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ABSTRACT

Uncertainties in stress analyses on both ships
and offshore structures are studied. Emphasis is given
to the effect of modeling uncertainties on extréme
design loads. This study investigates uncertainties in
calculating short and long term loads and load effects
on ships, and offshore platforms, and also in fatigue.
analysis.

It is shown that some previous studies have se-
riously underestimated extreme design loads because
they have not properly treated modeling uncertain-
ties.

1.0 INTRODUCTION

Structural analysis of marine structures consists
of the following steps:

a) description of the environment;
b) modeling of the applied loads;

¢) load combination;

d) response analysis, where displacements, nominal
forces applied to each structural member, and
stresses are calculated;

e) fatigue analysis.

Uncertainties are always involved in all the steps
of structural analysis. These uncertainties are due to
the random character of the loading environment and
the resulting loads, or due to inadequate knowledge
of physical phenomena associated with loads.

Rational analysis and design of marine struc-
tures requires consideration of all the uncertainties
involved in predicting load effects. In probabilistic
methods, these uncertainties must be quantified in
order to assess structural safety. Furthermore, the
determination of the partial load and resistance fac-
tors, in the safety equation of a Load and Resistance
Factor Design code, also requires quantification of all
uncertainties [1,2].

The development of probabilistic analysis meth-
ods and design codes increased the importance of
quantifying uncertainties. Recent studies on offshore
[2-5], as well as ship structures [2, 6-8], investigated
errors in evaluating loads and load effects. The re-
sults of these studies can be used to assess the relative
importance of the various types of uncertainties.

Theory of reliability and structural analysis have
reached a state of maturity but there are still gaps
in the state of knowledge on quantifying loads and
their effects. As part of the total effort associated .
with rational ship and offshore study design based
on probabilistic methods of analysis, a project aimed
at quantifying the uncertainties in determining loads
and load effects in marine structures was established
by the Ship Structure Committee. This paper de-
scribes some results of this project. The following
1ssues are addressed in this paper:

a) what is the best way to model uncertainties?

b) what are the differences between random (natu-
ral) and modeling (subjective) uncertainties?

¢) how do modeling uncertainties affect extreme
loads?

d) how important are random uncertainties in fa-
tigue analysis?

The information presented in this paper is orga-
nized as follows:

In section 2, we classify uncertainties into two
categories, random (natural) and modeling, and study
the basic differences between these two types. Em-
phasis is given to the effect of modeling uncertainties
on extreme loads. Furthermore, we review various
methods for modeling uncertainties.

Section 3 deals with uncertainties in loads and
load effects. ‘Most of the information is on uncer-
tainties in short and long term stillwater and wave
bending moments. Different ways for modeling un-
certainties are compared. It is shown that we can dra-
matically reduce the variability, if we use the Guedes
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Soares model for uncertainty and distinguish between
different types of ships, and between hogging and sag-
ging. However, although Guedes Soares’ idea for re-
ducing uncertainties is correct, we believe that it has
not been properly implemented in [8] because mod-
eling uncertainties have not been correctly treated in
his study.

For offshore platforms, we study uncertainties in
extreme global loads. Important factors, such as cur-
rent velocity and marine fouling are also considered.

Section 4 focuses on fatigue analysis procedures.
The study is confined to cumulative damage based
approaches. We examine the contribution of the un-
certainties, which are involved in all steps of fatigue
analysis, to the overall uncertainty in fatigue damage.
This allows to identify the most critical uncertainties.
Finally, it is shown that the effect of random uncer-
tainties on the cumulative damage is negligible for
both ships and offshore structures.

2.0 TYPES OF UNCERTAINTIES

In this section we define two categories of un-
certainties, random and modeling, and examine the
differences between them. We also review various
models for such uncertainties. Fmphasis is given to
the effect of modeling uncertainties on extreme de-
sign loads.

2.1 Classification

Uncertainties can be categorized into natural (ran-
dom) and modeling ones. The former are due to the
statistical nature of the loading environment and the
resulting loads, and they induce scatter in predic-
tions. The latter are due to the imperfect knowledge
of various phenomena, and idealizations and simpli-
fications in analysis procedures. These uncertainties
introduce both bias and scatter.

An example of a natural uncertainty, is that as-
sociated with the wave elevation at a given position
in the ocean. An example of a modeling uncertainty
is the error in calculating the stresses in a structure,
when the applied loads are known. For this case, the
error is only due to the assumptions and simplifica-
tions in structural analysis.

Modeling uncertainties are information sensitive,
in the sense that they can be reduced as the knowl-
edge of the associated physical phenomena expands,
and the mathematical models representing them be-
come more accurate. This is not the case for ran-

dom uncertainties which do not decrease as we gather .

more information on fundamental science, but only
as we obtain more data.

Both random and modeling uncertainties must
be quantified and accounted for in reliability analysis
and development of probabilistic design codes.

H-A-2

2.2 Models for modeling uncertainty

Ang and Cornell [9] and Ditlevsen [10] proposed
two different methods for treating modeling uncer-
tainties. Ang's model is for both load and-strength
uncertainties. Ditlevsen’s model was proposed’ for
uncertainties associated with strength but it can also
be applied to load variables.

In the following we present Ang’s model.

Let X be the actual value of some quantity of interest
and X be the corresponding value specified by a
design code. Then,

X = BrBr1 X, . (2.1)

where Bj is the ratio of the theoretically predicted
value for this quantity, X,, and X, and By; is the ra-
tio of X and Xj. By is a measure of natural (random)
variability, which is also called type I uncertainty,
and Bjr is a measure of modeling uncertainty. The
mean values of random variables B; and By, E(By)
and E(B/r), are the biases corresponding to natu-
ral and modeling uncertainties, respectively. Assum-
ing that the random and modeling uncertainties are
statistically independent, and by using a first order
second moment (F.0.8.M.) approximation, we can
quantify the total uncertainty in X as follows:

E(B) = E(By)E(Bur), and

2.2
COVg = (COVE, + COVE, )} _( )

“where . B = B;Bjs, and COV stands for the co-

efficient of variation of the quantity specified by the
subscript.

Random variables By and By are also assumed to
be independent of Xj.

An example of quantifying modeling uncertain-
ties is illustrated in Fig. 1, which has been extracted
from [11]. The quantity considered here is the max-
imum annual wave height in the northwest shelf of
West Australia. The ratio of the measured over the
predicted maximum wave height is shown in the hor-
izontal axis. The maximum wave height is predicted
using a hindcast method. The wind speed, which
corresponds to the maximum wave height is assumed
to be known. The vertical axis représents the prob-
ability that the value of the ratio is less than some
given number. Based on thé information provided in
Figure 1, the mean of Bj;, which represents mod-
eling uncertainty, is 1.1 and its COV is 0.13. This
means that, on the average, hindcast methods pre-
dict a value for the annual maximum wave height,
which is 10% smaller than the actual value. More-
over, By is lognormally distributed.

A random variable, such as the stress in a par-
ticular structural member, is a function of other ran-
dom variables, such as the wave height and the av-
erage wave period. Besides the errors involved in
calculating these variables, errors are also involved
in calculating the stress given the values of the latter



random variables. Ang and Cornell presented formu-

las for quantifying the uncertainty associated with.

the above errors [9].

The Ditlevsen’s model is applicable to reduced
random variables [1], which are independent gaus-
sian, We can obtain these variables from the original
ones by employing Rosenblatt transformation [12].
According to Ditlevsen [10], model uncertainty can
be accounted for by the following equation,

X'=cX,+b (2.3)

where ¢ is a constant, and b is a gaussian random vari-
able, which is statistically independent of X'. The

prime indicates reduced random variables.

Ditlevsen, and Ang and Cormnell models are com-
pared in Table L. ’

Clearly, Ditlevsen model is more general. The
main difference between these two models is that
Ditlevsen model accounts for the statistical correla-
tion between the error in predicting the value of a
variable, ¢ = X' — X}, and the value of the variable
itself, while Ang’s model assumes that these random
variables are independent. This is demonstrated in
Figure 2, which is for the special case that X, and
X are lognormal. The value of X', which is equal to
InX, is plotted there as a function of X,. The aver-
age of X' or InX, as well as regions corresponding to
this average + one standard deviation, are plotted in
Figure 2. It is observed that the error between actual
values and predictions for InX, which is represented
by the width of the shaded region, is independent of
InX, for the case of Ang’s model.

Notes:

a) € denotes the error between prediction and
measurements, i.e. € = X' — X, (reduced
space), or € = X — X, (physical space).

b) pe X5 denotes the correlation between ¢ and
Xp. .

c) For the special case that X, and X are log-
normal, the Ditlevsen’s model reduces to
Ang's model, for ¢ = 1.

Although Ang’s model is not as general as the
Ditlevsen model, it is preferable, because it is sim-
pler. It requires less information in order to deter-
mine the statistics of its parameters, and it is very
convenient to use for the case that the variables in-
volved are lognormal. Moreover, it is expected that
random variable B is lognormally distributed, for
most cases, because it is usually the product of sev-
eral random variables. (Central Limit Theorem).

Fig.

29 T T EERIRAR] T
ag /
95
90 /
80
70

I
60 I
/

|

/

!

50
40

30

20
10 /
5 /
2

I

1 ! ! NI !
0.4 0.6 0.81.0 1.5 2.0 3.0

CUMULATIVE PERCENTAGE OF VALUES <

By = MEASURED/ PREDICTED MAXIMUM WAVE
HEIGHTS

1 Probability Distribution of Bias of

Extreme Wave Height

2.3 Effect of modeling uncertainties on life-
time extreme loads

In both ships and offshore platforms, it is im-
portant to distinguish between natural and modeling
uncertainties, and their effect on the maximum life-
time loads and load effects.

In contrast to random uncertainties, modeling
uncertainties in extreme loads or load effects do not
decrease with the length of the return period in-
creasing. Indeed, these uncertainties are systematic.
Consequently, the modeling errors corresponding to
two or more load applications are perfectly corre-
lated. Therefore, the modeling error corresponding
to the maximum of these loads does not decrease
with the number of load applications increasing, as
it is the case for independent or weakly correlated
errors. Therefore, uncertainties in lifetime loads may
be grossly underestimated if we treat modeling un-
certainties as random.
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Fig. 2 Comparison Between Ang and Ditlevsen Models for
Modeling Uncertainties
.
Table I. Comparison Between The Ang and Cornell and
Ditlevsen Models for Modeling Uncertainty
Characteristic Ditlevsen Ang
Equation: X' =cX,+b X = BX,
¢: constant B: random variable

Space in which model is
applicable:

Relation between
statistics of actual
- and predicted values:

Correlation between error

and predicted value
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b: random variable
independent of X}

Reduced

E(X") = cE(X}) + E(b)

0% = czai-; + 0}

(c—l)a‘},

PeX, = ,[(c-l)c;;+a'ﬂ

independent of X

Physical

E(X) = E(B)E(X,)
COVx = (COVE + COVE,)/*

PeX, = 0



We calculate uncertainties in the extreme value
of some quantity X according to the following rule:
Let X4,..., Xn be n independent samples from a ran-
dom variable and X () be their maximum value, i.e.

X™ = maz (X1,..., Xp) (2.4)
Then, the COV of the maximum X is: .
COVxm = (COVfy + COVE )3 (2.5)

where COVp_,, is the coefficient of variation of the

maximum X (® which corresponds to natural uncer-
tainties. COVyr is the coefficient of variation associ-
ated with modeling uncertainties.

Equation (2.5) implies that the two types of un-
certainty, natural (random) and meodeling, must be
treated differently-when studying the uncertainty in
the extreme- value of some load or load effect. Fur-
thermore, the contribution of modeling uncertainties
to the uncertainty in the maximum value, X ™, does
not decrease as the number of samples, n, increases.
In this paper, we have estimated uncertainties in ex-
treme loads by employing eq. (2.5) for both ships

and offshore structures. For most applications, this
" equation yields significantly larger uncertainties than
those reported in the literature. ~

Olufsen and Bea [13], and Bea [11] have con-
cluded in their work that uncertainties in maximum
design loads and load effects have been seriously un-
derestimated in the recently released API- PRAC 22
design code for offshore platforms. It is remarkable
that the coefficients of variation of extreme global
loads, which were derived from their studies, are al-
most 100% larger than those used by the develop-
ers. of the API code. In our opinion, this should
be attributed to the way in which uncertainties were
treated in developing this code.

3.0 LOADS

In this section, we study uncertainties in loads
and load effects. For ships, we examine loads applied
to the main girder as well as hydrodynamic pressure.
Uncertainties in both short and long term predictions
are quantified. For offshore platforms, we quantify

uncertainties in base shear and overturning moment.

3.1 Stillwater bending moments and shear
forces on ships

Guedes Soares and Moan [14] analyzed stillwa-
ter bending moments and shear forces for various ship
types. In this study, stillwater load effects were as-
sumed to vary from voyage to voyage for a particular
ship, from one ship to another in a particular class
of ships, and also from one class of ships to another.

The above sources of variability can be modeled as

follows,
Mijk = Mo +mg+mj+¢ (3.1)

where,

m;;i is the bending moment or shear force, at the
it voyage, which is applied to the j** ship, which
belongs to the k** class,

M, is the average load effect for all ships,

m, + my is the average load effect of all ships in the
kt* class,

m, + mg + m; is the average load effect for the jt*
ship of the k** class,

and e; represents the variation of the load effect from
voyage to voyage. Accordingly, the following vari-
ances can be defined,

a) variance of the load effect for a particular ship:
af,

b) variance of the load effect for all ships in a partic-
ular class, which is specified by k: (02 + cr_?)l/z,

¢) variance of the load effect for all ships: (o2 +
012- + a?)1/2,

The generality of description increases from a)
to ¢) by accounting for all ships in a class, or by
accounting for all ships in all classes. Clearly,
the variance increases with the generality of de-
scription increasing.

Tables II summarizes the results from statistical
analysis of data on stillwater bending moments for
seven types of ships. The values in this table have
been normalized by the corresponding values which
are prescribed by classification societies. The average
stillwater load effect, and the variance of this load ef-
fect for one ship, and also for all ships in a given class,
are presented in Table II. The results are based on
the analysis performed by Guedes Soares and Moan
(14], and all the numbers are normalized by the de-
sign values prescribed by classification societies. The
data used in this analysis can be found in Guedes
Soares and Moan [14] and in Guedes Soares [8].

Table II  Variability in stillwater bending moments

Typeof ship (mo+ms) (o) (o2 + D)2
Cargo 0.50 0.28 0.30
Containership  0.72 0.16 0.20

Bulk Carrier  -0.008 0.30 0.38
OBO 0.80 0.30 041
Chemical -0.005 0.22 0.36
Carrier

Ore/Qil Carrier -0.44 0.22 0.37
Tanker -0.12 0.21 0.44
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Notes:

a) Positive bending moments correspond to hog-
ging, and negative ones to sagging.

b) The bending moments have been normalized by
dividing by the values which are prescribed by
classification societies.

It is observed that cargo and containerships ex-
perience large hogging moments. Tankers and Ore/QOil
Carriers are subjected to sagging moments. Although
the average stillwater bending moment is small for
tankers, there is a large variability in this moment.
This is attributed to the large variability of the still-
water bending moment from one tanker to another:

Kaplan [7] reported some results on stillwater
bending moments obtained from Akita [15]. Accord-
ing to his study, the COV for containerships is 0.29,
and for tankers it is 0.99 for ballast, and 0.52 for
full load conditions. These values reflect variabili-
ties from voyage to voyage and from one ship to an-
other within a particular class. They indicate the
same trend with Guedes Soares results. Indeed, the
variability is considerably larger for tankers than for
containerships. However, Guedes Soares reported a
significantly larger variability for tankers (COV =~
3.7) compared to that reported by Kaplan. This

discrepancy might be due to the large spreading of
sizes of the tankers which were considered by Guedes
Soares. The COV reported for containerships are al-
most identical.

3.2 Uncertainties in short term vertical wave
bending due to errors in response amplitude
operators

Kaplan [7] compared model data against theo-
retical predictions of response amplitude operators
for two Series 60 ships (0.70 and 0.80 block coeffi-
cients), and also for the WOLVERINE STATE. The
data, which can be found in Kaplan and Raff [16],

cover different speeds and headings in regular waves. .

Kaplan calculated the rms of the wave bending mo-
ment by using, a) theoretically calculated response
amplitude operators obtained from the SCORES sea-
keeping computer code [17], and b) measured re-
sponse amplitude operators. A reference wave spec-
trum was used, for which the value of the power spec-
tral density function was constant with frequency.
The bias due to errors in response amplitude opera-
tors was calculated by comparing the rms values of
the wave bending moment, which were calculated by
using experimental and theoretical response ampli-
tude operators. :

Based on the above approach, Kaplan found that
the COV of the rms wave bending moment is 0.10.
No information was provided on the probability dis-
tribution of the bias or its average value.
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Guedes Soares [8], separated uncertainties in re-
sponse amplitude operators into those due to nonlin-
earities and those due to all the other simplifications
and idealizations. According to his approach the bias

in the response amplitude operator is given by the

following equation;
H(w) = B Bs/z Hp (w) for any w (3.2)

where, By is the bias due to all uncertainties except
nonlinearities, Bs expresses the uncertainty in sag-
ging, By expresses the uncertainty in hogging, H is
the actual response amplitude operator, and H, is

the value of the response amplitude operator as it is

predicted by a linear strip theory based method. Er-
rors due to the flexibility of the ship hull were found
to be unimportant except for very long (L-> 350m),
fast ships. Therefore, this source of uncertainty was

neglected. Guedes Soares examined the error asso-

clated with-the Salvensen, Tuck and Faltinsen [18]
(5.T.F.) method. Linear models were postulated for
both Br and Bsyp, and the coefficients were found
by regressing on data from model experiments. By
was assumed to be a function of the relative heading
angle a, the Froude number V, and the block coeffi-
cient C'g. The following relations were found for the
bias, on the basis of regression fits.

By =0.00631a + 1.22V + 0.657Cp + 0.064
for 0 < a < 90°, and

By = —0.00495a + 0.42V + 0.701Cp + 1.28
for 90° < o < 180°.

(3.3)

The COV was founci equal to 0.38 for both cases.

An alternative simplified approach was also fol-
lowed, in which the linear bias, By, was assumed to
be a function of the significant wave height, Hs, only.
For this case, the bias was found to be,

Br =1.22 - 0.005Hs. (3.4)

The COV was found equal to 0.35. The bias in
eq. (3.4) is defined as the ratio of the average values
of the measured and predicted response amplitude
operators over all heading angles and average wave
periods. :

The effect of nonlinearities was modeled by em-
ploying a linear model which involved the block coef-
ficient Cp as a parameter. The resulting equations,
which were also derived by regression, are,

Bs =1.74 - 0.93Cp
By =0.26 +0.93Cp for hogging.  (3.5)
The COV was found equal to 0.12 for both equations.

for sagging, and

The following conclusions can be extracted from
[8] (eq. 3.3 - 3.5):



o S.T.F. method is unconservative, when it is used
to predict sagging bending moments.

o The error of the 5. T.F. method is larger for beam
seas than it is for head and following seas. For
example, the bias, By, for a = 90°, V = 0.2,
and Cp = (.8, is 1.48, while it is only 1.03 for
a = 180° and same V and Cg.

¢ S.T.F. method underestimates sagging and over-
estimates hogging because the Linear model does
not distinguish between them.

¢ The error of the S.T.F. method due to nonlin-
earities is smaller for ships with large block coef-
ficients. This is true because the assumption of
vertical hull walls is realistic for ships with large
Cs.

e The bias, By, decreases with Hg increasing.

Although a large portion of the experimental
data used by Kaplan and Guedes Soares are identical,
. a significant discrepancy is observed between their
COV’s. In our opinion, the above discrepancy should
be attributed to the way by which uncertainties were
quantified by Guedes Soares [8]. More specifically,
Guedes Soares regressed on data for the ratio of mea-
sured and predicted response amplitude operators
for various frequencies. This approach overestimates
modeling error, because it uses data from test mea-
surements which are contaiminated with experimen-
tal errors as well as concentrating on individual fre-
quencies. In our opinion, a better way to proceed is
the following,

a) postulate a linear model for the rms bending mo-
ment,

b) transform the data on transfer function into data
on the rms bending moment by using some sea
spectrum (for example, the ISSC spectrum) and
by integrating over frequency,

c) regress on the data from b), or simply estimate
the COV of the ratio of measured over predicted
rms bending moments.

This procedure, which has been followed by Ka-
plan [7], allows to average out the experimental error
as well as the individual frequency sensitivity by inte-
grating over the frequency in step b). Therefore, the
results obtained from this approach should be more
realistic.

3.3 Long term induced bending moments

Kaplan [7] found that the COV of the extreme
lifetime vertical bending moment is 0.19. The COV
of random uncertainties was found 0.065. No infor-
mation was provided on the probability distribution
of the average value of the bias. The relative con-
tribution of the uncertainties examined by Kaplan is
presented in Table III.

Guedes Soares (8] estimated uncertainties in the
most probable extreme long term vertical bending
moment for different cases in which different amounts
of information on the type of ship or bending moment
is provided. The following cases were studied,

a) tankers (C'p = 0.8) in hogging,

b) tankers in sagging,

¢) containerships (Cp = 0.6) in hogging,
d) containerships (Cp = 0.6) in sagging,
e) hogging in any type of ship,

f) sagging in any type os ship,

g) any type of ship and bending moment (hogging
or sagging) is unknown.

The results from his study are shown in Table IV,

Clearly, the variability in load effects is smaller
for cases that the type of ship and/or the type of mo-
ment are specified in the formulation. For example,
the modeling bias for a ship with block coefficient of
0.8 is 1.13 and the COV is only 0.04. If the block co-
efficient is not specified, the bias is 1.10 and the COV
is 0.15. This indicates that a design code, which dis-
tinguishes between various ship types and hull char-
acteristics and specifies different load and strength
factors for each case, allows to design more efficient
ships.

Another conclusion from Guedes Soares study is
that theoretical predictions are almost always uncon-
servative, This is primarily due to the unconservative
errors of linear strip theory in response amplitude op-
erators. In particular, the error in the sagging bend-
ing moments is very large for ships with small block
coefficients. For example the bias is 1.28 for contain-
erships. The reason is that nonlinearity in response
is significant for these ships, due to their nonvertical
sides. This unconservative error must be accounted
for in design because sagging can cause buckling of
the deck plates, which is an important failure mode
in ship hulls.

Table III Relative Contribution of Various Types of
Uncertainties to Total Uncertainties in Extreme
Bending Moment (source: Kaplan {7])

Type of Uncertainty Contribution
(%)

Spectral shape variability 61

Uncertainty in transfer 27

function

Random uncertainty 12

Note: Contribution is defined as the square of the
ratio of the particular uncertainty over the total un-
certainty.
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Table IV Uncertainties in Long Term Vertical Wave
Bending Moment (source: Guedes Soars [8])

Case Modeling Randomn Uncertainty Total Uncertainty

Uncertainty cov Exp. Bias/COV
Exp. Bias/COV

Tankers in hogging  1.13/0.04 0.07 1.13/0.08

Tankers in sagging  1.13/0.04 0.07 1.13/0.08

Containerships in

hogging 0.88/0.05 0.07 0.88/0.09

Containerships in _

sagging 1.28/0.04 0.07 1.28/0.08

Any ship in hogging 1.0/0.15 0.07 1.0/0.17

Any ship in sagging 1.2/0.08 0.07 1.2/0.11

Any ship/hogging

or sagging 1.1/0.15

Although Guedes Soares and Kaplan's results
on long term bending moments are in good agree-

ment, we believe that modeling uncertainties were
not treated properly by the forrner. More specifi-
cally, Guedes Soares assumed that modeling errors
in mean square bending moments are independent
from one sea state to another or from one heading to
another (eq. 4.57, p. 278 of [8]). This assumption

is not realistic, because, as we mentioned in section -

2, modeling uncertainties are systematic and as such,
they are highly correlated from one sea state to an-
other or from one heading angle to another. There-
fore, the COV’s reported in Guedes Soares might be
lower than the actual values [8].

Faulkner [6], reported the following COV’s for
lifetime extreme vertical bending moments:

a) Modeling uncertainties:
0.15 for wé;ships
0.10 for commercial ships
b) Random uncertainties:
0.12 for both warships and commercial ships.

Faulkner considered a SL-7 containership and
a large tanker in his study. He found that the un-
certainty is larger for the containership than for the
tanker, which agrees with Guedes Soares’ conclusions.

Finally, uncertainties in both vertical and hori-
zontal bending moments were considered in [2], for a
tanker with length equal to 160m. The bias of both
bending moments was assumed to be normal with a
mean of 0.95 and a COV of 0.1 for the vertical bend-
ing moment. The bias and COV for the horizontal
bending moment are 0.85 and 0.15, respectively. The
correlation coeflicient between the two bending mo-
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0.07 1.1/0.17

ments was assurmned to be 0.70. Unfortunately, no
information was provided in [2] on how these num-
bers were derived. Moreover, as it is mentioned in
this report, these numbers are simply crude approx-
imations. )

The results from the studies considered in this
section are summarized in Table V.

3.4 Uncertainties in hydrodynamic-pressure

Chen et al [19], compared theoretically predicted
hydrodynamic pressures on a ship hull against model
tests results and full scale measurements. A linear
strip theory - based computer code
(ABS/SHIPMOTION) was used to calculate pres-
sures. Measurements were obtained for an SL-7 con-
tainership and a Great Lakes bulkcarrier. The total
hydrodynamic pressure, the pressure component due
to the incident and diffracted waves, and the pressure
component arising from ship'motions were considered
in this study. Model tests were performed for head
seas at Froude numbers 0.13, 0.23 and 0.32 over a
range of ship length/wave length ratios from 0.65 to
1.65.

The following are the main conclusions from Chen’s
study.

o The calculated pressures due to ship motions .
correlated well with test measurements.

¢ Good agreement was also found between predic-
tions and measurements for the pressure due to
incident and diffracted waves.

o The agreement between predictions and mea- .
surements for the total hydrodynamic pressure
was good except for.the bow and stern regions.
This should have been expected because three
dimensional effects and nonlinearities are stronger
in these regions.



Table V Summary of Results On Uncertainties
in Long Term Extreme Bending Moments.

Quantity V. Bend. Mom. H. Bend. Mom.
Source (X1) (X2)
Kaplan [7] -/0.19 -

Guedes Soares 0.88-1.28/ -

(8] 0.08-0.17
1SSC (2] 0.95/0.1 0.85/0.15
Faulkner [6] -/0.19 warships -

-/0.16 container-
ships

Note: In ISSC study X1, X; are normally distributed
with correlation coefficient 0.7.

Table VI Bounds for Bias of Response Amplitude

Operator for Hydrodynamic Pressure on
SL-7 Containership (Source: Chen et al. [19])

Froude number Lower Bound  Upper Bound

0.15 0.44 1.35

0.23 0.41 1.65
0.32 0.35 ' 1.60

Using Chen’s results, we found upper and lower
bounds for the bias in the response amplitude oper-
ator for hydrodynamic pressure. (The response am-
plitude operator is the square root of the ratio of
the spectral ordinates of hydrodynamic pressure and
wave elevation at the same frequency.) The results
are shown in Table VI and they are for the SL-7 con-
taineship.

Clearly, the error in predicting hydrodynamic
pressures is significantly larger than that in predict-
ing global loads (bending moments and shear forces).
. This is true because global forces are obtained by in-
tegrating pressures over the hull. A large portion of
the error is averaged out when integrating. Thus, the
error in global forces is smaller than that in pressures.

3.5 Offshore platforms

In this section, we study uncertainties in loads
on offshore platforms and their extreme values. The
study focuses on global loads, i.e. base shear forces
and overturning moments.

Uncertainties in analysis of fixed offshore plat-
forms were studied in the context of the L.R.F.D.
A.P.L code (Moses, [20]). The maximum annual wave
height was assumed lognormally distributed. Its COV
ranges between 10 - 15% for the North Sea, 15% -
25% for the Gulf of Mexico and it is somewhat higher
for offshore Alaska and California. This information
was extracted from measurements reported by vari-
ous authors and it is summarized on p. 2.23 of that
report. It was shown that the effect of the length
of the exposure time on the lifetime maximum load
or load effect is to reduce its COV and to increase
bias. However, no information was provided on nat-
ural and subjective uncertainties. Moreover, these
two types of uncertainty were not distinguished when
the lifetime distribution of the maximum wave height
was derived from that of the annual one.

The lifetime maximum platform forces were as-
sumed to be related to the maximum wave height
according to the following relation,

Fy = AHy (3.6)

where A is called analysis coefficient, and the expo-
nent o is 1 and 2 for inertia and drag dominated
platforms respectively. For N = 20 years, the bias
and the COV of the analysis coefficient were assumed
to be 0.93 and 0.25 respectively. These results were
based on measurements, which were obtained from
the Ocean Test Structure (O.T.S.) (Anderson et al
[21]). The latter is a drag dominated platform.

Olufsen and Bea [13], investigated the uncertain-
ties in extreme shear force and overturning moment
for two platforms located in the Gulf of Mexico and in
the North Sea respectively. Uncertainties were cat-
egorized into random (type I), and modeling ones

(type II).

An empirical model, which as obtained by re-
gression, was used to derive global forces from the
wave elevation. The following uncertainties were taken
into account,

e errors in the procedure for deriving the force
from the extreme wave height,

e error in predicting the extreme wave height, and
e uncertainties due to the effect of marine fouling.

It was stressed that the coefficient of variation in
the extreme global forces is severely underestimated
if modeling uncertainties are not treated properly.
More specifically, modeling uncertainties, which are
involved in the calculating of loads and their effects,
are almost perfectly correlated from one load applica-
tion to another. Therefore, in contrast to the random
uncertainties, they do not decrease with the length of
the return period increasing. Hence, if we do not rec-
ognize the difference between the ways that the above
two types of uncertainties propagate, we will under-
estimnate the coefficients of variation of the extreme
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lifetime loads. It is striking that the new L.R.F.D.
A.PIL design code is based on a value of 0.37 for
“the coefficient of variation of the 20 year extreme re-
sponse of a platform, which is less than one half of the
corresponding value which was reported by Olufsen
and Bea [13] (0.73 - 0.98 for the Gulf of Mexico, and
0.65 for the North Sea).

Bea [11], also studied uncertainties for a plat-
form located in the Northwest Shelf of Western Aus-
tralia. The global force to the platform F, was cal-
culated by the following formula, .

F=kyk, H* (3.7)

where ky is the coefficient in the relation between
the kinematics of the water particles and F, and ky

denotes the coefficient in the relation between the
former and the wave height, H. Thus, the product
kukq corresponds to-the analysis coefficient A in eq.
(3.6). Exponent a is 1 and 2 for inertia and drag
dominated platforms respectively, Only uncertain-
ties in apnual maximum values were reported. These
values are presented in Table VIL. The bias and the
coefficient of variation,which were obtained by com-
bining the uncertainties in the quantities involved in
calculating global forces (eq. (3.7)), were found to
be in good agreement with the corresponding values
estimated by comparing measurements against theo-
retical predictions.

The principal component of the uncertainty in
kq, as reported by Bea [11}, is uncertainty in the drag
coefficient C; in Morson’s formula. Based on  OTS
data, Bea reported that the coefficients of variation
of k4 and €4, which comrespond to random uncertain-
ties, are 0.10, and those due to modeling uncertain-

ties are 0.23. These values incorporate the effect of.
marine fouling.

We derived the uncertainties in the lifetime max-
imum global forces from those of the annual max-
imum loads by using two approaches, in order to
demonstrate how important it is to treat modeling
uncertainties properly. In the first approach, we as-
sumed that rmodeling uncertainties are perfectly cor-
related from one year to another and we used equa-
tions (2.2) to calculate the total uncertainty. In the
second approach, we assumed that modeling uncer-
tainties are independent from one year to another.
The details of the calculation of the coefficient of
variation are described in- the Appendix. Return
periods from 10 to 100 years were considered. We
assumed that random’variable By, which represents
random uncertainties, follows the lognormal distri-
bution. Thus, for long retumn periods, the maximum
value of By follows the asymptotic, type I, probabil-
ity distribution.

The results are shown in Table VIII. It is ob-
served that the second approach yields significantly
lower estimates for the coeficient of variation than
the first approach. This is because, in this approach,
modeling uncertainties are assumed to be indepen-
dent from one year to another. Therefore, the co-
efficient of variation of the latter decreases with N
increasing. On the other hand, the component of the

_total uncertainties due to inodeling error does not

change with N in the first approach. It is observed
that the coeflicient of variation of the maximum force
over a 20 year period is 0.66, which is significantly
higher than the value which was used by the A.P.L
rules. According to the foregoing discussion, this dis-
crepancy is due to the difference between the ways

Table VII Uncertainties in Annual Maximum Loads
for Drag and Inertia Dominated Platforms

Platform  Quantity

Random Modeling

Type (type IIy
EBy COVB( EByr - COVBU

Wave Height (H) 1.0 0.30 1.1 0.13

Drag Kinematics  (ku) 1.0 0.10 0.41 0.47

Domi- ’

nated .
Force Coef.  (kq) 1.0 010 167 0.23
Global Force 1.0 0.62 083 048
Wave Height (H) 1.0 030 11 0.13

Inertia .

Domi-

nated -
Kinematies (ku) 1.0 - 0.10 0.93 0.20
Force Coef.  (kg) = 1.0 0.10 0.65 0.3
Global Force 1.0 0.33 0.66 0.38
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that modeling uncertainties are treated in [11] and
in [20].

It should be noted that the actual numerical val-
ues for extreme load might.be different than the val-
ues reported in Table VIII, because it is difficult to
distinguish between random and modeling uncertain-
ties, and to estimate the coefficients of variation for
random variables By and B;. However, the trends
observed in this table should be correct, and ap-
proach 1 is more appropriate than 2 for calculating
uncertainties in extreme loads.

Table VIII Total Coeflicient of Variation of Global
Force as a Function of Return Period

Years Approach 1 Approach 2
. COVg, COVp COoVg
1 ‘ 0.62 0.85 0.85
10 0.35 0.68 0.43
20 0.31 ~ 0.66 0.38
50 0.27 0.64 0.34
100 0.25 0.63 0.31

Wirsching [22], also studied uncertainties in loads
applied to offshore platforms. He represented the un-
certainties in loads by the product of two coefficients
denoted by Bs and Br. Bs corresponds to environ-
mental uncertainties and B accounts for the error in
load calculation. The statistics of Bg were presented
in section 3. Bf was assumed to be lognormally dis-

tributed with an average value ranging from 0.6 to
1.1 and a COV between 0.1 and 0.3.

Guedes Soares and Moan [5] considered the un-
certainties.in the extreme forces applied to a vertical
pile in the North Sea. The extreme forces correspond
to a return period of 100 years. Table IX presents the
random variables which were considered in this study
and their means and CQOV’s.

The COV of*the extreme load was found to be
in the range between 0.34 and 0.45. The uncertainty
in the extreme wave height was found to be the most
important, because its -effect on the global load was
considerably larger than the-effects of all the other
uncertainties. This conclusion agrees with the con-
clusions from Wirsching and Bea. Therefore, the un-
certainty in environmental description (the extreme
wave height) is the most important for offshore plat-
forms.

The results from the studjés considered in this
section are summarized in Table X.

Table IX Uncertainties Involved in Predicting
Extreme Loads on a Vertical Pile in the North Sea
(Source: Guedes Soares and Moan [5])

Quantity Mean value  COV

Extreme wave 30m 0.16

height (H)

Wave period (T) 5.4 + 0.373 H  0.14

Water depth (D) 80m 2/D
Current velocity 1.25 m/sec 0.35
(C)

Pile diameter (D') 4.0m 0.0
Fouling thickness 0.175m 0.45
(K)

Surface roughness  0.02 04
(R)

Drag coefficient Sarpkaya’s 0.1
(Ca) data

Inertia coefficient 0.1
(Cm)

Wave Kine- Stokes theory  0.25
matics

Note: The following correlation coefficients were as-
sumed for the above random variables:

p (H,T)=0.4,

p (H,C)=10.4,

p (R,Cp) =0.5,

2 (Cp,CM)=-09.

4.0 FATIGUE

Fatigue is an important consideration in struc-
tural design. For many structural systems such as for
offshore structures, fatigue is the most critical fail-
ure mode, and thus safety requirements associated
with fatigue reliability dictate design decisions. Fa-
tigue strength can be described by a characteristic
5-N curve or by a fracture mechanics model.

A cumulative damage based approach for fatigue
analysis consists of the following steps:

a) modeling the loading environment,

b) modeling loads,
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Table X Uncertainties in Extreme Global Loads
on Offshore Platforms

Source Bias/COV Return Period
: (years)
Moses
(20] 0.7/0.37 20
Table VIiI —/0.661 20
—/0.631 100
Wirsching 0.4 -13/

[22] 0.41 — 0.67**

Guedes Soares
and Moan [5] - —/0.34¢—0.45 100

Olufsen and Bea
(13] —-/0.73 - 0.93%% 100
—/0.65%° 100

Notes: ! Bias is lognormally distributed
2 Gulf of Mexico
?# North Sea

4 Modeling uncertainties

c) evaluation of field stresses in the structure,

d) evaluation of stresses at all points of possible
crack initiation (stress concentrations), and

e) evaluation of cumulative fatigue damage over the
Lifetime of the structure.

In this section, we quantify errors in calculating
stress concentration factors. We also combiné the er-
rors involved in all the steps of fatigue analysis and
quantify uncertainties in fatigue damage, for the case
that a cumulative damage approach is used. Finally,
we investigate the relative importance of the uncer-
tainties in each of the steps a) to €), and also of the
random and modeling uncertainties.

4.1 Uncertainties in stress concentration fac-
tor.

Wirsching [22] reported estimates of the uncer-
tainties in stress concentration factors for tubular
joints of offshore structures. These uncertainties are
for stress concentration factors which are obtained
from parametric equations, such as those by Kuang,
Potvin and Leick [23]. According to Wirsching, the
average bias in the stress concentration factor is in
the range from 0.80 to 1.20, and the COV ranges be-
tween 0.1 and 0.50. The bounds for the bias and the
COV in stress concentration factor are very wide,

M-A-12 .

possibly because the parametric equations cover a
large number of geometries and loading conditions.

Uncertainties in the stress concentration factor
are large for other engineering structures. For ex-
ample, the stress concentration factor for the fatigue
analysis of a liquid propellant engine was assumed to
follow the beta distribution. The stress concentra-
tion factor is in the range from 1.2 to 3.5, and that
its COV is roughly 0.15.

4,2 Uncertainties in cumulative fatigue dam-
age.

Studies on fatigue reliability of marine structures
assume that the effect of random uncertainties is neg-
ligible. Thus, these studies account only for model-
ing uncertainties in stress evaluation procedures [26].
Although the effect of random uncertainties reduces
with the number of load cycles increasing, to the best
of our knowledge no study has proven that the effect
of random uncertainties is negligible.

The objectives of the exercise presented in this
section are to address the above issue, estimate un-
certainties in the cumulative fatigue damage over the
lifetime of platforms and ships, and study the relative
importance of each uncertainty.

The following are the basic assumptions:

a) Fatigue life can be estimated by using the 5-N
curves. The slope of these curves is constant for
any number of cycles, N. .

b) Miner’s rule can be used to estimate fatigue dam-
age. '

¢) The stress amplitude distribution is known.

d) The mean and standard deviation of the cumula-
tive damage, D, can be estimated by linearizing
the expression relating D with all random vari-
ables around the mean values of these variables.

This is a crude approximation because the deriva-
tives of the damage with respect to the values
of the random variables are not constant. Ad-
vanced methods. for fast probability integration
are more accurate in this case [1]. However, the
objective of this study is to identify the most im-
portant uncertainties and to obtain only rough
estimates of the COV of D. Moreover, the es-
timates for the bias and the COV of the ran-
dom variables involved in damage calculations
are very crude. Thus, for this case, the bene-
fits from using an advanced fast probability in-
tegration method are minimal. Due to the above
reasons, we adopted assumption d.

Under the above assumptions, fatigue damage
can be calculated by the following equation [26]:

_Bnzst

b A

(4.1)



where,

By represents the modeling error in the stress
at points of stress concentration,

m, is the exponent in the S-N curves,

S;, is the predicted stress amplitude at the ith
load application, and

A, is the constant at the right hand side of the
S-N equations.

The summation is for all load applications.

The modeling bias By is given by the following equa-
tion:

Bir =By Bs-Br- By - B, (4.2)

where,

By represents uncertainties in the geometry due
to manufacturing imperfections,

Bg represents uncertainties in seastate descrip-
tion,

Br represents uncertainties in wave load pre-
dictions,

By is the bias for errors in structufa.l analysis,
and

By is the bias for uncertainties in stress concen-
tration factors,

By using a first order Taylor series expansion of
the expression for D about the mean values of all
random variables, we obtain the mean value of D,

"~ E™(Bir) £ E™(S:)
E(D)=
(D) E(4) .

(4.3)

Assuming that the statistics of the predicted stress

are the same for all load cycles, we have,

E™(B;r) N - E™(5;)
E(4)

where N is the number of cycles over the lifetime of

the ship.

E(D) =

(4.4)

The coefficient of variation of fatigue damage D in
(4.1) is,

COVp = (m2COVE, +COVI+COVEsn)'2, (4.5)
where
Vp,, is the COV of modeling bias,
Va is the_ COV of A, and -
Vism is the COV of the sum SSP.

Note that subscript i has been dropped in equation
(4.5).

The first term in the expression with the square root,
on the right side of (4.5), represents the effect of mod-
eling uncertainties, The second term is associated -
with uncertainties in 5-N curves and the third repre-
sents the effect of random uncertainties.

As mentioned earlier, equations (4.4) and (4.5)
are approximate. The reasons for using them have
been mentioned earlier in this section.

4.3 Relative importance of random uncer-
tainties.

Here, we compare the effect of random uncer-
tainties on the fatigue damage against that of mod-
eling uncertainties. We also investigate the effect of
the correlation between the maxima of the stress pro-
cess.

We considered two cases. In the first case, the
maxima of the stress, S;, follow the Rayleigh distri-
bution, while in the second they follow the Weibull
distribution. We assume that the correlation coeffi-
cient between the ith and the kth stress maxima, 5;
and Sk, is,

PS5, = pg;_;’:!‘_l, where ps,s,,, is the correla:
tion coefficient between two subsequent peaks. In
our study we considered different values for pg;s;,,
in the range from 0. to 0.99. In the following discus-
sion, subscripts will be dropped. After some algebra,

the following equation was derived for the COV of
random uncertainties:

COVem(ie — w2
COVgym = —— S T W=7 (4.6)

where COV5s is the COV of a local maximum.

The COV increases with the correlation coefficient
between subsequent maxima increasing. It is ob-
served from (4.6), that the COV for random uncer-
tainties decreases, with the number of load cycles,
N, increasing. Moreover, it is almost zero for large
values of N (say 107), for any value of p less than
one.

The COV for random uncertainties is presented
in Table XI, for three cases. In the first case, the
stress amplitude follows the Rayleigh distribution,
while in the latter two cases, it follows the Weibull
distribution [27),

Fx(z)=1— ¢ ®° (4.7)

Coefficient ¢ equals 0.7 and 1.0 for the last two cases.

It is observed that the effect of random uncer-
tainties is small. Moreover, a similar calculation for
N = 10%, which is a typical number of load applica-
tions over the lifetime of a marine structure, showed
that the COV due to random uncertainties is practi-
cally zero. Since the distributions considered for the

- stress peaks represent real life situations, we conclude
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that random uncertainties can be neglected in fatigue
reliability analysis without losing any accuracy. This
is true even for the case for which the adjacent stress
maxima are strongly correlated. Hence, the value of
p is also unimportant provided that the number of
load cycles is large (say 107).

Table XI 'Coefficient of Variation of Cumnulative
Fatigue Damage Due to Random Uncertainties
(N =10%)

Distribution of
Stress
Amplitude

COV of Cumulative Damage

Correlation Coefficient of
Subsequent Peaks

.00 - 05 08 09 099
Rayleigh 00 00 001 001 003

Weibull  0.01 -0.01 001 0.02 0.06
{(e=10) :

Weibull 0.01 001 002 003 0.10
(c=07)

4.4 Uncertainties in cumulative fatigue dam-
age.

The equations of the previous sections allow to
quantify the-uncertainties in the cumulative fatigue
damage. Eq. (4.4) can be used to calculate the av-
erage bias while eq. (4.5) is for the COV We used
the  above equations to calculate the average bias
and COV of fatigne damage for typical marine struc-
tures. We also studied the relative contribution of
various uncertainties to the overall uncertainty in fa-
tigue damage.

The data on various uncertainties, which are in-
volved in fatigue analysis, are presented in Table XII.
Exponent m was taken to be 4.38.

Table XII Uncertainties Involved in All Steps
of Fatigue Analysis

Type of cov
Uncertainty ‘
[22,29] (11] !

B 0.2 0.2 0.2
Bs 0.5 0.58¢ 0.15
Br 0.2 0.19%
By 03 0.3 0.12
By 03 0.3 0.3
By 10 10 1.0
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Notes:

a) This COV refers to the cumulative effect of envi-
ronmental and load evaluation uncertainties, ie.
to the product of Bg and Bp.

b) This COV represents modeling uncertainties in
the combined wave and' slamming bending mo-
ment. The estimate was based on COV’s of 0.1
and 0.16 for the uncertainties in wave and slam-
ming bending moments, respectively.

Wirsching’s and Bea’s data are for offshore plat-
forms while Kaplan's data are for ships. Kaplan [7]
and Bea [11] provided estimates for Bs and By only,
In addition, the value of COVp,, for ships was sep-
arately calculated in [28]. The COV’s for the other
variables were assumed to be equal to the correspond-
ing values provided by Wirsching [22,29].

There is uncertainty in stress calculations due to
the fact that the peaks of the wave elevation do not

follow the Rayleigh distribution. This uncertainty
introduces conservative bias in the stress predictions.

Table XIII presents the overall uncertainty in cu-
mulative damage, as well as, the relative contribution
of all types of uncertainties tothe cumulative dam-
age. In this table COVy,COVs,COVF,COVy and
COVy represent the COV'’s of By, Bg, Bp, By and
By, respectively.

The following conclusions can be extracted from
Table 13.

a) Uncertainty in cumulative damage is very large
for both ships and offshore platforms, The rea-
son is that fatigue damage is extremely sensitive
to the amplitude of the applied stress, In other
words, a small change in the amplitude results
to a large change in the fatigne damage and the
expected fatigue life. .

b) As indicated by our example, uncertainty in fa-
tigue damage is smaller for ships than for off-
shore structures.

c) Uncertainty in describing the loading environ-

ment is-the most important for offshore plat- -

forms. This means that even a small reduction
in this uncertainty will result to a large reduction
in the overall uncertainty in fatigue damage.

d) For the case of ships, the uncertainty in the stress

- concentration factor is the most important. The

next important uncertainty is that in A, which

is the constant in the right hand side of the ex-
pression for the S-N curves.

e) The effect of random uncertainties is neglegi-
ble because these uncertainties are averaged out
in the procedure for evaluating fatigue damage.

" Moreover, the statistical correlation between con-
secutive stress peaks is unimportant in fatigue.



Table XIII Uncertainties in Cumulative Fatigue Damage and Relative
Contribution of Each Uncertainty in Table XII

COVr

COVy COVy COVesnCOVy4

Source COVp COVy COVs
Wirsching [22,29] 3.20  0.07  0.45
Bea[ll] . 342 007 055
Kaplan 7] 221 016  0.09

CONCLUSIONS
The following are the main conclusions:

1. In bo‘th ships and offshore platforms, it is impor-

tant to distinguish between random and mod-
eling uncertainties and between their effects on
lifetime extreme loads and load effects. In con-
trast to the random uncertainties, modeling un-
certainties do not decrease with the length of
the exposure period increasing. Therefore, if we
treat the latter uncertainties as if they were ran-
dom, we may grossly underestimate uncertain-
ties in extreme loads. In our opinion, approach 1
in Table VII is more appropriate than approach
2.

. We believe that modeling uncertainties have not
been treated correctly (i.e. according to the
method described in Section 2) in the new Load
and Resistance Factor Design code of the Amer-
ican Petroleum Institute. As a result, the co-
efficients of varjation of load effects have been
grossly underestimated.

. An effective way to quantify uncertainties is to
classify different types of ships with different char-
acteristics and operational schedules, and de-
termine uncertainties for each class, separately.
The resulting uncertainties will be considerably
lower than those determined by an approach which
does not distinguish between different types of
ships.

. Moreover, we may consider the dependence of
modeling errors on some parameters, such as the
significant wave height, and the relative heading
angle. Then, we can employ regression to deter-
mine relations between the error and the above
parameters. From work dealing with this ap-
proach, it was demonstrated that such relations
can be used to improve theoretical predictions
of loads and load effects and reduce the associ-
ated uncertainties by a significant amount. How-
-ever, this approach requires a sufficiently large
database which contains results from analytical
procedures and measurements on loads and load
effects.

. There is significant variability in still water load
effects in different voyages of a ship. There is

0.07

0.14

0.16 0.16 0.0 0.09
0.15 0.15 0.0 0.08
0.06 0.35 0.0 0.20

also significant variation between similar ships
and between different ship types.

6. The coefficient of variation for extreme wave mo-
ments in ships is roughly 0.20. The bias (ratio of
actual over predicted value) is greater than one,
which means that theoretical estimates of wave
loads are lower than the actual values. However,
the magnitude of this exceedence above one de-
pends upon the type of ship as well as consider-
ation of the particular type of bending (ie. sag-

ging or hogging).

7. It has been reported in the literature that the
coefficient of variation in extreme global loads
(overturning moments and base shear forces) on
offshore platforms ranges between 0.60 to 0.90.
While these numbers are large, and their precise
magnitude may be questioned, the actual values
are expected to exceed those in the new A.P.L
code. The trend indicated by these numbers ap-
pears to be proper.

8. Linear seakeeping methods cannot estimate hy-
drodynamic pressures on the ship hull with ac-
ceptable accuracy. This is particularly true in
the vicinity of the bow and the stern of the ship
hull. These methods are more effective in calcu-
lating global loads and wave bending moments.

9. Nonlinear effects are more important for ships
with small block coefficients, such as container-
ships, than for ships with large block coefficients
such as tankers and bulk carriers.

10. Random uncertainties are unimportant in fatigue
reliability analysis of both ships and offshore plat-
forms. Moreover, the statistical correlation be-
tween subsequent wave peaks is also unimpor-
tant.

The following conclusions refer to the relative
importance of the uncertainties involved in stress anal-
ysis. Some of these conclusions are based on work,
which was performed in the context of the SSC project
but which has not been presented in this paper.

11. It is general consensus that, in offshore struc-
tures, the uncertainty in describing the loading
environment is the most important. For those
fixed offshore platforms, for which dynamic ef-
fects are insignificant, the largest part of this un-
certainty is due to errors in estimating the long
term maximum wave height.
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12. Uncertainties in the value of the drag coefficient
in Morison equation are also important.

13. Uncertainties in describing the loading environ-
ment (wave height and period) are the most im-
portant in fatigue analysis of offshore platforms.
Errors in stress concentration factor and in strue-
tural analysis follow in terms of relative impor-
tance. It should be mentioned that errors in
structural analysis are primarily due to errors
in estimating the natural period of a platform.

14. The examples, which were studied in this paper,
indicate that the uncertainty in stress concen-
tration factor is the most important in fatigue
analysis of ships. ’
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Appendix ;: Calculation of Uncertainties in Life-
time Maximum Loads or Load Effects

The bias B, of the annual maximum load has a
lognormal probability distribution. Therefore,

_(fnb=AY?

202

fa(b) = \/'—b

where,

o = (In(1+ COVE)/2,

A=(n(EB) — 5’2—

and EB and COVjg are the mean and the coefficient
of variation of B, respectively. The lognormal distri-
bution belongs to the exponential class of probability
distributions because it satisfies von Mises’ condition
[27]. Therefore, the maximum value of B, over an
N year period B, follows the Type I asymptotic
extreme value probability distribution,

Fyon (b) = ezp (—e—aN (b~ BN))

where, By is the most probable maximum over the
N year period, and

ay= N fB(EN)

The most probable maximum, By, satisfies the fol-
lowing equation,

P(B2Bn)==
which is equivalent to,
= 1
P(énB > énBy) = —.
(énB 2 ¢nBy) N

Therefore, since ¢nB is normally distributed with
mean A and standard deviation o,

N N—1.
- By =exp (7Y N1)0+A)

where ®(-) denotes the probability distribution func-
tion of a standard Gaussian random variable. Finally,
the coefficient of variation of B(V) is

1r/\/€-i

COVpwy = —L
5™ = GnBy 7

where « is the Euler’s constant (0.577).
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DISCUSSION

Stig Berge

Some questions related to the fatigue modeling:

You conclude that your example calculation indicates that
the uncertainty in fatigne damage is smaller for ships than
for offshore structures. This is surprising, not least be-

cause explicit fatigue design procedures are well estab- .

lished for offshore structures, whereas for ships there is no
validated procedure available. How general do you feel
your conclusion is?

In the fatigue analysis you appear to take into account
environmental loading only. For ships it is known that
other sources of loading (induced from machinery,
changes in ballast condition) significantly affects fatigue
life. Are you able to assess the effect of these loadings on
your overall analysis?

Your analysis is based on SN curves essentially derived
frorn small scale tests performed in air. In offshore struc-
tures design these curves have to be modified in order to
take into account the detrimental effects of sea water, cf.
ongoing revisions of the UK DEn guidance notes. For
ship details, which often sec an even more aggressive
environment (intermitient water and air, high corrosion
rates, these SN curves may be totally inappropriate as
indicated by fatigue tests performed in sea water drip [1].
If an explicit fatigue design procedure for ships were to be
formulated, what are the authors’ comments on the choice
of design SN curves?

Reference:

[1] S. Berge, “Constant amplitude fatigue strength
of welds in sea water drip,” ECSC Select Serni-
nar on Offshore Steels Research, Cambndge
1978,

E. Nikolaidis

The first question regards the contention that modeling
uncertainty in fatigue analysis is larger for offshore plat-
forms than for ships. This is true because the error in-
volved in calculating loads is significantly larger for
offshore structures than for ships. Indeed, the coefficient
of variation of global loads applied to offshore structures
(base shear force, and overtuming bending moment)
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ranges between 50% to 70% [5, 11, 13, 20, 26, 29]. The
corresponding coefficient of variation of longitudinal
wave bending moments -applied to ship hulls is roughly
20% [7, 30}, which is significantly lower than that for the
case of offshore platforms.

The following is our response to the question on the effect
of other than environmental loads (induced from machin-
ery and from changes in ballast condition). We believe
that the loads due engine vibration only affect the fatigue
life of components that are located near the engine room,
the propeller or the shafting system. Therefore, these
loads are of limited interest in this study. Changes in
bﬂlastcmdmmsshouldhaveamgmﬁcanteﬁ'ectonme
fatigue damage because:
»  Static stresses in the ship hull depend on both
- ballast and loading conditions.
* ' Static stresses cantly affect the fati
hfeofthehullsm"ﬁ y g
- = The coefficient of variation of still water
bending moment and the resulting static
stresses is large [8].

However, we believe that the effect of uncertainties in
loading and bellast conditions on the cumulative fatigue
damage over the lifetime of the ship is significantly
smallerthanthatoftheslmﬂtermsnllwaterbendmg
moment. Indeed, as it is explamed in the paper (section
4.3), the effect of random uncertainties on the cumulative
damage decreases with the length of the exposure period
increasing, :

" We agree with the comment on the choice of §-N curves;

the effect of corrosion is important and it should be taken
into account in fatigue analysis. However, we did not take
into account the effects mentioned in the previous two
paragraphs because our objective was only to compare the
significance of random and modeling uncertainties and to
identify the most critical components in fatigue analysis
rather than to derive exact estimates of the fatigue damage.

Reference:

(301  Faulkner, D. “Semi-Probabilistic Approach to
the Design of Marine Structures,” Extreme
Loads Symposium, SNAME, Arlington,
Virginia, 1981. Note: Numbers refer to refer-
ences in the paper.



