 | 60                                 | 49,000<br>46,600<br>50,800<br>46,000                               | 665<br>665<br>433<br>665                      | 665<br>800<br>665<br>734                   | 99<br>100<br>100<br>100       |  |  |  |
|                 | ç                                  | wenched f                                                          | or <u>Twenty-F</u> :                          | <u>ive Seconds</u>                         |                               |  |  |  |
| C8W1            | 50<br>60<br>70<br>80<br>100<br>110 | 59,200<br>63,800<br>69,200<br>53,800<br>56,400<br>53,600<br>59,800 | 600<br>565<br>534<br>400<br>433<br>633<br>900 | 300<br>67<br>133<br>67<br>133<br>67<br>700 | 15<br>0<br>1<br>0<br>2<br>100 |  |  |  |

TABLE A-4. (Continued)

•

| TABLE | £-4. | (Continued) |
|-------|------|-------------|
|-------|------|-------------|

| Steel<br>Number | Testing<br>Temperature,<br>F | Maximum<br>Load,<br>Pounds           | <u>Energy</u><br>To<br>Start<br>Fracture | 7 <u>, ft-1b</u><br>To<br>Propagate<br>Fracture | Per Cent<br>Shear<br>in<br>Fracture |
|-----------------|------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------|
|                 |                              | Quenched                             | for Twenty-Fi                            | ve Seconds                                      | (Continued)                         |
| C8W 1           | 120                          | 60,600<br>54,800                     | 93 <i>5</i><br>400                       | 300                                             | 88<br>7 8                           |
|                 | 130                          | 58,400                               | 600                                      | 133                                             | 1                                   |
|                 | 140                          | 51,000<br>54,000<br>52,200<br>50,600 | 400<br>367<br>534<br>367<br>400          | 534<br>534<br>534<br>534<br>466<br>565          | 100<br>100<br>100<br>100            |
| C8W 5           | 0                            | 54,000                               | 665                                      | 266                                             | 12                                  |
|                 | 10                           | 50,600<br>53,400<br>52,400           | 700<br>565<br>734                        | 665<br>800<br>300                               | 90<br>95<br>100<br>27               |
|                 | 20                           | 52,200<br>48,400<br>51,400<br>48,800 | 665<br>665<br>565<br>766                 | 334<br>935<br>766<br>734                        | 21<br>100<br>98<br>99               |
|                 | 30                           | 52,400<br>49,600<br>48,200<br>51,800 | 565<br>665<br>665<br>633                 | 466<br>700<br>766<br>734                        | 39<br>100<br>100<br>83              |
|                 | 50<br>60                     | 52,000<br>51,000<br>47,200           | 700<br>334<br>658                        | 633<br>633<br>707                               | 100<br>100<br>100                   |

.